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(A(t),m)-CALORIC APPROXIMATION METHOD
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Abstract. Partial regularity of solutions to a class of 2m-order quasilinear
parabolic systems and full interior regularity for 2m-order linear parabolic

systems with non smooth in time principal matrices is proved in the paper.

The coefficients are assumed to be bounded and measurable in the time
variable and VMO-smooth in the space variables uniformly with respect

to time. To prove the result, we apply the (A(t),m)-caloric approximation

method, m ≥ 1. It is both an extension of the A(t)-caloric approximation
applied by the authors earlier to study regularity problem for systems of

the second order with non-smooth coefficients and an extension of the A-

polycaloric lemma proved by V. Bögelein in [6] to systems of 2m-order.

1. Introduction

In this paper we continue to study partial regularity of weak solutions to qua-

silinear parabolic systems. We consider a class of 2m-order systems in the form

(1.1) ut(z) + (−1)m
∑

|α|=|β|=m

Dα(Aαβ(z,Dm−1 u(z))Dβ u(z))

=
∑
|α|≤m

(−1)|α|Dα Fα(z),
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for z ∈ Q, where m ≥ 1, z = (x, t) ∈ Q = Ω × (−T, 0), Ω is a bounded domain

in Rn, n ≥ 2, T > 0 is an arbitrary fixed number. By ut we denote the time

derivative of a function u : Q→ RN , N > 1 and for multiindex α = (α1, . . . , αn)

with αi ∈ N0 and |α| = α1 + . . .+ αn we denote by

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαnn

the space derivatives. Moreover, Dju = {Dαu}|α|=j . Through the paper we

use the convention of summation over repeated indices. The functions Fα for

|α| ≤ m belong to appropriate Campanato spaces.

We assume that the N ×N matrices Aαβ(x, t, pm−1), |α| = |β| = m, pm−1 ∈
Pm−1 = {pα ∈ RN : α = (α1, . . . , αn), |α| = m−1} satisfy the uniform ellipticity

conditions with positive numbers µ and ν, ν ≤ µ:

(1.2)
∑

|α|=|β|=m

Aαβ(z, pm−1)ξα · ξβ ≥ ν |ξ|2, |ξ|2 =
∑
|α|=m

|ξα|2,

for any systems {ξα}|α|=m of vectors of RN , all arguments pm−1 ∈ Pm−1 and

almost all z ∈ Q.

Moreover, for all pm−1 ∈ Pm−1,

(1.3) ‖A( · , pm−1)‖∞,Q =

[
ess sup
z∈Q

∑
k,l=1,...,N

∑
|α|=|β|=m

(Aαβkl (z, pm−1))2

]1/2

≤ µ.

For simplicity we write A(z, pm−1) ∈ {ν, µ} provided that A(z, pm−1) =

{Aαβ(z, pm−1)}|α|=|β|=m satisfy the assumptions (1.2), (1.3) for any pm−1 ∈
Pm−1 and almost all z ∈ Q.

We consider weak solutions u of system (1.1) defined as follows:

Definition 1.1. A function u ∈ V (Q) := L2((−T, 0);Wm
2 (Ω)) is a weak

solution to system (1.1) if it satisfies the identity

(1.4)

∫
Q

[−u(z) · φt(z) +
∑

|α|=|β|=m

Aαβ(z,Dm−1u(z))Dβu(z) ·Dαφ(z)] dz

=
∑
|α|≤m

∫
Q

Fα(z) ·Dαφ(z) dz

for all φ ∈ C∞0 (Q).

In this paper we relax the known conditions on the matrices Aαβ(z, pm−1)

which guarantee partial regularity of weak solutions u to system (1.1) (see [6]).

We estimate the Hausdorff measure of the singular set Σ of u. In particular, we

prove that for the linear systems their singular sets Σ are empty. Let us remark

that results of this paper in the case m = 1 coincide with the results of our

earlier paper for quasilinear systems of the second order in [5].
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Under similar smoothness conditions in x and t for the principal matrix,

the regularity question for a wide class of nonlinear scalar equations and 2m-

order parabolic linear systems (m ≥ 1) was studied in a series of the works by

N.V. Krylov, H. Dong, D. Kim (see [18], [19], [11]–[13] and references therein).

In these works the principal coefficients of the studied systems were also assumed

bounded and measurable in t and VMO-smooth in the space variables.

Using a different approach to study quasilinear systems, we proved partial

regularity of the second order (m = 1) parabolic systems in divergence and non

divergence forms in [3]–[5] under conditions on the principal matrices analogous

to (1.2), (1.3) by so called A(t)-caloric approximation method (for application

of the method see also [1]). This method is a modification of the A-caloric

approximation method by F. Duzaar and G. Mingione [15] (see also [8], [6]) and

it is an analogue of elliptic A-harmonic approximation having its origin in E. De

Giorgi ideas (see [10], [14]).

To study 2m-order systems, we prove here a new variant of the A(t)-caloric

approximation lemma and name it (A(t),m)-caloric approximation lemma. We

hope that this approach will be helpful to study regularity problem for more

general classes of 2m-order quasilinear and nonlinear parabolic systems.

The paper is organized as follows: in Section 2 we list notation and the main

results, Section 3 contains auxiliary results, Section 4 is dedicated to properties

of (A(t),m)-caloric functions. We prove (A(t),m)-caloric lemma in Section 5.

Finally, in the last Section 6 we prove Theorems 2.1, 2.2 and 2.4.

2. Notation and main results

In the paper we assume that Ω is an open bounded domain in Rn and T is

a positive number. We will use the following notation:

• z = (x, t),

• z0 = (x0, t0) ∈ Ω× (−T, 0) = Q ⊂ Rn+1,

• Γ = ∂Ω× (−T, 0),

• ∂pQ = Γ ∪ (Ω× {−T}),
• Λr(t

0) = (t0 − r2m, t0),

• Br(x0) = {x ∈ Rn; |x− x0| < r},
• Qr(z0) = Br(x

0)× Λr(t
0),

• Γr(z
0) = ∂Br(x

0)× Λr(t
0),

• ∂pQr(z0) = Γr(z
0) ∪ (Br(x0)× {t0 − r2m}).

Throughout the paper we will use the standard notation for the Lebesgue and

Sobolev spaces. Note that the Hölder spaces C0,α(Q), Morrey spaces L2,λ(Q),

and Campanato spaces L2,λ(Q) are considered with respect to the m-parabolic

metric

δm(z1, z2) = max
{
|x1 − x2|, |t1 − t2|1/2m

}
.
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Thus, for example, C0,α(Q) = C
α,α/2m
x,t (Q) in the euclidian metric in Rn+1.

For a function u in Sobolev spaces Wm
2 (Ω) on a domain Ω ⊂ Rn we assume

that all the derivatives of u up to the order m are square integrable on Ω.

Sobolev spaces Wm,k
2 (Q) consist of all functions u such that all derivatives of u

with respect to the space variables up to the order m as well as all derivatives

of u with respect to time up to the order k are square integrable on Q. Finally,

Wm
2,0(Ω) = [C∞0 (Ω)]Wm

2 (Ω).

Further we denote the spaces

V (Q) = L2((−T, 0);Wm
2 (Ω)),

V (Qr(z
0)) = L2(Λr(t

0);Wm
2 (Br(x

0)),

0

V (Qr(z
0)) = L2(Λr(t

0);Wm
2,0(Br(x

0)),

for z0, r such that Qr(z
0) ⊂⊂ Q.

The space averages and the space-time averages of u ∈ L1(Qr(z
0)) are defined

by

(u)r,x0(t) =
1

|Br(x0)|

∫
Br(x0)

u(y, t) dy,

(u)r,z0 =
1

|Qr(z0)|

∫
Qr(z0)

u(z) dz = −
∫
Qr(z0)

u(z) dz.

Space averages of coefficients Aαβ are defined by

(Aαβ)r,x0(t, pm−1) =
1

|Br(x0)|

∫
Br(x0)

Aαβ(y, t, pm−1) dy.

Here |Br| and |Qr| stand for the Lebesgue measure of Br and Qr in Rn and

Rn+1, respectively.

In what follows we will use the notation Qr, Vr, (u)r and (Aαβ)r without

denoting center of the ball or cylinder if it does not cause misunderstandings.

Next we formulate the main assumptions on the data. Let for α, β with |α| =
|β| = m the coefficients Aαβ =

(
Aαβil

(
z, pm−1

))
i,l=1,...,N

, with pm−1 ∈ Rm−1 are

Carathéodory functions on Q× Pm−1 and satisfy the following conditions:

(H1) There are positive constants µ, ν, ν ≤ µ such that [N × N ] matrices

Aαβ with |α| = |β| = m satisfy the ellipticity condition (1.2) and the

boundedness condition (1.3).

(H2) For almost all z ∈ Q, and pm−1, qm−1 ∈ Pm−1 it holds

(2.1) |Aαβ(z, pm−1)−Aαβ(z, qm−1)| ≤ ω(|pm−1 − qm−1|2),

where ω(s) is a non decreasing, bounded and concave function on [0,∞)

with lim
s→0+

ω(s) = 0.
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(H3) For all i, l ≤ N , |α| = |β| = m, almost all t ∈ (−T, 0) and all pm−1 ∈
Pm−1 the coefficients Aαβil ( · , t, pm−1) belong to VMO(Ω) and

(2.2) sup
ρ≤r

Qr(z0)⊂Q

sup
pm−1∈Pm−1

−
∫

Λρ(t0)

(
−
∫
Bρ(x0)

|A(y, t, pm−1)−Aρ,x0(t, pm−1)|2 dy
)
dt

=: q2(r)→ 0

for r → 0+. Here

(Aαβ)ρ,x0(t, pm−1) = −
∫
Bρ(x0)

Aαβ(x, t, pm−1) dx.

(H4) The functions Fα ∈ L2,n+2|α|−2+2γ(Q; δm), |α| ≤ m, γ ∈ (0, 1).

Note that the assumption (H2) means continuity of Aαβ(x, t, pm−1) in the

arguments pm−1 which is uniform with respect to z = (x, t) and the assumption

(H3) is VMO continuity of Aαβ in x uniform with respect to t and pm−1. We do

not assume any additional smoothness in t of the coefficients Aαβ .

We can require that conditions (H1)–(H4) are satisfied only locally in Q

because in this paper we study the interior partial regularity of weak solutions

to system (1.1).

In order to concentrate our attention on the properties of the principal ma-

trices Aαβ we omit additional nonlinear terms of the lower order.

Next we formulate the main results of the paper. To shorten the formulas

we will denote for k = 0, . . . ,m by

|Dku| =
( ∑
α, |α|=k

|Dαu|2
)1/2

.

