Topological Methods in Nonlinear Analysis Volume 52, No. 1, 2018, 195–212 DOI: 10.12775/TMNA.2017.049

© 2018 Juliusz Schauder Centre for Nonlinear Studies

A NOTE ON THE 3-D NAVIER-STOKES EQUATIONS

JAN W. CHOLEWA — TOMASZ DŁOTKO

In memory of Professor Marek Burnat

ABSTRACT. We consider the Navier–Stokes model in a bounded smooth domain $\Omega \subset \mathbb{R}^3$. Assuming a smallness condition on the external force f, which does not necessitate smallness of $\|f\|_{[L^2(\Omega)]^3}$ -norm, we show that for any smooth divergence free initial data u_0 there exists $\mathcal{T} = \mathcal{T}(\|u_0\|_{[L^2(\Omega)]^3})$ satisfying

$$\mathcal{T} \to 0$$
 as $\|u_0\|_{[L^2(\Omega)]^3} \to 0$ and $\mathcal{T} \to \infty$ as $\|u_0\|_{[L^2(\Omega)]^3} \to \infty$,

and such that either a corresponding regular solution ceases to exist until \mathcal{T} or, otherwise, it is globally defined and approaches a maximal compact invariant set \mathbb{A} . The latter set \mathbb{A} is a global attractor for the semigroup restricted to initial velocities u_0 in a certain ball of fractional power space $X^{1/4}$ associated with the Stokes operator, which in turn does not necessitate smallness of the gradient norm $\|\nabla u_0\|_{[L^2(\Omega)]^3}$. Moreover, \mathbb{A} attracts orbits of bounded sets in X through Leray–Hopf type solutions obtained as limits of viscous parabolic approximations.

 $^{2010\} Mathematics\ Subject\ Classification.\ 35\text{Q30},\ 35\text{B40}.$

 $Key\ words\ and\ phrases.$ Navier–Stokes equations; global solutions; small data; asymptotic behavior.

The first named author is supported by grant MTM2016-75465 from MINECO, Spain.