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TOPOLOGICAL SHADOWING

AND THE GROBMAN–HARTMAN THEOREM

Piotr Zgliczyński

Abstract. We give geometric proofs for the Grobman–Hartman theorem
for diffeomorphisms and ODEs. Proofs use covering relations and cone

conditions for maps and isolating segments and cone conditions for ODEs.

We establish topological versions of the Grobman–Hartman theorem as the
existence of some semiconjugaces.

1. Introduction

The goal of this paper is to give a new geometric proof of the Grobman–

Hartman theorem [8]–[10] for diffeomorphisms and ODEs in finite dimension. By

the ‘geometric proof’ we understand the proof which works in the phase space

of the system under consideration and uses concepts of qualitative geometric

nature.

We focus on the global version of the Grobman–Hartman theorem, which in

the case maps states that, if A : Rn → Rn is a hyperbolic linear isomorphism

and if g : Rn → Rn is given by

g(x) = Ax+ h(x),
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where h : Rn → Rn is a bounded C1 function such that ‖Dh(x)‖ ≤ ε for x ∈ Rn,

then if ε is sufficiently small, A and g are conjugated by a continuous homeo-

morphism.

There are many of proofs of the Grobman–Hartman theorem in the literature.

An exemplary geometric proof can be found in the Katok–Hasselblatt book [13].

This proof is placed in the context of the hyperbolicity, where it is shown that

dynamics of g is hyperbolic on the whole Rn and the conjugating homeomorphism

is constructed geometrically by considering the stable and unstable leaves of

points to obtain the linearizing coordinates.

The other family of proofs of the Grobman–Hartman theorem uses tools from

the functional analysis. The standard functional analysis proof [15], [17], [2],

which is now a textbook proof (see for example [1], [5], [16], [24]), studies the

conjugacy problem in some abstract Banach space of maps. The original proof

by P. Hartman [10]–[12] also belongs to this category, but it lacks the simplicity

of the contemporary approach, because to solve the conjugacy problem Hart-

man required first to introduce new coordinates which straighten the invariant

manifolds of the hyperbolic fixed point. The standard functional analysis proof,

whose idea apparently comes from the paper by Moser [14] (see also [15], [17]), in

a current form is a straightforward application of the Banach contraction prin-

ciple. The whole effort is to choose the correct Banach space and a contraction,

whose fixed point will give us the conjugacy.

In this paper we would like to give a new geometric proof the global version

of the Grobman–Hartman theorem (Theorem 2.1). The geometric idea behind

our approach can be seen as shadowing of δ-pseudo orbit, with δ not small. This

is accomplished using covering relations and the cone condition [26], [25] in the

case of diffeomorphisms; and for ODEs the notion of the isolating segment [18]–

[21], [23] and the cone conditions have been used. Compared to the geometric

proof in [13] we stress more the topological aspects. As the byproduct of our

approach we obtain two topological variants of the Grobman–Hartman theorem:

• if we drop the assumption that ‖Dh‖ is small, but demand instead that

g is a homeomorphism, then we show that there exists a semiconjugacy

between A and g, see Theorem 2.2 for the precise statement,

• if we drop the assumption that ‖Dh‖ is small, then we show that there

exists a semiconjugacy between A restricted to the unstable subspace

and g, see Theorem 2.3 for the precise statement.

Let us comment about the relation between our proofs of the theorem for

maps and for ODEs. The standard approach would be to derive the ODE case

from the map case, by considering the time shift by one time unit and then

arguing that we can obtain from it the conjugacy for all times (see [10], [15]–

[17]). Here, we provide a proof for ODEs which is independent from the map
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case in order to illustrate the power of the concept of the isolating segment with

the aim to obtain a clean ODE-type proof. For another clean ODE-type proof

using the functional analysis type arguments see [6].

Regarding the regularity of the conjugating homeomorphism in the global

Grobman–Hartman theorem, there is a nice argument of geometric nature in

Katok and Hasselblatt’s book [13] that shows that this conjugacy has to be

Hölder. However, no effort is made there to estimate the Hölder exponent. Using

our shadowing ideas we estimate this exponent. We obtain the same estimate

for the Hölder exponent as in the works by Barreira and Valls [2], Belitskĭı [3],

Belitskĭı and Rayskin [4] which apparently are the best results in this direction

(see [2] and references given there). In these papers the functional analysis type

of reasoning was used and results are valid also in the Banach space.

The organization of this paper can be described as follows. Section 2 contains

the geometric proof of the global version of the Grobman–Hartman theorem. In

Section 3 we show the Hölder regularity of the conjugacy in the Grobman–

Hartman theorem.

Section 4 contains a geometric proof of the Grobman–Hartman theorem for

flows, which is independent from the proof for maps.

At the end of this paper we included two appendices, which contain relevant

definitions and theorems about the covering relations and the isolating segments.

1.1. Notation. If A ∈ Rd1×d2 is a matrix, then by At we will denote its

transpose. By B(x, r) we will denote the open ball centered at x and with radius

r. For maps depending on some parameters h : P ×X → X by hp : X → X we

will denote the map hp(x) = h(p, x).

In this note we will work in Rn = Ru×Rs. According to this decomposition

we will often represent points z ∈ Rn as z = (x, y), where x ∈ Ru and y ∈ Rs.
On Rn we assume the standard scalar product (u, v) =

∑
i

uivi. This scalar

product induces the norm on Ru and Rs. We will use the following norm on Rn,

‖(x, y)‖max = max(‖x‖, ‖y‖) and we will usually drop the subscript max.

We will use also projections πx and πy, so that πx(x, y) = x and πy(x, y) = y.

2. Global version of the Grobman–Hartman theorem for maps

In this section we will give a geometric proof of the Grobman–Hartman

theorem for maps and its topological variants.

We will consider a map g : Rn → Rn such that

g(z) = A(z) + h(z).

We will have the following set of assumptions on A and h, which we will refer to

as the standard conditions:
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• We assume that A : Rn → Rn is a linear isomorphism of the form

A(x, y) = (Aux,Asy),

where n = u+s, Au : Ru → Ru and As : Rs → Rs are linear isomorphisms

such that

‖Aux‖ ≥ cu‖x‖, cu > 1 for all x ∈ Ru,

‖Asy‖ ≤ cs‖y‖, 0 < cs < 1, for all y ∈ Rs.

• The map h : Rn → Rn is continuous and there exists M such that

‖h(x)‖ ≤M, for all x ∈ Rn.

Theorem 2.1. Assume the standard conditions. Additionally assume that h

is of class C1 and such that there exists ε such that

‖Dh(x)‖ ≤ ε, for all x ∈ Rn.

Then there exists ε0 = ε0(A) > 0 such that if ε < ε0(A), then there exists

a homeomorphism σ : Rn → Rn such that

(2.1) σ ◦ g = A ◦ σ.

Comment. Observe that there is no bound on M , we also do not assume

that h(0) = 0.

In the next theorem we drop the assumption that h is C1 with small Dh,

but we keep the requirement that g is an injective map.

Theorem 2.2. Assume the standard conditions. Assume the map g is an

injection. Then there exists a continuous surjective map σ : Rn → Rn such that

(2.2) σ ◦ g = A ◦ σ.

In the next theorem we will drop the assumption that g is an injection. Then

we no longer have a unique full trajectory through a point for the map h.

Theorem 2.3. Assume the standard conditions. Then there exists a contin-

uous surjective map σu : Rn → Ru such that

(2.3) σu ◦ g = Au ◦ σu.

Before the proofs of Theorems 2.1–2.3 we need first to develop some tech-

nical tools. The basic steps and constructions used in the proofs are given in

Section 2.5. We invite the reader to jump first to this section to see the over-

all picture of the proofs and then consult other more technical sections when

necessary.

We will use the following notation: gλ = A+λh for λ ∈ [0, 1]. In this notation

we have g = g1.
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2.1. gλ are onto.

Lemma 2.4. Assume standard conditions. Then gλ are onto, i.e.

gλ(Rn) = Rn.

Proof. The surjectivity of gλ follows from the following observation: a boun-

ded continuous perturbation of a linear isomorphism is a surjection – the proof

is based on the local Brouwer degree (see for example Appendix in [26] for the

definition and properties). Details are as follows.

