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MULTIPLICITY OF SOLUTIONS

FOR POLYHARMONIC DIRICHLET PROBLEMS

WITH EXPONENTIAL NONLINEARITIES

AND BROKEN SYMMETRY

Edger Sterjo

Abstract. We prove the existence of infinitely many solutions to a class

of non-symmetric Dirichlet problems with exponential nonlinearities. Here
the domain Ω b R2l where 2l is also the order of the equation. Consid-

ered are the problem with no symmetry requirements, the radial problem

on an annulus, and the radial problem on a ball with a Hardy potential
term of critical Hardy exponent. These generalize results obtained by Sug-

imura [31].

1. Introduction

This paper is concerned with the multiplicity of solutions to three polyhar-

monic Dirichlet problems. Common to all three is that the order the equations

also equals the dimension of the domain. In the notation below, d = 2l where

d is the dimension, and l is the power of the Laplacian. Related to this fact,

they all concern odd nonlinearities of exponential growth. They also include

perturbations which are not odd. First we seek weak solutions to

(P)


(−∆)lu = g(x, u) + ϕ(x) in Ω,(
∂

∂ν

)j
u

∣∣∣∣
∂Ω

= 0 for j = 0, . . . , l − 1,
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where the domain Ω b R2l has a smooth boundary. Here ϕ ∈ L2(Ω), and

g(x, u) is an odd-in-u, exponential nonlinearity satisfying conditions (g1)–(g5)

given below. A typical example to keep in mind would be g(x, u) = ue|u|
α

, with

0 < α < 1. Next in the case that Ω = ARR0
:= {x ∈ R2l : R0 < |x| < R} is an

annulus, with R0 > 0 and R < +∞, we seek weak, radial solutions to

(R)


(−∆)lu = 2ueu

2

+ ϕ(x, u) in Ω,(
∂

∂ν

)j
u

∣∣∣∣
∂Ω

= 0 for j = 0, . . . , l − 1,

where ϕ(x, u) = ϕ(|x|, u) is not odd in u. Lastly we seek weak, radial solutions to

(H)


(−∆)lu+ b|x|−2lu = g(x, u) + ϕ(x) in BR(0),(
∂

∂ν

)j
u

∣∣∣∣
∂BR(0)

= 0, for j = 0, . . . , l − 1,

where BR(0) ⊂ R2l denotes the ball of radius R centered at the origin, and b > 0

is a constant. Here ϕ(x) = ϕ(|x|), g(x, u) = g(|x|, u), and g satisfies conditions

(g1)–(g5) given below. We note these are not the most general possible forms

such equations can take for the methods to be applicable. We have chosen them

for simplicity and because they are instructive.

Many papers have been written on the existence and multiplicity of solutions

for second order, nonlinear, elliptic problems, primarily by means of variational

methods. The archetype has been the Dirichlet problem−∆u = u|u|p−2 + ϕ(x) in Ω,

u|∂Ω = 0.

In its simplest form, the open domain Ω ⊂ Rd is bounded, with a smooth bound-

ary, and the perturbation ϕ(x) ∈ L2(Ω). The exponent of the nonlinearity is

such that if d ≥ 3, then 2 < p < 2d/(d− 2), while if d = 2, then 2 < p < ∞.

These restrictions on p come when one makes use of the Sobolev embeddings

W 1,2
0 (Ω) ↪→ Lp(Ω) and their compactness. If ϕ ≡ 0, the above equation pos-

sesses a Z2-symmetry with respect to the group of reflections in Sobolev space. In

this case the Symmetric Mountain Pass Theorem of Ambrosetti and Rabinowitz

guarantees the existence of an unbounded sequence of critical values of the func-

tional associated with the variational formulation of the problem. Such methods

can be applied to a great variety of nonlinear problems invariant under com-

pact groups of symmetries (see [3], [24], [30] and references therein). However,

this brings up the question of what exactly happens to this multitude of critical

values when the symmetry of the problem is broken by some non-equivariant

perturbation. There are no satisfactory general answers to this question yet.

Methods to deal with this problem in certain cases appeared first in the papers

[4], [5] and [29]. The general variational principle employed in these works was
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later formulated by Rabinowitz in [23] (see also [24]). Roughly speaking, the idea

is to estimate the spacing between consecutive symmetric mountain pass levels

of the unperturbed functional, and then compare this spacing to the effect of

the perturbation. Whenever the perturbation is not sufficient to eliminate this

spacing, then the variational principle formulated by Rabinowitz guarantees the

existence of a critical value to the perturbed functional. The first methods for

estimating the spacing (or more practically the growth rate) of the symmetric

mountain pass levels were based on the Weyl asymptotics for the Dirichlet eigen-

values of the Laplacian. A more refined approach, that could be more tailored

for a specific problem, came in the papers of Bahri–Lions [6], and Tanaka [32].

Based on Morse theory, these works make use of an estimate for the number of

non-positive eigenvalues of Schrödinger operators further described below. How-

ever, even for linear perturbations of the functional (like the one coming from ϕ),

the value of p needs to be further restricted to 2 < p < (2d− 2)/(d− 2). To

improve the range of p with these methods one must weaken the perturbation.

It is still a central open question of exactly how necessary this trade-off is.

Many sorts of perturbations other than a non-homogenous term ϕ are of

interest. A natural one is to consider the problem of an unperturbed equa-

tion, itself formally invariant, but with a non-homogenous boundary condition

u|∂Ω = u0 6= 0, which destroys the evenness of the problem. This time however,

the perturbation is of much higher order, directly entering into the nonlinear-

ity. To deal with such complications Bolle [9] developed a new approach to

perturbation theory of minimax levels. Similar in spirit to the earlier approach,

but considerably more streamlined, the new approach considers the perturbed

functional I as the endpoint of a continuous path of functionals Iθ, θ ∈ [0, 1],

which starts at the unperturbed functional, denoted I0. Bolle’s general theorem

explains quantitatively how far apart two consecutive mountain pass levels of

the unperturbed functional need to be for a critical level to persist to θ = 1.

Roughly speaking, it is not the size of the perturbation at general points that

determines this, but the size of ∂
∂θ Iθ(u) at the critical points u of Iθ. This can

certainly be helpful because these u satisfy the corresponding Euler–Lagrange

equation. Furthermore, it becomes clearer how the size of the perturbation, as

a functional in u, enters into the problem. This makes it easier to consider per-

turbations other than simple non-homogenous terms like ϕ. This approach is

further developed and applied in a number of problems in [10].

In the two dimensional case the proper Sobolev embedding is into an Orlicz

space given by an exponential N -function, see [2]. The maximal growth rate of

the nonlinearity for which a variational treatment of the problem is possible is

like eKu
2

. This is related to the optimality of the Moser–Trudinger inequality
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[22], [34], [19]. A typical problem now is−∆u = g(x, u) + ϕ(x) in Ω,

u|∂Ω = 0,

where g(x,−t) = −g(x, t) is of exponential growth. To guarantee the convergence

of general Palais–Smale sequences in H1
0 (Ω), g is taken subcritical, which in this

case means that g(x, t) is of order of growth strictly below any positive power

of et
2

. That is

lim
t→∞

|g(x, t)|
eβt2

= 0 for all β > 0.

In [31], Sugimura proved that the perturbed symmetric problem above has an

infinite number of solutions if the nonlinear term g(x, t) has growth like e|t|
α

,

where 0 < α < 1/2. One of the key points in this paper comes when applying

the Morse index approach of [6] and [32]. At that stage one typically applies

estimates for the number of non-positive eigenvalues (a.k.a. “bound states”) of

Schrödinger operators. Previous results for the problem involving the power non-

linearity u|u|p−2 had made use of a famous estimate from mathematical physics

known as the CLR inequality, discovered independently by Rozenblum, Lieb, and

Cwikel [26], [27], [18], [13]. To get his result Sugimura proved a 2-dimensional

version of this estimate. Later, using the foundation laid by Sugimura, Tarsi [33]

streamlined these results by using Bolle’s approach.

One advantage of Rozenblum’s proof of the CLR estimate is that it automat-

ically applies to higher order Schrödinger operators (which is the original form

in which Rozenblum stated his result), where the Laplacian is replaced by the

poly-Laplacian. Using this fact, it was proved in [16] that the problem
(−∆)lu = u|u|p−2 + ϕ(x) in Ω,(
∂

∂ν

)j
u

∣∣∣∣
∂Ω

= φj for j = 0, . . . , l − 1,

where Ω b Rd, d > 2l, has infinitely many solutions for p suitably restricted.

This paper is concerned with appropriate eigenvalue estimates, and their

application to problems (P), (R), and (H), which are polyharmonic, in the crit-

ical Sobolev dimension, and with exponential nonlinearities. As it is common,

stronger results are proved in radially symmetric settings. For simplicity in prob-

lems (P) and (H) we consider perturbations that, in the equation, do not depend

on u. However, more general perturbations can be considered as in [33].

In problems (P) and (H), we make the following assumptions on the sym-

metric term g:

(g1) g ∈ C(Ω× R,R).

(g2) Given any constant σ > 0, there exists a constant Aσ > 0 such that

|g(x, t)| ≤ Aσeσt
2

for all (x, t) ∈ Ω× R.
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(g3) There are constants µ > 0 and r0 ≥ 0 such that

0 < G(x, t) lnG(x, t) ≤ µtg(x, t) for x ∈ Ω, |t| ≥ r0.

(g4) g(x,−t) = −g(x, t) for (x, t) ∈ Ω× R.

(g5) There exist 0 < α1 ≤ α2 < 1, and A1, A2, B1 such that

A1e
|t|α1 −B1 ≤ G(x, t) ≤ A2e

|t|α2
for (x, t) ∈ Ω× R.

Our first result is

Theorem 1.1. Suppose that g satisfies conditions (g1)–(g5). Then problem

(P) has an unbounded sequence of solutions if 2/α2 −2 > 1/α1.

As a prototypical example we may take g(x, u) := ue|u|
α

. Then the above

theorem asserts that for 0 < α < 1/2 problem (P) has an unbounded sequence

of solutions. If we impose radial assumptions on the problem we can improve

the result. In problem (R), let

Φ(x, u) :=

∫ u

0

ϕ(x, t) dt.

Theorem 1.2. Suppose that there exists β ∈ (0, 1) such that |Φ(x, t)| +

|ϕ(x, t)t| ≤ C(t2et
2

)β for sufficiently large values of |t|. If 2l > 1/(1− β) then

problem (R) has an unbounded sequence of radial solutions.

