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INFINITELY MANY SOLUTIONS

FOR A CLASS OF QUASILINEAR EQUATION

WITH A COMBINATION OF CONVEX AND CONCAVE TERMS

Kaimin Teng — Ravi P. Agarwal

Abstract. We consider the following quasilinear elliptic equation with

convex and concave nonlinearities:

−∆pu− (∆pu
2)u+ V (x)|u|p−2u = λK(x)|u|q−2u+ µg(x, u), in RN ,

where 2 ≤ p < N , 1 < q < p, λ, µ ∈ R, V and K are potential functions, and

g ∈ C(RN ×R,R) is a continuous function. Under some suitable conditions

on V,K and g, the existence of infinitely many solutions is established.

1. Introduction

In this paper, we study the following quasilinear Schrödinger equation:

(1.1) −∆pu− (∆pu
2)u+ V (x)|u|p−2u = λK(x)|u|q−2u+ µg(x, u), in RN ,

where −∆pu = −div(|∇u|p−2∇u), 2 ≤ p < N , 1 < q < p, λ, µ ∈ R are two

parameters. In order to deal with the concave term we make the following

assumptions on the potentials V and K:

(V1) V ∈ C(RN ,R) and inf
x∈RN

V (x) ≥ V0 > 0;

(V2)
∫
RN V (x)−1/(p−1) dx < +∞;

(K0) K ∈ L∞(RN ), K(x) ≥ 0, K(x) 6≡ 0;
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(K1) K ∈ L2p∗/(2p∗−q)(RN ), where p∗ = Np/(N − p).
Also, we pose the following assumptions on g:

(g0) g ∈ C(RN × R,R) and lim
|s|→0

g(x, s)/|s|p−2s = 0 uniformly for x ∈ RN .

(g1) There exist c > 0 and p < r < 2p∗ such that |g(x, u)| ≤ c(1 + |u|r−1) for

all x ∈ RN and u ∈ R.

(g2) There exists 2p < θ < 2p∗ such that 0 < θG(x, u) ≤ ug(x, u) for all

x ∈ RN and u ∈ R\{0}.
(g3) g(x, u) is odd in u.

Remark 1.1. The assumption p ≥ 2 is a consequence of the choice of the

work space Ef which requires |f(t)|p to verify the convexity property and the ∆2

condition, see Proposition 2.5.

The quasilinear Schrödinger equation of type (1.1) has served for modeling

of several physical phenomena. It is related to the existence of standing wave

solutions for quasilinear Schrödinger equation of the form

(1.2) izt = −∆z +W (x)z − f(|z|2)z − κ∆h(|z|2)h′(|z|2)z, x ∈ RN ,

where W is a given potential, κ is a real constant, f and h are real functions.

For instance, in the case h(s) = s, it corresponds to the superfluid film equations

in plasma physics, see Kurihara [16]. In the case h(s) = (1 + s)1/2, it models the

self-channeling of a high-power ultra short laser in the matter, see [8]. Equation

(1.2) also appears in plasma physics and fluid mechanics, see [16] and [17], in

theory of Heisenberg ferromagnets and magnons, see [15], [32]. Considering the

case h(s) = s, κ = 1 and setting z(x, t) = exp(−iwt)u(x), w ∈ R, it is easy to

obtain the corresponding equation

(1.3) −∆u− (∆u2)u+ V (x)u = g(u), x ∈ RN ,

where V (x) = W (x) − w, g(u) = f(|u|2)u. Because one of the main difficulties

of problem (1.3) is that there is no suitable work space on which the energy

functional is of class C1, the standard critical point theory cannot be applied

directly. The existence and multiplicity of solutions to the problems like (1.3)

have been considered by many authors in the recent years. To the best of our

knowledge, there are some powerful methods developed, such as, the minimizing

method [18], [26], the Nehari manifold method [6], [21], the method of change

of variables which was independently applied in [20] and [12], the method of

nonsmooth critical point theory [22], [23], the perturbation method [25], [19]. By

the change of variables, the quasilinear equation (1.3) reduces to a semilinear one,

so the usual methods for semilinear Schrödinger equations can be adopted. This

method has become the fundamental trick for studying quasilinear problem (1.3).

For the recent progress in this regard, we refer the interested readers to [1]–[3],

[9] and references therein.
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In [13], the authors proposed the following question:

Question 1.2. Does problem (1.3) have infinitely many solutions when non-

linearities are symmetric in the sense of being odd in u and involve a combination

of concave and convex terms?

The main purpose of this paper is to treat the above problem. For this, we

consider a more general quasilinear problem (1.1). When p = 2 it is reduced

to problem (1.3). Our main strategy is as follows: we will develop the Orlicz–

Sobolev framework for problem (1.1), where we deduce some new phenomenon

in the abstract Orlicz–Sobolev space, compared with the results in [14], [13] this

will allow us more easily to verify the mountain pass geometric conditions and

(PS) condition.

In the past decades, nonlinear elliptic problems involving concave and convex

terms have attracted intensive interest. For example, for semilinear and quasilin-

ear problems, we refer the readers to Ambrosetti, Brezis, Cerami [5], Ambrosetti,

Azorero, Peral [4], Bartsch and Willem [7] and references therein. In [7], Bartsch

and Willem proved the existence of infinity many solutions for the semilinear

problem in an open bounded domain with Dirichlet boundary conditions−∆u = µ|u|q−2u+ λ|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where 1 < q < 2 < r < 2∗, λ, µ ∈ R. In [33], the author considered the following

problem:

(1.4)

−∆u− λg(x)u = k(x)|u|q−2u− h(x)|u|p−2u, x ∈ RN ,

u > 0, x ∈ RN ,

where N ≥ 3 and 1 < q < 2 < p ≤ 2∗ = 2N/(N − 2). With integrability and

sign conditions on g, k and h, by using the Fountain theorem and dual Fountain

theorem, infinitely many solutions for problem (2.1) were obtained. After that,

some results in [33] were generalized to an equation of p-Laplacian type in [24]

(1.5)

−∆pu− λg(x)|u|p−2u = k(x)|u|q−2u− h(x)|u|s−2u, x ∈ RN ,

u > 0, x ∈ RN ,

where N ≥ 3 and 1 < q < p < s ≤ p∗. The authors in [24] introduced a new

space as their framework for the study of problem (1.5) and used the Clark

theorem to establish the existence of infinitely many solutions for problem (1.5).

This idea was successfully applied to Schrödinger–Poisson systems, see [31].

For the concave-convex type problem for equation (1.1), the author in [29]

obtained infinitely many solutions via the Fountain theorem. The same method
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can be applied to generalize the results of [7] to quasilinear case in dimension

one

−(|u′|p−2u′)′ − (|(u2)′|p−2(u2)′)′u+ V (x)|u|p−2u = λ|u|q−2u+ µ|u|r−2u, in R,

where λ, µ are real parameters. For the higher dimensional case, there are few

papers to tackle this problem. For instance, in [13], the authors considered

equation (1.1) in the case p = 2 and obtained the existence of one nontrivial

solution and two nontrivial solutions, respectively, in [37], the authors considered

equation (1.1) on a bounded open domain in the case p = 2 and proved the

existence of infinitely many solutions by using the perturbed method which was

developed in [25].

Now let us state our main results.

Theorem 1.3. Assume that (V1)–(V2) and (g0)–(g3) hold. Then for every

µ > 0 and λ ≤ 0, problem (1.1) has infinitely many solutions for 1 < q < p.

Theorem 1.4. Assume that (V1)–(V2), (g0)–(g1) and (g3) hold. Then for

every µ < 0 and λ ≥ 0, problem (1.1) possesses infinitely many solutions for

1 < q < p/2 with p > 2.

Remark 1.5. Our main results complement some of the results in [29], in

the sense that we are considering a higher dimensional case, while they are new

even in the semilinear case because we will answer the question posed in [13].

However, in our framework, there is a gap in the case 2 ≤ p < 4. We aim to solve

it in the forthcoming paper by using perturbed methods which were developed in

[25] and [19]. In fact, in [36], by using the perturbed methods, the authors proved

the existence of infinitely many small energy solutions for modified Kirchhoff-

type equation via the Clark theorem, where the potential V satisfies the coercive

hypothesis lim
|x|→∞

V (x) = +∞, the nonlinearity possesses the concave and convex

structure. However, there are some non-coercive functions verifying assumption

(V2), see [13].

This paper is organized as follows. Section 2 contains some preliminary

results and we state abstract theorems which will be used in the sequel. In

Section 3, we present proofs of the main results.

2. Preliminaries

As usual, for 1 ≤ s ≤ +∞, we let

‖u‖s =

(∫
RN
|u(x)|s dx

)1/s

, u ∈ Ls(RN ).
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We denote by C,Ci (i = 0, 1, . . .) various positive constants throughout this

paper. Let W 1,p(RN ) denote the Sobolev space endowed with the norm

‖u‖W 1,p =

(∫
RN

(|∇u|p + |u|p) dx
)1/p

.

We define the following function space:

X =

{
u ∈W 1,p(RN ) :

∫
RN

V (x)|u|p dx <∞
}

which is a reflexive and separable Banach space endowed with the norm

‖u‖X =

(∫
RN

(|∇u|p + V (x)|u|p) dx
)1/p

.

Due to (V1) and (V2), we can establish the following compactness lemma.

Lemma 2.1. If conditions (V1) and (V2) hold, the embedding X ↪→ Ls(RN )

is continuous for 1 ≤ s ≤ p∗ and compact for 1 ≤ s < p∗.

Proof. Let u ∈ X, by (V2), we have∫
RN
|u| dx ≤

(∫
RN

V (x)−1/(p−1) dx

)(p−1)/p(∫
RN

V (x)|u|p dx
)1/p

≤
(∫

RN
V (x)−1/(p−1) dx

)(p−1)/p

‖u‖X .

