Topological Methods in Nonlinear Analysis Volume 51, No. 2, 2018, 459–491 DOI: 10.12775/TMNA.2018.002

© 2018 Juliusz Schauder Centre for Nonlinear Studies

## ON A SINGULAR SEMILINEAR ELLIPTIC PROBLEM: MULTIPLE SOLUTIONS VIA CRITICAL POINT THEORY

Francesca Faraci — George Smyrlis

ABSTRACT. We study existence and multiplicity of solutions of a semilinear elliptic problem involving a singular term. Combining various techniques from critical point theory, under different sets of assumptions, we prove the existence of k solutions ( $k \in \mathbb{N}$ ) or infinitely many weak solutions.

## 1. Introduction and statement of results

In the present paper we deal with the following semilinear elliptic problem involving a singular term:

$$\begin{cases} -\Delta u = f(u) + u^{-\gamma} & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

where  $\Omega$  is a bounded domain in  $\mathbb{R}^N$  (N>2) with smooth boundary  $\partial\Omega$ ,  $f\colon [0,+\infty[ \to \mathbb{R}$  is a continuous function and  $0<\gamma<1$ . The existence of multiple weak solutions is established under various assumptions on the nonlinearity f by combining different techniques from critical point theory. We remark that the energy functional associated to  $(\mathcal{P})$  is not in general of class  $C^1$  and this causes an obstacle to the application of such a theory.

The study of singular elliptic problems started with the pioneering work of Fulks and Maybee ([8]) as a mathematical model for describing the heat

Key words and phrases. Singular elliptic problem; multiple solutions; critical point theory.

<sup>2010</sup> Mathematics Subject Classification. 35J65, 35J20.