Theorem 2.1. Let the assumptions (H1)–(H4) hold and u ∈ V (Q) be a weak

solution to (1.1). Then there exist numbers τ, θ0 ∈ (0, 1) and r0 > 0 such that,

if Qr(z
0) ⊂ Q and

(2.3) r−(n+2(m−1))

∫
Qr(z0)

|Dmu(z)|2 dz < θ0

with some r < r0, then u and all derivatives Dk u with k ≤ m − 1, belong to

Cγ(Qτ r(z
0)) with the exponent γ ∈ (0, 1) given in the assumption (H4). The

norms ‖Dk u‖Cγ(Qτ r(z0)) can be estimated by the data of the problem, ‖u‖V (Q)

and r−1.

Theorem 2.2. Let the assumptions of Theorem 2.1 hold and u ∈ V (Q) be

a weak solution to system (1.1). Then u and its derivatives Dku, k ≤ m− 1 are

Hölder continuous functions (in the parabolic δm metric) on an open set Q0 ⊂ Q,

Q0 = Q \ Σ where Σ is the closed singular set of u and Hn+2(m−1)(Σ; δm) = 0.
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Remark 2.3. Let all conditions of Theorem 2.1 hold. We put

A(x, t) = A(x, t,Dm−1u(x, t)).

The matrix A is bounded in t and VMO-smooth in x on the regular set Q0

(defined in Theorem 2.2). We can consider u as a weak solution of the linear

system

(2.4) ut(z) + (−1)mDm(A(z)Dmu(z)) =
∑
|α|≤m

(−1)|α|Fα(z), z ∈ Q0,

and apply results stated in [12] to obtain further smoothness of u (certainly,

under appropriate assumptions of the functions Fα).

As a particular case of (1.1) we can consider the linear system

(2.5) ut + (−1)m
∑

|α|=|β|=m

Dα(Aαβ(z)Dβ u) =
∑
|α|≤m

(−1)|α|Dα Fα(z), z ∈ Q,

Then Theorem 2.1 implies the following result on the regularity of solutions to

system (2.5).

Theorem 2.4. Let the assumptions (H1), (H3) hold for the matrix A(z),

z ∈ Q, and the functions Fα satisfy conditions (H4). Let u ∈ V (Q) be a weak

solution to system (2.5). Then u and its derivatives Dku, k ≤ m − 1, are the

Hölder continuous functions in Q with the exponent γ ∈ (0, 1) where γ is fixed

in the assumption (H4).

Remark 2.5. As we mentioned, regularity results for linear parabolic sys-

tems of the higher order with non smooth in time coefficients follow from the

paper [12] where solvability results for such systems in the Sobolev spaces were

stated but here we suggest another approach and consider the right hand sides

Fα not in Lq but in Campanato spaces.

3. Auxiliary results

In this section we recall several results needed further.

Lemma 3.1 (Interpolation lemma, see e.g. [6], [7, Lemma B1]). Let a function

u ∈Wm
2 (Br(x

0)). Then:

(a) For any k ≤ m−1 and any ε ∈ (0, 1] there is a constant c which depends

on n,m such that the following inequality holds

(3.1)

∫
Br(x0)

|Dku(x)|2 dx ≤ ε r2(m−k)

∫
Br(x0)

|Dmu(x)|2 dx

+ c(n,m)ε−k/(m−k) r−2k

∫
Br(x0)

|u(x)|2 dx.
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(b) If we choose r1, r2 such that the condition r/2 ≤ r1 < r2 ≤ r is satisfied,

then

(3.2)

∫
Br2 (x0)\Br1 (x0)

|Dku(x)|2 dx

≤ ε (r2 − r1)2(m−k)

∫
Br2 (x0)\Br1 (x0)

|Dmu(x)|2 dx

+ c(n,m)ε−k/(m−k) (r2 − r1)−2k

∫
Br2 (x0)\Br1 (x0)

|u(x)|2 dx.

Lemma 3.2 (Caccioppoli inequality). Let a0(z) = {aαβ0 (z)} for |α| = |β| = m

be N ×N -matrices, a0 ∈ L∞(Q), a0(z) ∈ {ν, µ} for almost all z ∈ Q with some

positive constants ν ≤ µ. Let Fγ ∈ L2(Q) for all γ with |γ| ≤ m and u ∈ V (Q)

be a weak solution to the system

(3.3) ut(z) + (−1)mDα(aαβ0 (z)Dβu(z)) =
∑
|γ|≤m

(−1)|γ|Dγ Fγ(z).

Then, for any polynomial Pm−1 : Rn → RN of the degree less or equal to m− 1

depending on x only, the following inequality holds

(3.4) −
∫
Qr/2(z0)

|Dmu(z)|2 dz ≤ ccacc.r−2m −
∫
Qr(z0)

|u(z)− Pm−1(x)|2 dz

+ c

m∑
|α|=0

r2(m−|α|) −
∫
Qr(z0)

|Fα(z)|2 dz

in any cylinder Qr(z
0) ⊂⊂ Q. The constants in (3.4) depend only on ν, µ, m

and n.

We could not find in literature the Caccioppoli and the Poincaré inequalities

for systems (3.3) in an appropriate form and give below the proofs of these

lemmas.

In the draft of a proof of Caccioppoli inequality we will use Steklov formula-

tion (see ([6], [20]).

Proof of Lemma 3.2. First, we recall that any weak solution u ∈ V (Q) of

system (3.3) is a function from the class C((−T, 0);L2(Ω)) (see, for example [20,

Chapter 2]). Moreover, for a fixed polynomial Pm−1(x) of the degree less than

m, the function u(z)− Pm−1(x) is also a weak solution to system (3.3) and the

following identity is valid

(3.5)

∫
Qr(z0)

[−(u− Pm−1) · φt + a0D
mu ·Dmφ] dz

+

∫
Br(x0)

(u− Pm−1) · φdx|t=t
0

=
∑
|α|≤m

∫
Qr(z0)

Fα ·Dαφdz,
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for all φ ∈W 1
2 (Qr(z

0)), φ|∂pQr(z0) = 0, Qr(z
0) ⊂⊂ Q.

We fix numbers r1 < r2 such that r/2 ≤ r1 < r2 ≤ r and an arbitrary

polynomial Pm−1(x) and consider the function

φ(z) = (u(z)− Pm−1(x))η2m(x) θ2(t)

where η ∈ C∞0 (Br2(x0)), η(x) = 1 in Br1(x0), |Dkη(x)| ≤ c/(r2 − r1)k; θ ∈
C∞(R1), θ(t) = 1 in Λr/2(t0), θ(t) = 0 for t ≤ t0 − r2m, |θ′(t)| ≤ c/r2m.

Unfortunately, φ is not differentiable in t and thus it cannot be used as a test

function directly. The well known Steklov average procedure should be applied

beforehand (see, for example, [20, Chapter 3]). To spare the place we omit this

procedure and illustrate the idea of the proof by putting the function φ in (3.5).

Then we obtain the relation∫
Qr(z0)

− |u(z)− Pm−1(x)|2η2m(x)θ′(t) θ(t) dz(3.6)

+

∫
Br(x0)

|u(z)− Pm−1(x)|2η2m(x)

2
dx

∣∣∣∣t=t0
+

∫
Qr(z0)

a0D
mu · (Dmu η2m +K(u, η)) θ2 dz

=

∫
Qr(z0)

Fm · (Dmu η2m +K(u, η)) θ2 dz

+

m−1∑
k=0

∫
Qr(z0)

Fk ·Dk((u− Pm−1) η2m) θ2 dz.

Here we denoted by Fk = {Fα}|α|=k and by K(u, η) the terms with the lower

order derivatives of u:

K(u, η) =
m−1∑
j=0

Dj(u− Pm−1)Dm−jη2m.

Using the ellipticity condition and the Cauchy inequality we derive from (3.6)

that ∫
Qr(z0)

|Dmu|2η2mθ2 dz ≤ c

r2m

∫
Qr(z0)

|u− Pm−1|2 dz(3.7)

+ c

∫
Qr(z0)

|K(u, η)|2θ2 dz + c

∫
Qr(z0)

|Fm|2 dz

+ c

m−1∑
k=0

∫
Qr(z0)

|Fk| |Dk[(u− Pm−1)η2m]| dz.

Further we write Bρ = Bρ(x
0), Λρ = Λρ(t

0), Qρ = Qρ(z
0) and put

Tr = (Br2 \Br1)× Λr.
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We recall that Djη = 0 on Br1 for all j = 1, . . . ,m−1, and estimate the integral

I :=

∫
Qr

|K(u, η)|2θ2 dz(3.8)

≤ c
∫
Tr

m−1∑
j=1

|Dj(u− Pm−1)|2θ2 dz

(r2 − r1)2(m−j) dz + c

∫
Tr

|u− Pm−1|2θ2

(r2 − r1)2m
dz

Now we integrate inequality (3.2) (with an ε > 0 to be defined later) in t ∈ Λr
and obtain the relation

m−1∑
i=1

∫
Tr

|Di(u− Pm−1)|2θ2

(r2 − r1)2(m−i) dz ≤ ε
∫
Tr

|Dmu|2θ2 dz + cε

∫
Tr

|u− Pm−1|2

(r2 − r1)2m
dz.

Then

(3.9) I ≤ c1ε
∫
Tr

|Dmu|2 θ2 dz + cε

∫
Tr

|u− Pm−1|2

(r2 − r1)2m
dz.

Further we estimate the integrals with the functions Fk in (3.7) by the Cauchy

inequality with a parameter q ∈ (0, 1), we will choose q later. Thus

Jk :=

∫
Qr

|Fk| |Dk[(u− Pm−1) η2m]| dz ≤ q
∫
Qr

|Dk[(u− Pm−1)η2m]|2

(r2 − r1)2(m−k)
dz

+ cq

∫
Qr

|Fk|2 dz(r2 − r1)2(m−k) =: q l1 + l2.

Here

l1 ≤ c
∫
Tr

(r2 − r1)−2(m−k)
k∑
j=0

|Dj(u− Pm−1)|2θ2

(r2 − r1)2(k−j) dz

≤ c
∫
Tr

k∑
j=1

|Dj(u− Pm−1)|2θ2

(r2 − r1)2(m−j) dz + c

∫
Qr

|u− Pm−1|2

(r2 − r1)2m
dz.

We apply once more the interpolation inequality (3.2) with ε = 1 to estimate

the integrals with |Dj(u− Pm−1)|2 in the last inequality and obtain that

l1 ≤ c
∫
Tr

|Dmu|2θ2 dz + c

∫
Qr

|u− Pm−1|2

(r2 − r1)2m
dz.

Thus, for q ∈ (0, 1),

(3.10) Jk ≤ c2 q
∫
Tr

|Dmu|2θ2 dz

+ c

∫
Qr

|u− Pm−1|2

(r2 − r1)2m
dz + cq

m∑
k=0

r2(m−k)

∫
Qr

|Fk|2 dz.
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Estimates (3.9) and (3.10) help us to deduce from (3.7) the inequality

(3.11)

∫
Qr

|Dmu|2η2mθ2 dz ≤ (c1ε+ c2 q(m− 1))

∫
Tr

|Dmu|2θ2 dz

+ cε

∫
Qr

|u− Pm−1|2

(r2 − r1)2m
dz + cq

m∑
k=0

r2(m−k)

∫
Qr

|Fk|2 dz.