Theorem 1.3. Suppose that Ω = BR(0), the open ball centered at the origin

with a finite radius R. Suppose that, in addition to conditions (g1)–(g5), we have

g(x, u) = g(|x|, u) and ϕ(x) = ϕ(|x|). Then if 2/α2− 1 > 1/α1, problem (H) has

an unbounded sequence of radial solutions.

These theorems are proven using upper estimates on the number of non-

positive eigenvalues (a.k.a. bound states) of polyharmonic Schrödinger operators.

When no radial symmetry is imposed, the corresponding spectral inequality takes

the following form:

Proposition 1.4. Let B(t) := (|t|+ 1) ln(|t|+ 1)− |t| be an N -function, and

LB(Ω) be the corresponding Orlicz space. Let V ∈ LB(Ω), and on L2(Ω) consider

the unbounded linear operator (−∆)l − V (x). Denote by N−((−∆)l − V (x)) the

number of its non-positive eigenvalues. Then there exists a constant C = C(l,Ω)

such that

N−((−∆)l − V (x)) ≤ C||V ||LB(Ω)
.

Simplified for our purposes, this result is due to Solomyak [28]. We will not

use Proposition 1.4 but rather a corollary of it. As is well known in the theory

of Orlicz spaces

||V ||LB(Ω) ≤
∫

Ω

B(V (x)) dx+ 1.

See (9.12) in [15].
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Corollary 1.5.

N−((−∆)l − V (x)) ≤ C
∫

Ω

B(V (x)) dx+ C.

This generalizes the eigenvalue estimate originally obtained by Sugimura [31].

It is unknown to the author if the finer estimate in Proposition 1.4 can yield

stronger results in this case. To answer such a question a much finer analysis of

the critical sequence given by Tanaka’s Theorem below (or a possible alternative

of it) seems necessary. In the radial setting on an annulus the main eigenvalue

estimate we prove is the following

Proposition 1.6. Let Ω be an annulus of outer radius R < +∞ and inner

radius R0 > 0. Let V (x) = V (|x|). On the space L2
r(Ω), of radially symmetric,

square integrable functions, consider the unbounded linear operator (−∆)l−V (x).

Denote by N−((−∆)l − V (x)) the number of its non-positive eigenvalues. There

exists a constant C = C(l, R0, R) such that

[
N−((−∆)l − V (x))

]2l ≤ C ∫
Ω

V +(x)

[
1 + log

(
R

|x|

)]2i

dx

where i = 1/2 when l = 1, and i = 1 when l > 2.

2. Preliminaries: general outline of the perturbation method

The symmetric mountain pass sequence and the variational princi-

ple of Bolle. Here we recall the perturbation method of Bolle. See [9] and [10].

Let E be a Hilbert space, and let ek be a basis for E. Decompose E as

(2.1) E =

∞⋃
k=0

Ek, where Ek = Ek−1 ⊕ Rek

with E0 = {0}. For a given increasing sequence of real numbers Rk > 0 set

Γk :=
{
g ∈ C(Ek, E) : g is odd and g(u) = u if u ∈ Ek, ||u|| ≥ Rk

}
.

The precise values of Rk that we will use will be defined later. For an even

functional I0(u) on E set

ck := inf
g∈Γk

sup
u∈g(Ek)

I0(u).

Under typical assumptions on I0(u), the Symmetric Mountain Pass Theorem of

Ambrosetti and Rabinowitz shows that, for appropriate values of Rk the minimax

values ck are an unbounded sequence of critical values of I0(u).
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Consider two continuous functions f1, f2 : [0, 1]×R→ R which are Lipschitz

continuous with respect to the second variable, and f1 ≤ f2. Define the associ-

ated flows ψi(0, s) = s,
∂

∂θ
ψi(θ, s) = fi(θ, ψi(θ, s)),

ψ1 and ψ2 are continuous in both variables, and non-decreasing in s. Moreover,

by the comparison theorem for ODEs, since f1 ≤ f2, we have ψ1 ≤ ψ2. Also,

denote

fi(s) := sup
θ∈[0,1]

|fi(θ, s)|.

We will apply the main theorem of [10]:

Theorem 2.1 (Bolle, Ghoussoub, Tehrani [10]). Let E be a Hilbert space

and I : [0, 1]× E → R be a C1 functional satisfying the following conditions:

(H1) I satisfies the following analogue of the Palais–Smale condition: For

a sequence {(θn, un)}n∈N in [0, 1] × E such that ||I ′θn(un)||E∗ → 0 and

|Iθn(un)| ≤ C there is a subsequence of it strongly converging in [0, 1]×E.

(H2) For all b > 0 there exists a positive constant C(b) such that

|Iθ(u)| ≤ b ⇒
∣∣∣∣ ∂∂θ Iθ(u)

∣∣∣∣ ≤ C(b)(||I ′θ(u)||+ 1)(||u||+ 1).

(H3) There exist two continuous functions f1, f2 : [0, 1]×R→ R, with f1 ≤ f2,

that are Lipschitz continuous relative to the second variable, and such

that, for all critical points u of Iθ

f1(θ, Iθ(u)) ≤ ∂

∂θ
Iθ(u) ≤ f2(θ, Iθ(u)).

(H4) I0 is even and for any finite dimensional subspace W of E we have

sup
θ∈[0,1]

Iθ(y)→ −∞ as ||y|| → ∞ for y ∈W.

Then there is K > 0 such that for every n only one of the two possibilities below

holds:

(a) either I1 has a critical level cn with ψ2(1, cn) < ψ1(1, cn+1) ≤ cn, or

(b) cn+1 − cn ≤ K(f1(cn+1) + f2(cn) + 1).

The values Rk that we will use are defined as follows: by hypothesis (H4) in

the theorem above we can find Rk > 0 such that sup
θ∈[0,1]

Iθ(u) < 0 for all u ∈ Ek

with ||u|| ≥ Rk.

The theorem above shows that, for each n, two outcomes are possible. If the

second outcome holds for all sufficiently large n then one can derive an upper

bound on the sequence cn. In applications, one shows that the first possibility

holds for infinitely many n by obtaining a lower bound for cn that contradicts
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this alleged upper bound. Because cn → +∞ and because in typical applications

ψ2(1, s)→ +∞ as s→ +∞ we get that cn → +∞. We also note that the above

theorem was originally proven for I in C2(E), by using the gradient flow of I.

However, as typical, for the proof it suffices to use only a pseudo-gradient flow

in the sense of Palais. This requires that I is only in C1(E). See [12].

3. Problem (P), the case of an unrestricted domain

3.1. The variational setup. Let Ω b Rd be a smooth domain, and where

d = 2l. In the Hilbert space L2(Ω) we consider the dense subspace

H l
0(Ω) := the completion of C∞0 (Ω) in the following norm

||u||Hl0(Ω) =

||∆ku||L2(Ω) if l=2k,

||∇(∆ku)||L2(Ω) if l = 2k + 1.
(3.1)

Typically on the space H l
0(Ω) we use the norm ||Dlu||L2(Ω), after taking into

account Poincare’s inequality for the lower order terms. However, this norm is

equivalent to ||u||Hl0(Ω) on C∞0 (Ω) by integration by parts. When convenient, we

shall denote the norm ||u||Hl0(Ω) by ||u||. As shorthand, on H l
0(Ω), define the lth

power of the gradient as

(3.2) ∇lu =

∆ku if l = 2k,

∇(∆ku) if l = 2k + 1.

The variational setup for our problem is as follows. On the space H l
0(Ω) we

consider the functional

(3.3) I1(u) :=
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

G(x, u) dx−
∫

Ω

ϕudx.

This is the functional whose critical points correspond to generalized solutions

of the boundary value problem

(P)


(−∆)lu = g(x, u) + ϕ(x) for x ∈ Ω,(
∂

∂ν

)j
u

∣∣∣∣
∂Ω

= 0 for j = 0, . . . , l − 1,

where G(x, u) =
∫ u

0
g(x, s) ds, in the space H l

0(Ω). See [14].

For I1(u) to be well defined on all of H l
0(Ω), and for such a variational

treatment to be viable, we must restrict the growth rate with respect to u of

the nonlinearity G. The maximal growth for which a variational treatment
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is allowed comes from the optimality of Adam’s generalization of the Moser–

Trudinger inequality. Namely, on the space W
l,d/l
0 (Ω), 1 ≤ l < d, Adams showed

(3.4) sup
u∈W l,d/l

0 (Ω)

||∇lu||
Ld/l
≤1

∫
Ω

eβ|u|
d/(d−l)

dx

≤ C|Ω| if β ≤ β(d, l),

= +∞ if β > β(d, l),

where β(d, l) is given explicitly. See [1]. In our case, d = 2l so the exponent

d/(d− l) equals 2. In this case, β(2l, l) = l!(4π)l. For a variational treatment to

be possible in H l
0(Ω), G(x, u) cannot grow faster than eKu

2

for all K.

Conditions (g1)–(g5) imply that I1(u) is a C1 functional on H l
0(Ω). For the

corresponding path of functionals we simply consider

(3.5) Iθ(u) :=
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

G(x, u) dx− θ
∫

Ω

ϕudx

where θ ∈ [0, 1], and for which I0 is even.

3.2. Bolle’s requirements. (H1) I satisfies the following analogue of the

Palais–Smale condition: For a sequence {(θn, un)}n∈N in [0, 1] × E such that

||I ′θn(un)||E∗ → 0 and |Iθn(un)| ≤ C there is a subsequence converging strongly

in [0, 1]× E.

Proof. Let {(θn, un)}n∈N be such a sequence. Then, after taking a subse-

quence, we can find constants C0 and θ0 such that

(3.6) Iθn(un) =
1

2

∫
Ω

|∇lun|2 dx−
∫

Ω

G(x, un) dx− θn
∫

Ω

ϕun dx→ C0

where θn → θ0, and

(3.7)

∣∣∣∣ ∫
Ω

{
∇lun · ∇lv − g(x, un)v − θnϕ(x)v

}
dx

∣∣∣∣ ≤ εn||v||Hl0(Ω)

for all v ∈ H l
0(Ω), where εn → 0 as n → ∞. Choosing v = un in (3.7) we get,

for µ > 2,

(3.7’)
µ

2

∫
Ω

|∇lun|2 dx− µ
∫

Ω

G(x, un) dx− µθn
∫

Ω

ϕ(x)un dx ≤ C1

and

(3.8) −||un||2Hl0(Ω) +

∫
Ω

g(x, un)un dx+ θn

∫
Ω

ϕ(x)un dx ≤ εn||un||Hl0(Ω).