By (V1), we get∫
RN

(|∇u|p + |u|p) dx ≤
∫
RN

(
|∇u|p +

V (x)

V0
|u|p

)
dx

≤ max

{
1,

1

V0

}∫
RN

(|∇u|p + V (x)|u|p) dx

which means that X ↪→ W 1,p(RN ). Hence, X ↪→ Ls(RN ) for p ≤ s ≤ p∗.

Therefore, by an interpolation argument, we conclude that X ↪→ Ls(RN ) for

1 ≤ s ≤ p∗.
Let {un} be a bounded sequence in X, that is ‖un‖ ≤ C (C > 0 is a positive

constant). Up to a subsequence, we may assume that un ⇀ u0 in X. From (V2),

it follows that for a given ε > 0, there exists R > 0 such that∫
|x|≥R

V (x)−1/(p−1) dx <

(
ε

2(C + ‖u0‖X)

)p/(p−1)
.

Thus, we have∫
|x|≥R

|un − u0| dx ≤
(∫

RN
V (x)−1/(p−1) dx

)(p−1)/p

‖un − u0‖X ≤
ε

2
.
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By the local embedding compactness, we see that un → u0 in L1
loc(RN ). It

follows that there exists n0 ∈ N such that for all n ≥ n0,∫
|x|<R

|un − u0| dx ≤
ε

2
.

Thus, un → u0 in L1(RN ). By a standard interpolation argument, we conclude

that un → u0 in Ls(RN ) for 1 ≤ s < p∗. �

Let us make the change of variables v = f−1(u), where f is defined by

f ′(t) =
1

[1 + 2p−1|f(t)|p]1/p
, t ∈ [0,∞),

and

f(−t) = −f(t), t ∈ (−∞, 0].

After the change of variables, equation (1.1) reduces to the following one:

(2.1) −∆pv + V (x)|f(v)|p−2f(v)f ′(v)

= λK(x)|f(v)|q−2f(v)f ′(v) + g(x, f(v))f ′(v).

Lemma 2.2. The function f and its derivative satisfy the following properties:

(f1) f is uniquely defined, C2 and invertible;

(f2) |f ′(t)| ≤ 1 for all t ∈ R;

(f3) |f(t)| ≤ |t| for all t ∈ R;

(f4) f(t)/t→ 1 as t→ 0;

(f5) f(t)/
√
t→ a > 0 as t→ +∞;

(f6) f(t)/2 ≤ tf ′(t) ≤ f(t) for all t > 0;

(f7) f2(t)/2 ≤ tf ′(t)f(t) ≤ f2(t) for all t ∈ R;

(f8) |f(t)| ≤ 21/(2p)|t|1/2 for all t ∈ R;

(f9) there exists a positive constant C such that

|f(t)| ≥

C|t| if |t| ≤ 1,

C|t|1/2 if |t| ≥ 1;

(f10) f2(st) ≤ sf2(t) if 0 ≤ s ≤ 1, t ∈ R,
f2(st) ≤ s2f2(t) if s ≥ 1, t ∈ R;

(f11) |f(t)f ′(t)| ≤ 1/2(p−1)/p;

(f12) |t| ≤ C1f(t) + C2f
2(t) for all t ∈ R;

(f13) |f(t)|p−2f(t)f ′(t) is a non-decreasing function in t ∈ R.
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Proof. We only need to verify that (f10) holds, the other properties can be

found in Lemma 2.1 of [3] and [30]. Since

(f2)′′ = 2(f ′)2 + 2ff ′′ =
2

[1 + 2p−1|f(t)|p]2/p
− 2p|f(t)|p

[1 + 2p−1|f(t)|p]2/p+1

=
2

[1 + 2p−1|f(t)|p]2/p+1
> 0, t > 0,

f2(t) is strictly convex and f2(st) ≤ sf2(t) for all t ∈ R and s ∈ [0, 1]. On

the other hand, setting h(s) = f(st) − sf(t), s ≥ 1, from (f6) we have h′(s) =

tf ′(st) − f(t) ≤ tf ′(t) − f(t) ≤ 0. Note that h(1) = 0, hence h(s) ≤ 0, for all

s ≥ 1, that is, f(st) ≤ sf(t) and the conclusion follows. �

Remark 2.3. (f10) implies that

|f(st)|p ≤ sp/2|f(t)|p and |f(s−1t)|p ≥ 1

sp/2
|f(t)|p, for all s ≤ 1,

|f(st)|p ≤ sp|f(t)|p and |f(s−1t)|p ≥ 1

sp
|f(t)|p, for all s ≥ 1.

We only need to verify

|f(s−1t)|p ≥ 1

sp/2
|f(t)|p, for all s ≤ 1,

|f(s−1t)|p ≥ 1

sp
|f(t)|p, for all s ≥ 1.

Indeed, for every 0 < s ≤ 1, by (f10), we have

f2(t) = f2(ss−1t) ≤ sf2(s−1t) ⇒ |f(s−1t)|p ≥ 1

sp/2
|f(t)|p.

Similarly, we obtain

f2(t) = f2(ss−1t) ≤ s2f2(s−1t) ⇒ |f(s−1t)|p ≥ 1

sp
|f(t)|p, for all s ≥ 1.

Remark 2.4. Actually, we have more accurate estimates than in Remark

2.9. Since

(|f(t)|p)′′ =
p(p− 1)|f(t)|p−2 + p(p− 2)2p−1|f(t)|2p−2

(1 + 2p−1|f(t)|p)2/p+1
≥ 0,

|f(t)|p is convex for p ≥ 2 and |f(st)|p ≤ s|f(t)|p, for all t ∈ R and s ∈ [0, 1].

Now we introduce a set

Ef =

{
v : RN → R measurable :

∫
RN

V (x)|f(v)|p dx <∞
}
.

Proposition 2.5.

(a) Ef is a linear space.



306 K. Teng — R.P. Agarwal

(b) We define | · |f on Ef as follows:

|v|f = inf
ξ>0

ξ

(
1 +

∫
RN

V (x)|f(ξ−1v)|p dx
)
,

then it holds that

(2.2) |v|f ≤ 2 max

{(∫
RN

V (x)|f(v)|p dx
)1/p

,

(∫
RN

V (x)|f(v)|p dx
)2/p}

and

(2.3) |v|f ≥



cp min

{(∫
RN

V (x)|f(v)|p dx
)1/p

,(∫
RN

V (x)|f(v)|p dx
)2/p}

, if p > 2,

min

{(∫
RN

V (x)|f(v)|2 dx
)1/2

,∫
RN

V (x)|f(v)|2 dx
}
, if p = 2,

where cp = min{1, ((p− 2)/2)2/p}.
(c) (Ef , | · |f ) is a Banach space.

(d) Ef is separable and reflexive when p > 2.

Proof. (a) It is easy to see that Ef is a nonempty set. Since |f(t)|p (p ≥ 2)

is a convex function and satisfies the ∆2 condition (i.e. |f(2t)|p ≤ C|f(t)|p), Ef
is a linear space. Indeed, 0 ∈ Ef . Let v ∈ Ef , α ∈ R \ {0} and k ∈ N be such

that |α|/2k ∈ (0, 1). By the convexity of fp, we have∫
RN

V (x)|f(αv)|p dx =

∫
RN

V (x)

∣∣∣∣f(2k
|α|
2k

v

)∣∣∣∣p dx
≤ Ck

∫
RN

V (x)

∣∣∣∣f( |α|2k
v

)∣∣∣∣p dx ≤ Ck|α|
2k

∫
RN

V (x)|f(v)|p dx,

which means that αv ∈ Ef . Let u, v ∈ Ef , using the convexity of fp, we have∫
RN

V (x)|f(u+ v)|p dx ≤ 1

2

∫
RN

V (x)|f(2u)|p dx+
1

2

∫
RN

V (x)|f(2v)|p dx,

which implies that u+ v ∈ Ef . Thus Ef is a linear space.

(b) Case 1. If
∫
RN V (x)|f(v)|p dx < 1, let ξ =

(∫
RN V (x)|f(v)|p dx

)1/p
. By

the definition of |v|f and Remark 2.9, we have

|v|f ≤
(∫

RN
V (x)|f(v)|p dx

)1/p

+

(∫
RN

V (x)|f(v)|p dx
)1/p

·
∫
RN

V (x)

∣∣∣∣f(v/(∫
RN

V (x)|f(v)|p dx
)1/p)∣∣∣∣p dx

≤
(∫

RN
V (x)|f(v)|p dx

)1/p
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+

(∫
RN

V (x)|f(v)|p dx
)−1+1/p ∫

RN
V (x)|f(v)|p dx

= 2

(∫
RN

V (x)|f(v)|p dx
)1/p

.

Case 2. If
∫
RN V (x)|f(v)|p dx ≥ 1, let ξ =

(∫
RN V (x)|f(v)|p dx

)2/p
. By

Remark 2.9, we have

|v|f ≤
(∫

RN
V (x)|f(v)|p dx

)2/p

+

(∫
RN

V (x)|f(v)|p dx
)2/p

·
∫
RN

V (x)

∣∣∣∣f(v/(∫
RN

V (x)|f(v)|p dx
)2/p)∣∣∣∣p dx

≤
(∫

RN
V (x)|f(v)|p dx

)2/p

+

(∫
RN

V (x)|f(v)|p dx
)2/p

= 2

(∫
RN

V (x)|f(v)|p dx
)2/p

.

On the other hand, by Remark 2.9, for every ξ ≥ 1, we deduce that

ξ + ξ

∫
RN

V (x)|f(ξ−1v)|p dx ≥ ξ +
1

ξp−1

∫
RN

V (x)|f(v)|p dx

≥ p

p− 1
(p− 1)1/p

(∫
RN

V (x)|f(v)|p dx
)1/p

≥
(∫

RN
V (x)|f(v)|p dx

)1/p

.