For a fixed y ∈ Rn we consider the equation y = gλ(x), which is equivalent

to x+ λA−1h(x) = A−1y = ỹ. Let us define a map

(2.4) Fλ(x) = x+ λA−1h(x)− ỹ.

Observe that if ‖x− ỹ‖ > ‖A−1‖M , then Fλ(x) 6= 0.

This shows that deg(Fλ, B(ỹ,‖A−1‖M), 0) (the local Brouwer degree of Fλ
on the set B(ỹ,‖A−1‖M) at 0) is defined and

deg(Fλ, B(ỹ,‖A−1‖M), 0) = deg(F0, B(ỹ,‖A−1‖M), 0),

for all λ ∈ [0, 1]. But for λ = 0 we have F0(x) = x− ỹ. Hence

deg(F0, B(ỹ,‖A−1‖M, 0) = 1.

Therefore Fλ(x) = 0 has a solution for any ỹ ∈ Rn. �

2.2. gλ are homeomorphisms under assumptions of Theorem 2.1.

The following lemma can be found for example in [17, Lemma 1] and [24, Propo-

sition II.2].

Lemma 2.5. Let A and h be as in Theorem 2.1. Let ε1(A) = 1/‖A−1‖ > 0.

If ε < ε1(A), then gλ is a homeomorphism and g−1λ is Lipschitz.

Proof. The surjectivity follows from Lemma 2.4. The injectivity is obtained

as follows:

‖gλ(z1)− gλ(z2)‖ = ‖Az1 + λh(z1)− (Az2 + λh(z2))‖

≥‖A(z1)−A(z2)‖ − λ‖h(z1)− h(z2)‖

≥ 1

‖A−1‖
‖z1 − z2‖ − ε‖z1 − z2‖ =

(
1

‖A−1‖
− ε
)
‖z1 − z2‖.

From the above formula it follows also that

‖z1 − z2‖ ≥
(

1

‖A−1‖
− ε
)
‖g−1λ (z1)− g−1λ (z2)‖.

Therefore

‖g−1λ (z1)− g−1λ (z2)‖ ≤
(

1

‖A−1‖
− ε
)−1
‖z1 − z2‖. �
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2.3. Cone condition for gλ under assumptions of Theorem 2.1.

Throughout this subsection we work under assumptions of Theorem 2.1.

We will establish the cone condition for gλ using the approach from [25],

where the cones are defined in terms of a quadratic form. Let Q be a quadratic

form in Rn = Ru×Rs given by Q(x, y) = (x, x)− (y, y). Our goal is to show the

following cone condition: for sufficiently small η > 0 it holds

(2.5) Q(Az1 −Az2) > (1± η)Q(z1 − z2), z1, z2 ∈ Rn, z1 6= z2.

This will be established in Lemma 2.7.

By Q we will also denote a matrix such that Q(z) = ztQz. In our case

Q =
[
Iu 0
0 −Is

]
, where Iu ∈ Ru×u and Is ∈ Rs×s are the identity matrices.

Lemma 2.6. For 0 ≤ η ≤ min(c2u − 1, 1− c2s) the matrix AtQA− (1± η)Q is

positive definite.

Proof. Easy computations show that

AtQA =

(
AtuAu 0

0 AtsAs

)
.

Hence for any z = (x, y) ∈ Ru × Rs \ {0} we have

zt(AtQA− (1± η)Q)z = xtAtuAux− (1± η)x2 + (1± η)y2 − ytAtsAsy

= (Aux,Aux)− (1± η)x2 + (1± η)y2 − (Asy,Asy)

≥ (c2u − 1− η)x2 + (1− η − c2s)y2 > 0,

if c2u − 1 > η and 1− c2s > η. �

Lemma 2.7. There exists ε0(A) > 0 such that if 0 ≤ ε < ε0(A), then there

exists η ∈ (0, 1) such that for any λ ∈ [0, 1] the following cone condition holds:

(2.6) Q(gλ(z1)− gλ(z2)) > (1± η)Q(z1 − z2), for all z1, z2 ∈ Rn, z1 6= z2.

Proof. We have

Q(gλ(z1)− gλ(z2)) = (z1 − z2)t(D(z1, z2)tQD(z1, z2))(z1 − z2),

D(z1, z2) =

∫ 1

0

Dgλ(t(z1 − z2) + z2) dt.

Let

C(z1, z2) =

∫ 1

0

Dh(t(z1 − z2) + z2) dt,

then D(z1, z2) = A+ λC(z1, z2). Observe that ‖C(z1, z2)‖ ≤ ε.
From Lemma 2.6 it follows that AtQA − (1 ± η)Q is positive definite for

sufficiently small η > 0. Let us fix such η. Since being a positively defined
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symmetric matrix is an open condition, there exists ε0(A) > 0 such that the

matrix

(2.7) (A+ λC)tQ(A+ λC)− (1± η)Q

is positive definite for any λ ∈ [0, 1] and C ∈ Rn×n satisfying ‖C‖ ≤ ε0. �

From Lemma 2.5 it follows that for any λ ∈ [0, 1] and any point z we can

define a full orbit for gλ through this point, i.e. gkλ(z) makes sense for any k ∈ Z.

Lemma 2.8. Assume that ε < min(ε0(A), ε1(A)) is from Lemmas 2.7 and

2.5. Let λ ∈ [0, 1]. If z1, z2 ∈ Rn and β are such that

(2.8) ‖gkλ(z1)− gkλ(z2)‖ ≤ β, for all k ∈ Z,

then z1 = z2.

Proof. The proof is by contradiction. Let z1 6= z2. Either Q(z1 − z2) ≥ 0

or Q(z1 − z2) < 0.

Let us consider first the case Q(z1 − z2) ≥ 0. By the cone condition (Lem-

ma 2.7) we obtain, for any k > 0,

Q(gλ(z1)− gλ(z2)) > Q(z1 − z2) ≥ 0,

‖πx(gkλ(z1)− gkλ(z2))‖ ≥ Q(gkλ(z1)− gkλ(z2)) > (1 + η)k−1Q(gλ(z1)− gλ(z2)).

Therefore gkλ(z1)− gkλ(z2) is unbounded. This contradicts (2.8).

Now we consider the case Q(z1 − z2) < 0. The cone condition (Lemma 2.7)

applied to the inverse map gives, for any k > 0,

Q(z1 − z2) > (1− η)Q(g−1λ (z1)− g−1λ (z2)) > (1− η)kQ(g−kλ (z1)− g−kλ (z2)).

Therefore we obtain

−Q(g−kλ (z1)− g−kλ (z2)) >
1

(1− η)k
(−Q(z1 − z2)).

Therefore g−kλ (z1)− g−kλ (z2) is unbounded. This contradicts (2.8). �

2.4. Covering relations. We assume that the reader is familiar with the

notion of an h-set and covering relation [26]. For the convenience of the reader

we recall these notions in Appendix A.

Definition 2.9. For any z ∈ Rn, α > 0 we define an h-set (with a natural

structure) N(z, α) = z +Bu(0, α)×Bs(0, α).

The following theorem follows immediately from Theorem A.5 in Appen-

dix A.

Theorem 2.10. Assume that we have a bi-infinite chain of covering relations

Ni
f

=⇒ Ni+1, i ∈ Z.

Then there exists a sequence {zi}i∈Z such that zi ∈ Ni and f(zi) = zi+1.
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The following lemma plays the crucial role in the construction of ρ from

Theorem 2.1.

Lemma 2.11. Assume the standard conditions. Let

α̂ = α̂(A,M) = max

(
2M

cu − 1
,

2M

1− cs

)
.

Then, for any α > α̂, λ1, λ2 ∈ [0, 1] and z ∈ Rn it holds that

(2.9) N(z, α)
A+λ1h=⇒ N((A+ λ2h)(z), α).

Proof. Let us fix z ∈ Rn and let us define the homotopy H : [0, 1] ×
Bu(0, α)×Bu(0, α)→ Rn as follows:

Ht((x, y)) = (Aux, (1− t)Asy) + (1− t)λ1h(z + (r, y)) + (A+ tλ2h)(z).