Now we choose the parameters ε, q ∈ (0, 1) from the condition

c1ε+ c2 q(m− 1) ≤ 1/2.

For the function

g(ρ) =

∫
Λr(t0)

∫
Bρ(x0)

|Dmu|2θ2 dx dt, ρ < r,

we obtain from (3.11) the inequality

(3.12) g(r1) ≤ 1/2 g(r2) +
M(r)

(r2 − r1)2m
+ S(r)

where

M(r) = c

∫
Qr

|u− Pm−1|2 dz, S(r) = c

m∑
k=0

r2(m−k)

∫
Qr

|Fk|2 dz,

for r/2 ≤ r1 < r2 ≤ r. By the well known lemma (see, for example, Lemma 8.18

in [17]) this inequality implies that

(3.13) g

(
r

2

)
≤ c M(r)

r2m
+ c S(r),

where the constants c = c(ν, µ,m, n). Inequality (3.4) follows from (3.13). �

Lemma 3.3 (Poincaré inequality). Let the assumptions of Lemma 3.2 hold.

Then

(3.14) −
∫
Qr(z0)

|u(z)− P ∗m−1,r(x)|2 dz

≤ cpoinc r
2m −
∫
Q2r(z0)

|Dmu(z)|2 dz + c
∑
|α|≤m

r4m−2|α| −
∫
Q2r(z0)

|Fα(z)|2 dz

for any r such that Q2r(z
0) ⊂⊂ Q. Here P ∗m−1,r(x) minimize the integral∫

Qr(z0)
|u(z)− Pm−1(x)|2 dz among all polynomials of degree at most m− 1 and

the constants in (3.14) depend only on ν, µ, m and n.

Proof. Let u be a weak solution of system (3.3). We fix a cylinderQr(z
0)⊂⊂

Q, and numbers r1 < r2 where r/2 ≤ r1 < r2 ≤ r. We also fix numbers s ∈
Λr(t

0) \ Λr/2(t0) and τ ∈ (s, t0). We denote by η = η(x) a cut-off smooth

function for Br2(x0), η(x) = 1 in Br1(x0) and |Dkη| ≤ c/(r2 − r1)k, k ∈ N.
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We address to identity (3.5) with the test function

φ(z) = (u(z)− P ∗(x; s))η2m(x)χε(t)

where the polynomial P ∗(x; s) minimize (for the fixed s) the integral∫
Br(x0)

|u(x, s)− P (x)|2 dx

among all polynomials of the degree not more than m − 1. The piece-wise

continuous function χε(t) = 1 for t ∈ (s, τ) and χε(t) = 0 for t ∈ R1\(s−ε, τ+ε)

and (s − ε, τ + ε) ⊂ Λr(t
0). (We omit the Steklov average procedure.) After

some trivial calculations we tend ε→ 0 and obtain the equality∫
Br2 (x0)

1

2
η2m(x)|u(x, t)− P ∗(x, s)|2 dx

∣∣∣∣t=τ
t=s

(3.15)

+

∫ τ

s

∫
Br2 (x0)

a0D
mu · (Dmu η2m + L(u, η)) dx dt

=

∫ τ

s

∫
Br2 (x0)

Fm · (Dmu η2m + L(u, η)) dx dt

+

m−1∑
k=0

∫ τ

s

∫
Br2 (x0)

Fk ·Dk[(u− P ∗(x, s))η2m] dx dt.

We denoted in (3.15) by L(u, η) the expression

L(u, η) :=

m−1∑
k=0

Dk[(u(x, t)− P ∗(x; s))Dm−kη2m(x)].

To short the place we will write

Bρ = Bρ(x
0), Qρ = Qρ(z

0), Λρ = Λρ(t
0),

û(z) = u(z)− P ∗(x; s), Υr = (Br2 \Br1)× (s, τ).

Now we estimate the terms with L = L(u, η) in (3.15) as follows:

M1 :=

∣∣∣∣ ∫ τ

s

∫
Br2

a0D
mu · L dx dt

∣∣∣∣(3.16)

≤ c
∫

Υr

rm|Dmu|
(r2 − r1)m

m−1∑
k=0

|Dkû|(r2 − r1)k

rm
dz

≤ q
∫

Υr

m−1∑
k=0

|Dkû|2(r2 − r1)2k

r2m
dz + cq

∫
Υr

r2m|Dmu|2

(r2 − r1)2m
dz.

Here we applied the Cauchy inequality with the parameter q ∈ (0, 1) to be defined

later.
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After integration inequality (3.2) (with ε = 1) in t ∈ (s, τ) we obtain that

(3.17)

∫
Υr

m−1∑
k=1

|Dkû|2 dz(r2 − r1)2k

≤ c (r2 − r1)2m

∫
Υr

|Dmu|2 dz + c

∫
Υr

|û|2 dz.

Then

(3.18) M1 ≤ c
∫
Qr

|Dmu|2 dz + cq

∫
Qr

r2m|Dmu|2

(r2 − r1)2m
dz + c1 q

∫
Υr

|û|2

r2m
dz.

Further,

M2 =:

∣∣∣∣ ∫ τ

s

∫
Br2

Fm · L dz
∣∣∣∣(3.19)

≤ c
∫

Υr

|Fm| |û|
(r2 − r1)m

dz + c
m−1∑
k=1

∫
Υr

rm|Fm|
(r2 − r1)m

|Dkû|(r2 − r1)k

rm
dz

≤ q
∫

Υr

|û|2

r2m
dz + cq

r2m

(r2 − r1)2m

∫
Qr

|Fm|2 dz

+ q

m−1∑
k=1

∫
Υr

|Dkû|2(r2 − r1)2k

r2m
dz

≤ cq
r2m

(r2 − r1)2m

∫
Qr

|Fm|2 dz

+ c q
(r2 − r1)2m

r2m

∫
Υr

|Dmu|2 dz + c2 q

∫
Υr

|û|2

r2m
dz.

On the last step of relations (3.19) we applied inequality (3.17).

With the help of (3.18) and (3.19) we derive from (3.15) the inequality∫
Br2

|û(x, τ)|2η2m dx ≤
∫
Br2

|û(x, s)|2 dx(3.20)

+ cq
r2m

(r2 − r1)2m

∫
Qr

|Dmu|2 dz + cq
r2m

(r2 − r1)2m

∫
Qr

|Fm|2 dz

+

m−1∑
k=0

∫ τ

s

∫
Br2

|Fk ·Dk(ûη2m)| dxdt+
(c1 + c2) q

r2m

∫
Υr

|û|2 dz.

By the definition of û and due to the minimality property of P ∗(x; s) in Br(x
0)

we can write that

(3.21)

∫
Br

|û(x, s)|2 ≤
∫
Br

|u(x, s)− P 0(x; s)|2 dx,

where P 0(x; s) is the mean value polynomial of the degree m− 1 in Br, i.e.∫
Br

Dα(u(x, s)− P 0(x, s)) dx = 0, for all |α| ≤ m− 1.
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For almost all s ∈ Λr \ Λr/2 the function u( · , s) ∈ Wm
2 (Br) and further we

consider such s.

We apply inequality (3.21) and then few times the Poincaré inequality to

the functions Dα(u(x, s) − P 0(x, s)), |α| ≤ m − 1. The following chain of the

inequalities holds:

(3.22)

∫
Br

|û(x, s)|2 dx ≤ c(n)r2

∫
Br

|D(u(x, s)− P 0(x; s))|2 dx

= c(n)r2

∫
Br

|Du(x, s)− (Du)r(s)|2 dz ≤ . . . ≤ c(n,m)r2m

∫
Br

|Dmu(x, s)|2 dx.

Further we estimate the sum M3 with integrals Fk in (3.20) as follows:

M3 ≤ c
m−1∑
k=0

∫ τ

s

∫
Br2

|Fk|
Σkj=0|Dj û|

(r2 − r1)k−j
dx dt(3.23)

≤ cq
m−1∑
k=0

∫
Qr

|Fk|2 dz r2m

(r2 − r1)2k
+ q

k∑
j=0

∫
Υr

|Dj û|2 dz(r2 − r1)2j

r2m
.

Now we estimate the integrals with |Dj û|2 in (3.23) by (3.17). Then

(3.24) M3 ≤ cq
m−1∑
k=0

∫
Qr

|Fk|2 dz r2m

(r2 − r1)2k

+ c q
(r2 − r1)2m

r2m

∫
Υr

|Dmu|2 dz +
c3 q

r2m

∫
Υr

|û|2 dz.

Taking into account inequalities (3.21) and (3.24) we obtain from (3.20) that∫
Br1

|u(x, τ)− P ∗(x; s)|2 dx(3.25)

≤ c r2m

∫
Br

|Dmu(x, s)|2 dx+
c4 q

r2m

∫ t0

s

∫
Br2\Br1

|û|2 dx dt

+ cq
r2m

(r2 − r1)2m

∫
Qr

|Dmu|2 dz + cq

m∑
k=0

r2m

(r2 − r1)2k

∫
Qr

|Fk|2 dz,

where c4 = c1 + c2 + c3. As the right-hand side of (3.25) does not depend on τ

we derive from the last inequality that

(3.26) sup
τ∈(s,t0)

∫
Br1

|u(x, τ)− P ∗(x; s)|2 dx

≤ c4 q sup
t∈(s,t0)

∫
Br2\Br1

|u(x, t)− P ∗(x; s)|2 dx+ c r2m

∫
Br

|Dmu(x, s)|2 dx

+ cq
r2m

(r2 − r1)2m

∫
Qr

|Dmu|2 dz + cq

m∑
k=0

(
r2m

(r2 − r1)2k

∫
Qr

|Fk|2 dz
)
.
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We put

g(ρ) = sup
t∈(s,t0)

∫
Bρ(x0)

|u(x, t)− P ∗(x, s)|2 dx

and choose q < 1 from the condition c4 q ≤ 1/2. Then inequality (3.26) implies

that

(3.27) g(r1) ≤ 1

2
g(r2) +A0(r; s) +

A1(r)

(r2 − r1)2m
+

m∑
k=0

Zk(r)

(r2 − r1)2k
,

for r/2 ≤ r1 < r2 ≤ r, where

A0(r; s) = cr2m

∫
Br

|Dmu(x, s)|2 dx,

A1(r) = cqr
2m

∫
Qr

|Dmu|2 dz,

Zk(r) = cqr
2m

∫
Qr

|Fk|2 dz.