Adding (3.7’) and (3.8) gives

(3.9)

(
µ

2
− 1

)
||un||2 +

∫
Ω

(g(x, un)un − µG(x, un)) dx

+ (1− µ)θn

∫
Ω

ϕ(x)un dx ≤ C ′ + εn||un||.
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By assumption (g3) ∫
Ω

(g(x, un)un − µG(x, un)) dx ≥ −C2.

Hence (3.9) gives(
µ

2
−1

)
||un||2 ≤ C3 +εn||un||+C4

∫
|ϕ(x)un| dx ≤ C3 +εn||un||+C5||un||L2(Ω).

By the generalized Poincaré inequality, if u ∈ H l
0(Ω) then there exists a constant

C6 > 0 such that

||u||L2(Ω) ≤ C6||u||Hl0(Ω).

So we get (
µ

2
− 1

)
||un||2 ≤ C3 + C7||un||.

Thus

(3.10) ||un|| ≤ K.

Having proven the boundedness of Palais–Smale sequences, we will show that

they are pre-compact by proving that I ′θ(u)( · ) has the form L(u)( · ) + κ(u)( · )
where L : H l

0(Ω) → H−l(Ω) is an isomorphism, and κ : H l
0(Ω) → H−l(Ω) is

compact. Although this is not entirely necessary, and a shorter proof which does

not rely explicitly on this fact is possible. However, the fact that I ′θ(u) has this

form will be needed later to apply Tanaka’s Theorem, hence we give the proof

now. First

(3.11) I ′θ0(u)( · ) = 〈u, · 〉Hl0(Ω) − 〈g(x, u), ·〉L2(Ω) − θ0〈ϕ(x), · 〉L2(Ω).

Clearly L : H l
0(Ω)→ H−l(Ω): u 7→ 〈u, · 〉Hl0(Ω) is the Riesz map, hence a Hilbert

space isomorphism. Clearly the map K1 : H l
0(Ω)→ H−l(Ω): u 7→ 〈ϕ(x), · 〉L2(Ω)

is compact because it is a constant map.

To show that K2 : H l
0(Ω) → H−l(Ω): u 7→ 〈g(x, u), · 〉L2(Ω) is compact it

suffices to show that if {un} ⊂ H l
0(Ω) is bounded then, up to a subsequence,

g(x, un) converges in L2(Ω). Without loss of generality we may assume, after

taking a subsequence, that

• ||un|| ≤ K,

• un ⇀ u weakly in H l
0(Ω),

• un → u strongly in Lp(Ω), p ≥ 1,

• un(x)→ u(x) almost everywhere in Ω.

Now since g has subcritical growth in u by (g2), we can find CK > 0 such that

(3.12) |g(x, t)| ≤ CK exp

(
β(2l, l)

2K2
t2
)
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where β(2l, l) = l!(4π)l is the optimal constant in Adam’s inequality. We apply

Adam’s inequality:

||g(x, un)||2L2 ≤ C2
K

∫
Ω

exp

(
β(2l, l)

K2
|un|2

)
dx

≤ C2
K

∫
Ω

exp

(
β(2l, l)

||un||2
|un|2

)
dx ≤ C ′K .

Similarly we have ∫
Ω

|g(x, un)|2|un| dx ≤ C ′′K .

To obtain the required result we use the following lemma:

Lemma 3.1. Let {un} be a convergent sequence of functions in L2(Ω), with

un(x) → u(x) almost everywhere. Assume that g(x, un) and g(x, u) are also in

L2(Ω) with g(x, t) continuous in t, uniformly in x. If∫
Ω

|g(x, un)|2|un| dx ≤ C8

then g(x, un) converges in L2(Ω) to g(x, u).

Proof. Note that since g(x, t) is continuous in t and un(x) → u(x) almost

everywhere, then g(x, un(x))→ g(x, u(x)) almost everywhere. We have that

|g(x, un(x))− g(x, u(x))|2 ≤
[
|g(x, un(x))|+ |g(x, u(x))|

]2
≤ 2|g(x, un(x))|2 + 2|g(x, u(x))|2.

If we assume ||g(x, un)||L2(Ω) → ||g(x, u)||L2(Ω) then∫
Ω

(
2|g(x, un(x))|2 + 2|g(x, u(x))|2

)
dx→ 4

∫
Ω

|g(x, u(x))|2 dx.

Also |g(x, un(x)) − g(x, u(x))| → 0 almost everywhere. So we can apply the

generalized Lebesgue Dominated Convergence Theorem and get that∫
|g(x, un(x))− g(x, u(x))|2 dx→ 0,

which is the required result. So it suffices to prove that∫
|g(x, un)|2 →

∫
|g(x, u)|2 dx.

Let f(x, t) := g(x, t)2. Since f(x, u(x)) ∈ L1(Ω), it follows that for a given ε > 0

there is δ > 0 such that

(3.13)

∫
A

f(x, u(x))dx ≤ ε if |A| ≤ δ

for all measurable subsets A ⊆ Ω. Next using the fact that u ∈ L1(Ω) we find

M1 > 0 such that

(3.14) |{x ∈ Ω : |u(x)| ≥M1}| ≤ δ.
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Let M := max{M1, C8/ε}. We write

(3.15)

∣∣∣∣ ∫ f(x, un(x)) dx−
∫
f(x, u(x)) dx

∣∣∣∣ ≤ I1 + I2 + I3

and estimate each integral separately:

I1 ≡
∫
|un(x)|≥M

f(x, un(x)) dx =

∫
|un(x)|≥M

|g(x, un(x))|2

|un(x)|
|un(x)| dx ≤ C8

M
≤ ε.

By the choices we have made above (3.13) and (3.14) imply that

I3 ≡
∫
|u(x)|≥M

f(x, u(x)) dx ≤ ε.

Next we claim that

I2 ≡
∣∣∣∣ ∫
|un(x)|<M

f(x, un(x)) dx−
∫
|u(x)|<M

f(x, u(x)) dx

∣∣∣∣→ 0

as n → ∞. Indeed, hn(x) := f(x, un(x))χ|un|<M − f(x, u(x))χ|u|<M tends to 0

almost everywhere in Ω. Moreover, |hn(x)| ≤ |f(x, u(x))| if |un(x)| ≥ M and

|hn(x)| ≤ C + f(x, u(x)) if |un(x)| < M . So I2 → 0 as n→∞ by the Lebesgue

Dominated Convergence Theorem. �

Thus I ′ has the stated form and (H1) is satisfied.

(H2) Here

∂

∂θ
Iθ(u) = −

∫
Ω

ϕ(x)u(x) dx

is bounded in absolute value by ||ϕ||L2(Ω)||u||L2(Ω). By the generalized Poincaré

inequality this is bounded by Cϕ||u||.

(H3) Determining f1, f2.

Lemma 3.2. There exists a constant C9 > 0 such that if u ∈ H l
0(Ω) is

a critical point of Iθ, then

(3.16)

∣∣∣∣ ∂∂θ Iθ(u)

∣∣∣∣ ≤ C9[ln(|Iθ(u)|+ 1)]1/α1 + C9.

Proof. From (H2) above we have that∣∣∣∣ ∂∂θ Iθ(u)

∣∣∣∣ ≤ C10||u||L2(Ω).
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So it suffices to estimate ||u||L2(Ω). Assume I ′θ(u) = 0. Then

Iθ(u) = Iθ(u)− 1

2
〈I ′θ(u), u〉(3.17)

=
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

G(x, u) dx− θ
∫

Ω

ϕudx

− 1

2

∫
Ω

|∇lu|2 dx+

∫
Ω

1

2
g(x, u)u dx+

θ

2

∫
Ω

ϕudx

=

∫
Ω

(
1

2
g(x, u)u−G(x, u)

)
dx− θ

2

∫
Ω

ϕudx.

We now apply condition (g3). Take ε > 0 such that ε < 1/(2µ). When |u(x)|>r0

we bound

1

2
g(x, u)u−G(x, u) ≥ 1

2µ
G(x, u) ln[G(x, u)]−G(x, u)

≥
(

1

2µ
− ε
)
G(x, u) ln[G(x, u)]− C11.

When |u(x)| ≤ r0 the expression g(x, u)u/2−G(x, u) is bounded by a constant

since g and G are continuous. Since Ω is of finite measure we get from the above

and equation (3.17)

Iθ(u) ≥
(

1

2µ
− ε
)∫
|u(x)|≥r0

G(x, u) ln[G(x, u)] dx− C12||u||L2(Ω) − C13.

Now applying the growth condition (g5) and again the fact that Ω is of finite

measure

(3.18) Iθ(u) ≥ C14

∫
Ω

|u|α1e|u|
α1
dx− C12||u||L2(Ω) − C13.

Now observe that for α, β > 0 there exists a constant t0 = t0(α, β) such that the

function tβet
α

is convex for t ≥ t0. We take α = β = α1/2, and apply Jensen’s

inequality

(3.19) C15

∫
|u|≥t1/2

0

|u|α1e|u|
α1
dx

≥
{

1

|Ω|

∫
|u|≥t1/2

0

|u|2 dx
}α1/2

exp

[{
1

|Ω|

∫
|u|≥t1/2

0

|u|2 dx
}α1/2]

.

Also note that

(3.20) ||u||α1

L2(Ω) ≤ C16 +

{∫
|u|≥t1/2

0

|u|2 dx
}α1/2

.
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Hence we proceed as follows:

||u||α1

L2(Ω) exp

[(
1

|Ω|

)α1/2

||u||α1

L2(Ω)

]
≤
{
C16 +

(∫
|u|≥t1/2

0

|u|2 dx
)α1/2}

· exp

[
C16

|Ω|α1/2
+

{
1

|Ω|

∫
|u|≥t1/2

0

|u|2 dx
}α1/2]

≤C17 + C18

{∫
|u|≥t1/20

|u|2 dx
}α1/2

exp

[{
1

|Ω|

∫
|u|≥t1/2

0

|u|2 dx
}α1/2]

(here apply (3.19))

≤C19 + C20

∫
|u|≥t1/20

|u|α1e|u|
α1
dx

≤C19 + C20

∫
Ω

|u|α1e|u|
α1
dx.(3.21)

Inequality (3.21) now implies

(3.22) ||u||L2(Ω) ≤ C21

{
ln

(∫
Ω

|u|α1e|u|
α1
dx+ 1

)}1/α1

+ C22.

So (3.22) and (3.18) give

Iθ(u) ≥C23

∫
Ω

|u|α1e|u|
α1
dx(3.23)

− C ′23

{
ln

(∫
Ω

|u|α1e|u|
α1
dx+ 1

)}1/α1

− C24

≥C25

∫
Ω

|u|α1e|u|
α1
dx− C26.