We have

H0(x, y) = A(z + (x, y)) + λ1h(z + (x, y)) = (A+ λ1h)(z + (x, y)),

H1(x, y) = (A+ λ2h)(z) + (Aux, 0).

For the proof of Lemma 2.11 it is enough to show the following conditions, for

all t, λ1, λ2 ∈ [0, 1]:

‖πx(Ht(x, y)− (A+ λ2h)(z))‖ > α, (x, y) ∈ (∂Bu(0, α))×Bs(0, α),(2.10)

‖πy(Ht(x, y)− (A+ λ2h)(z))‖ < α, (x, y) ∈ Bu(0, α)×Bs(0, α).(2.11)

First we establish (2.10). We have

‖πx(Ht((x, y)) − (A+ λ2h)(z))‖

= ‖Aux+ (1− t)λ1πxh(z + (x, y)) + (t− 1)λ2πxh(z)‖

≥‖Aux‖ − ‖h(z + (x, y))‖ − ‖h(z)‖ ≥ cuα− 2M.

Hence (2.10) holds if the following inequality is satisfied:

(2.12) (cu − 1)α > 2M.

Now we deal with (2.11). We have

‖πy(Ht(x, y) − (A+ λ2h)(z))‖

= ‖(1− t)Asy + (1− t)λ1πyh(z + (x, y)) + (t− 1)λ2πyh(z)‖

≤‖Asy‖+ ‖h(z + (x, y))‖+ ‖h(z)‖ ≤ csα+ 2M.

Hence (2.11) holds if the following inequality is satisfied:

(2.13) (1− cs)α > 2M.

Hence it is enough to take α̂ = max(2M/(cu − 1), 2M/(1− cs)). �



Topological Shadowing and the Grobman–Hartman Theorem 765

2.5. Proofs of Theorems 2.1 and 2.2. Under assumptions of Theo-

rem 2.1 it follows from Lemma 2.5 that g is a homeomorphism. Under assump-

tions of Theorem 2.2 it follows from Lemma 2.4 that g is a homeomorphism.

Therefore we can talk of the full orbit of g passing through an arbitrary point

z ∈ Rn.

We define σ : Rn → Rn and a multivalued map ρ from Rn to subsets of Rn.

In the case of the proof of Theorem 2.1 we will show that ρ is single-valued, i.e.

ρ : Rn → Rn.

1. Let us fix α > α̂, where α̂ is obtained in Lemma 2.11.

2. For z ∈ Rn, from Lemma 2.11 with λ1 = 1 and λ2 = 0 we have a bi-

infinite chain of covering relations

(2.14) · · · g
=⇒ N(A−2z, α)

g
=⇒ N(A−1z, α)

g
=⇒ N(z, α)

g
=⇒ N(Az, α)

g
=⇒ N(A2z, α)

g
=⇒ N(A3z, α)

g
=⇒ · · ·

3.1. In the context of the proof of Theorem 2.1: from Theorem 2.10 and

Lemma 2.8 it follows that the chain of covering relations (2.14) defines

a unique point, which we will denote by ρ(z), such that

(2.15) gk(ρ(z)) ∈ N(Ak(z), α), k ∈ Z.

3.2. In the context of the proof of Theorem 2.2: from Theorem 2.10 it follows

that (2.14) defines for each z ∈ Rn a non-empty set ρ(z) such that for

each z1 ∈ ρ(z) it holds

(2.16) gk(z1) ∈ N(Ak(z), α), k ∈ Z.

4. For z ∈ Rn, from Lemma 2.11 with λ1 = 0 and λ2 = 1 we have a bi-

infinite chain of covering relations

(2.17) · · · A
=⇒ N(g−2(z), α)

A
=⇒ N(g−1(z), α)

A
=⇒ N(z, α)

A
=⇒ N(g(z), α)

A
=⇒ N(g2(z), α)

A
=⇒ N(g3(z), α)

A
=⇒ · · ·

5. From Theorem 2.10 and the hyperbolicity of A it follows that the chain

of covering relations (2.17) defines a unique point, which we will denote

by σ(z), such that

(2.18) Ak(σ(z)) ∈ N(gk(z), α), k ∈ Z.

The following lemma shows that in the context of Theorem 2.1 the map ρ in

fact does not depend on α.

Lemma 2.12. Under assumptions of Theorem 2.1 assume that

ε < min(ε0(A), ε1(A)).
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Assume α̂ < β. Let z ∈ Rn. If z1 is such that

(2.19) gk(z1) ∈ N(Akz, β), k ∈ Z,

then z1 = ρ(z).

Proof. Observe that (2.15) and (2.19) imply

‖gk(z1)− gk(ρ(z))‖ ≤ α+ β.

The assertion follows from Lemma 2.8. �

The following lemma a consequence of the hyperbolicity of A.

Lemma 2.13. Under assumptions of Theorem 2.2, let α̂ < β and z ∈ Rn. If

z1 is such that

(2.20) Ak(z1) ∈ N(gk(z), β), k ∈ Z,

then z1 = σ(z).

Lemma 2.14. Under assumptions of Theorem 2.2, σ is continuous.

Proof. Assume that zj → z, we will show that the sequence {σ(zj)}j∈N is

bounded and each converging subsequence converges to σ(z).

We can assume that ‖zj − z‖ < α. Then, since ‖σ(zj)− zj‖ < α, we obtain

‖σ(zj)− z‖ < 2α.

Hence {σ(zj)}j∈N is bounded.

Now let us take a convergent subsequence, which we will again index by j,

hence zj → z and σ(zj) → w for j → ∞, where w ∈ Rn. We will show that

w = σ(z). This implies that σ(zi)→ σ(z).

Let us fix k ∈ Z. From the continuity of z 7→ gk(z) it follows, that there

exists j0 such for j ≥ j0,

(2.21) ‖gk(zj)− gk(z)‖ < α.

Since by the definition of σ we have Ak(σ(zj)) ∈ N(gk(zj), α), (2.21) implies

that ‖Ak(σ(zj))− gk(z)‖ ≤ 2α. By passing to the limit with j we obtain

(2.22) ‖Ak(w)− gk(z)‖ ≤ 2α.

Since (2.22) holds for all k ∈ Z, by Lemma 2.13, w = σ(z). �

We continue with the proofs of Theorems 2.1 and 2.2. From the definition

of ρ and σ we immediately conclude that σ ◦ g = A ◦ σ and in the context of

Theorem 2.2 we also have ρ ◦A = g ◦ ρ.

We will show that σ(ρ(z)) = {z}. Let us fix z ∈ Rn and z1 ∈ ρ(z), then for

any k ∈ Z it holds that

‖gk(z1)−Ak(z)‖ ≤ α, ‖Ak(σ(z1))− gk(z1)‖ ≤ α.
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Hence

‖Ak(σ(z1))−Ak(z)‖ ≤ 2α, k ∈ Z.

From the hyperbolicity of A (see also Lemma 2.8) it follows that z = σ(z1).

Therefore,

(2.23) σ(ρ(z)) = {z}.

Observe that (2.23) implies that σ is a surjection. This finishes the proof of

Theorem 2.2.

From now on we work under assumptions of Theorem 2.1 and with

ε < min(ε0(A), ε1(A)).

We will prove that ρ ◦ σ = Id. Let us fix z ∈ Rn. For all k ∈ Z we have

‖Akσ(z)− gk(z)‖ ≤ α, ‖gk(ρ(σ(z)))−Akσ(z)‖ ≤ α,

hence

‖gk(ρ(σ(z)))− gk(z)‖ ≤ 2α.

From Lemma 2.8 we obtain that ρ(σ(z)) = z.

It remains to show that σ−1 = ρ is continuous. The proof is virtually the

same as the proof of continuity of σ. The only difference is the use of Lemma 2.12

in place of Lemma 2.13. �

2.6. Proof of Theorem 2.3. This time we can only consider forward or-

bits. To define a map σu we proceed as follows. For any z ∈ Rn, from Lemma 2.11

with λ1 = 0 and λ2 = 1 we have the following chain of covering relations:

(2.24) N(z, α)
A

=⇒ N(g(z), α)
A

=⇒ N(g2(z), α)
A

=⇒ N(g3(z), α)
A

=⇒ · · ·

From Theorem A.5 applied to (2.24) it is easy to show that there exists z1 =

(x1, y1) ∈ Ru × Rs such that Ak(z1) ∈ N(gk(z), α), for k ∈ N.

