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ON THE DYNAMICS

OF A MODIFIED CAHN–HILLIARD EQUATION

WITH BIOLOGICAL APPLICATIONS

Xiaopeng Zhao

Abstract. We study the global solvability and dynamical behaviour of the

modified Cahn–Hilliard equation with biological applications in the Sobolev
space H1(RN ).

1. Introduction

The Cahn–Hilliard equation

∂u

∂t
+ ∆2u−∆f(u) = 0,

is a classical higher-order nonlinear diffusion equation which arises in the study

of phase separation on cooling binary solutions such as glasses, alloys and poly-

mer mixtures (see [4], [24], [25]). When posed over a bounded domain, there

exists a Lyapunov functional for the solutions of Cahn–Hilliard equation, there-

fore all solutions to the initial boundary value problem generically converge to

a steady state solution asymptotically in time (see [13]). During the past years,
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the problems of stability and long time behavior of solutions to the Cahn–Hilliard

equation have been studied by various authors (see e.g. Elliott and Zheng [15],

D lotko [10], Temam [28]). In addition, Debussche, Dettori [9], Cherfils, Mi-

ranville, Zelik [5] investigated the Cahn–Hilliard equation in phase separation

with the thermodynamically relevant logarithmic potentials; Gilardi, Miranville

and Schimperna [16], Colli, Gilardi and Sprekels [8], Wu and Zheng [30] consid-

ered the Cahn–Hilliard equation with dynamic boundary conditions.

Since Cahn–Hilliard equation is only a phenomenological model, various

modifications of it have been proposed in order to capture the dynamical picture

of the phase transition phenomena better. To name only a few, the Cahn–Hilliard

equation with viscosity (see [11], [12]), convective Cahn–Hilliard equation (see

[14], [32]), Cahn–Hilliard equation based on a microforce balance (see [17], [23]).

Recently, in [20], Khain and Sander proposed a generalized Cahn–Hilliard

equation for biological applications:

(1.1)
∂u

∂t
− ∂2

∂x2

[
ln(1− q) ∂

2u

∂x2
+ F ′(u)

]
+ αu(u− 1) = 0.

Equation (1.1) is modelling cells which move, proliferate and interact via adhe-

sion in wound healing and tumor growth. Here, u is the local density of cells,

q is the adhesion parameter, α > 0 is the proliferation rate, F is the local free

energy. Furthermore,

q = 1− exp

(
− J

kBT

)
,

where J corresponds to the interatomic interaction, kB is the Boltzmann’s con-

stant and T is the absolute temperature, assumed constant. In addition, for sim-

plicity, Cherfils, Miranville and Zelik [5] set all physical constants equal to 1 and

solved the problem in high-dimensional spaces (in the two-dimensional space, the

equation models, e.g. the clustering of malignant brain tumor cells, see [5], [20]),

i.e. they studied asymptotic behavior the generalized Cahn–Hilliard equation

(1.2)
∂u

∂t
+ ∆2u−∆f(u) + g(u) = 0

endowed with Neumann boundary conditions, where g(s) = αs(s − 1), f(s) =

s3 − s and α is a positive constant. Furthermore, in [22], Miranville gave the

generalized assumptions for the nonlinear terms of equation (1.2) and studied

the asymptotic behaviour and finite-dimensional attractors of equation (1.2) en-

dowed with the Dirichlet boundary condition.

Remark 1.1. In [7], Cohen and Murray introduced a generalized diffusion

model for growth and dispersal in a population. Their model and the generalized

Cahn–Hilliard equation with biological applications have similar form. There are

some papers concerned with this diffusion model (see [21], [31]).
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Dynamics properties of equation (1.2) with both Neumann and Dirichlet

boundary conditions are studied in [5], [22]. The study of dynamics for equation

(1.2) in unbounded domain is a rather natural extension. Note that the spectrum

of the sole operator (−∆) in L2(R)N equals [0,∞) (see [12], [19]) and is purely

absolutely continuous (see [12]), which means (−∆)−1 exists but is unbounded

with the domain dense in L2(RN ). Hence, we modify the original generalized

Cahn–Hilliard equation (1.2), for the needs of the Cauchy problem in RN , by

adding the first term εI at the right hand side to deal with the invertible operator

(−∆+εI) in L2(RN ). For the explanation why the addition (−∆+εI) is needed

in the whole space to stabilize the equation, compare Cholewa and Rodŕıguez–

Bernal’s paper [6].