So, by (3.21) and (3.23),

Iθ(u) ≥ C27||u||α1

L2(Ω) exp

[(
1

|Ω|

)α1/2

||u||α1

L2(Ω)

]
− C28,

that is,

||u||L2(Ω) ≤ C29[ln(|Iθ(u)|+ 1)]1/α1 + C30,

which proves the lemma. �

Thus we take

(3.24) fi(θ, t) = fi(t) = (−1)iC9

{
[ln(|t|+ 1)]1/α1 + 1

}
(H4) This condition is easily satisfied by assumption (g5), which shows that

G(x, u) is super-quadratic (uniformly in x) and tends to +∞ as |u| → ∞.
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3.3. The alleged upper bound. As noted earlier, we will operate under

the assumption that alternative (b) of Theorem 1.2 holds for sufficiently large n.

That is, for n > n0, it will be assumed that

(3.25) cn+1 − cn ≤ K
[
(ln(cn+1))1/α1 + (ln(cn))1/α1 + 1

]
.

We will show this implies that cn ≤ An[ln(n)]1/α1 for sufficiently large n, and

for some constant A to be chosen appropriately.

Let γ := 1/α1 and let bn := An[ln(n)]γ . First we can choose A > 0 so large

that cn0
< bn0

where n0 is large and fixed. In particular, n0 is taken to be at

least large enough so that

K
(ln t)γ−1

t
< 1

for all t ≥ bn0
. For n > n0

bn+1 − bn =A(n+ 1)[ln(n+ 1)]γ −An[ln(n)]γ

=A
[
(ln(n+ θ))γ + γ(ln(n+ θ))γ−1

]
,

for some θ ∈ [0, 1], by the Mean Value Theorem. Hence

(3.26) bn+1 − bn ≥
A

2
[ln(n)]γ .

Now, from the definition of bn, we compute

(3.27) K
[
(ln(bn+1))γ + (ln(bn))γ + 1

]
≤ CγK(ln(n))γ + CγK ln(A)

for n > n0 sufficiently large.

So we take A� 2CγK. Then (3.26) and (3.27) combine to give

bn+1 − bn > K
[
(ln(bn+1))γ + (ln(bn))γ + 1

]
.

This is the reverse of the inequality satisfied by cn. We already have bn0
≥ cn0

.

Assume that bi > ci for i = n0, . . . , n. We will show that bn+1 ≥ cn+1:

bn+1 − cn+1(3.28)

= bn+1 − bn − (cn+1 − cn) + (bn − cn)

≥ bn+1 − bn − (cn+1 − cn)

≥K
[
(ln(bn+1))γ + (ln(bn))γ + 1

]
−K

[
(ln(cn+1))γ + (ln(cn))γ + 1

]
=K(ln(bn+1))γ −K(ln(cn+1))γ +

[
K(ln(bn))γ −K(ln(cn))γ

]
≥K(ln(bn+1))γ −K(ln(cn+1))γ .

Assume that bn+1 < cn+1. Then

K(ln(bn+1))γ −K(ln(cn+1))γ = −Kγ
∫ cn+1

bn+1

(ln(t))γ−1

t
dt(3.29)

>bn+1 − cn+1,
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where we have used the fact that −Kγ(ln(t))γ−1/t > −1 for t > bn+1 ≥ bn0
,

when n0 is taken to be sufficiently large. This contradicts (3.28), and so cn+1 ≤
bn+1. Thus, by induction, cn ≤ bn for all n > n0, i.e.

(3.30) cn ≤ An[ln(n)]1/α1 for n > n0,

when assuming alternative (b) of Theorem 2.1. �

4. Tanaka’s Theorem and its requirements

The reference is Theorem B in [32] (see also [6]). The idea is that associated

to each minimax value of the symmetric functional there is a sequence of critical

points which are at a lower energy level, but which have a large augmented Morse

index. For the moment, we are concerned with I0(u)

I0(u) =
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

G(x, u) dx.

We already know from the proof of the Palais–Smale condition that I ′0 has the

form of a compact perturbation of a Hilbert space isomorphism. Actually we

will apply Tanaka’s Theorem to a slightly smoother functional:

(4.1) J(u) :=
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

H(u) dx,

where H(t) = a exp[(t2 + 1)b] for b = α2/2. By assumption (g5), we can choose

a > 0 so that G(x, t) ≤ H(t) for (x, t) ∈ Ω× R. Thus I0(u) ≥ J(u).

J(u) has a nonlinearity of subcritical and super-quadratic growth, and so all

compactness properties of I0(u) also hold for J(u). In particular, J ′ has the form

L + κ where L : H l
0(Ω) → H−l(Ω) is an isomorphism and κ : H l

0(Ω) → H−l(Ω)

is compact. In addition we have the following compactness conditions needed in

the application of Tanaka’s Theorem:

Let {Ej} be the decomposition in equation (2.1).

(PS)m If for some M > 0, {uj} satisfies: uj ∈ Em, J(uj) ≤ M for all j and

||(J |Em)′(uj)||E′m → 0 as j →∞, then {uj} is precompact.

(PS)∗ If for some M > 0, {uj} satisfies: uj ∈ Ej , J(uj) ≤ M for all j and

||(J |Ej )′(uj)||E′j → 0 as j →∞, then {uj} is precompact.

These conditions follow from the fact that J ′ is a compact perturbation of the

Riesz representation map, and because such sequences are bounded. (Recall that

in the proof of the Palais–Smale condition we only needed that I0(un) ≤ C. See

equation (3.7’).)

Applying Tanaka’s Theorem: The lower bound. The goal is to obtain

a lower bound for cn that will contradict (3.30). For J define the symmetric

minimax levels

(4.2) βn := inf
g∈Γn

sup
u∈g(En)

J(u).
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Since J(u) ≤ I0(u) by construction, we have βn ≤ cn. So it will suffice to obtain

a good lower bound on βn. By [32], Theorem B, there exists a sequence un such

that

(i) J(un) ≤ βn,

(ii) J ′(un) = 0,

(iii) n ≤ index0 J
′′(un),

where the extended Morse index index0 J
′′(u) is the dimension of the maximal,

negative semidefinite subspace corresponding to the form J ′′(u). For simplicity

we simply denote un as u, holding n fixed for the time being. Now

J ′′(u)(v, w) = 〈v, w〉Hl0(Ω) −
∫

Ω

H ′′(u)vw dx.

One basis for the maximal negative semidefinite subspace of this bilinear form

is the set of eigenfunctions of (−∆)l −H ′′(u) with non-positive eigenvalues. So

index0 J
′′(u) = number of non-positive eigenvalues of (−∆)l −H ′′(u) on L2(Ω).

By applying Corollary 1.5, we get

(4.3) index0 J
′′(u) ≤ C31

∫
Ω

B(H ′′(u(x)) dx+ C31.

So, by Tanaka’s Theorem,

n ≤ C32

∫
Ω

B(H ′′(u(x)) dx+ C32,

where we take n sufficiently large. Since Ω is of finite measure, the exact form

of H ′′(u) is not important, only that it behaves like (|u|+ 1)2α2−2e(u2+1)b for |u|
large. So that, for some C33 > 0,

B(H ′′(u(x)) ≤ C33(|u|+ 1)3α2−2e(u2+1)b .

So
n

C34
≤
∫

Ω

(|u|+ 1)3α2−2e(u2+1)b dx.

Since u = un is a critical point of J

J(u) =A

∫
Ω

[
bu2(u2 + 1)b−1 − 1

]
e(u2+1)b dx(4.4)

≥C35

∫
Ω

(|u|+ 1)α2e(u2+1)b dx− C36.

Let τ = (|u|+ 1)α2e(u2+1)b and, for some γ, consider

(4.5) λ(τ) :=
τ

[ln(τ)]γ
≥ C37(|u|+ 1)α2−α2γe(u2+1)b .

We let α2 − α2γ = 3α2 − 2, so γ = 2/α2 − 2. Note that γ > 0 since α2 < 1.

From (4.5) and the bound on n we have

(4.6) n ≤ C39

∫
Ω

λ
[
(|u|+ 1)α2e(u2+1)b

]
dx+ C40.
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For large values of τ , λ′′(τ) < 0. So by the eventual concavity of λ, (4.6) gives

n ≤ C41λ

[ ∫
Ω

(|u|+ 1)α2e(u2+1)b dx

]
+ C42.(4.7)

Now apply inequality (4.4) by using the sublinearity of κ, inequalities (4.4) and

(4.7) give

n ≤ C43 · λ
[
J(un)

]
+ C44

where we have included the subscript on u. Using the fact that J(un) ≤ βn, that

λ is eventually increasing, and that βn → +∞ we have

(4.8) n ≤ C43 · λ[βn] + C44.

Let θ(τ) := τ [ln(τ)]γ , which is increasing and subexponential. Apply θ( · ) to

both sides of (4.8)

(4.9) θ(n) ≤ C45 · θ ◦ λ
[
βn
]

+ C46.

Now, for large τ ,

θ(λ(τ)) = τ

[
1− γ ln ln(τ)

ln(τ)

]γ
≤ τ.

So that, for large n, C47θ(n) ≤ βn, i.e.

Cn[ln(n)]γ ≤ βn ≤ cn, γ = 2/α2 − 2.

If 2/α2 − 2 > 1/α1, as in the hypothesis of Theorem 1.1, this contradicts (3.30)

and so proves Theorem 1.1. �

5. Proof of the eigenvalue bound

We essentially follow the argument in [28]. A general outline of the method

is as follows. The initial step is to begin with a group of related embedding

inequalities. These are then used to prove a theorem on piecewise-polynomial

approximation. This approximation theorem then leads to an eigenvalue esti-

mate for a compact operator on an appropriate Hilbert space. Finally one relates

the eigenvalues of this operator to the non-positive eigenvalues of the Schrödinger

operator of interest via the Birman–Schwinger principle.

Let Q = (0, 1)d be the unit cube in Rd and let u ∈ H l(Q) = W l,2(Q). Let

� ⊂ Rd be a parallelepiped with edges parallel to those of Q, and denote

P(l, d) = vector space of all polynomials of degree < l in �,

m(l, d) := dimR P(l, d).

