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MULTIPLE POSITIVE SOLUTIONS

FOR A CLASS OF VARIATIONAL SYSTEMS

Alfonso Castro — David Costa — Ratnasingham Shivaji

Abstract. We consider the variational system −∆u = λ(∇F )(u) in Ω,

u = 0 on ∂Ω, where Ω is a bounded region in Rm (m ≥ 1) with C1

boundary, λ is a positive parameter, u : Ω → RN (N > 1), and ∆ denotes
the Laplace operator. Here F : RN → R is a function of class C2. Using

variational methods, we show how changes in the sign of F lead to multiple

positive solutions.

1. Introduction

We study the existence of positive solutions to the variational system

(1.1)

−∆u = λ(∇F )(u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded region in Rm (m ≥ 1) with C1 boundary, λ is a positive

parameter, u : Ω → RN (N > 1), and ∆ denotes the Laplacian operator. Here

F : RN → R is a function of class C2. By a positive solution to (1.1) we mean

a function u = (u1, . . . , uN ) with each uj ∈ C2(Ω) ∩ C1(Ω), uj(x) ≥ 0; Ω,

uj(x) = 0; ∂Ω and ul(x0) > 0 for some l ∈ {1, . . . , N}, x0 ∈ Ω.
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Let Σ = {z = (z1, . . . , zN ) | z1 + . . .+zN = 1 with zi ≥ 0 for all i = 1, . . . , N}
and Q = {z = (z1, . . . , zN ) | zi > 0 for all i = 1, . . . , N}. For z ∈ RN we will

denote |z|1 = |z1|+ . . .+ |zN | and P (z) = z/|z|1, for z 6= 0. We assume:

(H1) F (z1, . . . , zN ) = 0 if z1 . . . zN = 0, and F (z1, . . . , zN ) ≤ 0 if zi ≤ 0 for

some i = 1, . . . , N .

(H2) There exist concave functions ρ1, . . . , ρ2k : Σ→ [0,∞) such that

0 < ρi(z) < ρi+1(z), i = 1, . . . , 2k − 1.

(H3) For z ∈ Q, F (z) > 0 if |z|1 ∈ (ρ2i+1(P (z)), ρ2(i+1)(P (z))), and F (z) <

0 if |z|1 ∈ (ρ2i(P (z)), ρ2i+1(P (z))) for i = 0, 2, . . . , k − 1 or |z|1 ≥
ρ2k(P (z)).

(H4) For i = 0, . . . , k−1 there exists z(i) ∈ Q such that |z(i)|1∈(ρ2i+1(P (z(i))),

ρ2(i+1)(P (z(i)))) and F (z(i)) > max{F (z) | |z|1 < ρ2i+1(P (z(i)))}.
Our main result is the following:

Theorem 1.1. There exist λ1 < . . . < λk such that if λ > λi, for i =

1, . . . , k − 1, then the boundary value problem (1.1) has i positive solutions.

In the single equation case (N = 1) there is a rich history on the study of

such boundary value problems where the analysis of how the changes of sign of

the nonlinear term give rise to the existence of multiple positive solutions. In

particular see Brown–Budin [1] where a combination of variational and mono-

tone iteration methods is used, Hess [8] where a combination of variational and

topological degree arguments is applied, and De Figueiredo [7] where only varia-

tional methods are used. Clement and Sweers in [3] proved that if f : [0,∞)→ R
satisfies

(1.2)
f(s) < 0 for 0 < s < s1 or s > s2,

f(s) > 0 for s1 < s < s2,

for some 0 < s1 < s2, then the (possibly semipositone) problem

(1.3) −∆u = λf(u) in Ω, u(x) = 0 for x ∈ ∂Ω,

has a positive solution u for λ large with ‖u‖∞ ∈ (s1, s2) if and only if

(1.4)

∫ s2

0

f(s) ds > 0.

Also, Dancer and Schmitt in [5] used sub-supersolutions to show that (1.4) is

necessary for existence of a positive solution to (1.3). In [6], De Figueiredo

showed that for f(u) = sin(u) and λ > 0 in (1.3) this equation has only one

positive solution. However, to date no extension of this study has been achieved

for the system case (when N > 1), which we establish in this paper via variational

methods.
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For related results on 2×2 systems the reader is referred to [2] and [4]. In [2],

extensive use of regularity properties of elliptic operators and the Krasnosel’skĭı

compression-expansion theorem is made to prove the existence of positive solu-

tions. In [4], variational methods are employed in proving existence of solutions

for non-cooperative systems.