In this article, we consider the global solvability and asymptotic behaviour of

solutions to the Cauchy problem in RN (N ≤ 3) for the modified Cahn–Hilliard

equation with biological application

(1.3)


∂u

∂t
= (−∆ + εI)[(∆− εI)u+ f(u)] + g(u),

u(x, 0) = u0(x),

where ε > 0, f(s) = γ2s
3 + γ1s

2− γ0s, g(s) = αs(s− 1), α, γ2, γ0 > 0 and γ1 are

constants.

The main difficulties for treating problem (1.3) are caused by the unbounded

domain and the nonlinear term g(s) = αs(s− 1). Since we consider the Cauchy

problem in unbounded domain, the compact embedding is always a serious prob-

lem (we are using the technique of tail estimate as in [12], [27], [29] to handle

the problem). Since the term g is a polynomial of order 2 on s ∈ R, it is difficult

to deal with this term making a priori estimates for problem (1.3). We shall use

the inverse operator (−∆ + εI)−1 as in [6], [14], [22]) to handle the nonlinear

term g.

This paper is organized as follows. In the next section, we give some known

auxiliary results which will be used in this paper and prove global solvability

of problem (1.3) in H1(RN ). In Section 3, we give some a priori estimates. In

Section 4, we prove the existence of H1(RN ) global attractors for problem (1.3).

Throughout this paper, to simplify the notation in calculations, we agree

hereafter that all the unspecified norms are taken over L2(RN ), which means,

‖ · ‖ = ‖ · ‖L2(RN ). Furthermore, from now on we drop the dependence of the

functional spaces on RN : therefore, L2 means L2(RN ), W s,p means W s,p(RN )

and so on. In the following, the letter C will represent generic positive constants

that may change from line to line even in the same inequality.

2. Global solvability in H1(RN )

First of all, we recall some results used in the main part of this paper.
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Lemma 2.1 (see [12]). For A = (−∆ + εI)−1 with ε > 0, there exists a

positive constant C such that

‖v‖H−1 ≤ C(‖Av‖+ ‖∇Av‖).

Lemma 2.2 (see [12]). For each r ∈ [2, 2N/(N − 2)), there exists a positive

constant C such that

‖v‖Lr ≤ C‖v‖Hs ≤ C‖v‖aH−1‖v‖1−aH1 , for all v ∈ H1,

where s = N/2−N/r and a = (s+ 1)/2 ∈ (0, 1) depends on r.

Lemma 2.3 (see [26]). W k,p(RN ) ↪→ Wm,q(RN ) for 1 ≤ p < q < ∞ and

k − n/p ≥ m− n/q. It follows that

‖f‖Wm,q ≤ C‖f‖Wk,p .

Lemma 2.4. For A = (−∆+εI)−1 with ε > 0, there exists a positive constant

C such that

‖Av‖2 ≤ 1

ε2
‖v‖2, ‖∇Av‖2 ≤ 1

2ε
‖v‖2.

Proof. To verify the estimate, observe that

‖v‖2 = ‖(−∆ + εI)Av‖2

=

∫
|∆Av|2 dx− 2ε

∫
Av∆Av dx+ ε2

∫
|Av|2 dx

=

∫
|∆Av|2 dx+ 2ε

∫
|∇Av|2 dx+ ε2

∫
|Av|2 dx.

Hence ∫
|Av|2 dx ≤ 1

ε2

∫
|v|2 dx,

∫
|∇Av|2 dx ≤ 1

2ε

∫
v2 dx. �

In the following, we consider problem (1.3) within the framework of the

approach of [19] as an equation with a sectorial operator. We will use the lower

index 0 in notation of the fractional order scale corresponding to realization of

the sectorial operator (−∆ + εI)2 in the space X0 = (H2)∗, with the domains

X1
0 = H2 and X

1/2
0 = L2. We are interested in the X

3/4
0 -solution, that is the

case when the phase space equals to H1. Problem (1.3) is then written abstractly

as

(2.1)

ut = −(−∆ε)
2u− (−∆ε)f(u) + g(u),

u(0) = u0 ∈ X3/4
0 ,

where ∆ε = ∆− εI.