That is, we regard P(l, d) as the subspace of L2(Rd) consisting of functions

supported in �, and which are polynomials of degree less than l in �. We let

Pl,� be the corresponding orthonormal projection onto P(l, d). That is, Pl,� is

the L2-orthogonal projection of L2(Rd) onto P(l, d).
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Furthermore, let Ξ be a finite covering of Q by parallelepipeds �. To any

such covering and any l > 0 we associate an operator of piecewise-polynomial

approximation in L2(Rd): For Ξ = {�j}, 1 ≤ j ≤ card(Ξ), and with χj the

characteristic function of the set �j \
⋃
i<j

�i, we denote

(5.1) KΞ,l =
∑
j

χjP�j ,l.

Note that rank(KΞ,l) ≤ m(l, d) · card(Ξ).

In this section we will need to recall the theory of Orlicz spaces (see [2],

[15] and [25]). Let B,A be a pair of mutually complementary N -functions, and

LB(ω), LA(ω) be the corresponding Orlicz spaces on a set ω ⊂ Rd of finite

Lebesgue measure. We are primarily interested in the pair

A(t) = e|t| − 1− |t| and B(t) = (|t|+ 1) ln(|t|+ 1)− |t|.

Then Solomyak’s main theorem is

Theorem 5.1 (Solomyak [28]). Let Q = (0, 1)d, V ∈ LB(Q), V ≥ 0. Then,

for any n ∈ N, there exists a covering Ξ = Ξ(V, n) of Q by parallelepipeds � ⊂ Q
such that

(5.2) card(Ξ) ≤ C1n

and, for any u ∈ H l(Q), 2l = d, we have

(5.3)

∫
Q

V |u−KΞ,lu|2 dx ≤ C2n
−1||V ||B,Q

∫
Q

|∇lu|2 dx,

where C1, C2 depend only on d.

Defined on H l
0(Ω), we consider the quadratic form

a(u, v) :=

∫
Ω

∇lu · ∇lv dx, with a(u) := a(u, u) =

∫
Ω

|∇lu|2 dx.

As an unbounded quadratic form on L2(Ω), a(u) is symmetric and positive. It is

also closed in L2(Ω). To see this note that if un → u in L2(Ω) and a(um−un)→ 0

then {un} is Cauchy in H l
0(Ω), and hence converges to some u in that space.

By the generalized Poincaré inequality, un → u in L2(Ω). Thus u = u almost

everywhere and so u is (representable by) an element of H l
0(Ω) and lim

n→∞
a(un−

u) = 0. On the space L2(Ω) the unbounded operator (−∆)l is defined as the

self-adjoint Friedrichs operator associated to the form a(u). That is,

D((−∆)l) :=

{
u ∈ H l

0(Ω) : the linear functional v 7→
∫

Ω

∇lu · ∇lv dx

is L2-continuous, where v ∈ H l
0(Ω)

}
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and

〈(−∆)lf, g〉L2 = a(f, g) for f ∈ D((−∆)l) and g ∈ H l
0(Ω).

We can do this since a is closed. See for example Section 5.5 in [35]. Also, on

L2(Ω) we consider the form

(5.4) aV (u) := a(u)−
∫

Ω

V (x)|u|2 dx,

where V ∈ LB, V ≥ 0. Here the form domain is H l
0(Ω)∩L2(Ω, V dx). As we will

see later in the proof of Theorem 5.2

||u||2L2(Ω,V dx) ≤ CΩ · a(u)

for u ∈ H l
0(Ω). So the domain of aV is really just d(aV ) = H l

0(Ω) and H l
0(Ω)

embeds into L2(Ω, V dx). As a matter of fact for any ε > 0 there exists a constant

C(ε) such that

(5.5) ||u||2L2(Ω,V dx) ≤ εa(u) + C(ε)||u||2L2(Ω).

That is, the quadratic form

(5.6)

∫
Ω

V (x)|u|2 dx

has “zero bound” relative to the form a(u) in L2(Ω). This is a consequence of

Theorem 5.2 below. By that theorem the operator corresponding to the qua-

dratic form (5.6) in the Hilbert space (H l
0(Ω), a( · , · )) is compact. A well-known

result then implies the zero-boundedness mentioned.

The bound (5.5) implies that aV (u) is lower semi-bounded in L2(Ω). It is also

closed in L2(Ω). That is, for {un} with un → u in L2(Ω) and aV (un − um)→ 0

then a(un − um) → 0. So {un} is Cauchy in H l
0(Ω), and hence in L2(Ω).

Therefore u ∈ H l
0(Ω). So as before we can define the associated self-adjoint

Friedrichs operator on L2(Ω, V dx):

AV (u) := (−∆)lu− αV (x)u

whose domain is a subset of D((−∆)l).

Suppose A is a self-adjoint operator on a Hilbert space and that the spectrum

of A less than or equal to λ ∈ R is discrete. Then define N(λ,A) to be the

number of eigenvalues of A less than or equal to λ, counted according to their

multiplicity. For a compact, non-negative, symmetric operator T denote by

n(λ, T ) = N(−λ,−T )

the number of eigenvalues of T greater than or equal to λ. We now consider the

quadratic functional

bV (u) :=

∫
Ω

V (x)|u(x)|2 dx
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where V ∈ LB. If bV is bounded on (H l
0(Ω), || · ||Hl0(Ω)), then it generates

a bounded, self-adjoint, non-negative operator on H l
0(Ω) — say TV . By defi-

nition

u = TV f ⇔ u ∈ H l
0(Ω);

∫
Ω

∇lu · ∇lw dx =

∫
Ω

V fw dx, for all w ∈ H l
0(Ω).

Theorem 5.2. Let Ω ⊂ R2l be a bounded region with smooth boundary, and

V ∈ LB(Ω). Then the operator TV is well defined and compact on H l
0(Ω), and

there exists a constant C3 = C3(Ω) such that, for any λ > 0,

(5.7) n(λ;TV ) ≤ C3||V ||B,Ωλ−1.

Proof. Let Q ⊆ R2l be a cube such that Ω ⊆ Q. We can regard Q as a unit

cube, after rescaling. Let W be the function on Q equal to V on Ω and W = 0

on Q \ Ω. Note that by the Hölder inequality for Orlicz spaces, we write

(5.8)

∫
Ω

V · |u|2 dx ≤ ||V ||B,Ω · ||u2||A,Ω

where the N -function A(t) := et− 1− t is the Young function conjugate to B(t).

Now by the well-known Sobolev–Orlicz embedding, see Theorem 8.25 in [2], we

have

Proposition 5.3. There exists a constant C such that, for every u ∈ H l(Ω),

2l = d,

(5.9) ||u2||A,Ω ≤ C||u||2W l,2(Ω).

Since u ∈ H l
0(Ω) we can use the H l

0(Ω) norm. So we get

(5.10)

∫
Ω

V · |u|2 dx ≤ Cd||V ||B,Ω · ||∇lu||2L2(Ω).

Thus bV is bounded as a quadratic form on H l
0(Ω) (and on Π ◦H l

0(Ω) ⊆ H l
0(Q),

where Π is the natural extension operator). So TV is bounded on H l
0(Ω) and

(5.11) n(λ;TV ) = 0 for λ > Cd||V ||B,Ω.

Now fix λ ∈ (0, λ0], where λ0 = C2Cl||V ||B,Ω, for C2 comes from Theorem 5.1,

and Cl comes from

||u||2W l,2(Ω) ≤ Cl||u||
2
Hl0(Ω)

for u ∈ H l
0(Ω). Let n be the minimal integer such that nλ > λ0. For this n

and the function W , let Ξ be the covering of Q constructed in Theorem 5.1 and

K := KΞ,l the corresponding operator (5.1).

For the subspace F := ker(K ◦Π) of H l
0(Ω)

codimF ≤ rankK ≤ m(l, d)C1 · n.
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For u ∈ H l
0(Ω) denote by U := Π(u). Then, by Theorem 5.1, the following

inequality holds:∫
Ω

V u2 dx =

∫
Q

W |U −K(U)|2 dx ≤ C2n
−1||W ||B,Q

∫
Q

|Dlu|2 dx

≤ClC2n
−1||W ||B,Q||u||2Hl0 ≤ λ||u||

2
Hl0
.

This is enough to show that TV is compact. Indeed let TV |F denote the linear

operator which is defined as TV on F and 0 on F⊥. Then TV = TV |F + TV |F⊥
and F⊥ is finite dimensional. The above shows that ||TV |F || ≤ λ. So taking

λ→ 0, we see that TV is the limit of TV |F⊥ in the uniform norm. Therefore TV
is compact and its spectrum consists of eigenvalues. If uj is an eigenvector with

eigenvalue λj ≥ λ then

(5.12) λ ≤ λj =
〈TV uj , uj〉Hl0
〈uj , uj〉Hl0

=

∫
Ω

V |uj |2 dx∫
Ω

|∇luj |2 dx
.

So uj /∈ F . Since eigenvectors are orthogonal

n(λ;TV ) ≤ codimF ≤ m(l, d)C1n(5.13)

<m(l, d)C1

(
λ0

λ
+ 1

)
≤ 2m(l, d)C1

λ0

λ
, λ ≤ λ0.

The required estimate (5.7), with C3 = 2m(l, d)C1 max{ClC2, Cd}, where Cd is

given in (5.10) and Cl is given in the inequality after (5.11), is a consequence of

(5.11) and (5.13):

(i) If ClC2 ≥ Cd then (5.13) gives the result.

(ii) If λ ≤ λ0 = ClC2||V ||B,Ω, again (5.13) gives the result.

(iii) If ClC2||V ||B,Ω < λ ≤ Cd||V ||B,Ω then (5.13) is applied to λ̃ = λClC2/Cd
and that gives the result. �

Proof of Proposition 1.4. The Briman–Schwinger principle. The

reference here is Section 1 in [8]. Let a(u) be a positive, symmetric, and closed

quadratic form in a Hilbert space H with domain D(a) ⊂ H. Let b(u) be another

non-negative, symmetric quadratic form such that

(5.14) b(u) ≤ C · a(u), u ∈ D(a).

Consider the space D̃(a), the completion of D(a) in the inner product given by

a( · , · ). By (5.14), b can be extended to all of D̃(a). The extended form defines

on D̃ a bounded, self-adjoint, non-negative operator, which we denote by

B : (D̃(a), a( · , · ))→ (D̃(a), a( · , · )).
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Proposition 5.4 (Birman–Schwinger Principle). Suppose (5.14) is satisfied

and the operator B is compact as an operator from (D̃(a), a( · , · )) to itself. Then,

for any α > 0, the quadratic form

aα(u) := a(u)− αb(u), u ∈ D(a),

is semi-bounded from below and closed in H. As usual, this implies that there is

a corresponding self-adjoint Friedrichs operator Aαb associated with this form.

For Aαb the non-positive spectrum is finite and

(5.15) N(0;Aαb) = n(α−1;B).