Further we exploit the same assertion as in the proof of Lemma 3.2 (see, for

example, [17, Lemma 8.18]) and obtain that

g(r1) ≤ cA0(r, s) + c
A1(r)

(r2 − r1)2m
+ c

m∑
k=0

Zk(r)

(r2 − r1)2k

for all r1, r2 such that r/2 ≤ r1 < r2 ≤ r. Here the constants c may depend on

m, n, k. Thus, for r1 = r/2 and r2 = r, we obtain the inequality

(3.28) sup
t∈(s,t0)

∫
Br/2(x0)

|u(x, t)− P ∗(x; s)|2 dx ≤ c r2m

∫
Br(x0)

|Dmu(x, s)|2 dx

+ c

∫
Qr(z0)

|Dmu|2 dz + c

m∑
k=0

r2(m−k)

∫
Qr(z0)

|Fk|2 dz.

Let P ∗m−1(x) be the polynomial minimizing the integral∫
Qr/2(z0)

|u(z)− Pm−1(x)|2 dz

among all polynomials of the degree not more than m − 1. Then (for the fixed

earlier s) the following inequality holds:∫
Qr/2(z0)

|u(z)− P ∗m−1(x)|2 dz ≤
∫
Qr/2(z0)

|u(z)− P ∗(x; s)|2 dz(3.29)

≤
(
r

2

)2m

sup
t∈(s,t0)

∫
Br/2(x0)

|u(x, t)− P ∗(x; s)|2 dx
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≤ cr4m

∫
Br(x0)

|Dmu(x, s)|2 dx

+ cr2m

∫
Qr(z0)

|Dmu|2 dz + c

m∑
k=0

r2(2m−k)

∫
Qr(z0)

|Fk|2 dz.

Now we integrate the inequality (3.29) in s ∈ Λr(t
0) \Λr/2(t0) and divide by its

measure. Then inequality (3.14) follows. �

Remark 3.4. Let the assumption (H1) hold and Fα ∈ L2(Q) for all |α| ≤ m.

We can consider a weak solution u ∈ V (Q) to system (1.1) as a solution to system

(3.3) with the matrix aαβ0 (z) = Aαβ(z,Dm−1u(z)). It follows from Lemmas 3.2

and 3.3 that the function u satisfies Caccioppoli and Poincaré inequalities (3.4)

and (3.14).

4. Properties of the (A(t),m)-caloric functions

We consider a cylinder QR ⊂ Q and positive definite N × N matrices

Aαβ(t) = (Aαβik (t))i,k≤N with Aαβik (t) ∈ L∞(ΛR) for |α| = |β| = m, satisfying the

condition (H1) for almost all t ∈ ΛR.

Definition 4.1. We say that h is an (A(t),m)-caloric function in QR(z0) if

it is a weak solution to the system

(4.1) ht −A(t)D2mh = 0, z ∈ QR(z0).

According to the Definition 1.1, a weak solution h ∈ V (QR(z0)) to system

(4.1) satisfies the identity

(4.2)

∫
QR(z0)

[−h(z) · φt(z) +A(t)Dmh(z) ·Dmφ(z)] dz = 0

for all φ ∈ C∞0 (QR(z0)). Obviously, any (A(t),m)-caloric function satisfies Cac-

cioppoli and Poincaré inequalities (3.4) and (3.14). Moreover, weak solutions h

of the linear parabolic systems (4.1) have an additional smoothness in any Qr
for r < R. We summarize smoothness results about (A(t),m)-caloric functions

in the following propositions.

Lemma 4.2. Let h ∈ V (QR) be an (A(t),m)-caloric function in QR. Then h

belongs to the space W 2m,1
2 (Qr) and solves system (4.1) for almost all z ∈ QR.

For any multiindex α = (α1, . . . , αn) and r < r0 < R the functions w(z) = Dαh

are (A(t),m)-caloric functions in QR and satisfy the inequality

(4.3) sup
t∈Λr

∫
Br

|w(x, t)|2 dx+

∫
Qr

|Dmw(z)|2 dz ≤ C

(r0 − r)2

∫
Qr0

|w(z)|2dz

for r < r0. Moreover, functions w = Dαh have derivatives Dβw with respect to

the space variables of arbitrary order |β| and the first derivative with respect to
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time in L2(Qr) which satisfy the estimate

(4.4) sup
Λr

∫
Br

|Dβw(x, t)|2 dx+

∫
Qr

(|Dβw(z)|2 + |(Dβw)t(z)|2) dz

≤ c(β, (R− r)−1)

∫
QR

|h(z)|2 dz.

The functions w are continuous on Qr and (w)t ∈ L∞(Qr) for any multiindex α.

Proof. The proof of this lemma is similar to the proof of Lemma 4 in [5].

In the standard way we derive estimate (4.3) for w = h, i.e. for |α| = 0

(see Lemma 4 in [5] or proof of Lemma 1 in [12]). Then we choose Qr(z
0) ⊂⊂

Qr0(z0) ⊂⊂ QR(z0) and index i ∈ {1, . . . , n} and for σ, |σ| ≤ R−r0, we consider

the difference

(4.5) wi(σ;x, t) =
h(x+ σei, t)− h(x, t)

σ
, z ∈ Qr0(z0),

where ei, i = 1, . . . , n, form the canonical basis in Rn. As the coefficients A(t)

do not depend on x, the function wi(σ;x, t) ∈ V (Qr0(z0)) is (A(t),m)-caloric

and it satisfies inequality (4.3), i.e.∫
Qr(z0)

|Dmwi(σ;x, t)(z)|2 dz ≤ c

(r0 − r)2

∫
Qr0 (z0)

|wi(σ;x, t)(z)|2 dz(4.6)

≤ c

(r0 − r)2

∫
QR(z0)

∣∣∣∣ ∂h∂xi
∣∣∣∣2 dz.

The right-hand side of the last inequality is independent on σ, and we can pass

σ → 0 and deduce that there exist the derivatives Dm(hxi) ∈ L2(Qr(z
0)), for all

i = 1, . . . , n, satisfying the estimate

(4.7) sup
Λr(t0)

∫
Br(x0)

|∇h(x, t)|2 dx+

∫
Qr(z0)

|Dm+1h|2 dz

≤ c

(r0 − r)2

∫
Qr0 (z0)

|∇h|2 dz ≤ c0
∫
QR(z0)

|h|2 dz,

the constant c0 depends on (R−r0)−1 and (r0−r)−1. As the number r < R was

fixed arbitrarily, the derivative Dm+1h belongs to L2
loc(QR(z0)). Each function

hxi ∈ V (Qr(z
0)) is (A(t),m)-caloric function and we can repeat our considera-

tions to justify that there exist the space derivatives of h ∈ L2
loc(QR(z0)) of any

order and these derivatives satisfy estimate (4.3).

We can rewrite the identity (4.2) into the form∫
QR(z0)

[−h · φt + (−1)mA(t)D2mh · φ] dz = 0 for all φ ∈ C∞0 (QR(z0)).
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The existence of ht ∈ L2
loc(QR(z0)) follows directly from the definition of weak

derivative. We can conclude that

(4.8) ht + (−1)mA(t)D2mh = 0 a.e. in QR(z0),

and

(4.9) ‖ht‖L2(Qr(z0)) ≤ c ‖D2mh‖L2(Qr(z0)) ≤ c((R− r)−1) ‖h‖L2(QR(z0)).

As all functions w(z) = Dαh(z), |α| < ∞, are (A(t),m)-caloric functions in

Qr(z
0) then

‖(Dαh)t‖L2(Qr(z0)) ≤ c‖D2m+|α|h‖L2(Qr(z0)) ≤ c(α, (R− r)−1)‖h‖L2(QR(z0)).

It means that estimate (4.4) holds.

Estimate (4.3) for w = Dαh guarantees that

sup
Λr(t0)

‖Dαh( · , t)‖L2(Br(x0)) ≤ c ‖h‖L2(QR(z0)).

Thus h( · , t) ∈W k
2 (Br(x

0)) uniformly with respect to t ∈ Λr(t
0). If 2k > n then

by the embedding theorem the function h is a continuous function of x for any

fixed t ∈ Λr(t
0) and

sup
t∈Λr(t0)

‖h( · , t)‖
C(Br(x0))

≤ c ‖h‖L2(QR(z0)).

Moreover,

|Dαh(x, t)−Dαh(x, τ)|2 =

∣∣∣∣ ∫ t

τ

(Dαh)s(x, s) ds

∣∣∣∣2
≤ |t− τ |

∫
Λr(t0)

|(Dαh)s(x, s)|2 ds

≤ |t− τ |
∫

Λr

sup
x∈Br(x0)

|(Dαh)s(x, s)|2 ds

≤ |t− τ | c(|α|, k)

∫
Λr

‖(Dαh)s‖2Wk
2 (Br(x0)) ds

≤ |t− τ | c(|α|, k, (R− r)−1)‖h‖2L2(QR(z0)) → 0

as τ → t. We used estimate (4.4) in the last step. It means that Dαh ∈
C(Qr(z0)) for all |α| <∞, and (4.1) implies that ht and (Dαh)t ∈ L∞(Qr(z

0))

for all α with |α| <∞. �

Next we deduce Campanato type estimates for (A(t),m)-caloric functions.

(For the case m = 1 see [9].)

Recall that for a fixed u ∈ V (Qr) we denoted by P ∗m−1,r(x) the polynomial

minimizing the integral
∫
Qr
|u(z)−Pm−1(x)|2 dz among all polynomials of degree

less or equal to m− 1.
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Lemma 4.3 (Campanato type estimates). Let h be an (A(t),m)-caloric fun-

ction on QR and 0 < ρ < r ≤ R. Then, for ρ < r ≤ R, the following inequalities

hold

−
∫
Qρ

|Dmh(z)|2 dz ≤ c−
∫
Qr

|Dmh(z)|2 dz,(4.10)

−
∫
Qρ

|h(z)− P ∗m−1,ρ(x)|2 dz ≤ c
(
ρ

r

)2m

−
∫
Qr

|h(z)− P ∗m−1,r(x)|2 dz.(4.11)

Proof. First we prove inequality (4.10). For ρ ≤ r/2 and 2k > n we have

the inequalities

−
∫
Qρ

|Dmh(z)|2 dz ≤ sup
t∈Λr/2

‖Dmh( · , t)‖2L∞(Br/2)

≤ c(r−1) sup
t∈Λr/2

‖Dmh( · , t)‖2Wk
2 (Br/2) ≤ c(r

−1)

k∑
i=0

‖Di+mh( · , t)‖2L2(Br/2).

By (4.4) the last expression is estimated by c(r−1)‖Dmh‖2L2(Qr) and similarity

transformation implies that c(r−1) = c0(m, ν, µ). For ρ ≥ r/2 inequality (4.10)

is evident. Thus, inequality (4.10) is proved for all ρ ≤ r.
Let now ρ ≤ r/4. Using the Poincaré inequality (3.14) with Fα = 0, estimate

(4.10), and then the Caccioppoli inequality, we obtain that

−
∫
Qρ

|h(z)− P ∗m−1,ρ(x)|2 dz ≤ cρ2m −
∫
Q2ρ

|Dmh(z)|2 dz

≤ cρ2m −
∫
Qr/2

|Dmh(z)|2 dz ≤ c
(
ρ

r

)2m

−
∫
Qr

|h(z)− P ∗m−1,r(x)|2 dz

which proves inequality (4.11) for ρ ≤ r/4.