To justify local solvability of that problem, we need to check that the non-

linear operator F(φ) = −(−∆ε)f(u) + g(u) is locally Lipschitz continuous as
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a map from X
3/4
0 to X0. Take a bounded set B ⊂ X3/4

0 , let ϕ,ψ ∈ B. Note that

(−∆ε) : X
1/2
0 → X0 is a linear isomorphism, we get

‖F(ϕ)−F(ψ)‖X0
≤ ‖(−∆ε)(f(ϕ)− f(ψ))‖X0

+ ‖g(ϕ)− g(ψ)‖X0

≤ c
(
‖f(ϕ)− f(ψ)‖

X
1/2
0

+ ‖g(ϕ)− g(ψ)‖
X

1/2
0

)
≤ c
(
‖(ϕ− ψ)(ϕ2 + ψ2 + ϕψ + ϕ+ ψ + 1)‖

X
1/2
0

+ ‖(ϕ− ψ)(ϕ+ ψ + 1)‖
X

1/2
0

)
≤ c‖(ϕ− ψ)(ϕ2 + ψ2 + 1)‖

X
1/2
0

≤ c‖ϕ− ψ‖L6(‖ϕ‖2L6 + ‖ψ‖2L6) + ‖ϕ− ψ‖L2 ≤ CB‖ϕ− ψ‖X3/4
0
.

Therefore, the local solvability of problem (1.3) is obtained. To justify the global

solvability of problem (1.3), we need to get some a priori estimates.

Having already local solvability, combining it with the a priori estimate (3.10)

given in the next section, we obtain the global well-posedness of problem (1.3)

in H1. Furthermore, we can define the corresponding semigroup in H1 through

the solution to problem (1.3):

S(t)u0 = u(t, u0), t ≥ 0,

where u(t, u0) is a solution to problem (1.3) with initial data u0.

3. Uniform a priori estimates

3.1. H1-estimates. Let A = (−∆ + εI)−1. Then, (1.3) is equivalent to

(3.1) Aut = (∆− εI)u− (γ2u
3 + γ1u

2 − γ0u) + αA[u2 − u].

In order to obtain the a priori estimate on H1, we multiply (3.1) by u, then

1

2

d

dt

∫
|∇Au|2 dx+

ε

2

d

dt

∫
|Au|2 dx+

∫
|∇u|2 dx

+ ε

∫
u2 dx+

∫
(γ2u

4 + γ1u
3 − γ0u2) dx

=α

∫
A(u2 − u)u dx = α

∫
(−∆ + εI)AuA(u2 − u) dx

= − α
∫
u2Audx− α

∫
|∇Au|2 dx− εα

∫
|Au|2 dx

≤ γ2
4

∫
u4 dx+

α2

γ2

∫
|Au|2 dx− α

∫
|∇Au|2 dx− εα

∫
|Au|2 dx.

On the other hand, we have

−
∫

(γ1u
3 − γ0u2) dx ≤ γ2

4

∫
u4 dx+

(
γ21
γ2

+ γ0

)∫
u2 dx.
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Combining the above two inequalities together gives

(3.2)
d

dt

(∫
|∇Au|2 dx+ ε

∫
|Au|2 dx

)
+ 2

∫
|∇u|2 dx

+ 2ε

∫
u2 dx+ γ2

∫
u4 dx+ 2α

∫
|∇Au|2 dx

+

(
2εα− 2α2

γ2

)∫
|Au|2 dx ≤ 2

(
γ21
γ2

+ γ0

)∫
u2 dx.

