Topological Methods in Nonlinear Analysis Volume 51, No. 2, 2018, 429–457 DOI: 10.12775/TMNA.2018.007

© 2018 Juliusz Schauder Centre for Nonlinear Studies

NONLINEAR UNILATERAL PARABOLIC PROBLEMS IN MUSIELAK–ORLICZ SPACES WITH L^1 DATA

Mustafa Ait Khellou — Sidi Mohamed Douiri — Youssef El Hadfi

ABSTRACT. We study, in Musielak–Orlicz spaces, the existence of solutions for some strongly nonlinear parabolic unilateral problem with L^1 data and without sign condition on nonlinearity.

1. Introduction

Let Ω be a bounded Lipschitz domain of \mathbb{R}^N $(N \geq 2)$ and let $Q = \Omega \times (0, T)$, T > 0. Consider the following nonlinear parabolic problem:

(1.1)
$$\begin{cases} \frac{\partial u}{\partial t} + A(u) + g(x, t, u, \nabla u) = f & \text{in Q,} \\ u = 0 & \text{on } \partial\Omega \times (0, T), \\ u(x, 0) = u_0(x) & \text{in } \Omega, \end{cases}$$

where $A(u) = -\operatorname{div} a(x,t,u,\nabla u)$ is a Leray–Lions operator defined on $D(A) \subset W_0^{1,x}L_{\varphi}(\mathbf{Q}) \to W^{-1,x}L_{\overline{\varphi}}(\mathbf{Q})$ with φ and $\overline{\varphi}$ two complementary Musielak–Orlicz functions, and g is a nonlinearity satisfying the growth condition

$$|q(x,t,s,\xi)| < c'(x,t) + b(s)\varphi(x,|\xi|),$$

where $b: \mathbb{R} \to \mathbb{R}^+$ is a continuous nondecreasing function in $L^1(\mathbb{R})$ and $c'(\cdot, \cdot)$ is a given nonnegative function in $L^1(\mathbb{Q})$.

 $^{2010\} Mathematics\ Subject\ Classification.\ 35K55,\ 35K86,\ 46E30.$

Key words and phrases. Musielak–Orlicz spaces; nonlinear unilateral parabolic problems; entropy solutions.