For every ξ ≤ 1, by Remark 2.9, we get

ξ + ξ

∫
RN
V (x)|f(ξ−1v)|p dx ≥ ξ +

1

ξp/2−1

∫
RN

V (x)|f(v)|p dx

≥


p

p− 2

(
p− 2

2

)2/p(∫
RN

V (x)|f(v)|p dx
)2/p

if p > 2,∫
RN

V (x)|f(v)|p dx if p = 2,

≥


(
p− 2

2

)2/p(∫
RN

V (x)|f(v)|p dx
)2/p

if p > 2,∫
RN

V (x)|f(v)|p dx if p = 2.

Hence, (2.3) is proved.

(c) First, we will show that | · |f is a norm on Ef .

1. Obviously, v = 0 implies that |v|f = 0. On the other hand, we assume

that |v|f = 0, we infer that v = 0. By (2.3), we see that∫
RN

V (x)|f(v)|p dx = 0
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which implies that v = 0 almost everywhere in RN and so we conclude that

v = 0 in Ef .

2. For every λ ∈ R \ {0} (λ = 0 obviously holds true). By the definition of

|v|f and since f2 is an even function, we have

|λv|f = inf
ξ>0

ξ

(
1 +

∫
RN

V (x)|f(ξ−1λv)|p dx
)

= inf
ξ>0

ξ

(
1 +

∫
RN

V (x)

∣∣∣∣f( 1

ξ|λ|−1
v

)∣∣∣∣p dx)
= |λ| inf

ξ>0
|λ|−1ξ

(
1 +

∫
RN

V (x)

∣∣∣∣f( 1

ξ|λ|−1
v

)∣∣∣∣p dx)
= |λ| inf

ξ>0
ξ

(
1 +

∫
RN

V (x)|f(ξ−1v)|p dx
)
.

That is, |λv|f = |λ||v|f , for any λ ∈ R, and v ∈ Ef .

3. We verify the triangle inequality. Let u, v ∈ Ef , using the convexity of |f |p,
we get∫

RN
V (x)|f(ξ−1(u+ v))|p dx

≤ 1

2

∫
RN

V (x)|f(2ξ−1u)|p dx+
1

2

∫
RN

V (x)|f(2ξ−1v)|p dx.

Hence

ξ

(
1 +

∫
RN

V (x)|f(ξ−1(u+ v))|p dx
)

≤ ξ

2

(
1 +

∫
RN

V (x)|f(2ξ−1u)|p dx
)

+
ξ

2

(
1 +

∫
RN

V (x)|f(2ξ−1v)|p dx
)

which implies that

|u+ v|f ≤ |u|f + |v|f , for all u, v ∈ Ef .

The next task is to show that (Ef , | · |f ) is a Banach space. Let {vn} be a

Cauchy sequence in Ef , that is, for every ε > 0, there exists N ∈ N such that

|vn+l − vn|f < ε, for all n ≥ N and l ∈ N.

Let ε = 1/2i+2, i = 1, 2, . . ., we can find a subsequence {vni} of {vn} such that

|vni+1
− vni |f <

1

2i+2
, i = 1, 2, . . .

From the definition of | · |f , it follows that there exist ξi ∈ (0, 1), i = 1, 2, . . .,

such that

(2.4) ξi

[
1 +

∫
RN

V (x)|f(ξ−1i (vni+1
− vni))|p dx

]
<

1

2i+1
, i = 1, 2, . . . ,
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which implies that

∞∑
i=1

ξi ≤
∞∑
i=1

1

2i+1
=

1

2
.

For every x ∈ RN , we define

hk(x) =

k∑
i=1

[ξiV (x)|f(ξ−1i (vni+1
(x)− vni(x)))|p] +

1

2
V (x)|f(2vn1

(x))|p,

h(x) =

∞∑
i=1

[ξiV (x)|f(ξ−1i (vni+1
(x)− vni(x)))|p] +

1

2
V (x)|f(2vn1

(x))|p.

Obviously, lim
k→∞

hk(x) = h(x) for all x ∈ RN . Thus, by Fatou’s lemma, we get

∫
RN

h(x) dx ≤ lim inf
k→∞

∫
RN

hk(x) dx

≤ lim inf
k→∞

∫
RN

k∑
i=1

[ξiV (x)|f(ξ−1i (vni+1(x)− vni(x)))|p] dx

+

∫
RN

1

2
V (x)|f(2vn1

(x))|p dx

≤
∞∑
i=1

1

2i+1
+ C <∞.

This shows that h ∈ L1(RN ). Thus, h(x) < +∞ almost everywhere in RN . If

x0 ∈ RN is such that

(2.5)

∞∑
i=1

[ξiV (x0)|f(ξ−1i (vni+1(x0)− vni(x0)))|p] <∞,

then {vnk(x0)} is a Cauchy sequence in R. In fact, for any ε > 0, there exists

δ > 0 such that

(2.6) |v − 0| = |f−1(f(v))− 0| < ε, for all |f(v)| = |f(v)− f(0)| < δ.

From (2.5), it follows that for the above δ > 0, there exists N ∈ N such that

(2.7)

k+l∑
i=k+1

[ξiV (x0)|f(ξ−1i (vni+1(x0)− vni(x0)))|p] < V (x0)δp,

for all k > N and l ∈ N.
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By the convexity of |f |p and f(0) = 0, we see that

V (x0)|f(vk+l(x0)− vk+1(x0))|p

=V (x0)|f(vk+l(x0)− vk+l−1(x0) + . . .+ vk+2(x0)− vk+1(x0))|p

=V (x0)|f(ξk+lξ
−1
k+l(vk+l(x0)− vk+l−1(x0)) + . . .

+ ξk+1ξ
−1
k+1(vk+2(x0)− vk+1(x0)) + (1− ξk+1 − . . .− ξk+l)0)|p

≤
k+l∑
i=k+1

[ξiV (x0)|f(ξ−1i (vni+1
(x0)− vni(x0)))|p].

Hence, by (2.7), we obtain

|f(vnk+l(x0)− vnk+1
(x0))| < δ, for all k > N and l ∈ N.

From (2.6), it follows that

|vnk+l(x0)− vnk+1
(x0)| < ε, for all k > N and l ∈ N.

That is, {vnk(x0)} is a Cauchy sequence in R. Hence there exists v(x0) such

that lim
k→∞

vnk(x0) = v(x0). Therefore, vnk(x) → v(x) for almost every x ∈ RN .

Using the convexity of |f |p and f(0) = 0, we get

V (x)|f(vnk(x))|p

=V (x)|f(vnk(x)− vnk−1
(x) + . . .+ vn2

(x)− vn1
(x) + vn1

(x))|p

=V (x)

∣∣∣∣f(ξk−1ξ−1k−1(vnk(x)− vnk−1
(x)) + . . .

+ ξ1ξ
−1
1 (vn2(x)− vn1(x)) +

1

2
2vn1(x) +

(
1

2
− ξ1 − . . .− ξk−1

))∣∣∣∣p
≤

k−1∑
i=1

[V (x)ξi|f(vni+1
(x)− vni(x))|p] +

1

2
V (x)|f(2vn1

(x))|p ≤ h(x).

From the Lebesgue Dominated Convergence theorem, it follows that

lim
k→∞

∫
RN

V (x)|f(vnk)|p dx =

∫
RN

V (x)|f(v)|p dx.

By (2.2), we see that v ∈ Ef . It remains to show that vn → v in Ef .

Since {vn} is a Cauchy sequence, for every ε > 0, there exist N ∈ N and

ξ0 ∈ (0,+∞) such that

(2.8) ξ0

(
1 +

∫
RN

V (x)|fξ−10 (vn+l(x)− vn(x)))|p dx
)
< ε, for all l ∈ N.
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Replacing vn1
and 1/2i+1 by vn and ξ0/2

i+1 in (2.4) (clearly ξi ≤ ξ0/2
i+1,

i = 1, 2, . . .), by the convexity of |f |p and f(0) = 0, we have

ξ0V (x)|f(ξ−10 (vnk(x)− vn(x)))|p

≤ ξ0
k−1∑
i=1

ξi
ξ0
V (x)|f(ξ−1i (vni+1(x)− vni(x)))|p ≤ h(x)

for almost every x ∈ RN . By the Lebesgue Dominated Convergence theorem,

we obtain

ξ0

∫
RN

V (x)|f(ξ−10 (v(x)− vn(x)))|p dx

= lim
k→∞

ξ0

∫
RN

V (x)|f(ξ−10 (vnk(x)− vn(x)))|p dx.

Replacing vn+l by vnk in (2.8), we get

|vn − v|f = inf
ξ>0

ξ

(
1 +

∫
RN

V (x)|f(ξ−1(v(x)− vn(x)))|p dx
)

≤ ξ0
∫
RN

V (x)|f(ξ−10 (v(x)− vn(x)))|p dx ≤ ε.

Consequently, vn → v in Ef .

(d) If p > 2, the function |f(t)|p is a convex N -function in view of the fact

|f(t)|p = 0 ⇔ t = 0, and lim
t→∞

|f(t)|p

t
= +∞, lim

t→0

|f(t)|p

t
= 0,

where we have used (f4) and (f9) of Lemma 2.2. From (f10) it follows that |f(t)|p

satisfies the ∆2 condition. By Theorem 1.10 in [35, p. 64], we see that Ef is

separable. By Remark 2.9, |f(t)|p satisfies the ∇2 condition. From Corollary 12

in [28, p. 113], space Ef is reflexive. �

Remark 2.6. Observe that when p = 2, the function |f(t)|p is not an N -

function, but a Young function. So Ef might not be separable and reflexive.