Also, multiplying (1.3) by ut and integrating, we immediately obtain∫
|∇Aut|2 dx+ ε

∫
|Aut|2 dx+

1

2

d

dt

∫
|∇u|2 dx+

ε

2

d

dt

∫
u2 dx

+
γ2
4

d

dt

∫
u4 dx− γ0

2

d

dt

∫
u2 dx+

γ1
3

d

dt

∫
u3 dx

=α

∫
utA(u2 − u) dx = α

∫
(u2 − u)Aut dx

≤ γ2
2

∫
u4 dx+

α2

2γ2

∫
|Aut|2 dx− α

∫
uAut dx

≤ γ2
2

∫
u4 dx+

α2

2γ2

∫
|Aut|2 dx− α

∫
(∆− εI)AuAut dx

=
γ2
2

∫
u4 dx+

α2

2γ2

∫
|Aut|2 dx+

α

2

d

dt

∫
|∇Au|2 dx+

αε

2

∫
|Au|2 dx,

that is

(3.3)
d

dt

(∫
|∇u|2dx+ ε

∫
u2 dx+

γ2
2

∫
u4 dx− γ0

∫
u2 dx

+
2γ1
3

∫
u3 dx− α

∫
|∇Au|2 dx− αε

∫
|Au|2 dx

)
+ 2

∫
|∇Aut|2 dx+ 2ε

∫
|Aut|2 dx− γ2

∫
u4 dx− α2

γ2

∫
|Aut|2 dx ≤ 0.

We multiply (3.2) by α and add to (3.3),

(3.4)
d

dt

(∫
|∇u|2 dx+ ε

∫
u2 dx+

γ2
2

∫
u4 dx+

2

3
γ1

∫
u3 dx− γ0

∫
u2 dx

)
+ 2α

∫
|∇u|2 dx+ 2αε

∫
u2 dx+ γ2(α− 1)

∫
u4 dx

+ 2α2

∫
|∇Au|2 dx+ 2α2

(
ε− α2

γ2

)∫
|Au|2d x

+ 2

∫
|∇Aut|2 dx+

(
2ε− α2

γ2

)∫
|Aut|2 dx ≤ 2α

(
γ21
γ2

+ γ0

)∫
u2 dx,



Modified Cahn–Hilliard equation 175

where α > 1 and γ2 satisfies γ2ε−α2 > 0. Furthermore, using Cauchy’s inequal-

ity, we get

d

dt

(∫
|∇u|2 dx+ ε

∫
u2 dx+

γ2
2

∫
u4 dx+

2

3
γ1

∫
u3 dx− γ0

∫
u2 dx

)
(3.5)

+ 2α

∫
|∇u|2 dx+ 2αε

∫
u2 dx

+ γ2(α− 1)

∫
u4 dx+A

[ ∫
u3 dx− γ0

∫
u2 dx

]
≤
[
2α

(
γ21
γ2

+ γ0

)
−Aγ0

] ∫
u2 dx+A

∫
u3 dx

≤
[

A2

2γ2(α− 1)
−Aγ0 + 2α

(
γ21
γ2

+ γ0

)]∫
u2 dx+

γ2(α− 1)

2

∫
u4 dx.

Applying Vieta’s theorem, if γ2 is sufficiently large, which satisfies

γ20γ
2
2(α− 1)− 4α(γ21 + γ0γ2) ≥ 0,

we can find

A = γ2(α− 1)

[
γ0 +

√
γ0 −

4α(γ21/γ2 + γ0)

γ2(α− 1)

]
,

such that
A2

2γ2(α− 1)
+ α

(
γ21
γ2

+ 2

)
−A = 0.

Hence, (3.5) is equivalent to

(3.6)
d

dt

(∫
|∇u|2 dx+ ε

∫
u2 dx+

γ2
2

∫
u4 dx+

2

3
γ1

∫
u3 dx− γ0

∫
u2 dx

)
+ 2α

∫
|∇u|2 dx+ 2αε

∫
u2 dx+

γ2(α− 1)

2

∫
u4 dx

+A

[ ∫
u3 dx− γ0

∫
u2 dx

]
≤ 0.

There exists a positive constant M , which depends on ε, α, γ0, γ1 and γ2, such

that

(3.7)
d

dt
F (u) +MF (u) ≤ 0,

where

(3.8) F (u) =

∫
|∇u|2 dx+ε

∫
u2 dx+

γ2
2

∫
u4 dx+

2

3
γ1

∫
u3 dx−γ0

∫
u2 dx.