This result comes from the variational characterization of N(0;A), often

referred to as Glazman’s lemma. For us H = L2(Ω), D(a) = D̃(a) = H l
0(Ω),

a(u) =
∫

Ω
|∇lu|2 dx, b(u) =

∫
Ω
V |u|2 dx, α = 1, B = TV . From the proof of

Theorem 2.1, (5.14) is satisfied, TV is compact, and the form a(u) is closed in

L2(Ω). We thus obtain N(0, (−∆)l − V (x)) = n(1, TV ). So, by Theorem 5.2,

N(0, (−∆)l − V (x)) ≤ C3||V ||B,Ω. �

6. Problem (R), the radial problem on an annulus

6.1. The problem and its variational setup. Here Ω = ARR0
:= {x ∈

R2l : R0 < |x| < R} will denote an annulus, with R0 > 0 and R < +∞. We seek

radial solutions to the problem

(R)


(−∆)lu = 2ueu

2

+ ϕ(x, u) in Ω,(
∂

∂ν

)j
u

∣∣∣∣
∂Ω

= 0 for j = 0, . . . , l − 1,

where ϕ(x, u) = ϕ(|x|, u). The proper space for this problem is

Hr :=
{
u ∈ H l

0(Ω) : u(x) = u(|x|) almost everywhere in Ω
}

and the corresponding functional is

I1(u) :=
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

(eu
2

− 1) dx−
∫

Ω

Φ(x, u) dx

where Φ(x, u) =
∫ u

0
ϕ(x, t) dt is not even in u. Since ϕ(x, u) is radial in its

explicit dependence on x, critical points of I1, even when restricted to Hr, still

correspond to generalized solutions to (R). This can be seen from a simple direct

calculation using spherical coordinates. The general principle behind this fact

is called the Principle of Symmetric Criticality, see [21]. Concerning the size of

the perturbation, we assume there exists β < 1 and C > 0 such that

(6.1) |Φ(x, t)|+ |ϕ(x, t)t| ≤ Ct2eβt
2
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for all x ∈ Ω, and t ∈ R with |t| large. Similarly to before, the path of functionals

we will be concerned with is

Iθ(u) :=
1

2

∫
Ω

|∇lu|2 dx−
∫

Ω

(eu
2

− 1) dx− θ
∫

Ω

Φ(x, u) dx,

where θ ∈ [0, 1].

6.2. Bolle’s and Tanaka’s requirements. The compactness of Palais–

Smale sequences in the space Hr as required by Bolle’s condition (H1) follows

as in the general case, with the exception that instead of Adam’s inequality we

use Lemma 7.1, given below in Section 7. Thus the radial setting allows us to

consider a nonlinearity which was of critical growth in the earlier unrestricted

setting. For the condition (H2) assume |Iθ(u)| ≤ b. In fact, we only need to

assume that Iθ(u) ≤ b:

||I ′θ(u)||H−l ||u||Hl ≥ −〈I ′θ(u), u〉 = −
∫

Ω

|∇lu|2 dx+

∫
Ω

{
2u2eu

2

+θϕ(x, u)u
}
dx

=

∫
Ω

|∇lu|2 dx+

∫
Ω

{
(2u2 − 4)eu

2

+ θϕ(x, u)u− 4θΦ(x, u)
}
dx− 4Iθ(u)− C1

≥ ||u||2Hl(Ω) + c

∫
Ω

u2eu
2

dx− C2 − b.

Then, from (6.1) it follows that

||I ′θ(u)||H−l ||u||Hl ≥ c
∣∣∣∣ ∫

Ω

Φ(x, u) dx

∣∣∣∣− C3 = c

∣∣∣∣ ∂∂θ Iθ(u)

∣∣∣∣− C3,

where b was absorbed into C3 and where c is some small positive constant in the

last two inequalities. This verifies condition (H2). Next for condition (H3), let

u be a critical point of Iθ. Then

Iθ(u) = Iθ(u)− 1

2
〈I ′θ(u), u〉

=

∫
Ω

{
(u2 − 1)eu

2

+
θ

2
ϕ(x, u)u− θΦ(x, u)

}
dx− C4 ≥ c

∫
Ω

u2eu
2

dx− C5,

where again c is some small positive constant. Applying Jensen’s inequality and

(6.1), we have, for sufficiently large constants C6 and C7,

C6[|Iθ(u)|+ 1]β ≥
∫

Ω

(u2eu
2

)β dx+ C7 ≥
∣∣∣∣ ∫

Ω

Φ(x, u) dx

∣∣∣∣ =

∣∣∣∣ ∂∂θ Iθ(u)

∣∣∣∣.
So, condition (H3) holds with f1(θ, t) = f2(θ, t) = f(t) := C[|t| + 1]β . Con-

dition (H4) follows as before. If we assume that only the second possibility of

Theorem 2.1 holds for sufficiently large n ∈ N, then for some K > 0 such that

cn+1 − cn ≤ K(f1(cn+1) + f2(cn) + 1),

for sufficiently large n. More concisely, by enlarging K if necessary, this means

cn+1 − cn ≤ K((cn+1)β + (cn)β + 1)



Multiplicity of Solutions for Polyharmonic Dirichlet Problems 51

for sufficiently large n. Finally, using the fact that β < 1, this implies that for

some A > 0

cn ≤ An1/(1−β) for n > n0,

with n0 sufficiently large. The argument is the same as that used for (3.30).

6.3. The lower bound. As before, the goal is to obtain a lower bound

for cn that will contradict the alleged upper bound. The requirements in Tanaka’s

Theorem are all verified as before, with no new phenomena appearing. By

Tanaka’s Theorem, there exists a sequence un in the Hilbert space Hr such

that

(i) I0(un) ≤ cn,

(ii) I ′0(un) = 0,

(iii) n ≤ index0 I
′′
0 (un).

For simplicity we denote un as u, holding n fixed for the moment. As before,

index0 I
′′
0 (u) = number of non-positive eigenvalues of (−∆)l − 2(u2 + 2)eu

2

.

By applying Proposition 1.6 we get

n2l ≤ [index0 I
′′
0 (u)]2l ≤C8

∫
ARR0

2(u2 + 2)eu
2

log

(
R

|x|

)2i

dx

≤CR0

∫
ARR0

2(u2 + 2)eu
2

dx.

Since u = un is a critical point of I0 as before we have that

cn ≥ I0(un) ≥ c
∫

Ω

u2eu
2

dx− C9.

Therefore we obtain cn ≥ C10 · n2l for sufficiently large n. Therefore, if 2l >

1/(1− β) this contradicts the upper bound, and proves Theorem 1.2. �

7. Piecewise-polynomial approximation and spectral estimates

in the annular case

Here we prove Proposition 1.6. As mentioned earlier, we first need some

appropriate inequalities in the radial case to take the place of the Orlicz–Sobolev

inequality of Proposition 5.3. Lemma 7.1 below is a generalization of an inequa-

lity by Ni, see [20]. Note, in Lemmas 7.1 and 7.2 below, the constant Cd refers

to a generic constant which changes in a suitable way from one line to another

but just depends on d.

Lemma 7.1. Let u ∈ Hr.

(a) If d = 2l = 2 then

|u(x)| ≤ Cd||∂ru||L2(Ω) ·

√
log

(
R

|x|

)
for x ∈ Ω = ARR0

.
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(b) If d = 2l > 2 then

|u(x)| ≤ Cd||∂lru||L2(Ω) · log

(
R

|x|

)
for x ∈ Ω = ARR0

.

Proof. (a) For simplicity we write u = u(r) as a function of the radial

variable. By a density argument we may assume that u ∈ C∞0 (Ω). For r ∈ [R0, R]

−u(r) = u(R)− u(r) =

∫ R

r

u(ρ) dρ,

so

|u(r)| ≤
∫ R

r

|u(ρ)| dρ

≤
(∫ R

r

|u(ρ)|2ρ dρ
)1/2(∫ R

r

1

ρ
dρ

)1/2

≤ Cd||∂ru||L2(Ω) · log

(
R

r

)1/2

,

which is the required result.

(b) Again we take u ∈ C∞0 .

u(r) =u(r)− u(R) = −
∫ R

r

u′(ρ1) dρ1

=

∫ R

r

u′(R)− u′(ρ1) dρ1 =

∫ R

r

∫ R

ρ1

u′′(ρ2) dρ2 dρ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= (−1)l
∫ R

r

∫ R

ρ1

. . .

∫ R

ρl−1

u(l)(ρl) dρl . . . dρ1.

So

|u(r)| ≤
∫ R

r

∫ R

ρ1

. . .

∫ R

ρl−1

|u(l)(ρl)| dρl . . . dρ1

=

∫ R

r

∫ R

ρ1

. . .

∫ R

ρl−1

|u(l)(ρl)|ρ(d−1)/2
l ρ

(1−d)/2
l dρl . . . dρ1

≤
∫ R

r

∫ R

ρ1

. . .

∫ R

ρl−2

(∫ R

ρl−1

|u(l)(ρl)|2ρd−1
l dρl

)1/2

·
(∫ R

ρl−1

ρ1−d
l dρl

)1/2

dρl−1 . . . dρ1

≤Cd||∂lru||L2(Ω) ·
∫ R

r

∫ R

ρ1

. . .

∫ R

ρl−2

ρ1−l
l−1 dρl−1 . . . dρ1

≤Cd||∂lru||L2(Ω) ·
∫ R

r

1

ρ1
dρ1 = Cd||∂lru||L2(Ω) · log

(
R

r

)
which is the required estimate. �
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When proving a radial version of Theorem 5.1 it is necessary to have at one’s

disposal inequalities of the above type, but without the zero boundary conditions.

The key is to find the appropriate (l − 1)th degree polynomial to subtract from

u, so that the remainder can be controlled by the lth order derivative of u. It is

not surprising that this is the same polynomial approximation which appears in

the radial version of Theorem 5.1.

Lemma 7.2. Let u ∈ H l(A), where A = ARR0
is an annulus centered at the

origin in R2l, and u(x) = u(|x|) almost everywhere in A.

(a) If d = 2l = 2, then

|u(x)− uA| ≤ Cd||∂ru||L2(A) ·
[
1 + log

(
R

|x|

)1/2]
for x ∈ A, where uA is the average value of u in A.

(b) When d = 2l > 2. First define

τl(u)(r, s) :=

l−1∑
n=0

u(n)(s)

n!
(r − s)n

and

Pl,A(u)(r) :=
1

|A|

∫
A

τl(u)(r, |x|) dx

which is a polynomial in r of degree ≤ l − 1 and linear in u. Then

|u(x)− Pl,A(u)(|x|)| ≤ Cd||∂lru||L2(A) ·
[
1 + log

(
R

|x|

)]
for x ∈ A = ARR0

.