Let D1,p(RN ) (N ≥ 3) be the usual Banach space defined as

D1,p(RN ) =

{
v ∈ Lp

∗
(RN ) :

∫
RN
|∇v|p dx < +∞

}
which is equipped with the norm

‖v‖D1,p =

(∫
RN
|∇v|p dx

)1/p

and Sp = inf
v∈D1,p(RN )\{0}

∫
RN
|∇v|p dx(∫

RN
|v|p

∗
dx

)p/p∗ .
We introduce a vector space

E =

{
v ∈ Ef :

∫
RN
|∇v|p dx < +∞

}
= Ef ∩ D1,p(RN )
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equipped with the norm

‖v‖ = ‖∇v‖Lp + |v|f .

From Proposition 2.5, it is easy to verify that ‖ · ‖ is a norm on E. Moreover,

we can prove the following conclusion.

Proposition 2.7.

(a) E is a Banach space with respect to the norm ‖ · ‖.
(b) X is embedded continuously into E.

(c) When p > 2, E is separable and reflexive.

Proof. (a) It is standard to verify that E is a complete space with the norm

‖ · ‖, we refer the readers to the proof of Proposition 1.1 in [10].

(b) By the definition of |v|f , we get

|v|f = inf
ξ>0

ξ

(
1 +

∫
RN

V (x)|f(ξ−1v)|p dx
)

≤ inf
ξ>0

(
ξ +

1

ξp−1

∫
RN

V (x)|v|p dx
)

= C

(∫
RN

V (x)|v|p dx
)1/p

.

Therefore, it is easy to check that

‖v‖ = ‖∇v‖Lp + |v|f ≤ C‖v‖X ,

which means that X can be regarded as a subspace of E, thus X is continuously

embedded into E.

(c) If p > 2, by Proposition 2.5 and properties of D1,p(RN ), it is easy to

conclude the desired. �

Motivated by the ideas of Lemma 2.1 in [14], we prove a precise estimate for

the norm ‖ · ‖ in the Banach space E.

Lemma 2.8. There exist two constants C1, C2 > 0 depending only on p such

that for any v ∈ E, it holds that

(2.9) C1 min{‖v‖p/2, ‖v‖p} ≤
∫
RN

(|∇v|p + V (x)|f(v)|p) dx

≤ C2 max{‖v‖p/2, ‖v‖p}.

Proof. We first prove that

C1 min{‖v‖p/2, ‖v‖p} ≤
∫
RN

(|∇v|p + V (x)|f(v)|p) dx.

Case 1. If
∫
RN V (x)|f(v)|p dx < 1, by (2.2), using the inequality

(x1/p + y1/p) ≤ 21−1/p(x+ y)1/p for x, y ≥ 0,
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we get

‖v‖ = ‖∇v‖Lp + |v|f ≤ ‖∇v‖Lp + 2

(∫
RN

V (x)|f(v)|p dx
)1/p

≤ 2(2p−1)/p
(
‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx
)1/p

.

Case 2. If
∫
RN V (x)|f(v)|p dx ≥ 1, by (2.2), using the inequality

(x1/p + y1/p) ≤ 21−1/p(x+ y)1/p for x, y ≥ 0,

we get

‖v‖p/2 = (‖∇v‖Lp + |v|f )p/2 ≤
(
‖∇v‖Lp + 2

(∫
RN

V (x)|f(v)|p dx
)2/p)p/2

≤
[
2

(
‖∇v‖Lp +

(∫
RN

V (x)|f(v)|p dx
)1/p)2 ]p/2

≤
[
4

(
‖∇v‖2Lp +

(∫
RN

V (x)|f(v)|p dx
)2/p)]p/2

≤ 4p/22p/2−1
(
‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx
)
.

Therefore, we see that

C1 min{‖v‖p/2, ‖v‖p} ≤
∫
RN

(|∇v|p + V (x)|f(v)|p) dx, C1 =
1

22p−1
.

On the other hand, from (2.3), we note that the case p = 2 is similar to

p > 2, so we consider only the case p > 2.

Case 1. If
(∫

RN V (x)|f(v)|p dx
)1/p ≥ 1, by (2.3), we obtain

‖v‖ = ‖∇v‖Lp + |v|f

≥ ‖∇v‖Lp + min

{
1,

(
p− 2

2

)2/p}(∫
RN

V (x)|f(v)|p dx
)1/p

≥ min

{
1,

(
p− 2

2

)2/p}(
‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx
)1/p

,

that is,

(2.10) ‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx ≤
(

1

min{1, ((p− 2)/2)2/p}

)p
‖v‖p.

Case 2. If
(∫

RN V (x)|f(v)|p dx
)1/p ≤ 1, by (2.3), we have

‖v‖ = ‖∇v‖Lp + |v|f(2.11)

≥‖∇v‖Lp + min

{
1,

(
p− 2

2

)2/p}(∫
RN

V (x)|f(v)|p dx
)2/p

.
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When ‖∇v‖Lp ≤ 1, by (2.11) and the inequality ap + bp ≤ (a+ b)p for a, b ≥ 0,

we deduce that

‖v‖p/2 ≥
(
‖∇v‖Lp + min

{
1,

(
p− 2

2

)2/p}(∫
RN

V (x)|f(v)|p dx
)2/p)p/2

≥
(
‖∇v‖2Lp + min

{
1,

(
p− 2

2

)2/p}(∫
RN

V (x)|f(v)|p dx
)2/p)p/2

≥
(

min

{
1,

(
p− 2

2

)2/p})p/2(
‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx
)
.

That is,

(2.12) ‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx ≤ 1

(min{1, ((p− 2)/2)2/p})p/2
‖v‖p/2.

When ‖∇v‖Lp ≥ 1, by (2.11) and the inequality xp + xp/2yp/2 ≤ (x + y)p for

x, y ≥ 0, we have

‖v‖p ≥
(
‖∇v‖Lp + min

{
1,

(
p− 2

2

)2/p}(∫
RN

V (x)|f(v)|p dx
)2/p)p

≥
(

min

{
1,

(
p− 2

2

)2/p})p/2(
‖∇v‖pLp + ‖∇v‖p/2Lp

∫
RN

V (x)|f(v)|p dx
)

≥
(

min

{
1,

(
p− 2

2

)2/p})p/2(
‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx
)
.

That is,

(2.13) ‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx ≤ 1

(min{1, ((p− 2)/2)2/p})p/2
‖v‖p.

Therefore, it follows from (2.10), (2.12) and (2.13) that

‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx ≤ C2 max{‖v‖p/2, ‖v‖p},

where C2 > 0 is a constant depending only on p. �

Remark 2.9. From (f2) of Lemma 2.2, it is easy to check that

‖f(v)‖pX =

∫
RN

(|∇f(v)|p + V (x)|f(v)|p) dx ≤ ‖∇v‖pLp +

∫
RN

V (x)|f(v)|p dx.

Corollary 2.10. Let (V1), (V2) hold, then there holds

‖v‖pW 1,p ≤ C
(∫

RN
V (x)|f(v)|p dx+

∫
RN
|∇v|p dx

)
≤ C max{‖v‖p/2, ‖v‖p}.
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Proof. By hypotheses (V1) and (V2), using Hölder’s and Young’s inequal-

ities, we have∫
RN
|v|p dx =

∫
|v|≤1

|v|p dx+

∫
|v|>1

|v|p dx

=
1

V0

∫
|v|≤1

V (x)|v|p dx

+

∫
|v|>1

V (x)−(p
∗−p)/(p(p∗−1))V (x)(p

∗−p)/(p(p∗−1))

· |v|p
∗−p/(p∗−1)|v|(p

∗(p−1))/(p∗−1) dx

≤ 1

CV0

∫
|v|≤1

V (x)|f(v)|p dx+

(∫
RN

V (x)−1/(p−1) dx

)(p−1)(p∗−p)/(p(p∗−1))

·
(∫
|v|>1

V (x)|v|p dx
)(p∗−p)/(p(p∗−1))(∫

RN
|v|p

∗
dx

)(p−1)/(p∗−1)

≤ 1

CV0

∫
RN

V (x)|f(v)|p dx

+ C

(∫
|v|>1

V (x)|v|2p dx
)(p∗−p)/(p(p∗−1))(∫

RN
|∇v|p dx

)p∗(p−1)/(p(p∗−1))
≤ 1

CV0

∫
RN

V (x)|f(v)|p dx

+ C

(∫
RN

V (x)|f(v)|p dx
)(p∗−p)/(p(p∗−1))(∫

RN
|∇v|p dx

)p∗(p−1)/(p(p∗−1))
≤C

(∫
RN

V (x)|f(v)|p dx+

∫
RN
|∇v|p dx

)
.

Lemma 2.11.

(a) There exists a positive constant C such that for all v ∈ E,∫
RN

V (x)|f(v)|p dx[
1 +

(∫
RN

V (x)|f(v)|p dx
)(p−1)/p] ≤ C(‖v‖+ ‖v‖p/2).

(b) If vn → v in E, then∫
RN

V (x)||f(vn)|p − |f(v)|p| dx→ 0

and ∫
RN

V (x)|f(vn)− f(v)|p dx→ 0.

(c) If vn → v almost everywhere,
∫
RN V (x)|f(vn)|p dx→

∫
RN V (x)|f(v)|p dx

and
∫
RN V (x)|f(v)|p dx < +∞, then |vn − v|f → 0 as n→∞.
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(d) If (V1) and (V2) hold, the map v 7→ f(v) from E into Ls(RN ) is contin-

uous for 1 ≤ s ≤ 2p∗ and compact for 1 ≤ s < 2p∗.

Proof. (a) Let us define, for v ∈ E and ξ > 0,

Aξ = {x ∈ RN : ξ−1|v| ≤ 1}.