Using Gronwall’s inequality, we obtain

(3.9) F (u) ≤ e−MtF (u0).
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Adding (3.8) and (3.9) together, we have∫
|∇u|2 dx+ (ε− γ0)

∫
u2 dx+

γ2
2

∫
u4 dx ≤ e−MtF (u0)− 2

3
γ1

∫
u3 dx

≤ e−MtF (u0) +
ε− γ0

2

∫
u2 dx+

2

9(ε− γ0)

∫
u4 dx.

If γ0 < ε and γ2 ≥ 4/(9(ε− γ0)), we obtain the H1 and L4 a priori estimates of

the solution u of the form:

(3.10) ‖u( · , t)‖2H1 +

∫
u4 dx ≤ Ce−MtF (u0).

We summarize the global H1 estimate (3.10) in the following way:

Theorem 3.1. Suppose that α > 1, γ2 is sufficiently large and γ0 is suffi-

ciently small. Then, for problem (3.1) (or problem (1.3)), there exists a positive

constant r1 such that for any bounded set B ⊂ H1,

‖S(t)B‖H1 ≤ r1, for all t ≥ T1B ,

where T1B = T1(B) depends only on ‖B‖H1 .

Remark 3.2. By (3.4) and Theorem 3.1, we have that for any set B bounded

in H1, there is T1B (which only depends on ‖B‖H1) such that the following

estimate holds:∫ t+1

t

[
2α

∫
|∇u|2 dx+ 2αε

∫
u2 dx+ γ2(α− 1)

∫
u4 dx+ 2α2

∫
|∇Au|2 dx

+ 2α2

(
ε− α2

γ2

)∫
|Au|2 dx+ 2

∫
|∇Aut|2 dx+

(
2ε− α2

γ2

)∫
|Aut|2 dx

]
≤ Q(r1, γ2, γ1, γ0, α),

for all t ≥ T1B , where Q( · ) is a continuous increasing function in each compo-

nent.

3.2. H2-estimates. To obtain the uniform estimate of the solution u in H2,

we set v(t) = ut(t) and differentiate (3.1) with respect to time t, then

(3.11) Avt = (∆− εI)v − (3γ2u
2 + 2γ1u− γ0)v + α[A(u2 − u)]′uv.

We multiply (3.11) by v and integrate over RN , use Lemma 2.4, then

1

2

d

dt

∫
(|∇Av|2 + ε|Av|2) dx+

∫
|∇v|2 dx+ ε

∫
v2 dx+ 3γ2

∫
v2u2 dx(3.12)

= − 2γ1

∫
uv2 dx+ γ0

∫
v2 dx+ α

∫
[A(u2 − u)]′uv

2 dx

= − 2γ1

∫
uv2 dx+ γ0

∫
v2 dx+ α

∫
A[(2u− 1)v]v dx

= − 2γ1

∫
uv2 dx+ γ0

∫
v2 dx+ α

∫
(2u− 1)vAv dx
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≤ 3γ2

∫
u2v2 dx+ C4

∫
v2 dx+

∫
|Av|2 dx

≤ 3γ2

∫
u2v2 dx+ C5

∫
v2 dx.

Using Lemma 2.2, for any 0 < δ � 1, we have

(3.13)

∫
v2 dx ≤ C‖v‖H−1‖v‖H1 ≤ δ‖v‖2H1 + Cδ‖v‖2H−1 .

Taking δ small enough (depending on ε), combining (3.12) and (3.13) together,

we obtain
d

dt

∫
(|∇Av|2 + ε|Av|2) dx ≤ C ′δ‖v‖2H−1 .

It then follows from Lemma 2.1 that

d

dt

∫
(|∇Av|2 + ε|Av|2) dx ≤ C6

∫
(|∇Av|2 + ε|Av|2) dx.

Applying the uniform Gronwall lemma and Remark 3.2, for t ≥ T1B and u0 ∈ B,

we derive that

(3.14) ‖∇Av(t)‖2 + ε‖Av(t)‖2 ≤ C(r1, α, ε, γ2, γ1, γ0).

On the basis of (3.1), we have

(∆− εI)u = Aut + (γ2u
3 + γ1u

2 − γ0u)− αA[u2 − u].

For the right hand side terms, we note that when t ≥ T1B , (3.14) implies

‖Aut‖ ≤ C(r1, α, ε, γ2, γ1, γ0).