We set σu(z) = x1. We need to show first that σu(z) is well defined. Let

z2 = (x2, y2) be another point such that Ak(z2) ∈ N(gk(z), α), for k ∈ N. Then

(2.25) ‖Aku(x1)−Aku(x2)‖ ≤ 2α, k ∈ N.

On the other side, from our assumptions on A its follows that

(2.26) ‖Aku(x1)−Aku(x2)‖ ≥ cku‖x1 − x2‖, k ∈ N.

Since cu > 1, we conclude that x1 = x2.

From the above reasoning it follows immediately that σu(z) is defined by the

following condition:

(2.27) ∃σs(z) ∈ Rs ∀ k ∈ N Ak(σu(z), σs(z)) ∈ N(gk(z), β),

where β ≥ α.
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Let us stress that σs(z) is not a well-defined map, there exist many possibili-

ties for σs(z). However using the functional notation σs(z) will facilitate further

discussions.

To establish the semiconjugacy (2.3) observe that from (2.27) we obtain, for

all k ∈ N \ {0},

Ak−1(A(σu(z), σs(z))) = Ak−1(Auσu(z), Asσs(z)) ∈ N(gk−1(g(z)), α).

This implies that Auσu(z) = σu(g(z)).

The next step is the continuity of σu.

Lemma 2.15. σu is continuous.

Proof. Assume that zj → z, we will show that the sequence {σu(zj)}j∈N is

bounded and each converging subsequence converges to σu(z). We can assume

that ‖zj − z‖ < α. Then, since ‖(σu(zj), σs(zj))− zj‖ < α, we obtain

‖σu(zj)− πxz‖ < 2α, ‖σs(zj)− πyz‖ < 2α.

Hence {σu(zj), σs(zj)}j∈N is bounded.

Now, let us take a convergent subsequence, which we will again index by j,

hence zj → z, σu(zj) → w and σs(zj) → v for j → ∞, where w ∈ Ru. We will

show that w = σu(z). This implies that σu(zi)→ σu(z).

Let us fix k ∈ N. From the continuity of z 7→ gk(z) it follows that there

exists j0 such, for j ≥ j0,

(2.28) ‖gk(zj)− gk(z)‖ < α.

By the definition of σu, we have

Ak(σu(zj), σs(zj)) ∈ N(gk(zj), α).

Inequality (2.28) implies that

‖Ak(σu(zj), σs(zj))− gk(z)‖ ≤ 2α.

By passing to the limit with j we obtain

(2.29) ‖Ak(w, v)− gk(z)‖ ≤ 2α.

Since (2.29) holds for all k ∈ N, by (2.27), w = σu(z). �

It remains to show the surjectivity of σu. For this let us set z = (x0, 0) and

consider the following chain of covering relations:

(2.30) N(z, α)
g

=⇒ N(Az, α)
g

=⇒ N(A2z, α)
g

=⇒ N(A3z, α)
g

=⇒ · · ·

From Theorem A.5 applied to (2.30) it follows that there exists z such that

gk(z) ∈ N(Ak(z), α), k ∈ N.
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Hence

(2.31) Ak((x0, 0)) ∈ N(gk(z), 2α), for all k ∈ N.

From (2.27) it follows that x0 = σu(z). Since x0 was arbitrary, σu is onto. �

2.7. From global to local Grobman–Hartman theorem. The transi-

tion from the global to the local version of the Grobman–Hartman theorem is

very standard, see for example [17], [24]. We include it here for the sake of

completeness.

Assume that ϕ : Rn → Rn is a diffeomorphism satisfying

ϕ(z) = Az + h(z),

where A ∈ Rn×n is a linear hyperbolic isomorphism and h(0) = 0 and Dh(0) = 0.

Let us fix ε > 0. There exists δ > 0 such that ‖Dh(z)‖ < ε, ‖z‖ ≤ δ.
Let t : R+ → R+ be a smooth function such that

t(r) = r if r ≤ δ/2,

t(r) = w < δ if r ≥ δ,

t(r1) ≤ t(r2) if r1 < r2,

0 < t′(r) < 1 if r ∈ [δ/2, δ].

Consider now the function R : Rn → Rn given by

(2.32) R(0) = 0, R(z) =
t(‖z‖)z
‖z‖

, z 6= 0.

It is easy to see that R(z) = z, for z ∈ B(0, δ/2), R(Rn) ⊂ B(0, w), ‖DR‖ ≤ 1.

Consider now a modification of ϕ given by ϕ̂(z) = Az + h(R(z)). It is easy

to see that

ϕ̂(z) = ϕ(z), z ∈ B(0, δ2),

‖h(R(z))‖ ≤ εδ, z ∈ Rn,

‖D(h ◦R)(z)‖ ≤ ε, z ∈ Rn.

It is clear that, by taking ε and δ small enough, h ◦R will satisfy the smallness

assumption in Theorem 2.1 hence we will obtain the local conjugacy, which is

the Grobman–Hartman theorem.

3. Hölder regularity of ρ

It is known that the conjugating homeomorphism from Theorem 2.1 is Hölder.

The geometric proof of this fact is given in the Katok and Hasselblatt book [13].

In fact this is a particular case of a more general result about the Hölder regular-

ity of the conjugacy between hyperbolic invariant sets. In [13] no effort was made
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to estimate the Hölder exponent in the context of the global Grobman–Hartman

theorem.

Using the functional analysis type approach, the Hölder continuity of the con-

jugating homeomorphism was established by Barreira and Valls [2], Belitskĭı [3],

Belitskĭı and Rayskin [4] (see [2] and references given there for other related

papers) and apparently the best value of the Hölder exponent was obtained.

Our goal is to show the Hölder property for ρ = σ−1, the map from the

conjugacy established in Theorem 2.1. The main result in this section is Theo-

rem 3.4. The same arguments apply also to σ. We show that we can obtain the

same estimate as in [2]–[4].

Lemma 3.1. Let Q,A, g be as in the proof of Theorem 2.1. If Q(z1−z2) ≥ 0,

z1 6= z2, then Q(g(z1)− g(z2)) > 0 and

‖πxg(z1)− πxg(z2)‖ > θu‖πxz1 − πxz2‖,

where θu = cu − 2ε0 > 1.

Proof. From the cone condition (Lemma 2.7) it follows that Q(g(z1) −
g(z2)) > 0. Since Q(z1 − z2) ≥ 0,

‖πxz1 − πxz2‖ ≥ ‖πyz1 − πyz2‖.

We have

πxg(z1) − πxg(z2) =

∫ 1

0

Dπxg(t(z1 − z2) + z2) dt · (z1 − z2)

=Auπx(z1 − z2) +

∫ 1

0

∂πxh

∂x
(t(z1 − z2) + z2) dt · πx(z1 − z2)

+

∫ 1

0

∂πxh

∂y
(t(z1 − z2) + z2) dt · πy(z1 − z2).

Hence, if Q(z1 − z2) ≥ 0, we obtain

‖πxg(z1)− πxg(z2)‖ ≥ cu‖πx(z1 − z2)‖ − 2ε‖πx(z1 − z2)‖. �

An analogous lemma holds for the inverse map.

Lemma 3.2. Let Q,A, g, ρ be as in the proof of Theorem 2.1. If Q(z1−z2) ≤ 0,

z1 6= z2, then Q(g−1(z1)− g−1(z2)) < 0 and

‖πyg−1(z1)− πyg−1(z2)‖ > θs‖πyz1 − πyz2‖,

where θs = 1/(cs + 2ε) > 1.

Proof. From the cone condition (Lemma 2.7) it follows that Q(g−1(z1) −
g−1(z2)) < 0. Since Q(z1 − z2) ≤ 0,

‖πyz1 − πyz2‖ ≥ ‖πxz1 − πxz2‖.