In Section 2 we establish auxiliary lemmas needed for the proof of Theo-

rem 1.1 in Section 3.

2. Auxiliary results

For j = 1, . . . , k let Sj be the closure of {z ∈ Q | |z|1 ≤ ρ2j(P (z))}. Also,

let S0 be the closure of {z ∈ Q | |z|1 ≤ ρ1(P (z))}. From (H2) it follows that Sj
is convex. We will denote by Pj the projection of RN onto the convex set Sj .

Hence Pj is locally Lipschitzian. Let

(2.1) Fj(u) :=

0 if u /∈ Sj ,
F (u) if u ∈ Sj .

Since F is differentiable, Fj is locally Lipschitzian and the functional

Jj,λ : H = (H1,2
0 (Ω))N → R

defined by

(2.2) Jj,λ(u) =

∫
Ω

(
1

2

N∑
i=1

|∇ui|2 − λFj(u)

)
dx

attains its minimum value. Indeed, Jj,λ is bounded below because Fj is bounded.

If {Jj,λ(vk)} converges to inf{Jj,λ(u) | u ∈ H} then {vk} is bounded in H. Hence

it has a subsequence (call it {vk} again) that converges in L2(Ω) to some ûj .

Hence {
∫

Ω
Fj(vk) dx} converges to

∫
Ω
Fj(ûj) dx. This and the convexity of the

norm gives Jj,λ(ûj) = min{Jj,λ(u) | u ∈ H}.

Lemma 2.1. If ûj := (ûj,1, . . . , ûj,N ) is as above, then ûj(ζ) ∈ Sj for all

ζ ∈ Ω.

Proof. For the sake of simplicity in the notation, throughout this proof we

denote ûj = u, ûj,l = ul, and Jj,λ = J . Suppose first that v = (ul)− is not zero

for some l ∈ {1, . . . , N}. Hence, there exists c > 0 such that∫
Ωc

|∇v|2 dx <
∫

Ω

|∇v|2 dx,

where Ωc = {x ∈ Ω | v(x) ≤ c}. Let w = min{v, c}. Thus

w = (u1, . . . , ul−1, v, ul+1, . . . , uN ) ∈ H.
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By the definition of Fj we have Fj(u(x)) = Fj(w(x)) for all x ∈ Ω. Therefore,

J(w) =
1

2

∫
Ω

N∑
k=1, k 6=l

|∇uk|2 dx+
1

2

∫
Ω

|∇v|2 dx− λ
∫

Ω

Fj(w) dx

<
1

2

∫
Ω

N∑
k=1

|∇uk|2 dx− λ
∫

Ω

Fj(u) dx = J(u),

which contradicts the definition of u. Hence ul ≥ 0 for all l = 1, . . . , N .

Suppose next that the Lebesgue measure of W = {x ∈ Ω | u(x) 6∈ Sj} is

positive. Since Sj is convex there exist η1 ∈ RN , µ ∈ (0,+∞), such that the

Lebesgue measure of W1 = {x ∈ Ω | u(x) · η1 > µ} is positive. Hence

(2.3)

∫
W1

N,N∑
l=1,i=1

(
∂ul
∂xi

(x)

)2

dx > 0.

Let w(x) = u(x) − ((u(x) · η1) − µ)η1 for (u(x) · η1) ≥ µ and w(x) = u(x) for

(u(x)η1) ≤ µ. Thus w ∈ H. Since W1 is a subset of the complement of Sj ,

Fj(w(x)) = Fj(u(x)) for all x ∈ Ω. Let η2, . . . , ηN be such that {η1, η2, . . . , ηN}
is a complete orthonormal set in RN . Since

u(x) = (u(x) · η1)η1 + . . .+ (u(x) · ηN )ηN ,

we have for i = 1, . . . , N that

∂u

∂xi
(x) =

(
∂u

∂xi
(x) · η1

)
η1 + . . .+

(
∂u

∂xi
(x) · ηN

)
ηN .

Also, from the definition of w, for x ∈W1 and i = 1, . . . , N we have

∂w

∂xi
(x) =

(
∂u

∂xi
(x) · η2

)
η2 + . . .+

(
∂u

∂xi
(x) · ηN

)
ηN .