From properties (f3) and (f9) in Lemma 2.2, we have∫
RN

V (x)|f(v)|p dx =

∫
Aξ

V (x)|f(v)|p dx+

∫
Acξ

V (x)|f(v)|p dx

≤
∫
Aξ

V (x)|f(v)|p−1|v| dx+ C

∫
Acξ

V (x)|v|p/2 dx.

By Hölder’s inequality and (f9) in Lemma 2.2, we have∫
Aξ

V (x)|f(v)|p−1|v| dx ≤
(∫

Aξ

V (x)|f(v)|p dx
)(p−1)/p(∫

Aξ

V (x)|v|p dx
)1/p

≤
(∫

Aξ

V (x)|f(v)|p dx
)(p−1)/p

Cξ

(∫
Aξ

V (x)|f(ξ−1v)|p dx
)1/p

≤
(∫

Aξ

V (x)|f(v)|p dx
)(p−1)/p

Cξ

[
1 +

∫
Aξ

V (x)|f(ξ−1v)|p dx
]
,

where we used the inequality s1/p ≤ 1 + s for all s ≥ 0.

By (f9) in Lemma 2.2, we get∫
Acξ

V (x)|v|p/2 dx = ξ

∫
Acξ

V (x)|v|p/2−1|ξ−1v| dx

≤ ξ
(∫

Acξ

V (x)|v|p/2 dx
)(p−2)/p(∫

Acξ

V (x)|ξ−1v|p/2 dx
)2/p

≤
(∫

Acξ

V (x)|v|p/2 dx
)(p−2)/p

Cξ

(∫
Acξ

V (x)|f(ξ−1v)|p dx
)2/p

,

which leads to∫
Acξ

V (x)|v|p/2 dx ≤ Cp/2ξp/2
[
1 +

∫
Acξ

V (x)|f(ξ−1v)|p dx
]p/2

.

Thus, conclusion (a) follows.

(b) Assume that vn→ v in E, then vn→ v in D1,p(RN ) and |vn − v|f → 0.

From (2.3), it follows that∫
RN

V (x)|f(vn − v)|p dx→ 0,

which implies that, up to a subsequence, there exists k ∈ L1(RN ) such that

(2.14) V (x)|f(vn − v)|p ≤ k(x) a.e. in RN .
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Moreover, we can obtain that there exists a constant C > 0 such that∫
RN

V (x)|f(vn)|p dx ≤ C.

Since vn → v in D1,p(RN ), it is enough to verify that vn → v almost everywhere

in RN . By Fatou’s lemma, we see that

(2.15)

∫
RN

V (x)|f(v)|p dx ≤ lim inf
n→∞

∫
RN

V (x)|f(vn)|p dx ≤ C.

By (f10), (2.14) and (2.15), using the convexity of |f |p, we have

V (x)|f(vn)|p ≤ V (x)

2
|f(2(vn − v))|p +

V (x)

2
|f(2v)|p

≤ 2p−1
(
V (x)|f((vn − v))|p + V (x)|f(v)|p

)
≤ 2p−1

(
k(x) + V (x)|f(v)|p

)
and

V (x)|f(vn) − f(v)|p ≤ 2p−1
(
V (x)|f(vn)|p + V (x)|f(v)|p

)
≤ 2p−1

(
V (x)

2
|f(2(vn − v))|p +

V (x)

2
|f(2v)|p + V (x)|f(v)|p

)
≤ 2p−1

(
2p−1V (x)|f(vn − v)|p + 2p−1V (x)|f(v)|p + V (x)|f(v)|p

)
≤ 22p−1(k(x) + V (x)|f(v)|p).

By the Lebesgue Dominated Convergence theorem, the proof of (b) is completed.

(c) In virtue of (2.2), it is sufficient to prove that∫
RN

V (x)|f(vn − v)|p dx→ 0.

Indeed, since
∫
RN V (x)(|f(vn)|p − |f(v)|p) dx → 0, up to a subsequence, there

exists k1 ∈ L1(RN ) such that

(2.16) V (x)(|f(vn)|p − |f(v)|p) ≤ k1(x) a.e. in RN .

Using the convexity and evenness of |f |p, by (f10) and (2.16), we have

V (x)|f(vn − v)|p ≤ V (x)

2
|f(2vn)|p +

V (x)

2
|f(2v)|p

≤ 2p−1(V (x)|f(vn)|p + V (x)|f(v)|p) ≤ 2p(k1(x) + V (x)|f(v)|p).

Since k1(x) + V (x)|f(v)|p ∈ L1(RN ), due to vn → v almost everywhere in RN

and the Lebesgue Dominated Convergence theorem, we can get the conclusion.
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(d) From Remark 2.9 and Lemma 2.1, it follows that

C‖f(v)‖pL1 ≤ ‖f(v)‖pX =

∫
RN
|∇f(v)|p dx+

∫
RN

V (x)|f(v)|p dx

=

∫
RN
|∇v|p|f ′(v)|p dx+

∫
RN

V (x)|f(v)|p dx

≤
∫
RN
|∇v|p dx+

∫
RN

V (x)|f(v)|p dx ≤ C2 max{‖v‖p/2, ‖v‖p},

for all v ∈ E, which implies that f ∈ Lp(RN ). On the other hand, by (f2), we

see that (∫
RN
|f2(v)|p

∗
dx

)1/p∗

≤ C
(∫

RN
|∇f2(v)|p dx

)1/p

(2.17)

≤C
(∫

RN
|∇v|p dx

)1/p

≤C
(∫

RN
|∇v|p dx+

∫
RN

V (x)|f(v)|p dx
)1/p

≤C max{‖v‖1/2, ‖v‖},

for all v ∈ E, which implies that f ∈ L2p∗(RN ). By a standard interpolation

argument, we obtain that f ∈ Ls(RN ) for s ∈ [1, 2p∗].

Let {vn} be a sequence in E such that vn → v as n → ∞. We will show

that the map f is continuous. That is, we need to show that f(vn) → f(v) in

Ls(RN ) for s ∈ [1, 2p∗]. In fact, since vn → v in E,

vnxi → vxi in Lp(RN ) for i = 1, . . . , N,

and from conclusion (a), we see that

(2.18)

∫
RN

V (x)|f(vn)− f(v)|p dx→ 0.

Thus, up to a subsequence, there exists hi ∈ Lp(RN ) such that

(2.19) |vnxi(x)| ≤ hi(x) a.e. in RN , for i = 1, . . . , N,

and

(2.20) vn(x)→ v(x), vnxi(x)→ vxi(x) a.e. in RN , for i = 1, . . . , N.

Hence, by (f1), (f2), (2.19) and (2.20), we have∣∣∣∣∂f(vn)

∂xi

∣∣∣∣ = |f ′(vn)vnxi | ≤ |vnxi(x)| ≤ hi(x)

and
∂f(vn)

∂xi
= f ′(vn)vnxi → f ′(v)vxi =

∂f(v)

∂xi
,
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almost everywhere in RN for i = 1, 2, . . . , N . Therefore, by the Lebesgue Domi-

nated Convergence theorem, we conclude that f(vn)→ f(v) in D1,p(RN ). Thus,

by (2.18), we see that f(vn)→ f(v) in X, which implies that

(2.21) f(vn)→ f(v) in Ls(RN ), for 1 ≤ s ≤ p∗.

Next, we will show that f(vn)→ f(v) in L2p∗(RN ). From (2.17), we see that

f2(vn − v)→ 0 in Lp
∗
(RN ).

Thus, up to a subsequence, we conclude that vn → v almost everywhere in RN

and there exists ĥ ∈ Lp∗(RN ) such that

f2(vn − v) ≤ ĥ(x) a.e. in RN .

Using the convexity of f2 and (f10), we deduce that

|f(vn)|2p
∗
≤ 2p

∗−1(ĥp∗ + |f |2p
∗)
∈ L1(RN )

which together with the Lebesgue Dominated Convergence theorem implies that

f(vn)→ f(v) in L2p∗(RN ).

Combining the above with (2.21), by an interpolation argument, the part one

of conclusion (c) follows. Next, we will show that the compactness is true. Let

{vn} ⊂ E be a bounded sequence. By Corollary 2.10, we see that {vn} is bounded

in D1,p(RN ) and
∫
RN V (x)|f(vn)|p dx is bounded. Using Remark 2.9 and (2.17),

we have that {f(vn)} is bounded in X and L2p∗(RN ). By Corollary 2.8, we have

that {vn} is bounded in W 1,p(RN ). Hence, up to a subsequence, there exists

v ∈ W 1,p(RN ) such that vn → v almost everywhere in RN . On the other hand,

it follows from Lemma 2.1, that up to a subsequence, there is w ∈ X such that

f(vn) → w in Lp(RN ). By the uniqueness of the limit, we see that w = f(v)

almost everywhere in RN . By Fatou’s lemma, we see that f ∈ L2p∗(RN ). Thus,

using the interpolation inequality, we have that

‖f(vn)− f(v)‖s ≤ ‖f(vn)− f(v)‖θp ‖f(vn)− f(v)‖1−θ2p∗ ,

where s ∈ [1, 2p∗) and θ ∈ (0, 1] such that θ/p + (1− θ)/2p∗ = 1/s. Hence, the

proof is completed. �

Corollary 2.12. Let {vn} ⊂ E be a bounded sequence. If (V1) and (V2)

hold, then there exists v ∈W 1,p(RN ) such that vn → v in Ls(RN ) for 1 ≤ s < p∗.