Proof. We assume u ∈ C∞(A) and radially symmetric. Then

(7.1) |u(r)− uA| =
∣∣∣∣ 1

|A|

∫
A

{u(r)− u(x)} dx
∣∣∣∣ ≤ 1

|A|

∫
A

|u(r)− u(x)| dx.

Now

u(r)− u(x) =

∫ r

|x|
u′(ρ) dρ.

So

|u(r)− u(x)| ≤
∫
|x|,r
|u′(ρ)|ρ1/2ρ−1/2 dρ,

where the notation
∫
a,b

denotes unoriented integration over the interval with

endpoints a and b. So

|u(r)− u(x)| ≤
(∫
|x|,r
|u′(ρ)|2ρ dρ

)1/2(∫
|x|,r

ρ−1 dρ

)1/2

≤Cd||∂ru||L2(A) ·
∣∣∣∣ log

(
r

|x|

)∣∣∣∣1/2.
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Plugging this into the earlier inequality gives

|u(r)− uA| ≤
1

|A|

∫
A

Cd||∂ru||L2(A) ·
∣∣∣∣ log

(
r

|x|

)∣∣∣∣1/2 dx
=
Cd
|A|
||∂ru||L2(A) ·

∫ R

R0

∣∣∣∣ log

(
r

ρ

)∣∣∣∣1/2ρdρ.
It is easy to check that the value of the integral is bounded above by a constant

multiple of

R(R−R0)

[
1 +

(
log

(
R

r

))1/2]
.

To see this we evaluate the integral in two parts:

I1 =

∫ r

R0

[
log

(
r

ρ

)]1/2

ρ dρ and I2 =

∫ R

r

[
log

(
ρ

r

)]1/2

ρ dρ.

In I1 we let t = log(r/ρ) and so

I1 = r2

∫ log(r/R0)

0

t1/2e−2t dt

≤C0r
2

∫ log(r/R0)

0

e−t dt = C0r(r −R0). ≤ C0R(R−R0).

For I2 we simply notice

I2 =

∫ R

r

[
log

(
ρ

r

)]1/2

ρ dρ ≤
[

log

(
R

r

)]1/2

R(R−R0).

Since A is a d = 2 dimensional annulus we have that R(R−R0)/|A| ≤ Cd. Thus

|u(r)− uA| ≤ Cd||∂ru||L2(A) ·
[
1 +

[
log

(
R

r

)]1/2]
which is the required result.

(b) As before, we assume u is smooth. Then

|u(x)− Pl,A(u)(|x|)| =
∣∣∣∣ 1

|A|

∫
A

{
u(r)− τl(u)(r, |x|)

}
dx

∣∣∣∣(7.2)

≤ 1

|A|

∫
A

{
|u(r)− τl(u)(r, |x|)|

}
dx.

Set v(r) := u(r)− τl(u)(r, |x|). Note that, keeping |x| fixed, we have

v(n)(r)|r=|x| = 0 for 0 ≤ n ≤ l − 1,
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where the differentiation is partial differentiation w.r.t. r. We seek to estimate

v(r) by repeatedly applying this property.

v(r) = v(r)− v(|x|) =

∫ r

|x|
v′(ρ1) dρ1

=

∫ r

|x|

{
v′(ρ1)− v′(|x|)

}
dρ1 =

∫ r

|x|

∫ ρ1

|x|
v′′(ρ2) dρ2 dρ1

=

∫ r

|x|

∫ ρ1

|x|

{
v′′(ρ2)− v′′(|x|)

}
dρ2 dρ1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=

∫ r

|x|

∫ ρ1

|x|
. . .

∫ ρl−1

|x|
v(l)(ρl) dρl . . . dρ1,

thus

|v(r)| ≤
∫
|x|,r

∫
|x|,ρ1

. . .

∫
|x|,ρl−1

|v(l)(ρl)| dρl . . . dρ1.

We apply Hölder’s inequality to the inner most integral

|v(r)| ≤
∫
|x|,r

∫
|x|,ρ1

. . .

∫
|x|,ρl−2

(∫
|x|,ρl−1

|v(l)(ρl)|2ρd−1
l dρl

)1/2

×
(∫
|x|,ρl−1

ρ1−d
l dρl

)1/2

dρl−1 . . . dρ1

≤Cd||∂lru||L2(A) ·
∫
|x|,r

∫
|x|,ρ1

. . .

∫
|x|,ρl−2

∣∣ρ2−d
l−1 − |x|

2−d∣∣1/2 dρl−1 . . . dρ1

after using v(l)(ρl) = ∂lru(ρl). Returning to (7.2) we get

(7.3) |u(r)− Pl,A(u)(r)| ≤ Cd
|A|
||∂lru||L2(A)

×
∫
A

∫
|x|,r

∫
|x|,ρ1

. . .

∫
|x|,ρl−2

∣∣ρ2−d
l−1 − |x|

2−d∣∣1/2 dρl−1 . . . dρ1dx.

We seek to estimate the above integral. First, by converting to polar coordi-

nates the integral becomes (after factoring out a constant depending only on the

dimension)∫ R

R0

∫
ρ0,r

∫
ρ0,ρ1

. . .

∫
ρ0,ρl−2

∣∣ρ2−d
l−1 − ρ

2−d
0

∣∣1/2 dρl−1 . . . dρ1ρ
d−1
0 dρ0.

We divide the integration by dρ0 into two pieces. One where R0 ≤ ρ0 ≤ r and

one where r ≤ ρ0 ≤ R. This allows us to properly orient the endpoints. The
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first integral is∫ r

R0

∫ r

ρ0

∫ ρ1

ρ0

. . .

∫ ρl−2

ρ0

(
ρ2−d

0 − ρ2−d
l−1

)1/2
dρl−1 . . . dρ1 ρ

d−1
0 dρ0(7.4)

≤
∫ r

R0

∫ r

ρ0

∫ ρ1

ρ0

· · ·
∫ ρl−2

ρ0

ρ
1−d/2
0 dρl−1 · · · dρ1 ρ

d−1
0 dρ0

=

∫ r

R0

∫ r

ρ0

∫ ρ1

ρ0

. . .

∫ ρl−3

ρ0

ρ
1−d/2
0 (ρl−2 − ρ0) dρl−2 . . . dρ1 ρ

d−1
0 dρ0

≤
∫ r

R0

∫ r

ρ0

∫ ρ1

ρ0

. . .

∫ ρl−3

ρ0

ρ
1−d/2
0 ρl−2 dρl−2 . . . dρ1 ρ

d−1
0 dρ0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤Cl
∫ r

R0

∫ r

ρ0

ρ
1−d/2
0 ρl−2

1 dρ1 ρ
d−1
0 dρ0 ≤ C

∫ r

R0

ρ
1−d/2
0 rl−1ρd−1

0 dρ0

=C

∫ r

R0

ρ
d/2
0 rl−1 dρ0 ≤ Crd/2+l−1(r −R0)

≤CRd/2+l−1(R−R0) = CRd−1(R−R0),

where we have used d = 2l in the final equality.

The second integral is∫ R

r

∫ ρ0

r

∫ ρ0

ρ1

. . .

∫ ρ0

ρl−2

(
ρ2−d
l−1 − ρ

2−d
0

)1/2
dρl−1 . . . dρ1 ρ

d−1
0 dρ0

≤
∫ R

r

∫ ρ0

r

∫ ρ0

ρ1

. . .

∫ ρ0

ρl−2

ρ
1−d/2
l−1 dρl−1 . . . dρ1 ρ

d−1
0 dρ0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

≤Cd
∫ R

r

∫ ρ0

r

ρ
l−1−d/2
1 dρ1 ρ

d−1
0 dρ0.

Now, using l − 1− d/2 = −1,

(7.5) = Cd

∫ R

r

log

(
ρ0

r

)
ρd−1

0 dρ0 ≤ CdRd−1(R−R0) log

(
R

r

)
.

Combining (7.3), (7.4), and (7.5) gives

(7.6) |u(r)− Pl,A(u)(r)| ≤ Cd
Rd−1(R−R0)

|A|
||∂lru||L2(A)

[
1 + log

(
R

r

)]
.

Since A is an annulus, Rd−1(R−R0)/|A| ≤ Cd. So

(7.7) |u(r)− Pl,A(u)(r)| ≤ Cd||∂lru||L2(A)

[
1 + log

(
R

r

)]
which is the required estimate. �

We will apply Lemma 7.2 to our main region Ω = ARR0
, where R < ∞ and

R0 > 0 are, respectively, the fixed outer and inner radii of Ω. Let ũ(x), x ∈ Ω,



Multiplicity of Solutions for Polyharmonic Dirichlet Problems 57

be as in that lemma. We have that, for r̃ ∈ [R0, R],

|ũ(r̃)− Pl,Ωũ(r̃)|2 ≤ cd
[
1 + log

(
R

r̃

)]2i ∫ R

R0

|∂lr̃ ũ|2 ρ̃d−1 dρ̃.

So

(7.8) |ũ(r̃)− Pl,Ωũ(r̃)|2 ≤ κ0

∫ R

R0

|∂lr̃ ũ|2 ρ̃d−1 dρ̃

where

κ0 = κ0(d,R0, R) = cd

[
1 + log

(
R

R0

)]2i

.

Now consider a change of variable, replacing the domain Ω = ARR0
with a smaller

annulus contained in it, A. It is centered at the origin, with inner radius RA,

and outer radius RA, R0 ≤ RA < RA ≤ R:

Let r = µr̃+ β, where µ := (RA −RA)/(R−R0) and β := (R0R
A −RRA)/

(RA −RA). For a radially symmetric ũ ∈ H l(Ω), let u(r) := ũ(r̃). Define

(7.9) Pl,Au(r) := Pl,Ωũ(r̃).

Inequality (7.8) becomes

(7.10) |u(r)− Pl,Au(r)|2 ≤ κ0µ
2l−1

∫ RA

RA

|∂lru|2ρ̃ dρ,

where ρ = µρ̃ + β. Since R0 > 0 we have R0/R ≤ ρ̃/ρ ≤ R/R0. This and

inequality (7.10) give

(7.11) |u(r)− Pl,Au(r)|2 ≤ κ′µ2l−1

∫
A

|∂lru|2 dx, κ′ := κ0(R/R0)d−1.

But clearly

µ2l−1 ≤
(

cd

Rd−1
0 (R−R0)

)2l−1

|A|2l−1.