Topological Shadowing and the Grobman–Hartman Theorem 771

We have, for any z1, z2,

πyg(z1) − πyg(z2) =

∫ 1

0

Dπyg(t(z1 − z2) + z2) dt · (z1 − z2)

=Asπy(z1 − z2) +

∫ 1

0

∂πyh

∂x
(t(z1 − z2) + z2) dt · πx(z1 − z2)

+

∫ 1

0

∂πyh

∂y
(t(z1 − z2) + z2) dt · πy(z1 − z2).

Hence, if Q(g(z1)− g(z2)) ≤ 0, then Q(z1 − z2) < 0 and we have

‖πyg(z1)− πyg(z2)‖ ≤ cs‖πy(z1 − z2)‖+ 2ε‖πy(z1 − z2)‖

= (cs + 2ε)‖πy(z1 − z2)‖,

which, after the substitution zi → g−1zi, gives for Q(z1 − z2) ≤ 0,

‖πyz1 − πyz2‖ ≤ (cs + 2ε)‖πy(g−1(z1)− g−1(z2))‖. �

Lemma 3.3. Let Q,A, g, ρ be as in the proof of Theorem 2.1. Then, for any

k ∈ Z+, it holds

‖ρ(z1)− ρ(z2)‖ ≤ 2α

θku
+

(
‖Au‖
θu

)k
‖z1 − z2‖, if Q(ρ(z1)− ρ(z2)) ≥ 0,(3.1)

‖ρ(z1)− ρ(z2)‖ ≤ 2α

θks
+

(
‖A−1s ‖
θs

)k
‖z1 − z2‖, if Q(ρ(z1)− ρ(z2)) ≤ 0.(3.2)

Proof. We will consider the case Q(ρ(z1)− ρ(z2)) ≥ 0, the case Q(ρ(z1)−
ρ(z2)) ≤ 0 is analogous, one just need to consider the inverse maps.

From Lemma 3.1 (or Lemma 3.2 in the second case) applied to ρ(z1) and

ρ(z2) it follows that, for any k > 0,

‖gk(ρ(z1))− gk(ρ(z2))‖ = ‖πxgk(ρ(z1))− πxgk(ρ(z2))‖

≥ θku‖πxρ(z1)− πxρ(z2)‖ = θku‖ρ(z1)− ρ(z2)‖.

Now we derive an upper bound on ‖gk(ρ(z1)) − gk(ρ(z2))‖. Since gk(ρ(zi)) ∈
N(Akzi, α), for i = 1, 2, we obtain

‖gk(ρ(z1))− gk(ρ(z2))‖ ≤‖gk(ρ(z1))−Akz1‖

+ ‖Akz1 −Akz2‖+ ‖Akz2 − gk(ρ(z2))‖

≤α+ ‖A‖k‖z1 − z2‖+ α = 2α+ ‖Au‖k‖z1 − z2‖.

By combining the above inequalities, we obtain

‖ρ(z1)− ρ(z2)‖ ≤ 2α

θku
+

(
‖Au‖
θu

)k
‖z1 − z2‖. �

We are now ready to prove the Hölder regularity of ρ.
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Theorem 3.4. Let γ = min(ln θu/ln ‖Au‖, ln θs/ln ‖A−1s ‖). There exists C >

0 such that for any z1, z2 ∈ Rn, z1 6= z2 and ‖z1 − z2‖ < 1, it holds

(3.3)
‖ρ(z1)− ρ(z2)‖
‖z1 − z2‖γ

≤ C.

Proof. Observe first that ‖Au‖ ≥ θu > 1 and ‖A−1s ‖ ≥ θs > 1. Let us set

δ0 = 1. Let us denote δ = ‖z1− z2‖. For any γ > 0 and k ∈ Z+ from Lemma 3.3

we have
‖ρ(z1)− ρ(z2)‖
‖z1 − z2‖γ

≤ 2α

θk
δ−γ +

(
L

θ

)k
δ1−γ ,

where (θ, L) = (θu, ‖Au‖) or (θ, L) = (θs, ‖A−1s ‖).
In the sequel we will find C which is good for each case separately, and then

we choose the larger C. Observe that (3.3) holds if there exist constants C1 and

C2 such that for each 0 < δ < δ0 there exists k ∈ Z+ such that the following

inequalities are satisfied:

2α

θk
δ−γ ≤ C1,(3.4) (

L

θ

)k
δ1−γ ≤ C2.(3.5)

We show that we can take

C1 = 2α,(3.6)

C2 =
L

θ
.(3.7)

The strategy is as follows: first from (3.4) we compute k and then we insert it

into (3.5), which will give an inequality which should hold for any 0 < δ < δ0,

this will produce a bound for γ,C1 and C2. From (3.4) we obtain

θk ≥ 2αδ−γ

C1
, k ln θ ≥ ln

2α

C1
− γ ln δ.

Taking into account (3.6), we have

(3.8) k ln θ ≥ −γ ln δ.

We set k0 = k0(δ) = −γ ln δ/ln θ. k0 might not belong to Z, but k0 > 0. We set

k = k(δ) = bk0 + 1c, where bzc is the integer part of z. With this choice of k

equation (3.8) is satisfied. Hence also (3.4) holds.

Now we work on (3.5). Since(
L

θ

)k
≤
(
L

θ

)k0+1

,

(3.5) is satisfied if the following inequality holds:(
L

θ

)1−γ ln δ/ln θ

δ1−γ ≤ C2.
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By taking the logarithm of both sides of the above inequality we obtain(
1− γ

ln θ
ln δ

)
ln

(
L

θ

)
+ (1− γ) ln δ ≤ lnC2.

Finally, after an rearrangement of terms we arrive at(
1− γ

(
1 +

ln(L/θ)

ln θ

))
ln δ ≤ lnC2 − ln

L

θ
.

The last inequality should be satisfied for all δ ≤ δ0 = 1. Therefore, we need the

coefficient on the lhs by ln δ to be nonnegative and the rhs to be nonnegative.

It is easy to see that the rhs is nonnegative with C2 given by (3.7). For the lhs

observe that

1 +
ln(L/θ)

ln θ
= 1 +

lnL− ln θ

ln θ
=

lnL

ln θ
.

Hence we obtain 1− γlnL/ln θ ≥ 0 and finally γ ≤ ln θ/lnL. �

3.1. Comparison with known estimates. In [2, Theorem 1] (see also [3],

[4]) the following estimate has been given for the Hölder exponent for ρ and ρ−1

if the size of the perturbation goes to 0 (we use our notation)

(3.9) α < α0 = min

{
− ln r(As)

ln r(A−1s )
,− ln r(A−1u )

ln r(Au)

}
,

where r(A) denotes the spectral radius of the matrix A.

Let us consider our estimate of the Hölder exponent from Theorem 3.4. In

the limit of vanishing perturbation we obtain (see Lemmas 3.1 and 3.2)

θu = cu, θs =
1

cs
.

Since from assumptions of Theorem 3.4 it follows that we can assume that

(3.10)
1

cu
= ‖A−1u ‖, cs = ‖As‖,

we obtain

ln θu
ln ‖Au‖

=
ln 1
‖A−1

u ‖

ln ‖Au‖
= − ln ‖A−1u ‖

ln ‖Au‖
,

ln θs

ln ‖A−1s ‖
=

ln 1
‖As‖

ln ‖A−1s ‖
= − ln ‖As‖

ln ‖A−1s ‖
.

Therefore our estimate for the Hölder exponent is

α1 < min

{
− ln ‖A−1u ‖

ln ‖Au‖
,− ln ‖As‖

ln ‖A−1s ‖

}
.

It differs from (3.9) by the exchange of the spectral radius of matrices in (3.9)

by the norms of matrices. It is quite obvious that by using the adapted norm we

can get arbitrary close to the bound given by (3.9). For example, if Au and As
are diagonalizable over R, if we define the scalar product so that the eigenvectors

are orthogonal, then we obtain ‖A±1u,s‖ = r(A±1u,s).



774 P. Zgliczyński

To conclude, we claim that we were able to reproduce the Hölder exponent

from [2]–[4].