Proof. We only show that the part one of the conclusion holds, the other

one is similar so we omit it. By Lemma 2.11, up to a subsequence, there exists

v ∈ W 1,p(RN ) such that f(vn) → f(v) in Ls(RN ) for 1 ≤ s < 2p∗ and vn → v

almost everywhere in RN . Then, up to a subsequence, there exists k̂ ∈ Ls(RN )

such that

|f(vn)− f(v)| ≤ k̂(x) a.e. in RN .
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Using the convexity of f2 and (f10), we deduce that

|f(vn − v)|s ≤ 2s
(
k̂s + |f(v)|s

)
∈ L1(RN )

which together with the Lebesgue Dominated Convergence theorem implies that

f(vn − v)→ 0 in Ls(RN ), for 1 ≤ s < 2p∗.

Using (f12) of Lemma 2.2, we have that∫
RN
|vn − v|s dx ≤ C

(∫
RN
|f(vn − v)|s dx+

∫
RN
|f(vn − v)|2s dx

)
which implies that vn → v in Ls(RN ) for s ∈ [1, p∗). �

To prove our main results, we also need to introduce the following Sobolev

space. For a nonnegative measurable function ω and a real number q > 1,

denote by Lqω(RN ) the weighted Lebesgue space of all measurable functions u

which satisfy
∫
RN ω(x)|v|q dx <∞, with the associated seminorm

|u|q,ω =

(∫
RN

ω(x)|v|q dx
)1/q

.

We introduce two sets

Ω = {x ∈ RN : K(x) = 0}, Ẽ = {v ∈ E : v(x) = 0 a.e. x ∈ Ω},

then Ẽ is an infinitely dimensional Banach space with the norm of ‖·‖. Therefore,

the seminorm

|v|q,K =

(∫
RN

K(x)|v|q dx
)1/q

is a norm on Ẽ. Indeed, by (f8), (f9), Hölder’s and Sobolev’s inequalities, for

every v ∈ E, we deduce that∫
RN
K(x)|v|q dx ≤

∫
{|v|≤1}

K(x)|v|q dx+

∫
{|v|≥1}

K(x)|v|q dx

≤
∫
{|v|≤1}

K(x)|v|q/2 dx+ ‖K‖∞
∫
{|v|≥1}

|v|p
∗
dx

≤
∫
RN

K(x)|f(v)|q/2 dx+ ‖K‖∞Sp
∗/p
p

(∫
RN
|∇v|p dx

)p∗/p
≤‖K‖L(2p∗−q)/(2p∗)

(∫
RN
|f(v)|2p

∗
dx

)q/(2p∗)
+ ‖K‖∞Sp

∗/p
p

(∫
RN
|∇v|p dx

)p∗/p
≤‖K‖L(2p∗−q)/(2p∗ )

(∫
RN
|v|p

∗
dx

)q/(2p∗)
+ ‖K‖∞Sp

∗/p
p

(∫
RN
|∇v|p dx

)p∗/p
≤‖K‖L(2p∗−q)/(2p∗)Sq/(2p)p

(∫
RN
|∇v|p dx

)q/(2p)
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+ ‖K‖∞Sp
∗/p
p

(∫
RN
|∇v|p dx

)p∗/p
which implies that |v|q,K is well defined. It remains to verify that v ∈ Ẽ and

|v|q,K = 0 implies that v = 0 almost everywhere in RN . Since

0 =

∫
RN

K(x)|v|q dx =

∫
{K(x)>0}

K(x)|v|q dx,

this implies that v(x) = 0 almost everywhere on {x ∈ RN : K(x) > 0}. From

v ∈ Ẽ, it follows that v(x) = 0 almost everywhere in RN .

2.1. Variational framework. The energy functional I : E → R corre-

sponding to problem (2.1) is given by

Iλ,µ(v) =
1

p

∫
RN

(|∇v|p + V (x)|f(v)|p) dx

− λ

q

∫
RN

K(x)|f(v)|q dx− µ
∫
RN

G(x, f(v)) dx,

where G(x, t) =
∫ t
0
g(x, s) ds. Under assumptions (V1)–(V2), (K0)–(K1) and

(g0)–(g2), we infer the following properties of the functional Iλ,µ:

Proposition 2.13.

(a) Iλ,µ is well defined in E,

(b) Iλ,µ is continuous in E,

(c) Iλ,µ ∈ C1(E,R) and for any v, ϕ ∈ E, there holds:

〈I ′λ,µ(v), ϕ〉 =

∫
RN
|∇v|p−2∇v∇ϕdx

+

∫
RN

V (x)|f(v)|p−2f(v)f ′(v)ϕdx− 〈Ψ′(v), ϕ〉,

where

〈Ψ′(v), ϕ〉 = λ

∫
RN

K(x)|f(v)|q−2f(v)f ′(v)ϕdx+ µ

∫
RN

g(x, f(v))f ′(v)ϕdx.

Proof. The verification of (a) and (b) is trivial. For conclusion (c), we need

to show that:

(i) Iλ,µ is Gateaux-differentiable on E and

〈DIλ,µ(v), ϕ〉 =

∫
RN
|∇v|p−2∇v∇ϕdx

+

∫
RN

V (x)|f(v)|p−2f(v)f ′(v)ϕdx− 〈DΨ(v), ϕ〉

and

〈DΨ(v), ϕ〉 = λ

∫
RN

K(x)|f(v)|q−2f(v)f ′(v)ϕdx+ µ

∫
RN

g(x, f(v))f ′(v)ϕdx,
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where DIλ,µ(v) and DΨ(v) are the Gateaux-derivatives of Iλ,µ and Ψ at v,

respectively.

(ii) For v ∈ E, DIλ,µ(v) ∈ E′, and if vn → v in E, then

‖DIλ,µ(vn)−DIλ,µ(v)‖E′ = sup
ϕ∈E
〈DIλ,µ(vn)−DIλ,µ(v), ϕ〉 → 0.

If (i) and (ii) are verified, we conclude that Iλ,µ is Frechet differentiable on

E and so DIλ,µ(v) = I ′λ,µ(v). Consequently, Iλ,µ ∈ C1(E,R).

The proofs of (i) and (ii) are similar to Proposition 2.5 in [13]. For the

readers’ convenience, we only need to verify that there hold

(2.22) lim
t→0

∫
RN

V (x)[|f(v + tϕ)|p − |f(v)|p]
t

dx

=

∫
RN

V (x)|f(v)|p−2f(v)f ′(v)ϕdx, ϕ ∈ E,

(2.23)

∫
RN

V (x)|f(v)|p−2f(v)f ′(v)ϕn dx→ 0, as ϕn → 0 in E

and, for every ϕ ∈ E, there holds

(2.24) 〈DIλ,µ(vn)−DIλ,µ(v), ϕ〉 → 0 as vn → v in E.

Verification of (2.22). By the mean value theorem, we have

lim
t→0

1

p

∫
RN

V (x)[|f(v + tϕ)|p − |f(v)|p]
t

dx

= lim
t→0

∫
RN

V (x)|f(ξ)|p−2f(ξ)f ′(ξ)ϕdx,

where min{v(x), v(x) + tϕ(x)} ≤ ξ(x) ≤ max{v(x), v(x) + tϕ(x)}.
Using (f2), (f11), (f12) and (f13) of Lemma 2.2, we infer that for |t| ≤ 1, there

holds:

|V (x)|f(ξ)|p−2f(ξ)f ′(ξ)ϕ|

≤ C1V (x)||f(ξ)|p−2f(ξ)f ′(ξ)|f(|ϕ|) + C2V (x)||f(ξ)|p−2f(ξ)f ′(ξ)|f2(|ϕ|)

≤ C1V (x)|f(|v|+ |ϕ|)|p−2f(|v|+ |ϕ|)f ′(|v|+ |ϕ|)f(|ϕ|)

+ C2V (x)|f(|v|+ |ϕ|)|p−2f(|v|+ |ϕ|)f ′(|v|+ |ϕ|)f2(|ϕ|)

≤ C1V (x)|f(|v|+ |ϕ|)|p−1f(|ϕ|) +
C2V (x)

2(p−1)/p
|f(|v|+ |ϕ|)|p−2f2(|ϕ|),

where the right hand side belongs to L1(RN ). Since

V (x)|f(ξ)|p−2f(ξ)f ′(ξ)ϕ→ V (x)|f(v)|p−2f(v)f ′(v)ϕ for a.e. x ∈ RN ,

as t → 0, by the Lebesgue Dominated Convergence theorem, we conclude that

(2.22) is true.
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Verification of (2.23). From ϕn → 0, we see that∫
RN

V (x)|f(ϕn)|p dx→ 0.

From (f2), (f12) of Lemma 2.2, by Hölder’s inequality, we deduce that∣∣∣∣ ∫
RN
V (x)|f(v)|p−2f(v)f ′(v)ϕn dx

∣∣∣∣
≤C1

∫
RN

V (x)|f(v)|p−2|f(v)f ′(v)|f(ϕn) dx

+ C2

∫
RN

V (x)|f(v)|p−2|f(v)f ′(v)|f2(ϕn) dx

≤C1

∫
RN

V (x)|f(v)|p−1f(ϕn) dx+ C2

∫
RN

V (x)|f(v)|p−2f2(ϕn) dx

≤C1

(∫
RN

V (x)|f(v)|p dx
)(p−1)/p(∫

RN
V (x)|f(ϕn)|p dx

)1/p

+ C2

(∫
RN

V (x)|f(v)|p dx
)(p−2)/p(∫

RN
V (x)|f(ϕn)|p dx

)2/p

,

which implies that ∫
RN

V (x)|f(v)|p−2f(v)f ′(v)ϕn dx→ 0.

Verification of (2.24). Let vn → v in E, then vn → v in D1,p(RN ) and

f(vn) → f(v) in Ls(RN ) for s ∈ [1, 2p∗] and vn → v almost everywhere in RN .