Hence, letting w1, . . . , wN denote the components of w,

N,N∑
l=1,k=1

(
∂wl
∂xi

(x)

)2

dx =

N,N∑
l=1,k=2

(
∂u

∂xi
· ηk
)2

,

for al x ∈W1. Since W1 is a set of positive measure,

∫
W1

N∑
i=1

(
∂ûj
∂xi
· η1

)2

dx > 0.
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Thus ∫
W1

N,N∑
i=1,k=1

(
∂uk
∂xi

)2

dx =

∫
W1

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx(2.4)

=

∫
W1

N,N∑
i=1,k=1

(
∂u

∂xi
· ηk
)2

dx >

∫
W1

N,N∑
i=1,k=2

(
∂u

∂xi
· ηk
)2

dx

=

∫
W1

N∑
i=1

∣∣∣∣ ∂w∂xi
∣∣∣∣2 dx =

∫
W1

N,N∑
i=1,k=1

(
∂wk
∂xi

)2

dx.

Also, from the definition of w,∫
W1

(∇wi · η1)2 dx = 0

for all i = 1, . . . , N . Letting W2 = Ω−W1, we have by (2.4) that

J(w) =

∫
W2

(
1

2

N∑
k=1

|∇wk|2 − λFj(w)

)
dx+

∫
W1

(
1

2

N∑
k=1

|∇wk|2
)
dx

=

∫
W2

(
1

2

N∑
k=1

|∇uk|2 − λFj(ûj)
)
dx+

1

2

∫
W1

N∑
i,k=1

(
∂ui
∂xk

)2

dx

<
1

2

∫
Ω

N∑
k=1

|∇uk|2 dx− λ
∫

Ω

Fj(ûj) dx = J(ûj),

Since this contradicts the definition of u, (2.3) is impossible. Therefore the

Lebesgue measure of W is zero, which proves the lemma. �

Lemma 2.2. If ûj := (ûj,1, . . . , ûj,N ) is as above, then ûj is a solution to

system (1.1).

Proof. Let φ : Ω → RN be a function of compact support and class C∞.

By (H1) and Lemma 2.1, for |t| sufficiently small we have

Fj((ûj + tφ)(ζ)) ≥ F ((ûj + tφ)(ζ))

for all ζ ∈ Ω. Therefore,

Iφ(t) = Jλ(ûj + tφ) =
1

2

∫
Ω

|∇(ûj + tφ)|2 dζ − λ
∫

Ω

F (ûj + tφ) dζ

≥ 1

2

∫
Ω

|∇(ûj + tφ)|2 dζ − λ
∫

Ω

Fj(ûj + tφ) dζ = Jj,λ(ûj) = Jλ(ûj) = Iφ(0),

where

Jλ(v) =
1

2

∫
Ω

|∇(v)|2 dζ − λ
∫

Ω

F (v) dζ.

Therefore Iφ has a local minimum at t = 0. Thus 0 = I ′φ(0) = 〈∇Jλ(ûj), φ〉,
which proves that ûj is a weak solution to (1.1). Since ∇F is bounded in Sj , by

elliptic regularity for second order equations, ûj is actually a solution to (1.1).�
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3. Proof of Theorem 1.1

Proof. By Lemma 2.1, it is sufficient to show that

(A) There exists λi, i = 1, . . . , k, such that λ1 < . . . < λi and Ji,λ(ûi) <

. . . < J2,λ(û2) < J1,λ(û1) < 0 for λ > λi.

Let N(x) denote the inward unit normal to ∂Ω at x ∈ ∂Ω. Since ∂Ω is C1

there exists ε > 0 such that {x + sN(x) | s ∈ [0, ε)} is an open neighborhood

of ∂Ω relatively to Ω and x + sN(x) 6= y + tN(y) for (x, s) 6= (y, t), x, y ∈ ∂Ω,

s, t ∈ [0, ε). Letting Ωδ = {x ∈ Ω | dist(x, ∂Ω) < δ} with δ ∈ (0, ε), we see that

there exists a constant M > 0 such that

(3.1) |Ωδ| ≤Mδ.

Let ûj be as in Lemma 2.1. Let us first see that there exists λ1 > 0 such

that J1,λ(û1) < 0 for λ > λ1. Using (H4) there exists z(1) ∈ S1 such that

F (z(1)) > max{F (u) | u ∈ S0}. Let c = F (z(1)) − max{F (u) | u ∈ S0}. Now

fix δ ∈ (0,min{ε, c|Ω|/(2M [c+M1])}) where M1 = max
u∈S1

|F (u)| and let v be

defined by:

(3.2) v(x) =

z(1) if dist(x, ∂Ω) ≥ δ,
s

δ
z(1) if dist(x, ∂Ω) < δ, x = y + sN(y), y ∈ ∂Ω, s ∈ [0, δ).