4. Grobman–Hartman theorem for ODEs

Consider an ODE

(4.1) z′ = f(z), z ∈ Rn,

such that f ∈ C1 and 0 is a hyperbolic fixed point. It is well known that the

Grobman–Hartman theorem is also valid for (4.1). It can be obtained from

Theorem 2.1 for time one map. In this section we would like to give a geometric

proof, which will not reduce the proof to the map case, but rather we prefer

a clean ODE version.

In such approach, the chain of covering relations along the full orbit will

be replaced by an isolating segment along the orbit of a fixed diameter in the

extended phase space (i.e. (t, z) ∈ R× Rn). The cone conditions for maps have

also its natural analog, we will demand that

d

dt
Q(ϕ(t, z1)− ϕ(t, z2)) > 0.

We will consider an ODE

z′ = Az + h(z), z ∈ Rn.

We will have the following set of assumptions on A and h, which we will refer to

as the ODE-standard conditions:

• Assume that A : Rn → Rn is a linear map of the form

A(x, y) = (Aux,Asy),

where n = u+ s, Au : Ru → Ru and As : Rs → Rs are linear maps such

that

(x,Aux) ≥ cu‖x‖2, cu > 0, for all x ∈ Ru,

(y,Asy) ≤ −cs‖y‖2, cs > 0, for all y ∈ Rs.

• Assume that h : Rn → Rn is of class C1 and there exists M > 0 such

that

‖h(x)‖ ≤M, for all x ∈ Rn.

Let ϕ be the (local) dynamical system induced by z′ = Az + h(z). Here is a

global version of the Grobman–Hartman theorem for ODEs, which is similar in

spirit to Theorem 2.1.

Theorem 4.1. Assume ODE-standard conditions. Assume additionally that

‖Dh(x)‖ ≤ ε, for all x ∈ Rn.
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Under the above assumptions there exists ε0 = ε0(A) > 0 such that if ε < ε0(A),

then there exists a homeomorphism ρ : Rn → Rn such that for any t ∈ R,

(4.2) ρ(exp(At)z) = ϕ(t, ρ(z)).

Theorem 4.2. Assume ODE-standard conditions. Then there exists a con-

tinuous surjective map σ : Rn → Rn such that for any t ∈ R,

(4.3) (exp(At)σ(z)) = σ(ϕ(t, z)).

In the sequel for λ ∈ [0, 1] by ϕλ : R×Rn → Rn we will denote the dynamical

system induced by

z′ = fλ(z) := Az + λh(z).

Before the proofs of Theorems 4.1 and 4.2 we need first to develop some

technical tools. The basic steps and constructions used in the proofs are given

in Section 4.4. We invite the reader to jump first to this section to see the

overall picture of the proof and then consult other more technical sections when

necessary.

4.1. ϕλ is a global dynamical system.

Lemma 4.3. Assume ODE-standard conditions. Then, for every (t, z) ∈
R× Rn, ϕλ(t, z) is defined.

Proof. Observe that ‖fλ(z)‖ ≤ ‖A‖‖z‖+M . From this, using the Gronwall

inequality, we obtain the following estimate:

(4.4) ‖z(t)‖ ≤ ‖z(0)‖e‖A‖·|t| + M

‖A‖
(
e‖A‖·|t| − 1

)
.

This implies that ϕλ(t, z) is defined. �

4.2. Isolating segment. We assume that the reader is familiar with the

notion of an isolating segment for an ODE. It has its origin in the Conley index

theory [7] and was developed in papers by Roman Srzednicki and his coworkers

[18]–[21], [23].

Roughly speaking, an isolating segment for a (non-autonomous) ODE is the

set in the extended phasespace (i.e. (t, z) ∈ R × Rn), whose boundaries are

sections of the vector field. The precise definition can be found in Appendix B.

Lemma 4.4. Assume ODE-standard conditions. There exists

α̂ = max

(
2M

cu
,

2M

cs

)
such that for α > α̂ and for any λ1, λ2 ∈ [0, 1] and z0 ∈ Rn the set

Nλ1(z0, α) = {(t, (x, y)) | (x− πxϕλ1(t, z0))2 ≤ α2, (y − πyϕλ1(t, z0))2 ≤ α2},
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with

N−λ1
(z0, α) = {(t, (x, y)) ∈ Nλ1

(z0, α) | (x− πxϕλ1(t, z0))2 = α2},

N+
λ1

(z0, α) = {(t, (x, y)) ∈ Nλ1
(z0, α) | (y − πyϕλ1(t, z0))2 = α2},

is an isolating segment for ϕλ2 .

Proof. Let us introduce the following notation:

L−(t, x, y) = (x− πxϕλ1(t, z0))2 − α2,

L+(t, x, y) = (y − πyϕλ1(t, z0))2 − α2.

The outside normal vector field to N−λ1
(z0, α) is given by ∇L−. We have

∂L−

∂t
(t, x, y) = − 2(x− πxϕλ1(t, z0)) · πxfλ1(ϕλ1(t, z0)))

= − 2(x− πxϕλ1(t, z0)) · (Auϕλ1(t, z0) + λ1πxh(ϕλ1(t, z0))),

∂L−

∂x
(t, x, y) = 2(x− πxϕλ1(t, z0)),

∂L−

∂y
(t, x, y) = 0.

We verify the exit condition by checking that for (t, z) ∈ N−λ1
(z0, α), ∇L−(t, z) ·

(1, fλ2(t, z)) > 0. We have, for (t, (x, y)) ∈ N−λ1
(z0, α),

1

2
∇L−(t, z) · (1, fλ2(t, z))

= − (x− πxϕλ1(t, z0)) · (Auϕλ1(t, z0) + λ1πxh(ϕλ1(t, z0)))

+ (x− πxϕλ1(t, z0)) · (Aux+ λ2πxh(x, y))

= (x− πxϕλ1(t, z0)) · (Au(x− πxϕλ1(t, z0)))

+ (x− πxϕλ1(t, z0)) · (−λ1πxh(ϕλ1(t, z0)) + λ2πxh(x, y))

≥ cuα2 − 2αM = α(cuα− 2M).

We see that it is enough to take α̂ > 2M/cu.

For the verification of the entry condition we will show that for (t, z) ∈
N+
λ1

(z0, α), ∇L+(t, z) · (1, fλ2(t, z)) < 0.

The outside normal vector field to N+
λ1

(z0, α) is given by ∇L+. We have

∂L+

∂t
(t, x, y) = − 2(y − πyϕλ1(t, z0)) · πyfλ1(ϕλ1(t, z0)))

= − 2(y − πyϕλ1(t, z0)) · (Asϕλ1(t, z0) + λ1πyh(ϕλ1(t, z0))),

∂L+

∂x
(t, x, y) = 0,

∂L+

∂y
(t, x, y) = 2(y − πyϕλ1(t, z0)).
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We have, for (t, (x, y)) ∈ N+
λ1

(z0, α),

1

2
∇L+(t, z) · (1, fλ2(t, z))

= − (y − πyϕλ1(t, z0)) · (Asϕλ1(t, z0) + λ1πyh(ϕλ1(t, z0)))

+ (y − πyϕλ1(t, z0)) · (Ayy + λ2πyh(x, y))

= (y − πyϕλ1(t, z0)) · (As(y − πyϕλ1(t, z0)))

+ (y − πyϕλ1(t, z0)) · (−λ1πyh(ϕλ1(t, z0)) + λ2πyh(x, y))

≤ − csα2 + 2αM = α(−csα+ 2M).

We see that it is enough to take α̂ > 2M/cs. �

The following theorem will be obtained using the ideas from the proof of the

Ważewski Rectract Theorem [22] (see also [7]). We will present the details.

Theorem 4.5. Assume ODE-standard conditions. Let α > α̂, where α̂ is

defined in Lemma 4.4. Then, for any λ1, λ2 ∈ [0, 1] and z0 ∈ Rn, there exists

z1 ∈ Rn such that, for all t ∈ R, it holds

(4.5) ϕλ2(t, z1) ∈ ϕλ1(t, z0) +Bu(0, α)×Bs(0, α).

Proof. We will show that for any T > 0 there exists zT ∈ z0 + Bu(0, α)×
Bs(0, α) such that

(4.6) ϕλ2(t, zT ) ∈ ϕλ1(t, z0) +Bu(0, α)×Bs(0, α), t ∈ [−T, T ].

