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HÉNON TYPE EQUATIONS

WITH ONE-SIDED EXPONENTIAL GROWTH

João Marcos do Ó — Eudes Mendes Barboza — Bruno Ribeiro

Abstract. We deal with the following class of problems:{
−∆u = λu+ |x|αg(u+) + f(x) in B1,

u = 0 on ∂B1,

where B1 is the unit ball in R2, g is a C1-function in [0,+∞) which is

assumed to be in the subcritical or critical growth range of Trudinger–

Moser type and f ∈ Lµ(B1) for some µ > 2. Under suitable hypotheses
on the constant λ, we prove existence of at least two solutions to this

problem using variational methods. In case of f radially symmetric, the

two solutions are radially symmetric as well.

1. Introduction

In this paper we study the solvability of problems of the type

(1.1)

−∆u = λu+ |x|αg(u+) + f(x) in B1,

u = 0 on ∂B1,

where λ, α ≥ 0 and B1 = {x ∈ R2 : |x| < 1}. Here we assume that g has

the maximum growth which allows us to treat problem (1.1) variationally in
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suitable Sobolev spaces, due to the well-known Trudinger–Moser inequality (see

[18], [28]), which, in two dimensions, is given by

(1.2) sup
u∈H1

0 (B1)
‖∇u‖2=1

∫
B1

eβu
2

dx

< +∞ if β ≤ 4π,

= +∞ if β > 4π.

Working with a Hénon type problem in H1
0,rad(B1) ⊂ H1

0 (B1), we observe

that the weight |x|α changes this fact. Indeed, one has

(1.3) sup
u∈H1

0,rad(B1)

‖∇u‖2=1

∫
B1

|x|αeβu
2

dx

< +∞ if β ≤ 2π(2 + α),

= +∞ if β > 2π(2 + α),

see [3] and [8]. Motivated by (1.2)–(1.3), we say that g has subcritical growth

at +∞ if

(1.4) lim
t→+∞

g(t)

eβt2
= 0 for all β,

and g has critical growth at +∞ if there exists β0 > 0 such that

(1.5) lim
t→+∞

g(t)

eβt2
= 0 for all β > β0; lim

t→+∞

g(t)

eβt2
= +∞ for all β < β0.

1.1. Hypotheses. Before stating our main results, we shall introduce the

following assumptions on the non-linearity g:

(g0) g ∈ C(R,R+), g(s) = 0 for all s ≤ 0.

(g1) There exist s0 and M > 0 such that

0 < G(s) =

∫ s

0

g(t) dt ≤Mg(s) for all s > s0.

(g2) |g(s)| = o(|s|) when |s| → 0.

Following the well-established notation in the present literature, we denote

by λ1 < λ2 ≤ . . . ≤ λj ≤ . . . the sequence of eigenvalues of (−∆, H1
0 (B1)), and

by φj a jth eigenfunction of (−∆, H1
0 (B1)).

We observe that, using assumption (g0), one can see that ψ is a non-positive

solution to (1.1) if and only if it is a non-positive solution to the linear problem

(1.6)

−∆ψ = λψ + f(x) in B1,

ψ = 0 on ∂B1.

In order to get such solutions to (1.6), let us assume that

(f1) f(x) = h(x) + tφ1(x), where h ∈ Lµ(B1), µ > 2 and
∫
B1
hφ1 dx = 0.

For that matter, the parameter t plays a crucial role. We shall use this hypothesis

in the first theorem of this paper.
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1.2. Statement of main results. We divide our results in four theorems.

The first one deals with the first solution to the problem, which is non-positive

and is obtained by a simple remark about a linear problem related to our equa-

tion. The other theorems concern the second solution and are considered de-

pending on the growth conditions of the non-linearity. In the critical case, since

the weight |x|α has an important role in the estimate of the minimax levels,

mainly because of the difference between the versions (1.2) and (1.3) of the

Trudinger–Moser inequality, the variational setting and methods used in H1
0 (B1)

and H1
0,rad(B1) are different and, therefore, are given in separate theorems.

Theorem 1.1 (Linear problem). Assume that λ 6= λj for all j ∈ N and (f1)

holds, then there exists a constant T = T (h) > 0 such that:

(a) If λ < λ1, there exists ψt < 0, a solution to (1.6) and, consequently, to

(1.1), for all t < −T .