Since ∂Ω is C1, v is a Lipschitzian function and there exists K > 0 such that

(3.3)

∫
Ω

1

2

N∑
i=1

|∇vi|2 dx ≤ Kδ−1.

Then

J1,λ(v) =

∫
Ω

(
1

2

N∑
i=1

|∇vi|2 − λF1(v)

)
dx

≤Kδ−1 − λ
(∫

Ω−Ωδ

F1(z(1)) dx+

∫
Ωδ

F1(v) dx

)
≤Kδ−1 − λ[c(|Ω| − |Ωδ|)− |Ωδ|M1]

≤Kδ−1 − λ[c|Ω| − cMδ −MδM1] ≤ Kδ−1 − λc|Ω|
2

since δ < c|Ω|/(2M [c+M1]) < 0 for λ > λ1 = 2K/(c|Ω|δ). Hence J1,λ(û1) < 0

for λ > λ1.

Next we show that there exists λ̃2 > λ1 such that J1,λ(û1) > J2,λ(û2) for

λ > λ̃2. Using (H4) there exists z(2) ∈ S2 such that F (z(2)) > max{F (u) |
u ∈ S1}.
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Now let c = F (z(2)) − max{F (u) | u ∈ S1}. Fix δ ∈ (0,min{ε, (c|Ω|/
(2M [c+M1 +M2])}) where M2 = max

u∈S1

|F (u)| and let

(3.4) v(x) =

z(2) if dist(x, ∂Ω) ≥ δ,
s

δ
z(2) if dist(x, ∂Ω) < δ, x = y + sN(y), y ∈ ∂Ω, s ∈ [0, δ).

Again, using that ∂Ω is C1, we have a constant K > 0 such that∫
Ω

1

2

N∑
i=1

|∇vi|2 dx ≤ Kδ−1.

Then

J2,λ(v) =

∫
Ω

(
1

2

N∑
i=1

|∇vi|2 − λF2(v)

)
dx

≤Kδ−1 − λ
(∫

Ω−Ωδ

F2(z(2)) dx+

∫
Ωδ

F2(v) dx

)
≤Kδ−1 − λ

(∫
Ω−Ωδ

[F1(û1) + c] dx+

∫
Ωδ

F2(v) dx

)
=Kδ−1 − λ

(∫
Ω

F1(û1) dx+ c[|Ω| − |Ωδ|] +

∫
Ωδ

[F2(v)− F1(û1)] dx

)
<Kδ−1 + J1,λ(û1)− λ{c[|Ω| − |Ωδ|]− |Ωδ|[M1 +M2]}

<Kδ−1 + J1,λ(û1)− λ{c|Ω| − cMδ −Mδ[M1 +M2]}

<Kδ−1 + J1,λ(û1)− λc|Ω|
2

since δ <
c|Ω|

2M [c+M1 +M2]

<J1,λ(û1) for λ > λ̃2 =
2K

c|Ω|δ
.

Hence J2,λ(û2) < J1,λ(û1) for λ > λ̃2. Now choosing λ2 = max{λ1, λ̃2}, for

λ > λ2 we have J2,λ(û2) < J1,λ(û1) < 0. Iterating this argument k times, (A) is

proven and so is Theorem 1.1. �

Finally, in order to state a consequence of Theorem 1.1, we consider the

following extensions of (H2)–(H4):

(̂H2) There exist concave functions ρi : Σ → [0,∞) such that 0 < ρi(z) <

ρi+1(z) for i ∈ N.

(̂H3) For z ∈ Q, assume F (z) > 0 if |z|1 ∈ (ρ2i+1(P (z)), ρ2(i+1)l(P (z))), and

F (z) < 0 if |z|1 ∈ (ρ2i(P (z)), ρ2i+1(P (z))) for each i = 0, 1, . . .

(̂H4) For each i = 0, 1, . . . there exists z(i) ∈ Q such that

|z(i)|1 ∈ (ρ2i+1(P (z(2(i+1)))), ρ2(i+1)(P (z(i))))

and F (z(i)) > max{F (z) | |z|1 < ρ2i+1(P (z(i)))}.
The following result is an immediate corollary of Theorem 1.1:
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Theorem 3.1. Assume (H1) and (̂H2)–(̂H4). If we let N(λ) denote the

number of positive solutions of (1.1) then N(λ)→∞ as λ→∞.
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