Observe that once (4.6) is established, by choosing a convergent subsequence

from zn → z for n ∈ Z+ we obtain an orbit for ϕλ2 satisfying

(4.7) ϕλ2(t, z1) ∈ ϕλ1(t, z0) +Bu(0, α)×Bs(0, α).

From Lemma 4.4 it follows that Nλ1(z, α) is an isolating segment for ϕλ2 for any

λ2.

Let us fix T > 0. We define a map h : [0, 2T ] × Bu(0, α) × Bs(0, α) →
Bu(0, α) × Bs(0, α) as follows. Let τ : Nλ1(z0, α) → R ∪ {∞} be the exit time

function from the isolating segment Nλ1(z0, α) for the process ϕλ2 . From the

properties of the isolating segments (see Appendix B) it follows that this function

is continuous.

The map h(s, · ) does the following: in the coordinate frame with moving

origin given by ϕλ1(s−T, z0) to a point z we assign ϕλ2(s, z) if s is smaller than

the exit time, or the exit point (all in the moving coordinate frame).

The precise definition of h is as follows: let

i(z) = z + ϕλ1(−T, z0), τi(z) = τ(−T, i(z)),
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then

h(s, z) =

ϕλ2(s, i(z))− ϕλ1(s− T, z0), if s ≥ τi(z),
ϕλ2(τi(z), i(z))− ϕλ1(τi(z)− T, z0) otherwise.

To prove (4.6) it is enough to show that there exists z ∈ z0 +Bu(0, α)×Bs(0, α)

such that

(4.8) τ(−T, z + ϕλ1(−T, z0)) < 2T.

We will reason by contradiction and assume that no such z exists.

Since Nλ1(z0, α) is an isolating segment, we see that h satisfies the following

conditions:

h(2T, z) ∈ (∂Bu(0, α))×Bs(0, α) for all z ∈ Bu(0, α)×Bs(0, α),

h(0, z) = z, for all z ∈ Bu(0, α)×Bs(0, α),

h(s, z) = z, for all s ∈ [0, 2T ],

for all z ∈ (∂Bu(0, α))×Bs(0, α).

This implies that h is a deformation retraction of Bu(0, α) × Bs(0, α) onto

(∂Bu(0, α)) × Bs(0, α). This is not possible because the homology groups of

both spaces are different, hence (4.8) is true for some z.

Hence we obtain (4.7). To have (4.5) for z1, observe that from Lemma 4.4

it follows that (t, ϕλ2(t, z1)) ∈ intNλ1(z, α) for all t ∈ R, otherwise it will leave

Nλ1(z, α) forward or backward in time. Therefore (4.5) is satisfied. This finishes

the proof. �

4.3. Cone condition. The cone condition for ODEs is treated using the

methods from [25] and the cones are defined in terms of a quadratic form. In

this subsection we work under assumptions of Theorem 4.1.

Let Q(x, y) = (x, x) − (y, y) be a quadratic form on Rn. By Q we will also

denote a matrix such that Q(z) = ztQz. In our case Q =
[
Iu 0
0 −Is

]
, where

Iu ∈ Ru×u and Is ∈ Rs×s are the identity matrices.

Lemma 4.6. There exists ε0 = ε0(A) > 0 such that, if ε < ε0, then there

exists η > 0 such that for λ ∈ [0, 1] the following cone condition holds:

(4.9)
d

dt
Q(ϕλ(t, z1)− ϕλ(t, z2)) ≥ ±ηQ(ϕλ(t, z1)− ϕλ(t, z2)),

for all z1, z2 ∈ Rn.

Proof. It is enough to consider (4.9) for t = 0. We have

d

dt
Q(ϕλ(t, z1) − ϕλ(t, z2))t=0

= (fλ(z1)− fλ(z2))tQ(z1 − z2) + (z1 − z2)tQ(fλ(z1)− fλ(z2))

= (z1 − z2)t(D(z1, z2)tQ+QD(z1, z2))(z1 − z2),
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where

D(z1, z2) =

∫ 1

0

Dfλ(z2 + t(z1 − z2)) dt = A+ λ

∫ 1

0

Dh(z2 + t(z1 − z2)) dt.

We set

C(z1, z2) =

∫ 1

0

Dh(z2 + t(z1 − z2)) dt,

hence

D(z1, z2) = A+ λC(z1, z2), ‖C(z1, z2)‖ ≤ ε.

It is enough to prove that DtQ + QD is positive definite. Observe first that

AtQ+QA is positive definite. Indeed, we have for any z = (x, y) ∈ Rn,

vt(AtQ+QA)v = vt ·

(
Atu +Au 0

0 −(Ats +As)

)
· v

=xt(Atu +Au)x− yt(Ats +As)y

= 2(x,Aux)− 2(y,Asy) ≥ 2cux
2 + 2csy

2 ≥ 2 min(cu, cs)‖v‖2.

Since being positive definite is an open property we see that the desired η > 0

and ε0 > 0 exist. �

Lemma 4.7. Assume that ε < ε0 is as in Lemma 4.6. Let λ ∈ [0, 1]. Assume

that for some z1, z2 ∈ Rn there exists β such that for all t ∈ R,

‖ϕλ(t, z1)− ϕλ(t, z2)‖ ≤ β.

Then z1 = z2.

Proof. Observe that from our assumption it follows that there exists β1
such that

(4.10) |Q(ϕλ(t, z1)− ϕλ(t, z2))| ≤ β1, for all t ∈ R.

We consider two cases: Q(z1 − z2) ≥ 0 and Q(z1 − z2) < 0.

Consider first Q(z1 − z2) ≥ 0. From Lemma 4.6 it follows that for all t > 0,

Q(ϕλ(t, z1)− ϕλ(t, z2)) > 0, and for any t0, t > 0,

Q(ϕλ(t+ t0, z1)− ϕλ(t+ t0, z2)) ≥ exp(ηt)Q(ϕλ(t0, z1)− ϕλ(t0, z2)).

This is in contradiction with (4.10).

Now we consider the case Q(z1− z2) < 0. It is easy to see that Q(ϕλ(t, z1)−
ϕλ(t, z2)) < 0 for t < 0. From the cone condition (Lemma 4.6) it follows that

Q(ϕλ(t, z1)− ϕλ(t, z2)) < exp(−ηt)Q(z1 − z2), t < 0.

Hence

|Q(ϕλ(t, z1)− ϕλ(t, z2))| > exp(η|t|) |Q(z1 − z2)|, t < 0.

This is in contradiction with (4.10). �
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4.4. Proofs of Theorems 4.1 and 4.2. The proofs follow the pattern of

the proofs of Theorems 2.1 and 2.2. Below we will just list the basic steps.

We define σ : Rn → Rn and a multivalued map ρ from Rn to subsets of Rn.

In the case of the proof of Theorem 2.1 we will show that ρ is single-valued, i.e.

ρ : Rn → Rn.

1. Let us fix α > α̂, where α̂ is obtained in Lemma 4.4.

2. For z ∈ Rn, from Lemma 4.4 with λ1 = 1 and λ2 = 0 we have an isolating

segment N0(z, α) for ϕ1.

3.1. In the context of the proof of Theorem 4.1: from Theorem 4.5 and

Lemma 4.7 it follows that N0(z, α) defines a unique point, which we will

denote by ρ(z), such that

(4.11) ϕ1(t, ρ(z)) ∈ B(ϕ0(t, z), α) t ∈ R.

3.2. In the context of the proof of Theorem 4.2: from Theorem 4.5 it follows

that N0(z, α) defines for each z ∈ Rn a non-empty set ρ(z), such that

for each z1 ∈ ρ(z),

(4.12) ϕ1(t, z1) ∈ B(ϕ0(t, z), α), t ∈ R.

4. For z ∈ Rn, from Lemma 4.4 with λ1 = 0 and λ2 = 1 we have an isolating

segment N1(z, α) for ϕ0.

5. From Theorem 4.5 and the hyperbolicity of A it follows that the isolating

segment N1(z, α) defines a unique point, which we will denote by σ(z),

such that

(4.13) ϕ0(t, σ(z)) ∈ B(ϕ1(t, z), α), t ∈ R.