By Hölder’s inequality, we have∣∣∣∣ ∫
RN

(|∇vn|p−2∇vn − |∇v|p−2∇v)∇ϕdx
∣∣∣∣

≤
(∫

RN
||∇vn|p−2∇vn − |∇v|p−2∇v|p/(p−1) dx

)(p−1)/p(∫
RN
|∇ϕ|p dx

)1/p

≤ (p− 1)

(∫
RN

(|∇vn|+ |∇v|)p−2|∇vn −∇v| dx
)(p−1)/p(∫

RN
|∇ϕ|p dx

)1/p

≤C
(∫

RN
(|∇vn|p−2 + |∇v|p−2)|∇vn −∇v| dx

)(p−1)/p(∫
RN
|∇ϕ|p dx

)1/p

≤C
((∫

RN
|∇vn|p dx

)(p−2)/p

+

(∫
RN
|∇v|p dx

)(p−2)/p)
·
(∫

RN
|∇vn −∇v|p dx

)1/p(∫
RN
|∇ϕ|p dx

)1/p

→ 0

as n→∞.

By Lemma 2.11, we have that∫
RN

V (x)|f(vn)− f(v)|p dx→ 0.
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Then, up to a subsequence, there exists h̃ ∈ L1(RN ) such that V (x)|f(vn) −
f(v)|p ≤ h̃ almost everywhere in RN . Thus, by (f2), (f11) of Lemma 2.2, using

Young’s inequality, we have

V (x)(|f(vn)|p−2f(vn)f ′(vn)− |f(v)|p−2f(v)f ′(v))ϕ

≤ V (x)(|f(vn)|p−2|f(vn)f ′(vn)|+ |f(v)|p−2|f(v)f ′(v)|)|ϕ|

≤ V (x)(|f(vn)|p−2|f(vn)f ′(vn)|+ |f(v)|p−2|f(v)f ′(v)|)(C1f(|ϕ|) + C2f
2(|ϕ|))

≤ C(V (x)|f(vn)|p + V (x)|f(ϕ)|p + V (x)|f(v)|p)

≤ C(h̃(x) + V (x)|f(ϕ)|p + V (x)|f(v)|p) ∈ L1(RN ).

Therefore, if follows from the Lebesgue Dominated Convergence theorem that∣∣∣∣ ∫
RN

V (x)(|f(vn)|p−2f(vn)f ′(vn)− |f(v)|p−2f(v)f ′(v))ϕdx

∣∣∣∣→ 0.(2.25)

Similarly to the proof of (2.25), we can deduce that 〈DΨ(vn)−DΨ(v), ϕ〉 → 0,

for any ϕ ∈ E. �

In order to establish our main results, we need the symmetric mountain pass

theorem in [27] and Clark theorem in [11] which are stated as follows.

Theorem 2.14 ([27]). Let E be an infinite dimensional Banach space. We

assume that the functional I ∈ C1(E,R) satisfies the following conditions:

(a) I(0) = 0 and I(u) = I(−u),

(b) I satisfies the (PS) condition,

(c) there exist ρ, α > 0 such that I(u) ≥ α for u ∈ E and ‖u‖ = ρ,

(d) for any finite dimensional subspace of Ẽ ⊂ E, {u ∈ Ẽ : I(u) ≥ 0} is

a bounded set.

Then I possesses an unbounded from above sequence of critical values.

Theorem 2.15 ([11]). Let E be a Banach space. We assume that the func-

tional I ∈ C1(E,R) satisfies the following conditions:

(a) I(0) = 0 and I(u) = I(−u),

(b) I is bounded from below and satisfies the (PS) condition,

(c) for any k ∈ N, there exist k-dimensional subspace Ek and ρk > 0 such

that sup
Ek∩Sρk

I < 0, where Sρk = {u ∈ E : ‖u‖ = ρk}.

Then I possesses a sequence of critical values ck < 0 such that ck → 0 as k →∞.

3. Main results and proofs

In this section, we will apply the symmetric mountain pass Theorem 2.14

and Clark Theorem 2.15 to prove our main results: Theorems 1.3 and 1.4. First

we verify all the conditions of Theorem 2.14.
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Lemma 3.1. Assume that (g0)–(g1) hold, then for every µ > 0, there exist

ρµ, αµ > 0 such that for any λ ∈ (−∞, qβµρ(p−q)/2µ /2C3‖K‖∞], Iλ,µ(v) ≥ αµ,

for every v ∈ E with ‖v‖ = ρµ.

Proof. By (g0) and (g1), for any ε > 0, there exists Cε > 0 such that

(3.1) |g(x, t)| ≤ ε

p
|t|p−1 +

Cε
r
|t|r−1, |G(x, t)| ≤ ε|t|p + Cε|t|r,

for all x ∈ RN , t ∈ R. For any v ∈ E with ‖v‖ ≤ 1, by (3.1), Lemma 2.8 and (c)

of Lemma 2.11, we have

Iλ,µ(v) =
1

p

∫
RN

(|∇v|p + V (x)|f(v)|p) dx(3.2)

− λ

q

∫
RN

K(x)|f(v)|q dx− µ
∫
RN

G(x, f(v)) dx

≥ C1

p
min{‖v‖p/2, ‖v‖p} − λ

q
‖K‖∞

∫
RN
|f(v)|q dx

− εµ
∫
RN
|f(v)|p dx− Cεµ

∫
RN
|f(v)|r dx

≥ C1

p
‖v‖p − λ

q
‖K‖∞C3 max{‖v‖q/2, ‖v‖q}

− εµC4 max{‖v‖p/2, ‖v‖p} − C5µmax{‖v‖r/2, ‖v‖r}

= ‖v‖p/2
(
C1

p
‖v‖p/2 − C̃4ε− C̃5‖v‖(r−p)/2

)
− λ

q
‖K‖∞C3‖v‖q/2,

where C1 = 1/22p−1, C2, C3, C4 > 0 and C̃5 ≥ 1 (can be chosen).

Let ξ(t) = C1t
p/2/p−C̃4ε−C̃5t

(r−p)/2, t ≥ 0. Obviously, C1/p < 1, ξ(0) < 0,

ξ(t) < 0 for any t ≥ 1 and by computation, we see that ξ′(tµ) = 0, where

tµ = (C1/(C̃5(r − p)))2/(r−2p). Thus, we have

ξ(tµ) =
C1

p

(
C1

C̃5(r − p)

)p/(r−2p)
− C̃4ε− C̃5

(
C1

C5(r − p)

)(r−p)/(r−2p)

=
C

(r−p)/(r−2p)
1

C̃5

p/(r−2p)
r − 2p

p(r − p)(r−p)/(r−2p)
− C4ε

which implies that choosing

0 < ε <
C

(r−p)/(r−2p)
1

C̃4C̃5

p/(r−2p)
r − 2p

p(r − p)(r−p)/(r−2p)
,

there holds that ξ(t) > 0 for t belonging to some neighbourhoods of tµ. Hence,

there exists 0 < ρµ < 1 such that

βµ =
C1

p
ρp/2µ − C̃4ε− C̃5ρ

p/2
µ > 0.
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Therefore, by (3.2), we get

Iλ,µ(v) ≥ βµρp/2µ − λ

q
‖K‖∞C3ρ

q/2
µ for all ‖v‖ = ρµ.

Taking αµ = βµρ
p/2
µ /2, then for any λ ∈ (−∞, qβµρ(p−q)/2µ /(2‖K‖∞C3)], we

have that

Iλ,µ(v) ≥ αµ for all ‖v‖ = ρµ

and the proof is completed. �

Lemma 3.2. Assume that (g0)–(g2) hold, then for any µ > 0 and λ ≤ 0,

{u ∈ Ẽ : Iλ,µ ≥ 0} is bounded, where Ẽ is a finite dimensional subspace of E.

Proof. By (g2), there exists C6 > 0 such that

(3.3) G(x, t) ≥ C6|t|θ, for all x ∈ RN and u ∈ R.

Observe that it is sufficient to show that for any v ∈ E with ‖v‖ > 1, the

conclusion holds true. Hence, let v ∈ E with ‖v‖ > 1, by (3.3), Lemmas 2.2 (f3),

2.8 and 2.11 (c), we deduce that

0 ≤ Iλ,µ(v) ≤ 1

p

∫
RN

(|∇v|p + V (x)|f(v)|p) dx

+ |λ|‖K‖∞
∫
RN
|f(v)|q dx− C6

∫
RN
|v|θ dx

≤ C2

p
max{‖v‖p, ‖v‖p/2}

+ |λ|‖K‖∞C7 max{‖v‖q/2, ‖v‖q} − C8‖v‖θ/2

=
C2

p
‖v‖p + |λ|‖K‖∞C7‖v‖q − C8‖v‖θ/2 ≤ C9‖v‖p − C8‖v‖θ/2

which implies that {v ∈ Ẽ : Iλ,µ(v) ≥ 0} is bounded in E. �

Lemma 3.3. Suppose that (g0)–(g2) hold, then Iλ,µ(v) satisfies the (PS)-

condition in E if p, q, µ, λ verify one of the following conditions:

(a) µ > 0, λ ≤ 0, p > q;

(b) µ > 0, λ > 0, p > 2q.

Proof. Let {vn} ⊂ E be a (PS)-sequence verifying

(3.4) Iλ,µ(vn) is bounded and I ′λ,µ(vn)→ 0.

We will show that {vn} is bounded in E. By computation, we deduce that

(3.5) ∇
(
f(vn)

f ′(vn)

)
=

(
1 +

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p

)
∇vn

and thus ∥∥∥∥∇ f(vn)

f ′(vn)

∥∥∥∥
p

≤ 2‖∇vn‖p.
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By (f6) of Lemma 2.2, there holds 1 ≤ f(t)/(tf ′(t)) ≤ 2 for any t 6= 0. Hence,

we can use (f10) to get∣∣∣∣f(ξ−1 f(t)

f ′(t)

)∣∣∣∣p =

∣∣∣∣f(ξ−1t f(t)

tf ′(t)

)∣∣∣∣p ≤ ( f(t)

tf ′(t)

)p
|f(ξ−1t)|p ≤ 2p|f(ξ−1t)|p,

for any ξ > 0, t ∈ R. Thus, using the above estimate, we have∣∣∣∣ f(vn)

f ′(vn)

∣∣∣∣
f

= inf
ξ>0

ξ

(
1 +

∫
RN

V (x)

∣∣∣∣f(ξ−1 f(vn)

f ′(vn)

)∣∣∣∣p dx) ≤ 2p|vn|f .

