Topological Methods in Nonlinear Analysis Volume 51, No. 1, 2018, 243–257 DOI: 10.12775/TMNA.2017.059

© 2018 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

POISSON STRUCTURES ON CLOSED MANIFOLDS

Sauvik Mukherjee

ABSTRACT. We prove an h-principle for Poisson structures on closed manifolds. Equivalently, we prove an h-principle for symplectic foliations (singular) on closed manifolds. On open manifolds however the singularities could be avoided and it is a known result by Fernandes and Frejlich [7].

1. Introduction

In this paper we prove an h-principle for Poisson structures on closed manifolds. Similar results on open manifolds have been proved by Fernandes and Frejlich in [7]. We recall their result below.

Let M^{2n+q} be a C^{∞} -manifold equipped with a co-dimension-q foliation \mathcal{F}_0 and a 2-form ω_0 such that $(\omega_0^n)_{| T\mathcal{F}_0} \neq 0$. Denote by $\operatorname{Fol}_q(M)$ the space of co-dimension-q foliations on M identified with a subspace of $\Gamma(\operatorname{Gr}_{2n}(M))$, where $\operatorname{Gr}_{2n}(M) \stackrel{\operatorname{pr}}{\longrightarrow} M$ is the Grassmann bundle, i.e. $\operatorname{pr}^{-1}(x) = \operatorname{Gr}_{2n}(T_xM)$ and $\Gamma(\operatorname{Gr}_{2n}(M))$ is the space of sections of $\operatorname{Gr}_{2n}(M) \stackrel{\operatorname{pr}}{\longrightarrow} M$ with compact open topology. Define

$$\Delta_q(M) \subset \operatorname{Fol}_q(M) \times \Omega^2(M), \qquad \Delta_q(M) := \{ (\mathcal{F}, \omega) : \omega_{|T\mathcal{F}|}^n \neq 0 \}.$$

Obviously $(\mathcal{F}_0, \omega_0) \in \Delta_q(M)$. In this setting Fernandes and Frejlich proved the following

Key words and phrases. Poisson structures; symplectic foliations; h-principle.

²⁰¹⁰ Mathematics Subject Classification. 53-xx.