For ρ ≥ r/4 inequality (4.11) is evident. �

5. (A(t),m)-caloric lemma

In this section we will consider a fixed cylinder Qr(z
0) ⊂ Q and for simplicity

we will leave out the notation of the center z0 of the cylinder as well as t0 and x0

in the notation of time intervals and balls. Further we denote for t ∈ Λr by A(t)

the matrices {Aαβ(t)} for α, β such that |α| = |β| = m, where Aαβ(t) = {Aαβkl }
for k, l = 1, . . . , N .

Lemma 5.1. Let µ, ν be positive numbers, ν ≤ µ, m, n, N belong to N and

m ≥ 1, n ≥ 2, N ≥ 1. Then, for any ε > 0, there exists δ > 0 such that

whenever matrices Aαβ(t) (with entries Aαβkl ∈ L∞(Λr;R) for |α| = |β| = m;

k, l ≤ N) satisfy the condition A(t) ∈ {ν, µ} for almost all t ∈ Λr, then for any
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u ∈ V (Qr) such that

−
∫
Qr

∑
|α|≤m

r2(|α|−m)|Dαu|2 dz ≤ 1,(5.1)

∣∣∣∣−∫
Qr

[−u(z) · φt(z) + (Aαβ(t)Dβu(z) ·Dαφ(z))] dz

∣∣∣∣ ≤ δ sup
z∈Qr
|Dmφ(z)|,(5.2)

for all φ ∈ C∞0 (Qr), there exists an (A(t),m)-caloric function h ∈ V (Qr/2) so

that

−
∫
Qr/2

∑
|α|≤m

r2(|α|−m)|Dαh(z)|2 dz ≤ 2n+2m+2,(5.3)

−
∫
Qr/2

∑
|β|≤m−1

|Dβu(z)−Dβh(z)|2 r2(|β|−m) dz ≤ ε.(5.4)

Proof. Without loss of generality we can prove the lemma for r = 1; other-

wise we rescale u to cylinder Q1(0) via

U(y, τ) =
1

rm
u(x0 + ry, t0 + r2mt)

which satisfies the assumptions of the lemma on Q1(0), set the matrix Ã(τ) =

A(t0 + r2mτ) and find an (Ã(τ),m)-caloric function H(y, τ) on Q1/2(0) and

rescale it back toQr/2(z0) so that h(x, t) = rmH((x− x0)/r, (t− t0)/r2m). Then

h is (A(t),m)-caloric on Qr/2(z0), A(t) = Ã((t− t0)/r2m).

Assume that, by contradiction, the assertion of the lemma were false. Then

we could find an ε > 0 and a sequence of matrices A(k)(t) satisfying conditions

(1.2), (1.3) with uniform ellipticity constant ν and uniform upper bound µ and

a sequence of functions uk ∈ V (Q1) such that the estimates

−
∫
Q1

∑
|α|≤m

|Dαuk(z)|2 dz ≤ 1,(5.5)

∣∣∣∣−∫
Q1

(uk(z) · ϕt(z)− (Aαβ(k)(t)D
βuk(z) ·Dαϕ(z)) dz

∣∣∣∣ ≤ 1

k
sup
Q1

|Dmϕ(z)|,(5.6)

for k ∈ N and for all φ ∈ C∞0 (Q1) hold, but at the same time

(5.7) −
∫
Q1/2

∑
|β|≤m−1

|Dβ(uk(z)− h(z))|2 dz > ε

for all h ∈ Hk. Here

Hk =

{
v ∈ V (Q1/2) : v is (A(k)(t),m)-caloric in Q1/2

and −
∫
Q1/2

∑
|β|≤m

|Dβh(z)|2 dz ≤ 2(n+2m+2)

}
.
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Note that from (5.5) it follows that (passing to a not relabelled subsequence)

uk ⇀ u, Dβuk ⇀ Dβu in L2(Q1) for all |β| ≤ m and

(5.8) −
∫
Q1

∑
|α|≤m

|Dαu(z)|2 dz ≤ 1.

Step 1. Strong convergence of a subsequence. We prove strong convergence

of the (again not relabelled) subsequence (uk) in L2(Λ1;Wm−1
2 (B1)), i.e.

(5.9) ‖uk − u‖L2(Λ1;Wm−1
2 (B1)), k →∞.

The proof can be achieved almost in the same way as in [15] and we give an

explanation for reader’s convenience.

First of all, it follows from (5.6) that∣∣∣∣ ∫
Q1

uk φt dz

∣∣∣∣ ≤µ∫
Q1

|Dmuk| |Dmφ| dz +
ωn
k

sup
Q1

|Dmφ|

≤µ ‖Dmuk‖2,Q1
‖Dmφ‖2,Q1

+
ωn
k

sup
Q1

|Dmφ|.

(Note that only equiboundedness of A(k)(t) was used). Here and below ωn stands

for the measure of unit ball in Rn.

From the last inequality and (5.5) we get that

(5.10)

∣∣∣∣ ∫
Q1

uk φt dz

∣∣∣∣ ≤ √ωnµ ‖Dmφ‖2,Q1 +
ωn
k

sup
Q1

|Dmφ|.

For t, t+ h ∈ (−1, 0), h > 0, and for sufficiently small σ > 0 we denote by χσ(τ)

a continuous piecewise linear function such that χσ(τ) = 1 for τ ∈ [t, t + h],

χσ(τ) = 0 for τ ∈ [0, t−σ] and for τ ∈ [t+h+σ, 1]. We remark that χ′σ(τ) = 1/σ

on the interval (t− σ, t) and χ′σ(τ) = −1/σ on (t+ h, t+ h+ σ).

We choose an arbitrary function ψ ∈ C∞0 (B1;RN ) and put φ(z) = χσ(t)ψ(x)

as a test function in (5.10). Then∣∣∣∣ ∫
B1

(
−
∫ t

t−σ
uk(x, τ) dτ −−

∫ t+h+σ

t+h

uk(x, τ) dτ

)
ψ(x) dx

∣∣∣∣(5.11)

≤
√
ωn µ

(∫ t+h+σ

t−σ
χ2
σ(τ) dτ

)1/2

‖Dmψ‖2,B1 +
ωn
k

sup
B1

|Dmψ|

≤
√
ωnµ(h+ 2σ)1/2‖Dmψ‖2,B1

+
ωn
k

sup
B1

|Dmψ|.

By the embedding theorem it holds

‖Dmψ‖L∞,B1
≤ c(n,m, l) ‖ψ‖ o

W
l

2(B1)

whenever l > n/2 + m. Now, we pass with σ → 0 in (5.11) and get that, for

almost all t ∈ (−T, 0), t+ h ∈ (−T, 0), the limits exist. Thus we get that, for all



Regularity Problem for 2m-Order Quasilinear Parabolic Systems 131

l > n/2 +m, it holds:

(5.12) |L(ψ)| :=
∣∣∣∣ ∫
B1

ψ(x) · (uk(x, t+ h)− uk(x, t)) dx

∣∣∣∣
≤ c1[h1/2 + 1/k] ‖ψ‖ o

W l
2(B1)

for almost all t, t+ h ∈ Λ1. Here c1 depends on n, m, l, µ.

Estimate (5.12) means that L(ψ) is a linear bounded functional in
o

W l
2(B1)

and its norm can be estimated by

(5.13) ‖uk(x, t+ h)− uk(x, t)‖W−l2 (B1) ≤ c1 [
√
h+ 1/k].

Further we denote X = Wm
2 (B1), B = Wm−1

2 (B1) and Y = W−l2 (B1) and apply

the results of J. Simon [21]. First, because of the compact embedding of X

in B and continuous embedding of B in Y , for any η > 0 there exists number

M(η) > 0 such that

(5.14) ‖v‖2B ≤ η ‖v‖2X +M(η) ‖v‖2Y for all v ∈ X.

We choose v = uk( · , t+ h)− uk( · , t) in (5.14) and integrate this inequality over

t ∈ (−1,−h):∫ −h
−1

‖uk( · , t+ h)− uk( · , t)‖2
Wm−1

2 (B1)
dt(5.15)

≤ η
∫ −h
−1

‖uk( · , t+ h)− uk( · , t)‖2Wm
2 (B1) dt

+M(η)

∫ −h
−1

‖uk( · , t+ h)− uk( · , t)‖2
W−l2 (B1)

dt

≤ 4ωn η + c2(η)[h+ 1/k],

where c2(η) = 2M(η) c21. We claim that

(5.16)

∫ −h
−1

‖uk( · , t+ h)− uk( · , t)‖2
Wm−1

2 (B1)
dt→ 0, as h→ 0

uniformly with respect to k ∈ N. Indeed, for a fixed ε > 0, we choose η > 0 to

satisfy the inequality

(5.17) 4ωn η < ε/3.

Then we fix k0 ∈ N so that c2(η)/k2
0 < ε/3. Thus also c2(η)/k2 < ε/3 for all

k ≥ k0.

Let h1 > 0 be so small that for all k = 1, . . . , k0 − 1 and all positive h ≤ h1

it holds ∫ −h
−1

‖uk( · , t+ h)− uk( · , t)‖2
Wm−1

2 (B1)
dt < ε.
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At last we choose positive h2 ≤ h1 so small that c2(η)h2 < ε/3. This choice

provides the estimate

(5.18)

∫ −h
−1

‖uk( · , t+ h)− uk( · , t)‖2
Wm−1

2 (B1)
dt < ε

for all h ≤ h2 and all k ∈ N. Thus (5.16) holds, and we can apply Theorem 5 in

[21] with the spaces X
c
↪→ B ↪→ Y introduced earlier. The set F = {uk(z)}k∈N

satisfies the conditions of Theorem 5 in [21] thus it is relatively compact in B
and there exists a subsequence of uk (we do not rename it) such that

(5.19) ‖uk − us‖L2(Λ1;Wm−1
2 (B1)) → 0, as k, s→∞.

The relation (5.9) follows from the completeness of L2(Λ1;Wm−1
2 (B1)).

Step 2. Limit equation. As the sequence A(k)(t) is uniformly bounded in

L∞(Λ1) there exist matrices A(t) = {Aαβ(t)} ∈ L∞(Λ1), |α| = |β| = m and

a (not relabelled) subsequence A(k)(t) so that A(k)(t) weakly∗ converge to A(t)

in L∞(Λ1) and ||A(t)||L∞(Λ1) ≤ lim inf
k→∞

||A(k)(t)||L∞(Λ1) ≤ µ. For a fixed positive

h and for almost all t ∈ (−1,−h) we have

1

h

∫ t+h

t

∑
|α|=|β|=m

(Aαβ(k)(τ)ξβ · ξα) dτ ≥ ν |ξ|2, |ξ|2 =
∑
|α|=m

|ξα|2,

for all ξα, ξβ ∈ RN . Passing with k →∞ we get

1

h

∫ t+h

t

(Aαβ(τ)ξβ · ξα) dτ ≥ ν|ξ|2.