In [2], the authors assume that:

(3.15) f(x, s)s ≤ C(x)s2 +D(x)|s|, for all s ∈ R, x ∈ Ω,

for some suitable functions C(x) and D(x) ≥ 0 defined in Ω. It is easy to check

that our assumption f(u) = γ2u
2+γ1u−γ0u is a typical case of (3.15). Similarly

to [2], we have

‖γ2u3 + γ1u
2 − u‖ ≤ Q(‖u‖H1) ≤ C(r1, α, ε, γ2, γ1, γ0).

By Lemma 2.3 and (3.10), we have H1 ↪→ L4 for N ≤ 3. By Lemma 2.4, we

have

‖A[u2 − u]‖ ≤ 1

ε
‖u2 − u‖ ≤ 2

ε
(‖u‖2L4 + ‖u‖2) ≤ C(r1, α, ε, γ2, γ1, γ0).

Hence, for all t ≥ T1B , u0 ∈ B, we get

‖u(t)‖H2 ≤ C(r1, α, ε, γ2, γ1, γ0).

That is, we obtain a uniform estimate of the solution u in H2:
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Theorem 3.3. Let α > 1, γ2 be sufficiently large and γ0 be sufficiently small.

Then for problem (3.1) (or problem (1.3)), there is a positive constant r2 such

that for any bounded set B ⊂ H1,

‖S(t)B‖H2 ≤ r2, for all t ≥ T2B ,

where T2B = T2(B) depends only on ‖B‖H1 .

4. Existence of global attractors in H1(RN )

In this section, on the basis of the a priori estimates obtained in the above

section, we will show that the semigroup {S(t)}t≥0 has a global H1-attractor.

As shown in [12], [2], [29], in order to obtain the necessary (H1, H1)-asym-

ptotic compactness, thanks to Theorem 3.3, we only need to prove the following

tail estimate:

Lemma 4.1. Under the assumption of Theorem 3.3, for any η > 0 and any

bounded set B ⊂ H1, there exist h = h(η, ‖B‖H1) and T = t(η, ‖B‖H1) such

that ∫
Oh

(|S(t)u0|2 + |∇S(t)u0|2) dx ≤ η, for all t ≥ T, u0 ∈ B,

where Oh = {x ∈ RN : |x| ≥ h}.

Proof. Similarly to [12], we choose a smooth function θ = θ(s) ∈ [0, 1] for

any s ∈ R+, and

θ(s) = 0, for all s ∈ [0, 1], and θ(s) = 1, for all s ≥ 2.

Then there exists a constant C such that |θ(s)| + |θ′(s)| + |θ′′(s)| ≤ C for any

s ∈ R+.

Multiplying (3.1) by λ(θ2(|x|2/h2)u), integrating in RN , we get∫
λ

(
θ2
(
|x|2

h2

)
u

)
Aut dx = −λ

∫
θ2
(
|x|2

h2

)
|∇u|2 dx− λε

∫
θ2
(
|x|2

h2

)
u2 dx

− λ
∫
u∇u∇θ2

(
|x|2

h2

)
dx− γ2λ

∫
θ2
(
|x|2

h2

)
u4 dx− γ1λ

∫
θ2
(
|x|2

h2

)
u3 dx

+ γ0λ

∫
θ2
(
|x|2

h2

)
u2 dx+ αλ

∫
θ2
(
|x|2

h2

)
uA[u2 − u] dx.

Multiplying (3.1) by (θ2(|x|2/h2)ut), integrating in RN , we obtain

ε

∫
θ2
(
|x|2

h2

)
|Aut|2 dx+

∫
θ2
(
|x|2

h2

)
|∇Aut|2 dx

+

∫
∇θ2

(
|x|2

h2

)
∇Aut ·Aut dx

= − 1

2

d

dt

∫
θ2
(
|x|2

h2

)
|∇u|2 dx− ε

2

d

dt

∫
θ2
(
|x|2

h2

)
u2 dx
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− γ2
4

d

dt

∫
θ2
(
|x|2

h2

)
u4 dx− γ1

3

∫
θ2
(
|x|2

h2

)
u3 dx

+
γ0
2

∫
θ2
(
|x|2

h2

)
u2 dx+ α

∫
θ2
(
|x|2

h2

)
utA[u2 − u] dx.