So finally, inequality (7.11) gives

(7.12)

|u(r)− Pl,Au(r)|2 ≤ κ′′|A|2l−1

∫
A

|∂lru|2 dx,

κ′′ := κ′
(

cd

Rd−1
0 (R−R0)

)2l−1

,

for all radially symmetric u ∈ H l(A). We will use this result as the basis for

establishing a radial analogue of Theorem 5.1. Before we proceed with that, we

need a lemma on functions of sets.

Let J be a non-negative function of half-open annuli A ⊆ Ω (always taken

to be centered at the origin), which is super-additive. That is, if an annulus A is
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partitioned into finitely many annuli {Aj}, then
∑
j

J (Aj) ≤ J (A). The J that

we are interested in is

J (A) :=

∫
A

V (x)

[
1 + log

(
R

|x|

)]2i

dx.

For a partition Ξ = {Aj} of Ω into (half-open) annuli define

G(J ,Ξ) := max
A∈Ξ
|A|2l−1J (A).

Then, by Theorem 1.5 in [7], we have

Lemma 7.3. For any natural number n there exists a partition Ξ of Ω into

(half-open) annuli such that

card(Ξ) ≤ n and G(J ,Ξ) ≤ C(l, d)n−2lJ (Ω).

Its proof is given in Section 2.2 of that reference. Let Ξ be the partition

guaranteed by Lemma 7.3. For a set A let χA denote its characteristic function.

Define

KΞ,l :=
∑
A∈Ξ

χAPl,A,

the operator of piecewise-polynomial approximation. Note that

rank(KΞ,l) ≤ l · card(Ξ) ≤ ln.

Theorem 7.4. With the above notation we have

(7.13)

∫
Ω

V (x)|u−Kl,Ξu|2 dx ≤ κn−2lJ (Ω)

∫
Ω

|∂lru|2 dx.

where κ = κ(d, l, R0, R).

Proof. First∫
Ω

V (x)|u−Kl,Ξu|2 dx =
∑
A∈Ξ

∫
A

V (x)|u− Pl,Au|2 dx

≤
∑
A∈Ξ

sup
x∈A

|u(x)− Pl,Au(|x|)|2[
1 + log(R/|x|)

]2i · ∫
A

V (x)
[
1 + log(R/|x|)

]2i
dx

≤
∑
A∈Ξ

sup
x∈A
|u(x)− Pl,Au(|x|)|2 · J (A),

where we have used [1 + log(R/|x|)]2i ≥ 1 in the last inequality. So, by equa-

tion (7.12),∫
Ω

V (x)|u−Kl,Ξu|2 dx ≤ κ′′
∑
A∈Ξ

∫
A

|∂lru|2 dx · |A|2l−1 · J (A)

≤G(J ,Ξ) · κ′′ ·
∑
A∈Ξ

∫
A

|∂lru|2 dx ≤ κn−2lJ (Ω)

∫
Ω

|∂lru|2 dx,

where we used Lemma 7.3 in the last line. �
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On the space Hr = Hr(Ω) endowed with the norm (
∫

Ω
|∇lu|2 dx)1/2 we

consider the quadratic form

bV (u) :=

∫
Ω

V (x)|u(x)|2 dx,

where V (x) is radial and integrable when weighted with the weight

[1 + log(R/|x|)]2i.

If bV is bounded on Hr, then it generates a bounded, self-adjoint, non-negative

operator on Hr, which we will denote by TV . By definition, for f ∈ Hr,

u = TV f ⇔ u ∈ Hr;

∫
Ω

∇lu · ∇lw dx =

∫
Ω

V uw dx, for all w ∈ Hr.

As before we let

n(λ;TV ) = N(−λ;−TV ) = # {eigenvalues of TV that are ≥ λ}.

Theorem 7.5. Let V (x) and Ω be as above. Then the operator TV is compact

on Hr, and there exists a constant C4 = C4(Ω) such that, for any λ > 0,

n(λ;TV )2l ≤ C4λ
−1

∫
Ω

V (x)
[
1 + log(R/|x|)

]2i
dx.

Proof. We will actually prove an upper bound on for the eigenvalues of

TV and use this to derive the estimate for n(λ;TV ). Fix a natural number n.

By Theorem 7.4, there exists a partition Ξ of Ω into smaller annuli such that

card(Ξ) ≤ n and for any radially symmetric u ∈ H l(Ω) the estimate (7.13) holds.

Let F := ker(KΞ,l). We have

codim(F) = rank(KΞ,l) ≤ ln.

For u ∈ F we compute

〈TV u, u〉 = bV (u) =

∫
Ω

V (x)|u|2 dx

=

∫
Ω

V (x)|u−KΞ,lu|2 dx ≤ κn−2lJ (Ω)

∫
Ω

|∇lu|2 dx,

where Theorem 7.4 was applied in the last line. Thus by taking n → ∞ we see

that TV is the norm-limit of finite rank operators, hence compact. Also

(7.14) max
u∈F

〈TV u, u〉Hl0(Ω)

〈u, u〉Hl0(Ω)

= max
u∈F

∫
Ω

V (x)|u|2 dx∫
Ω

|∇lu|2 dx
≤ κn−2l · J (Ω).

So, by Courant’s Minimax Theorem for general symmetric compact operators,

we have

λnl+1 ≤ κn−2l · J (Ω),
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where λj denotes the j-th of the positive operator TV in Hr. Hence there is

a constant C = C(Ω) such that

(7.15) λn ≤ C(Ω)n−2l · J (Ω), n = 1, 2, . . .

To prove the required estimate we proceed as follows:

n(λ;TV ) = # {n : λn ≥ λ} ≤ # {n : C(Ω)J (Ω)n−2l ≥ λ}

= #
{
n : n ≤ C(Ω)1/2lJ (Ω)1/2l · λ−1/2l

}
≤ C(Ω)1/2lJ (Ω)1/2l · λ−1/2l.

Raising both sides to the power 2l gives the result. �

Proof of Proposition 1.6. To finish the proof of Proposition 1.6 we again

use the Birman–Swchinger Principle with H = L2
rad(Ω), D(a) = D̃(a) = Hr,

a(u) =
∫

Ω
|∇lu|2 dx, b(u) =

∫
Ω
V |u|2 dx, and B = TV to obtain

N(0; (−∆)l − V )2l = n(1;TV )2l ≤ C11J (Ω). �

8. Problem (H), the radial problem with Hardy potential

Finally, we consider problem (H). That is we seek weak radial solutions to

(H)


(−∆)lu+

b

|x|2l
u = g(x, u) + ϕ(x) in BR(0),(

∂

∂ν

)j
u

∣∣∣∣
∂BR(0)

= 0 for j = 0, . . . , l − 1,

where b > 0, and g and ϕ are radially symmetric in their dependence on x.

Notice that the Hardy exponent is the critical one. That is the corresponding

Hardy inequality in H l
0(BR) does not hold in general. Define the space Cr as the

set of u ∈ C∞0 (BR \ {0}) with u(x) = u(|x|) almost everywhere.

Let Hr := the closure of Cr in the norm

(8.1) ||u||2Hr :=

∫
BR

|∇lu|2 dx+ b

∫
BR

|u|2

|x|2l
dx.

Note that clearly Hr ↪→ H l
0(BR) continuously, something to keep in mind. We

will prove the existence of solutions by looking for critical points of the functional

I1(u) :=
1

2

∫
BR

|∇lu|2 dx+
b

2

∫
BR

|u|2

|x|2l
dx−

∫
BR

G(x, u) dx−
∫
BR

ϕudx

on Hr, where G(x, u) =
∫ u

0
g(x, t) dt. Because g and ϕ are radially symmetric

in their explicit dependence on x, the critical points of this functional on Hr
are also critical points on H l

0(BR). Hence they are generalized solutions for (H).

Since G(x, u) has the same growth restrictions in this problem as it did in (P)

all conditions in Theorem 2.1 and in Tanaka’s Theorem follow exactly the same

reasoning as they did earlier. Since b > 0 Palais–Smale sequences are bounded in

the norm of Hr, instead of merely in the norm of H l
0. In any case the argument
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proceeds as before and we need to contradict the possibility that the minimax

values cn of the unperturbed functional satisfy equation (3.30)

cn ≤ An[ln(n)]1/α1 for n > n0.

Earlier in Section 4 we define the smoother functional J(u) by equation (4.1),

and its minimax levels

bn := inf
g∈Γn

sup
u∈g(En)

J(u).

We do exactly the same thing here, except J(u) is now defined as

J(u) =
1

2

∫
BR

|∇lu|2 dx+
b

2

∫
BR

|u|2

|x|2l
dx−

∫
BR

H(u) dx.

That is, the form
1

2

∫
BR

|∇lu|2 dx

is replaced by the form

1

2

∫
BR

|∇lu|2 dx+
b

2

∫
BR

|u|2

|x|2l
dx.

Since J(u) ≤ I0(u) by construction, we have bn ≤ cn. So it will suffice to obtain

a good lower bound on bn. By Tanaka [32], Theorem B, there exists a sequence

un such that

(i) J(un) ≤ bn,

(ii) J ′(un) = 0,

(iii) n ≤ index0 J
′′(un).

Therefore n ≤ index0 J
′′(u) = N−((−∆)l + b|x|−2l −H ′′(un(x))).

The eigenvalue estimate we apply is the following result from [17].

Lemma 8.1 (Laptev–Netrusov). Consider the unbounded linear operator H :=

(−∆)l+b|x|−2l−V (x) acting on L2(BR), BR the ball of radius R in R2l. Suppose

that V (x) = V (|x|) ≥ 0 and V (x) ∈ L1(BR). Then

N−((−∆)l + b|x|−2l − V (x)) ≤ C(l, b)

∫
BR

V (x) dx.

So

n ≤ C
∫
BR

H ′′(un(x)) dx ≤ C
∫
BR

(|un|+ 1)2α2−2e(u2
n+1)b dx.

Since un is a critical point of J the last term in the above line can be controlled

by J(un). Like in Section 4, this gives

Cn[log(n)]γ ≤ J(un) ≤ bn ≤ cn

for sufficiently large n, where this time γ = 2/α2−1. Thus if 1/α1 < 2/α2−1 this

contradicts the alleged upper bound, and proves that I1 an unbounded sequence

of radial critical points.
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For more multiplicity results in a setting of radial symmetry see the pa-

per [11]. In particular, Lemma 4.1 from [11] deals with the case where l = 1 and

d ≥ 3, unlike this paper where we dealt with the critical case where d = 2l.
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