If now h→ 0+ then we obtain that (Aαβ(t)ξβ · ξα) ≥ ν|ξ|2 for almost all t ∈ Λ1.

As ϕ has a compact support in Q1 we can rewrite (5.6) as∣∣∣∣−∫
Qr

[uk(z) · φt(z) +Aαβ(k)(t)uk(z) ·Dα+βφ(z)] dz

∣∣∣∣ ≤ 1

k
sup
z∈Qr
|Dmφ(z)|,

for all φ ∈ C∞0 (Qr).

According to Step 1 it holds uk → u in L2(Λ1;Wm−1
2 (B1)), A(k) ⇀

∗ A in

L∞(Λ1) and thus u is a very weak solution to the problem∫
Q1

(u(z) · ϕt(z)−Aαβ(t)u(z) ·Dα+βϕ(z)) dz = 0,

for all ϕ ∈ C∞0 (Q1). The derivatives Dαu, |α| ≤ m belongs to L2(Q1), and the

matrices Aαβ do not depend on the space variables. It means that we can rewrite

the equation back to get that u ∈ V (Q1) satisfies the identity

(5.20)

∫
Q1

(u · ϕt −Aαβ(t)Dβu ·Dαϕ) dz = 0

for all ϕ ∈ C∞0 (Q1). Thus, u is the (A(t),m)-caloric function.
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Step 3. Smoothness of u. As u is (A(t),m)-caloric function in Q1, the

assertion of Lemma 4.2 is valid. In particular, D2mu, ut ∈ L2(Q1/2), and the

formula (4.4) yields the inequality

(5.21)

∫
Q1/2

|(|D2mu(z)|2 + |ut(z)|2) dz ≤ c
∫
Q1

|u(z)|2 dz ≤ c3.

Here the last inequality follows from (5.8).

Step 4. Auxiliary problems. For k ∈ N we denote by vk a weak solution to

the problem

(5.22) vt(z) + (−1)mDα(Aαβ(k)(t)D
βv(z))

= (−1)mDα((Aαβ(k)(t)−A
αβ(t))Dβu(z)) =: Φk(z), for z ∈ Q1/2,

|Dsv| = 0 on Γ1/2, s = 0, . . . ,m− 1, v|t=−(1/2)2m = 0.

The right-hand side Φk belongs to L2(Q1/2) and the existence of weak solutions

vk ∈W 2m,1
2 (Q1/2) follows (for example as a special case from Theorem 6 in [13]).

Moreover, the estimate

(5.23) ‖(vk)t‖22,Q1/2
+ ‖D2mvk‖22,Q1/2

≤ c ‖D2mu‖22,Q1/2
≤ c c3 =: c4.

holds. This estimate guarantees existence of a subsequence of {vk} weakly con-

vergent in W 2m,1
2 (Q1/2) to a function v ∈W 2m,1

2 (Q1/2). In particular, it implies

the convergence of vk to v in L2(Q1/2) (once more for not relabelled subsequence).

Now we use weak formulation of problem (5.22) for the solution vk with the

test function vk and get the estimate

(5.24) sup
Λ1/2

∫
B1/2

|vk(x, t)|2 dx+ ν

∫
Q1/2

|Dmvk(z)|2 dz

≤
∣∣∣∣ ∫
Q1/2

Dα(Aαβ(k)(t)−A
αβ(t))Dβu(z) · vk(z) dz

∣∣∣∣.
Note that the right-hand side of (5.24) (we denote it by Jk) tends to zero when

k →∞. Indeed,

Jk =

∣∣∣∣ ∫
Q1/2

(Aαβ(k)(t)−A
αβ(t))Dα+βu · v dz

+

∫
Q1/2

(Aαβ(k)(t)−A
αβ(t))Dα+βu · (vk − v) dz

∣∣∣∣.
Here the first integral goes to zero due to *weak convergence of A(k) to A and

the second one by convergence of vk to v in L2(Q). Thus Jk → 0 for k → ∞
and the left-hand side of (5.24) tends to zero when k → ∞. We obtain that

v = 0 and

(5.25) ‖vk‖V (Q1/2) → 0, as k →∞.
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Next we put gk = u − vk. Then gk → u in V (Q1/2) and the functions gk are

solutions to the problem

(gk)t + (−1)mAαβ(k)(t)D
α+βgk = 0, z ∈ Q1/2,(5.26)

|Ds(gk − u)|Γ1/2
= 0, s = 0, . . . ,m− 1, gk − u|t=−2−2m = 0.

It means that gk are (A(k)(t),m)- caloric functions on Q1/2 and they tend to u,

i.e.

(5.27) ‖gk − u‖V (Q1/2) = ‖vk‖V (Q1/2) → 0, as k →∞.

We denote by χk = ‖vk‖V (Q1/2) and

‖gk‖V (Q1/2) ≤ ‖u‖V (Q1/2) + χk ≤
√
ωn + χk, as χk → 0, k →∞

which implies

(5.28) −
∫
Q1/2

∑
|α|≤m

|Dαgk|2 dz ≤ 2n+2m+1 + 2χ2
k, for all k ∈ N.

There exists a number k0 ∈ N such that 2χ2
k ≤ 2n+2m+1 for all k ≥ k0. It means

that

(5.29) −
∫
Q1/2

∑
|α|≤m

|Dαgk|2 dz ≤ 2n+2m+2 for all k ≥ k0.

It follows that gk ∈ Hk (see the notation of Hk in (5.7)). Relations (5.9) and

(5.27) means that

‖uk − gk‖L2(Λ1/2;Wm−1
2 (B1))

≤ ‖uk − u‖L2(Λ1/2;Wm−1
2 (B1)) + ‖u− gk‖L2(Λ1/2;Wm−1

2 (B1)) → 0,

when k →∞, and we arrive at the contradiction. �

Further, we will use a consequence of Lemma 5.1.

Lemma 5.2. Let the assumptions of Lemma 5.1 be satisfied. Then, for any

ε > 0, there exists a positive constant C(ε) = C(ε, n,N, ν, µ,m, n,N) such that

the following holds: for matrices A(t) = {Aαβ(t)}, |α| = |β| = m, with entries

in L∞(ΛR) satisfying the condition (H1) and, for any u ∈ V (QR), there exist an

(A(t),m)-caloric h ∈ V (QR/2) and ϕ ∈ C∞0 (QR) such that ||Dmϕ||L∞(Qr) ≤ 1

and moreover, for û(z) = u(z)− P ∗m−1,R(x) it holds

(5.30) −
∫
QR/2

∑
|α|≤m

R2|α| |Dαh|2 dz ≤ 2n+2m+2 −
∫
QR

∑
|α|≤m

|Dαû|2R2|α| dz,
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and

(5.31) −
∫
QR/2

∑
|α|≤m−1

|Dα(û− h)|2 dz

≤ ε−
∫
QR

∑
|α|≤m

|Dαû|2R2|α| dz + C(ε)R2mL2
R(û, ϕ)

where

(5.32) LR(û, ϕ) = LR(u, ϕ) =

∣∣∣∣−∫
QR

[−uϕt + (Aαβ(t)Dβu,Dαϕ) dz

∣∣∣∣.
Here the polynomial P ∗m−1,R(x) minimizes the integral

∫
QR
|u(z)−P |2 dz among

all P ∈ Pm−1.

First of all we remark that such reformulation was proposed in elliptic case

by M. Giaquinta (see Appendix in [15]). For parabolic case and for the proof of

Lemma 5.2 in the case m = 1 see [2].

Proof. As it was noted in the proof of Lemma 5.1, it is enough to consider

the case R = 1 and to make the dilatation of the independent variables. Thus

let ε > 0 and u ∈ V (Q1) be fixed. We denote by δ = δ(ε) the number which is

guaranteed by Lemma 5.1. We put

v(z) =
û(z)

√
ωn

‖û‖V (Q1)
, û(z) = u(z)− P ∗m−1,1(x).

Then v satisfies (5.1).

There are two possibilities:

(a) For all ϕ ∈ C∞0 (Q1) the inequality

(5.33)

∣∣∣∣−∫
Q1

[−v · ϕt +AαβDβv ·Dαϕ] dz

∣∣∣∣ ≤ δ sup
Q1

|Dmϕ|

holds (see (5.2)).

In this case by Lemma 5.1 there exists an (A(t),m)-caloric function ĥ ∈
V (Q1/2) such that

−
∫
Q1/2

∑
|α|≤m

|Dαĥ|2 dz ≤ 2n+2m+2,(5.34)

−
∫
Q1/2

Σ
|β|≤m−1

|Dβ (v − ĥ)|2 dz ≤ ε.(5.35)

We set now h(z) from the relation h(z) = ĥ ‖û‖V (Q1)/
√
ωn. It follows from

(5.34), (5.35) that

(5.36) −
∫
Q1/2

∑
|α|≤m

|Dα h|2 dz ≤ 2n+2m+2 −
∫
Q1

∑
|α|≤m

|Dα û|2 dz,



136 A.A. Arkhipova — J. Stará

and

(5.37) −
∫
Q1/2

Σ
|α|≤m−1

|Dα(û− h)|2 dz ≤ ε −
∫
Q1

Σ
|α|≤m

|Dα û|2 dz.

It means that in the situation (a) relations (5.30), (5.31) hold.

In the case (b) there exists a function ϕ ∈ C∞0 (Q1), such that inequality

(5.33) does not hold. Then we put ϕ0 = ϕ
/

sup
Q1

|Dmϕ|, sup
Q1

|Dmϕ0| ≤ 1 and

obtain

(5.38)

∣∣∣∣−∫
Q1

[−v · (ϕ0)t +AαβDβv ·Dαϕ0] dz

∣∣∣∣ > δ.

Then we substitute û instead of v in (5.38) and obtain that

(5.39) ‖û‖2V (Q1) ≤
1

δ2
ωn

∣∣∣∣−∫
Q1

[−u · (ϕ0)t +AαβDβu ·Dαϕ0] dz

∣∣∣∣2.
We put h = 0 in Q1/2. It is the (A(t),m)-caloric function and ‖û− h‖2V (Q1/2) =

‖û‖2V (Q1/2) ≤ 2n+2m‖û‖2V (Q1). Estimate (5.30) in this situation is the trivial one

and we obtain (5.31) with Cε = 2n+2mδ−2. �

6. Proofs of Theorems 2.1, 2.2 and 2.4

First of all we introduce a proposition we will use to justify local smoothness

of the lower order derivatives of a weak solution u to system (1.1).