Summing up, we have

(4.1)
d

dt
Eu(t) +Gu(t) ≤ Lu(t),

where λ is a positive constant and

Eu(t) =
1

2

∫
θ2
(
|x|2

h2

)
|∇u|2 dx+

ε− γ0
2

∫
θ2
(
|x|2

h2

)
u2 dx(4.2)

+
γ2
4

d

dt

∫
θ2
(
|x|2

h2

)
u4 dx+

γ1
3

∫
θ2
(
|x|2

h2

)
u3 dx,

Gu(t) =λ

∫
θ2
(
|x|2

h2

)
|∇u|2 dx+ λ(ε− γ0)

∫
θ2
(
|x|2

h2

)
u2 dx(4.3)

+ γ2λ

∫
θ2
(
|x|2

h2

)
u4 dx+ γ1λ

∫
θ2
(
|x|2

h2

)
u3 dx

+ ε

∫
θ2
(
|x|2

h2

)
|Aut|2 dx+

∫
θ2
(
|x|2

h2

)
|∇Aut|2 dx,

Lu(t) = − λ
∫
θ2
(
|x|2

h2

)
uAut dx− λ

∫
u∇u∇θ2

(
|x|2

h2

)
dx(4.4)

+ αλ

∫
θ2
(
|x|2

h2

)
uA[u2 − u] dx−

∫
∇θ2

(
|x|2

h2

)
∇Aut ·Aut dx

+ α

∫
θ2
(
|x|2

h2

)
utA[u2 − u] dx = I1 + I2 + I3 + I4 + I5.

Note that

I1 ≤ ε
∫
θ2
(
|x|2

h2

)
|Aut|2 dx+

λ2

4ε

∫
θ2
(
|x|2

h2

)
u2 dx

≤ ε
∫
θ2
(
|x|2

h2

)
|Aut|2 dx+

λ2

4ε

∫
h≤|x|≤

√
2h

u2 dx

≤ ε
∫
θ2
(
|x|2

h2

)
|Aut|2 dx+

λ2

4ε
‖u‖2,

I2 ≤
C ′

h
‖u‖‖∇u‖,

I3 ≤αλ
∫
h≤|x|≤

√
2h

|uA(u2 − u)| dx

≤ αλ

ε2
‖u‖‖u2 − u‖ ≤ C ′(‖u‖2 + ‖u‖4L4),

I4 ≤
C ′

h
‖Aut‖‖∇Aut‖.
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On the other hand, we have∫ [
θ2
(
|x|2

h2

)
A(u2 − u)

]2
dx+

∫ [
∇
(
θ2
(
|x|2

h2

)
A(u2 − u)

)]2
dx

≤Cθ
∫
h≤|x|≤

√
2h

|A(u2 − u)|2 dx+

∫ ∣∣∣∣4xh2 θ
(
|x|2

h2

)
θ′
(
|x|2

h2

)
A(u2 − u)

∣∣∣∣2dx
+

∫ ∣∣∣∣θ2( |x|2h2
)
∇A(u2 − u)

∣∣∣∣2dx
≤Cθ

∫
|A(u2 − u)|2 dx+ C ′θ

∫
|∇A(u2 − u)|2 dx ≤ C ′′θ‖u2 − u‖2,

where the constant Cθ depends only on the cutoff function θ. Then,

I5 ≤‖ut‖H−1

∥∥∥∥θ2( |x|2h2
)
A(u2 − u)

∥∥∥∥
H1

= ‖ut‖H−1

{∫ [
θ2
(
|x|2

h2

)
A(u2 − u)

]2
dx

+

∫ [
∇
(
θ2
(
|x|2

h2

)
A(u2 − u)

)]2
dx

}1/2

≤C7‖ut‖H−1‖u2 − u‖ ≤ C8‖ut‖H−1(‖u‖2L4 + ‖u‖).

