Topological Methods in Nonlinear Analysis Volume 52, No. 1, 2018, 147–160 DOI: 10.12775/TMNA.2018.013

© 2018 Juliusz Schauder Centre for Nonlinear Studies

BLOWUP VERSUS GLOBAL IN TIME EXISTENCE OF SOLUTIONS FOR NONLINEAR HEAT EQUATIONS

PIOTR BILER

In memory of Marek Burnat

ABSTRACT. This note is devoted to a simple proof of blowup of solutions for a nonlinear heat equation. The criterion for a blowup is expressed in terms of a Morrey space norm and is in a sense complementary to conditions guaranteeing the global in time existence of solutions. The method goes back to H. Fujita and extends to other nonlinear parabolic equations.

1. Introduction

In this paper we consider the Cauchy problem for the simplest example of a semilinear parabolic equation in \mathbb{R}^d , $d \geq 1$, p > 1,

(1.1)
$$u_t = \Delta u + |u|^{p-1}u, \quad x \in \mathbb{R}^d, \ t > 0,$$

$$(1.2) u(x,0) = u_0(x).$$

This problem has been thoroughly studied beginning with [18], [20], [21], and many fine properties of its solutions are known. For the reference, see the extensive monograph [32] and a recent paper [33].

²⁰¹⁰ Mathematics Subject Classification. 35B44, 35K55.

 $Key\ words\ and\ phrases.$ Nonlinear heat equation; blowup of solutions; global existence of solutions.

The author, partially supported by the NCN grants 2013/09/B/ST1/04412, 2016/23/B/ST1/00434, thanks Ignacio Guerra for interesting conversations leading to revisiting Fujita's method, Philippe Souplet, Mikołaj Sierżęga and the referees for many pertinent remarks.