Proposition 6.1. Let Qr(z
0) ⊂ Q and u ∈Wm,0

2 (Qr(z
0)) be a weak solution

to system (1.1). Then, for all k ≤ m− 1,

(6.1) −
∫
Qr(z0)

|Dku− (Dku)r,z0 |2 dz ≤ c r2 −
∫
Qr(z0)

|Dk+1u|2 dz

+ c r2(m−k) −
∫
Qr(z0)

|Dmu|2 dz + cBF r2(m−1−k+γ).

Here and below

BF =
∑
|α|≤m

‖Fα‖2L2,n−2+2|α|+2γ(Q).

Proof. By the same way as in the proof of Lemma 5.1 we derive the in-

equality

(6.2)

∣∣∣∣ ∫
Br(x0)

[u(x, τ)− u(x, s)] · ψ(x) dx

∣∣∣∣
≤ c sup

Br(x0)

|Dmψ|
∫
Qr(z0)

|Dmu| dz +
∑
|α|≤m

sup
Br(x0)

|D|α|ψ|
∫
Qr(z0)

|Fα| dz,
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for τ, s ∈ Λr(t
0). Here ψ ∈ C∞0 (Br(x

0)) satisfies the conditions

(6.3)

∫
Br(x0)

ψ(x) dx = 1, sup
Br(x0)

|Dsψ(x)| ≤ cs
rn+s

,

for s ∈ N.

Now we take into account the identity∫
Br(x0)

Dk(u(x, τ)− u(x, s)) · ψ(x) dx

= (−1)k
∫
Br(x0)

(u(x, τ)− u(x, s)) ·Dkψ(x) dx

and derive from inequality (6.2) the relation

(6.4)

∣∣∣∣ ∫
Br(x0)

(Dku(x, τ)−Dku(x, s)) · ψ(x) dx

∣∣∣∣
≤ c sup

Br(x0)

|Dm+kψ|
∫
Qr(z0)

|Dmu| dz +
∑
|α|≤m

sup
Br(x0)

|D|α|+kψ|
∫
Qr(z0)

|Fα| dz.

We denote the “weighted” average of a function v( · , t) ∈ L1(Br(x
0)) as

ṽr,x0(t) =

∫
Br(x0)

v(x, t)ψ(x) dx,

where the function ψ satisfies conditions (6.3). It follows from (6.4) that

(6.5)
∣∣∣D̃kur,x0(τ)− D̃kur,x0(s)

∣∣∣ ≤ c r2m−(m+k) −
∫
Qr(z0)

|Dmu| dz

+ c
∑
|α|≤m

r2m−(|α|+k) −
∫
Qr(z0)

|Fα| dz.

As Fα ∈ L2,n+2|α|−2+2γ(Q); δ) then we obtain from (6.5) that

(6.6)
∣∣∣D̃kur,x0(τ)− D̃kur,x0(s)

∣∣∣2
≤ c r2(m−k) −

∫
Qr(z0)

|Dmu|2 dz + cBF r2(m−1−k+γ),

for s, t ∈ Λr(t
0). Now we put

Ik(t) = −
∫
Br(x0)

|Dku(x, t)− (Dku)r,z0 |2 dx,(6.7)

−
∫

Λr(t0)

Ik(t) dt = −
∫
Qr(z0)

|Dku− (Dku)r,z0 |2 dz(6.8)
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and estimate Ik(t) in the way:

Ik(t) ≤ 2−
∫
Br(x0)

|Dku(x, t)− (Dku)r,x0(t)|2 dz(6.9)

+ 2

∣∣∣∣(Dku)r,x0(t)−−
∫

Λr(t0)

(Dku)r,x0(s) ds

∣∣∣∣2
≤ c r2 −

∫
Br(x0)

|Dk+1u(x, t)|2 dx

+ 2

∣∣∣∣−∫
Λr(t0)

[(Dku)r,x0(s)− (Dku)r,x0(t)] ds

∣∣∣∣2.
We have used the Poincaré inequality for the fixed t to estimate the first term

in the right-hand side of the previous inequality.

Further, ∣∣∣∣−∫
Λr(t0)

[(Dku)r,x0(s)− (Dku)r,x0(t)] ds

∣∣∣∣2(6.10)

≤ 4−
∫

Λr(t0)

|(Dku)r,x0(s)− ( ˜(Dku)r,x0(s)|2 ds

+ 4−
∫

Λr(t0)

|( ˜(Dku)r,x0(s)− ((̃Dku)r,x0(t)|2 ds

+ 4
∣∣∣(Dku)r,x0(t)− ( ˜(Dku)r,x0(t)

∣∣∣2 =: l1 + l2 + l3.

By (6.6),

l2 ≤ c r2(m−k) −
∫
Qr(z0)

|Dmu|2 dz + cBF r2(m−1−k+γ).

We estimate l1 and l3 in the same way:

l1 ≤ 4−
∫

Λr(t0)

∣∣∣∣−∫
Br(x0)

[Dku(x, s)− (Dku)r,x0(s)]ψ(x) dx

∣∣∣∣2 ds
≤ c r2 −

∫
Λr(t0)

−
∫
Br(x0)

|Dk+1u|2 dx dt+ c r2 −
∫
Qr(z0)

|Dk+1u|2 dz,

l3 = l3(t) ≤ c r2 −
∫
Br(x0)

|Dk+1u(x, t)|2 dx.

Taking into account the estimates of all integrals in (6.9), we obtain the relation

Ik(t) ≤ c r2 −
∫
Br(x0)

|Dk+1u(x, t)|2 dx+ c r2 −
∫
Qr(z0)

|Dk+1u|2 dz

+ c r2(m−k) −
∫
Qr(z0)

|Dmu|2 dz + cBF r2(m−1−k+γ).

We integrate this relation in t ∈ Λr(t
0) and divide the relation by |Λr|. Estimate

(6.1) follows. �
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Proof of Theorem 2.1. Let u ∈ V (Q) be a weak solution of the system

(6.11) ut+(−1)m
∑

|α|=|β|=m

Dα(Aαβ(z,Dm−1 u)Dβ u) =
∑
|α|≤m

(−1)|α|Dα Fα(z),

for z ∈ Q. Let Q2R(z0) ⊂ Q be fixed and P ∗m−1,r[u] be the polynomial which

minimize the integral −
∫
Qr(z0)

|u(z) − P (x)|2 dz among all polynomials of the

degree less or equal to m− 1 for a fixed r ≤ 2R. We put

(6.12) û(z) = u(z)− P ∗m−1,R[u]

and, for all r ≤ 2R, we define

Ψ(r, z0) :=−
∫
Qr(z0)

|û− P ∗m−1,r[û]|2 dz,

Φ(r, z0) = r2m −
∫
Qr(z0)

|Dmu|2 dz = r2m −
∫
Qr(z0)

|Dmû|2 dz.

Let ε be fixed. We put

(6.13) A(t) = −
∫
BR(x0)

A(x, t, (Dm−1u)R,z0) dx.

Then the matrix A(t) ∈ L∞(ΛR(t0)), A(t) ∈ {ν, µ} for almost all t ∈ ΛR(t0)

where 0 < ν ≤ µ are fixed in the assumption (H1).

For û ∈ V (QR(z0)) there exist an (A(t),m)-caloric function h ∈ V (QR/2),

Cε > 0, and φ ∈ C∞0 (QR), sup
QR

|Dmφ| ≤ 1, such that

−
∫
QR/2(z0)

∑
0≤|α|≤m

R2|α||Dαh|2 dz ≤ 2n+2m+2MR,(6.14)

MR := −
∫
QR(z0)

∑
0≤|α|≤m

R2|α||Dαû|2 dz,(6.15)

−
∫
QR/2(z0)

∑
0≤|α|≤m−1

R2|α||Dαû−Dαh|2 dz ≤ εMR + CεR
2mL2(û, φ),(6.16)

where

(6.17) L(û, φ) = L(u, φ) =

∣∣∣∣ −∫
QR(z0)

(−u · φt +A(t)Dmu ·Dmφ) dz

∣∣∣∣
and the function û is defined in (6.12).

By the interpolation inequality (3.1)

R2|α| −
∫
QR(z0)

|Dαû|2 dz ≤ cR2m −
∫
QR(z0)

|Dmu|2 dz + c−
∫
QR(z0)

|û|2 dz(6.18)

≤ cΦ(2r, z0) + cBF R2(m−1+γ),

where 1 ≤ |α| ≤ m − 1. The last inequality is valid due to Poincaré inequality

(3.14) for the integral −
∫
QR(z0)

|û|2 dz. Here the constants c depends on ν, µ, m,

|α| and n.



140 A.A. Arkhipova — J. Stará

Using (6.18), we estimate the sum MR:

(6.19) MR ≤ cΦ(2R, z0) + cBF R2(m−1+γ).

Thus estimates (6.14)–(6.16) and (6.19) imply the inequalities

(6.20) −
∫
QR/2(z0)

∑
0≤|α|≤m

R2|α||Dαh|2 dz ≤ cΦ(2R, z0) + cBF R2(m−1+γ),

(6.21) −
∫
QR/2(z0)

∑
0≤|α|m−1

R2|α||Dαû−Dαh|2 dz

≤ εΦ(2R, z0) + cBF R2(m−1+γ) + CεR
2mL2(û, φ).

The next step of the proof consists of deriving the inequality (6.30)? for the

function Φ with r = 2R. As z0 is fixed up to the formula (6.43) we write Qρ,

Φ(ρ), Ψ(ρ) instead of Qρ(z
0), Φ(ρ, z0), Ψ(ρ, z0).

By (3.4) we have the inequalities

(6.22) Φ(ρ/2) ≤ cΨ(ρ) + cBF ρ2(m−1+γ), ρ ≤ R/2.

As the polynomial P ∗m−1,ρ[û−h] +P ∗m−1,ρ[h] ∈ Pm−1 and due to the minimality

of P ∗m−1,ρ[û] for the integral Ψ(ρ) we get

Ψ(ρ) ≤ −
∫
Qρ

|(û− {P ∗m−1,ρ[û− h] + P ∗m−1,ρ[h]}|2 dz =: Iρ.

Further,

(6.23) Iρ ≤ 2−
∫
Qρ

|(û− h)− P ∗m−1,ρ[û− h]|2 dz + 2−
∫
Qρ

|h− P ∗m−1,ρ[h]|2 dz.

Using minimality of the polynomial P ∗m−1,ρ[û− h] we obtain that

−
∫
Qρ

|(û− h)− P ∗m−1,ρ[û− h]|2 ≤ −
∫
Qρ

|(û− h)|2dz

and, by Campanato inequality (4.11), also

−
∫
Qρ

|h− P ∗m−1,ρ[h]|2 dz ≤ c
(
ρ

R

)2m

−
∫
QR/2

|h− P ∗m−1,R/2[h]|2 dz

≤ c
(
ρ

R

)2m

−
∫
QR/2

|h|2 dz.