By (3.10), we have ‖u‖L4 ≤ C‖u‖H1 ≤ Cr1, for all t ≥ T1B . Summing up, we

deduce that

Lu(t) ≤ C ′

h
(‖u‖‖∇u‖+ ‖Aut‖‖∇Aut‖) + C8‖ut‖2H−1(4.5)

+ C9(‖u‖2 + ‖u‖4L4) + ε

∫
θ2
(
|x|2

h2

)
|Aut|2 dx

≤ C ′

h
(‖Aut‖2 + ‖∇Aut‖2 + r21 + r22) + ε

∫
θ2
(
|x|2

h2

)
|Aut|2 dx

+ C9(r21 + r41) + C10(‖Aut‖2 + ‖∇Aut‖2),

for all t ≥ T1B + T2B . Combining (4.1), (4.2) and (4.5) together gives

(4.6)
d

dt
Eu(t) + 2λEu(t) +

γ2λ

2

∫
θ2
(
|x|2

h2

)
u4 dx+

γ1λ

3

∫
θ2
(
|x|2

h2

)
u3 dx

≤
(
C ′

h
+ C10

)
(‖Aut‖2 + ‖∇Aut‖2) +

C ′

h
(r21 + r22) + C9(r21 + r41).

Note that

−γ1λ
3

∫
θ2
(
|x|2

h2

)
u3 dx ≤ γ2λ

4

∫
θ2
(
|x|2

h2

)
u4 dx+

γ21λ

9γ2

∫
θ2
(
|x|2

h2

)
u2 dx

≤ γ2λ

4

∫
θ2
(
|x|2

h2

)
u4 dx+ Cθr

2
1.



Modified Cahn–Hilliard equation 181

Hence, (4.6) implies

(4.7)
d

dt
Eu(t) + 2λEu(t) ≤

(
C ′

h
+ C10

)
(‖Aut‖2 + ‖∇Aut‖2)

+
C ′

h
(r21 + r22) + C11(r21 + r41).

On the other hand, (3.14) implies that

(4.8)

∫ t+1

t

(‖Aut‖2 + ‖∇Aut‖2) ds ≤ C(r1, r2, α, γ2, γ1),

for all t ≥ t1 = T1B + T2B . Adding (4.7) and (4.8) together, using the uniform

Gronwall lemma (see[28]), we obtain

Eu(t) ≤ e−2λ(t−t1)Eu(t1)(4.9)

+
e2λ

1− e−2λ

[(
C ′

h
+ C10

)
C(r1, r2, α, γ2, γ1)

+
C ′

h
(r21 + r22) + C11(r21 + r41)

]
≤ e−2λ(t−t1)Eu(t1) +

e2λ

1− e−2λ
C(r1, r2, α, γ2, γ1),

for all t ≥ t1 = T1B + T2B , for all u0 ∈ B. Then, combining with (4.2), we find

that ∫
Oh

(|S(t)u0|2 + |∇S(t)u0|2) dx ≤ η

as t, h are taken large enough. �

Lemma 4.2 ((H1, H1)-asymptotic compactness). Under the assumptions of

Theorem 3.3, the semigroup {S(t)}t≥0 is (H1, H1)-asymptotically compact.

Proof. Based on Lemma 4.1, Theorem 3.3 and the compact embedding

H2(RN/Oh) ↪→ H1(RN/Oh),

we complete the proof. �

Furthermore, on the basis of our local existence theorem presented in Sec-

tion 2, we obtain the result on (H1, H1)-continuity of {S(t)}t≥0.

Lemma 4.3 ((H1, H1)-continuity). Under the assumptions of Theorem 3.3,

the semigroup {S(t)}t≥0 : H1 → H1 is continuous.

Therefore, we give the main result of this section, which is a direct conse-

quence of Lemmas 4.2 and 4.3 (see [12], [3], [18]):

Theorem 4.4. Let α > 1 and γ2 satisfy γ2ε > α2, then the semigroup

{S(t)}t≥0 of problem (1.3) has an H1-global attractor A, which is compact in

H1, invariant under {S(t)}t≥0 and attracts every H1-bounded set with respect

to the H1-norm.
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Remark 4.5. We recall that the global attractor A is the smallest (for the

inclusion) compact set of the phase space which is invariant by the flow. It

appears as a suitable object in view of the study of the asymptotic behavior of

the system (1.3). Our theorem might be useful in the study of cell reproduction,

cell movement, cell proliferation and tumor growth.
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