Accordingly, we have proved that

(3.6)

∥∥∥∥ f(vn)

f ′(vn)

∥∥∥∥ ≤ 2p‖vn‖.

By (g2), and (c) of Lemma 2.11, we have

Iλ,µ(vn)− 1

θ

〈
I ′λ,µ(vn),

f(vn)

f ′(vn)

〉
(3.7)

=

(
1

p
− 1

θ

)∫
RN

(|∇vn|p + V (x)|f(vn)|p) dx

− 1

θ

∫
RN

2p−1|f(vn)|p

1 + 2p−1|f(vn)|p
|∇vn|p dx

+ λ

(
1

θ
− 1

q

)∫
RN

K(x)|f(vn)|q dx

− µ
∫
RN

(
G(x, f(vn))− 1

θ
g(x, f(vn))

)
dx

≥
(

1

p
− 2

θ

)∫
RN

(|∇vn|p + V (x)|f(vn)|p) dx

+ λ

(
1

θ
− 1

q

)∫
RN

K(x)|f(vn)|q dx.

If λ ≤ 0, it follows from (3.4), (3.7) and Lemma 2.8 that

M + εn‖vn‖ ≥
(

1

p
− 2

θ

)∫
RN

(|∇vn|p + V (x)|f(vn)|p) dx

≥
(

1

p
− 2

θ

)
min{‖vn‖p, ‖vn‖p/2},

where M > 0 is a positive constant, 0 < εn < 1 and εn → 0 as n → ∞. The

above inequality implies that {vn} is bounded in E.

If λ > 0, by (3.4), (3.7), Lemma 2.8 and (c) of Lemma 2.11, using (3.5), we

have(
1

p
− 2

θ

)
C1 min{‖vn‖p, ‖vn‖p/2} − C9 max{‖vn‖q, ‖vn‖q/2} ≤ ‖vn‖+M,

where C9 > 0 is a constant. Clearly, {vn} is bounded in E for p > 2q.
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Next, we will show that {vn} possesses a convergent subsequence in E. In

fact, by Lemma 2.11 and Corollary 2.12, up to a subsequence, still denoted

by vn, there exists v ∈ W 1,p(RN ) such that vn → v in Ls(RN ) for s ∈ [1, p∗)

and f(vn)→ f(v) in Ls(RN ) for s ∈ [1, 2p∗).

Using the convexity of
∫
RN |∇v|

p + V (x)|f(v)|p dx and (3.4), we have that

1

p

∫
RN

(|∇v|p + V (x)|f(v)|p) dx− 1

p

∫
RN

(|∇vn|p + V (x)|f(vn)|p) dx

≥ 1

p

∫
RN

(|∇vn|p−2∇vn(∇v −∇vn) + V (x)|f(v)|p−2f(vn)f ′(vn)(v − vn)) dx

=λ

∫
RN

K(x)|f(vn)|q−2f(vn)f ′(vn)(v − vn) dx

+ µ

∫
RN

g(x, f(vn))f ′(vn)(v − vn) dx+ 〈I ′λ(vn), v − vn〉.

Since∫
RN

K(x)|f(vn)|q−2f(vn)f ′(vn)(v − vn) dx ≤ ‖K‖∞‖f(vn)‖q‖vn − v‖q → 0

as n→∞ and∫
RN

g(x, f(vn))f ′(vn)(v − vn) dx ≤ C10(‖vn − v‖+ ‖f(vn)‖r−1r ‖vn − v‖r)→ 0

as n→∞, so we get∫
RN
|∇v|p + V (x)|f(v)|p dx ≥ lim inf

n→∞

∫
RN
|∇vn|p + V (x)|f(vn)|p dx

≥ lim inf
n→∞

∫
RN
|∇vn|p dx+ lim inf

n→∞

∫
RN

V (x)|f(vn)|p dx

By the semicontinuity of seminorm and Fatou’s Lemma, we have∫
RN
|∇v|p dx ≤ lim inf

n→∞

∫
RN
|∇vn|p dx,∫

RN
V (x)|f(v)|p dx ≤ lim inf

n→∞

∫
RN

V (x)|f(vn)|p dx.

Therefore, we have ∫
RN
|∇v|p dx = lim

n→∞

∫
RN
|∇vn|p dx,∫

RN
V (x)|f(v)|p dx = lim

n→∞

∫
RN

V (x)|f(vn)|p dx.

By the Radon theorem and (b) of Lemma 2.11, we conclude that

‖∇vn −∇v‖p → 0, |vn − v|f → 0 as n→∞

which implies that ‖vn − v‖ → 0 as n→∞. �
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Proof of Theorem 1.3. By hypotheses (g0) and (g3), obviously, Iλ,µ is an

even functional and Iλ,µ(0) = 0. From Lemmas 3.1, 3.2 and 3.3, it follows that

all the conditions of Theorem 2.14 are verified. Hence, there exists a sequence

of unbounded critical values, which implies that there exists {vn} ⊂ E such that

Iλ,µ(vn)→ +∞ as n→∞ and the proof is completed. �

Second, we shall use the Clark theorem 2.15 to give the proof of Theorem 1.4.

Proof of Theorem 1.4. By (g0) and (g3), we see that Iλ,µ is an even

functional and Iλ,µ(0) = 0. Using (g2), Lemma 2.8, Sobolev’s inequality and

µ ≤ 0, we have that

Iλ,µ(v) =
1

p

∫
RN

(|∇v|p + V (x)|f(v)|p) dx

− λ

q

∫
RN

K(x)|f(v)|q dx− µ
∫
RN

G(x, f(v)) dx

≥ 1

p

∫
RN

(|∇v|p + V (x)|f(v)|p) dx

− λ

q
‖K‖L2p∗/(2p∗−q)

(∫
RN
|f(v)|2p

∗
dx

)q/(2p∗)
≥C1 min{‖v‖p/2, ‖v‖p} − C11‖v‖q/2.

Owing to q < p, we conclude that Iλ,µ is bounded from below on E and any (PS)

sequence is bounded in E. Similarly to the proof of Lemma 3.3, Iλ,µ satisfies the

(PS) condition.

By (f9) of Lemma 2.2, we can verify that

(3.8) |t|q ≤ |f(t)|q

Cq
+
|f(t)|2p

C2p
, for all t ∈ R.

In fact, using (f9) in Lemma 2.2, if |t| ≤ 1, we get that |t|q ≤ |f(t)|q/Cq; if

|t| ≥ 1, it follows that |t|q ≤ |t|p ≤ |f(t)|2p/C2p. Thus (3.8) is proved.

For Ω = {x ∈ RN : K(x) = 0}, we denote by |Ω| the Lebesgue measure.

Case 1. Assume that |Ω| = 0, that is K(x) > 0 almost everywhere in RN .

By (3.1), (3.8) and Lemma 2.8, we deduce that

Iλ,µ(v) ≤
∫
RN

(|∇v|p + V (x)|f(v)|p) dx− λ

q

∫
RN

K(x)|f(v)|q dx

+ |µ|ε
∫
RN
|f(v)|p dx+ |µ|Cε

∫
RN
|f(v)|2r dx

≤
∫
RN

(
|∇v|p +

(
1 +
|µ|
V0

ε

)
V (x)|f(v)|p

)
dx− λ

q
Cq
∫
RN

K(x)|v|q dx

+ C12

∫
RN

K(x)|f(v)|2p dx+ C13 max{‖v‖r, ‖v‖2r}

≤C14 max{‖v‖p/2, ‖v‖p} − C12

∫
RN

K(x)|v|q dx
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+ C15 max{‖v‖p, ‖v‖2p}+ C13 max{‖v‖r, ‖v‖2r},

where C12, C13, C14, C15 > 0 are constants. For each k ∈ N, we can choose a k-

dimensional subspace Ek of E, and | · |q,K is a norm of Ek. Then for v ∈ Ek with

‖v‖ ≤ 1, using the fact that all norms on finite dimensional space are equaivalent

and 1 < q < p/2 < r, there exists ρk > 0 small enough, such that

Iλ,µ(v) ≤ C14‖v‖p/2 + C15‖v‖p + C13‖v‖r − C16‖v‖q < 0, if ‖v‖ = ρk.

Case 2. If |Ω| > 0, by the argument in Section 2, the seminorm | · |q,K is a

norm on the Ẽ. Given k ∈ N, let Ẽk be a k-dimensional space of Ẽ, then for

v ∈ Ẽk, using the fact that all norms on finite dimensional space are equivalent

and 1 < q < p/2 < r, there exists ρk > 0 small enough, we have that

Iλ,µ(v) ≤C14 max{‖v‖p/2, ‖v‖p} − C12

∫
RN

K(x)|v|q dx

+ C15 max{‖v‖p, ‖v‖2p}+ C13 max{‖v‖r, ‖v‖2r}

≤C14‖v‖p/2 + C15‖v‖p + C13‖v‖r − C17‖v‖q < 0

for all ‖v‖ = ρk.

Finally, using Theorem 2.15, Iλ,µ possesses an sequence of critical values

ck < 0 verifying ck → 0 as k → ∞. Therefore, there exists {vk} ⊂ E such that

Iλ,µ(vk) = ck → 0 as k →∞. �
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