The last inequality follows once more from the minimality of the polynomial

P ∗m−1,R[h].

From the said it follows that

(6.24) Φ(ρ/2) ≤ c
(
ρ

R

)2m

−
∫
QR/2

|h|2 dz + c

(
R

ρ

)n+2m

−
∫
QR/2

|û− h|2 dz.
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Using the inequalities (6.20) and (6.21) we obtain

(6.25) Φ(ρ/2) ≤ c
(
R

ρ

)n+2m

{εΦ(2R) + CεR
2mL2

R(u, φ)}

+ c

(
ρ

R

)2m

Φ(2R) + cCε

(
R

ρ

)n+2m

BF ρ2(m−1+γ).

The constants c in this inequality depend on ν, µ, m and n.

Now we estimate the expression L2(û, φ):

(6.26) L2(û, φ) = L2(u, φ) ≤ −
∫
QR

|A(x, t,Dm−1u)−A(t)|2 dz −
∫
QR

|Dmu|2 dz

+
∑
|α|≤m

sup
BR

|Dαϕ(x)|2 −
∫
QR

|Fα|2 dz,

where the matrix A(t) is defined in (6.13). Further,

|A(x, t,Dm−1u)−A(t)| ≤ |A(x, t,Dm−1u)−A(x, t, (Dm−1u)R)|

+ |A(x, t, (Dm−1u)R −A(t)|.

Taking into account that sup
BR

|Dαϕ| ≤ cRm−|α| and using the assumption (H2)

we obtain from (6.26) the inequality

L2(û, φ) ≤
{

2ω0 −
∫
QR

(ω(|Dm−1u− (Dm−1u)R)|2) dz

+ 2−
∫
QR

|A(x, t, (Dm−1u)R)−A(t)|2 dz
}
−
∫
QR

|Dmu|2 dz + cBFR−2+2γ .

Here ω0 = sup
s≥0

ω(s). Further we apply the assumption (H3), use the concavity

of the function ω( · ), and derive that

(6.27) R2mL2(û, φ)

≤ 2

[
ω0 ω

(
−
∫
QR

|Dm−1(u)− (Dm−1u)R)|2 dz
)
dz + q2(R)

]
Φ(R)

+ cBF (2R)2(γ+m−1).

By inequality (6.1) we obtain that

−
∫
QR

|Dm−1u− (Dm−1u)R)|2 dz ≤ cR2 −
∫
QR

|Dmu|2 dz + cBF (2R)2γ .

Thus,

(6.28) ω

(
−
∫
QR

|Dm−1u− (Dm−1u)R|2 dz
)

≤ ω(ĉ[(2R)−2(m−1)Φ(2R) + BF (2R)2γ ])
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where ĉ depends on ν, µ, n and m.

Now it follows from (6.27) and (6.28) that

R2mL2(u, φ) ≤ c {ω0ω(ĉ(2R)−2(m−1)Φ(2R) + ĉBF (2R)2γ)(6.29)

+ q2(2R)}Φ(2R) + cBF (2R)2(γ+m−1).

Then we obtain from (6.25) and (6.29) for r = 2R the inequality

(6.30) Φ

(
ρ

2

)
≤ cCε

(
r

ρ

)n+2m

BF r2(m−1+γ) + c

{(
ρ

r

)2m

+ ε

(
r

ρ

)n+2m

+ Cε

(
r

ρ

)n+2m[
ω(ĉ [r−2(m−1)Φ(r) + BF r2γ ]) + q2(r)

]}
Φ(r).

Now let

(6.31) Z(r) = r−2(m−1)Φ(r).

We multiply (6.31) by ρ−2(m−1) and obtain

(6.32) Z

(
ρ

2

)
≤ c
{(

ρ

r

)2

+ ε

(
r

ρ

)n+4m−2

+ Cε

(
r

ρ

)n+4m−2[
ω(ĉ [Z(r) + BF r2γ ]) + q2(r)

]}
Z(r)

+ cCε

(
r

ρ

)n+4m−2

BF r2γ .

Further we put ρ/2 = τr in (6.32) (the parameter τ ≤ 1/8 we’ll define later):

(6.33) Z(τ r) ≤ c0{τ2 + τ−(n+4m−2)ε

+ Cετ
−(n+4m−2)[ω(ĉ (Z(r) + BF r2γ)) + q2(r)]}Z(r) + K(ε, τ)BF r2γ .

The constants c0 and ĉ in (6.33) depend on ν, µ, n and m only, K(ε, τ) :=

cCετ
−(n+4m−2)).

Now we want to define the parameters in (6.33). First, we fix τ ≤ 1/8 and

β = (1 + γ)/2 ∈ (γ, 1) (here γ ∈ (0, 1) is the parameter from the assumption

(H4) on Fα). We sharp the choice of the parameter τ :

(6.34) c0τ
2 ≤ τ2β

8
.

Then we fix ε > 0 from the condition

(6.35) c0τ
−(n+4m−2)ε ≤ τ2β

8
.

Note that the constant K = K(ε, τ) ≥ 1 is fixed now by the data of the problem.

The next step is to fix θ ∈ (0, 1) such that

(6.36) c0τ
−(n+4m−2)Cε ω(2ĉ θ) ≤ τ2β

8
.
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At last, we choose number r0 ≤ 1 from the conditions

(6.37) c0Cε τ
−(n+4m−2)q2(r0) ≤ τ2β

8
, (K + ĉ)BF (r0)2γ ≤ θ

2
.

The constant ĉ in the last inequality such as in (6.33).

Now we assume that in the fixed point z0

(6.38) Z(r) = Z(r, z0) < θ

for some r ≤ r0 and θ fixed in (6.36). Then (6.36) follows from (6.38) and the

last inequality (6.37). In a result, the inequality

(6.39) Z(τr) ≤ τ2β

2
Z(r) + KBF r2γ , β > γ,

is valid. From (6.37)–(6.39) we obtain that Z(τ r) < θ and we can repeat all

considerations with τ r but not r. It allows us to consider the sequence rj = τ jr,

j ∈ N, and derive that

(6.40) Z(τ j r) ≤ τ2βZ(τ j−1r) + KBF (τ j−1r)2γ , β > γ, j ∈ N.

The iterative process supplies us the inequality

(6.41) Z(τ j r) ≤ c τ2γ j [Z(r) + KBF r2γ ].

It follows from (6.41) that

(6.42) Z(ρ) ≤ c
(ρ
r

)2γ

Z(r) + cBF ρ2γ , for all ρ ≤ r.

We recall that all our considerations were justified under assumption (6.38)

in the fixed point z0 and for the fixed r = r(z0) ≤ r0. Thus,

(6.43)
1

ρn+2(m−1)+2γ

∫
Qρ(z0)

|Dmu|2 dz ≤ c(r−1)‖Dmu‖22,Q + cBF .

It is easy to see that inequality (6.38) is also valid (for the fixed r) in some

cylinder Qρ0(z0), i.e.

(6.44) Z(r, ξ0) < θ for all ξ0 ∈ Qρ0(z0).

We can repeat all considerations for a point ξ0 ∈ Qρ0(z0) instead of z0 and derive

estimate (6.43) for any ξ0 ∈ Qρo(z0):

(6.45) ρ−(n+2(m−1)+2γ)

∫
Qρ(ξ0)

|Dmu|2 dz ≤ c(r−1)‖Dmu‖22,Q + cBF .

Taking supremum in the left-hand side of (6.45) in ξ0 ∈ Qρ0(z0) we obtain

(6.46) ‖Dmu‖2L2,n+2(m−1)+2γ(Qρ0 (z0)) ≤ c(r
−1)‖Dmu‖22,Q + cBF =: H.

Now from estimate (6.1) with k = m− 1 we obtain that

(6.47) −
∫
Qρ(ξ0)

|Dm−1u− (Dm−1u)ρ,ξ0 |2 dz ≤ cH ρ2γ , for all ξ0 ∈ Qρ0(z0).
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It means that in L2,n+2m+2γ(Qρ0(z0)) we estimated locally the seminorm of

Dm−1u. Due to the isomorphism of L2,n+2m+2γ(Qρ0(z0)) to the Hölder space

Cγ(Qρ0(z0)), γ ∈ (0, 1), we have the estimate

(6.48) ‖Dm−1u‖2
Cγ(Qρ0 (z0))

≤ cH.

Let now k = m− 2 in (6.1) then it follows from (6.46) and (6.48) that

−
∫
Qρ(ξ0)

|Dm−2u− (Dm−2u)ρ|2 dz

≤ c ρ2 −
∫
Qρ(ξ0)

|Dm−1u|2 dz + cρ4 −
∫
Qρ(ξ0)

|Dmu|2 dz ≤ c(ρ2 + ρ2γ) ≤ c ρ2γ ,

for all Qρ(ξ
0) ⊂ Qρ0(z0). Thus, Dm−2u ∈ Cγ(Qρ0(z0)). Using inequality (6.1)

one can prove that all derivatives Dju, j ≤ m − 1, are Hölder continuous in

Qρ0(z0) in the parabolic metric δm.

As the assumption (6.38) is equivalent to the condition

1

rn+2(m−1)

∫
Qr(z0)

|Dmu|2 dz < θ(6.49)

for some r ≤ r0, we have proved that condition (6.49) supplies estimate (6.48).�

Proof of Theorem 2.2. We define the set

(6.50) Σ =

{
ẑ ∈ Q : lim inf

r→0

1

rn+2(m−1)

∫
Qr(ẑ)

|Dmu|2 dz > 0

}
.

Then, for z0 ∈ Q \ Σ, the relation

lim inf
r→0

1

rn+2(m−1)

∫
Qr(z0)

|Dmu|2 dz = 0

holds. It means that for such points z0 condition (6.49) with some r ≤ r0 is valid

and the assertion of Theorem 2.1 holds. We will say that the set Q0 = Q \ Σ is

the set of regular points of the solution u. It is easy to see that Σ is the closed set

and Dαu, |α| ≤ m− 1, are the Hölder continuous functions on the open set Q0.

The relation Hn+2(m−1)(Σ; δm) = 0 follows from the well known results and the

definition (6.50) (see, for example, [16] or [17, Section 9.25]). �

Proof of Theorem 2.4. In the linear case we can repeat the proof of

Theorem 2.1 and note that the estimates of the function L2(û, φ) does not depend

on the function ω( · ). In this case we have not restriction (6.38) and obtain the

following inequality for Z (compare with (6.33)):

Z(τ r, z0) ≤ c0{τ2 + τ−(n+4m−2)ε+ τ−(n+4m−2)Cε q
2(r)}Z(r, z0) + K r2γBF ,

for all z0 ∈ Q. It allows us to fix the same parameters τ , ε and r0 for all points

z0 ∈ Q, Qr0(z0) ⊂⊂ Q. Estimate (6.43) is valid for all points z0 ∈ Q. �
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