The details of the proofs are basically the same as in the proofs of the map case

and are left to the reader.

Appendix A. h-set and covering relations

The goal of this section is to present the notions of an h-set and covering

relation, and to state the theorem about the existence of a point realizing the

chain of covering relations.

A.1. h-set and covering relations.

Definition A.1 ([26, Definition 1]). An h-set N is a quadruple (|N |, u(N),

s(N), cN ) such that:

(a) |N | is a compact subset of Rn,

(b) u(N), s(N) ∈ {0, 1, 2, . . .} are such that u(N) + s(N) = n,

(c) cN : Rn → Rn = Ru(N) × Rs(N) is a homeomorphism such that

cN (|N |) = Bu(N) ×Bs(N).
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We set

dim(N) := n, Nc :=Bu(N) ×Bs(N),

N−c := ∂Bu(N) ×Bs(N), N+
c :=Bu(N) × ∂Bs(N),

N− := c−1N (N−c ), N+ = c−1N (N+
c ).

Hence an h-set, N , is a product of two closed balls in some coordinate system.

The numbers u(N) and s(N) are called the nominally unstable and nominally

stable dimensions, respectively. The subscript c refers to the new coordinates

given by the homeomorphism cN . Observe that if u(N) = 0, then N− = ∅, and

if s(N) = 0, then N+ = ∅. In the sequel to make notation less cumbersome we

will often drop the bars in the symbol |N | and we will use N to denote both an

h-set and its support. Sometimes we will call N− the exit set of N and N+ the

entry set of N .

Definition A.2 ([26, Definition 6]). Assume that N,M are h-sets such that

u(N) = u(M) = u and s(N) = s(M) = s. Let f : N → Rn be a continuous map.

Let fc = cM ◦ f ◦ c−1N : Nc → Ru ×Rs. Let w be a nonzero integer. We say that

N
f,w
=⇒M

(N f -covers M with degree w) if and only if the following conditions are satisfied:

(a) There exists a continuous homotopy h : [0, 1]×Nc → Ru ×Rs such that

the following conditions hold true:

h0 = fc,(A.1)

h([0, 1], N−c ) ∩Mc = ∅,(A.2)

h([0, 1], Nc) ∩M+
c = ∅.(A.3)

(b) If u > 0, then there exists a map A : Ru → Ru such that

h1(p, q) = (A(p), 0), for p ∈ Bu(0, 1) and q ∈ Bs(0, 1),(A.4)

A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1).(A.5)

Moreover, we require that

(A.6) deg(A,Bu(0, 1), 0) = w,

We will call condition (A.2) the exit condition and condition (A.3) will be called

the entry condition.

Note that in the case u = 0, if N
f,w
=⇒M , then f(N) ⊂ intM and w = 1.

Remark A.3. If the map A in condition (b) of Definition A.2 is a linear map,

then condition (A.5) implies that deg(A,Bu(0, 1), 0) = ±1. Hence condition

(A.6) is in this situation automatically fulfilled with w = ±1. In fact, this is the

most common situation in applications of covering relations.
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Most of the time we will not be interested in the value of w in the symbol

N
f,w
=⇒M and we will often drop it and write N

f
=⇒M instead. Sometimes we

may even drop the symbol f and write N =⇒M .

A.2. Main theorem about chains of covering relations.

Theorem A.4 ([26, Theorem 9]). Assume Ni, i = 0, . . . , k, Nk = N0 are

h-sets and for each i = 1, . . . , k we have

(A.7) Ni−1
fi,wi
=⇒ Ni.

Then there exists a point x ∈ intN0 such that

fi ◦ fi−1 ◦ . . . ◦ f1(x) ∈ intNi, i = 1, . . . , k,

fk ◦ fk−1 ◦ . . . ◦ f1(x) = x.

We point the reader to [26] for the proof.

The following result follows from Theorem A.4.

Theorem A.5. Assume that I = Z or I = N. Let Ni, i ∈ I, be h-sets.

Assume that, for each i ∈ I, we have

Ni
fi+1,wi+1

=⇒ Ni+1.

Then there exists a sequence {xi}i∈I such that xi ∈ intNi and fi+1(xi) = xi+1,

for all i ∈ I.

Proof. We will consider the case I = Z, the proof for the other case is

almost the same. For any k ∈ Z+ let us consider a closed loop of covering

relations

N−k
f−k+1
=⇒ N−k+1

f−k+2
=⇒ N−k+2 =⇒ · · · fk−1

=⇒ Nk−1
fk

=⇒ Nk
Ak=⇒ N−k,

where Ak is some artificial map such that Nk
Ak=⇒ N−k. From Theorem A.4 it

follows that there exists a finite sequence {xki }i=−k,...,k such that

xki ∈ intNi and fi(x
k
i−1) = xki , i = −k + 1, . . . , k.

Since Ni are compact, it is easy to construct a desired sequence, by taking

suitable subsequences. �

A.3. Natural structure of h-set. Observe that all the conditions appear-

ing in the definition of the covering relation are expressed in ‘internal’ coordinates

cN and cM . Also the homotopy is defined in terms of these coordinates. This

sometimes makes the matter and the notation look a bit cumbersome. With this

in mind we introduce the notion of a ‘natural’ structure on h-set.
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Definition A.6. We will say that N = {(x0, y0)}+Bu(0, r1)×Bs(0, r1) ⊂
Ru × Rs is an h-set with a natural structure given by

u(N) = u, s(N) = s, cN (x, y) =

(
x− x0
r1

,
y − y0
r2

)
.

Appendix B. Isolating segments for ODEs

Let us consider the differential equation

(B.1) ẋ = f(t, x)

where x ∈ Rn and f : R × Rn → Rn is C1. Let x(t0, x0; · ) be the solution of

(B.1) such that x(t0, x0; t0) = x0, we put

ϕ(t0,τ)(x0) = x(t0, x0; t0 + τ).

The range of τ for which ϕ(t0,τ)(x0) is defined might depend on (t0, x0). ϕ defines

a local flow Φ on R× Rn by the formula

(B.2) Φt(σ, x) = (σ + t, ϕ(σ,t)(x)).

In the sequel we will often call the first coordinate in the extended phase space

R× Rn the time.

We use the following notation: by π1 : R × Rn → R and π2 : R × Rn → Rn

we denote the projections and for a subset Z ⊂ R× Rn and t ∈ R we put

Zt = {x ∈ Rn : (t, x) ∈ Z}.

Now we are going to state the definition of an isolating segment for (B.1),

which is a modification of the notion of a periodic isolating segment over [0, T ]

or T -periodic isolating segment in [18]–[21], [23].

Definition B.1. Let (W,W−) ⊂ R × Rn be a pair of subsets. We call W

an isolating segment for (B.1) (or ϕ) if:

(a) (W,W−) ∩ ([a, b]× Rn) is a pair of compact sets,

(b) for every σ ∈ R, x ∈ ∂Wσ there exists δ > 0 such that for all t ∈ (0, δ),

ϕ(σ,t)(x) 6∈Wσ+t or ϕ(σ,t)(x) ∈ intWσ+t,

(c) W− = {(σ, x) ∈W : ∃ δ > 0 ∀ t ∈ (0, δ) ϕ(σ,t)(x) 6∈Wσ+t},
W+ := cl (∂W \W−),

(d) for all (σ, x) ∈ W+ there exists δ > 0 such that for all t ∈ (0, δ),

ϕ(σ,−t)(x) 6∈Wσ−t,

(e) there exists η > 0 such that for all x ∈ W− there exists t > 0 such that

for all τ ∈ (0, t], Φτ (x) /∈W and ρ(Φt(x),W ) > η.

Roughly speaking, W− and W+ are sections for (B.1), through which tra-

jectories leave and enter the segment W , respectively.
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Definition B.2. For the isolating segment W we define the exit time func-

tion τW,ϕ as

τW,ϕ : W 3 (t0, x0) 7→ sup {t ≥ 0 : ∀ s ∈ [0, t] (t0 + s, ϕ(t0,s)(x0)) ∈W} ∈ [0,∞].

By the Ważewski Retract Theorem [22] the map τW,ϕ is continuous (compare

with [7]).
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