Topological Methods in Nonlinear Analysis Volume 51, No. 1, 2018, 151–181 DOI: 10.12775/TMNA.2017.045

© 2018 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

HARDY-SOBOLEV INEQUALITY WITH SINGULARITY A CURVE

Mouhamed Moustapha Fall — El hadji Abdoulaye Thiam

ABSTRACT. We consider a bounded domain Ω of \mathbb{R}^N , $N\geq 3$, and h a continuous function on Ω . Let Γ be a closed curve contained in Ω . We study existence of positive solutions $u\in H^1_0(\Omega)$ to the equation

$$-\Delta u + hu = \rho_{\Gamma}^{-\sigma} u^{2_{\sigma}^* - 1} \quad \text{in } \Omega,$$

where $2_{\sigma}^*:=2(N-\sigma)/(N-2)$, $\sigma\in(0,2)$, and ρ_{Γ} is the distance function to Γ . For $N\geq 4$, we find a sufficient condition, given by the local geometry of the curve, for the existence of a ground-state solution. In the case N=3, we obtain existence of ground-state solution provided the trace of the regular part of the Green of $-\Delta+h$ is positive at a point of the curve.

1. Introduction

For $N \geq 3, \ 0 \leq k \leq N-1$ and $\sigma \in [0,2)$, we consider the Hardy–Sobolev inequality

where $x=(t,z)\in\mathbb{R}^k\times\mathbb{R}^{N-k},\,C=C(N,\sigma,k)>0$ and $2^*_\sigma:=2(N-\sigma)/(N-2)$. Here the Sobolev space $\mathcal{D}^{1,2}(\mathbb{R}^N)$ is given by the completion of $C^\infty_c(\mathbb{R}^N)$ with respect to the norm $v\mapsto (\int_{\mathbb{R}^N}|\nabla v|^2\,dx)^{1/2}$. Inequality (1.1) interpolates between cylindrical Hardy inequality, which corresponds to the case $\sigma=2$ and $k\neq N-2$,

 $^{2010\} Mathematics\ Subject\ Classification.\ 35A01,\ 35A15,\ 3A23,\ 35B06,\ 35B09,\ 35B38,\\ 35B44,\ 35J08.$

Key words and phrases. Existence of ground state solution; Hardy–Sobolev inequality; Green function; positive mass; parametrized curve; curvature.