(b) If λ > λ1, there exists ψt < 0, a solution to (1.6) and, consequently, to

(1.1), for all t > T .

Furthermore, if f is radially symmetric, then ψt is radially symmetric as well.

Theorem 1.2 (Subcritical case). Let f ∈ Lµ(B1) with µ > 2 be such that

there exists a non-positive solution ψ to (1.1). Assume (g0)–(g2), (1.4) hold and

λ 6= λj for all j ∈ N. Then, problem (1.1) has a second solution. Furthermore,

if ψ is radially symmetric, the second solution is also radially symmetric.

Theorem 1.3 (Critical case). Let f ∈ Lµ(B1) with µ > 2 be such that

there exists a non-positive solution ψ to (1.1). Assume (g0)–(g2), (1.5) hold and

λ 6= λj for all j ∈ N. Furthermore suppose that for all γ ≥ 0 there exists cγ ≥ 0

such that

(1.7) g(s)s ≥ γe(β0s
2)h(s) for all s > cγ ,

where h : R→ R+ is a continuous function satisfying

(1.8) lim inf
s→+∞

log(h(s))

s
> 0.

Then, problem (1.1) has a second solution.

Theorem 1.4 (Radial critical case). Let f ∈ Lµ(B1) with µ > 2 be such that

there exists a radial and non-positive solution ψ to (1.1). Assume (g0)–(g2),

(1.5), (1.7) hold with h : R→ R+ being a continuous function satisfying

(1.9) lim inf
s→+∞

log(h(s))

s
≥ 4β0‖ψ‖∞,

where β0 is given in (1.5). If λ 6= λj for all j ∈ N, then problem (1.1) has a

second solution which is radially symmetric.
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Example 1.5. For examples of non-linearities with critical growth satisfying

the assumptions of Theorem 1.3, one can consider

g(t) =

eβ0t
2+K0t(2β0t

3 +K0t
2 + 2t) if t ≥ 0,

0 if t < 0,

with h(s) = eK0s and K0 > 0. If K0 ≥ 4β0‖ψ‖∞, then g also satisfies the

hypotheses of Theorem 1.4.

Remark 1.6. We notice that if λ < λ1, we shall use the Mountain Pass

Theorem in the proofs of Theorems 1.2–1.4. On the other hand, if λ > λ1, we

need to use the Linking Theorem.

Remark 1.7. We also must point out an important fact: hypotheses (1.8)

and (1.9) are definitely stricter than the one used in [7], since they do not require

the additional function h. What happens is that, as far as we know, it is not

proven, nor we were able to prove, that the estimate given in Lemma 3.5 of [7]

is uniform in m = m(n). That estimate concerns the minimax level c(k) and,

although it was not clear in [7], this level actually depends also on the parameter

n, which surely changes with the considered terms of the Moser functions zk,r(n).

So, a uniform estimate in this level must be proven in order to conclude that the

weak limit of the associated PS sequence is actually non-trivial, as established

in Proposition 3.4 of [7].

In Theorems 1.2–1.4, we assume that f is such that (1.1) admits a non-

positive solution ψ. Then, a second solution will be given by u + ψ, where u is

a non-trivial solution to the following problem:

(1.10)

−∆u = λu+ |x|αg(u+ ψ)+ in B1,

u = 0 on ∂B1.

This means that we will focus our attention on looking for a non-trivial solution

to problem (1.10), considering each of the cases listed above. This translation has

an advantage of working with a homogeneous problem, without a forcing term

that could hinder the desired estimates on the minimax levels. On the other

hand, the function ψ plays this role in complicating the estimates, but we could

handle them by performing some delicate arguments involving the additional

hypothesis (1.7), with h satisfying (1.8) or (1.9).

1.3. Backgrounds. We intend to establish a link between Ambrosetti–

Prodi problems and Hénon type equations. The first ones begin with the cele-

brate paper by A. Ambrosetti and G. Prodi [1] in 1975. This kind of problems

has been studied, explored and extended by an enormous number of authors.
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For a brief review, we refer the reader to [12], [9], [22]. In short, it deals with

non-homogeneous problems such as−∆u = g(x, u) + f(x) in Ω,

u = 0 on ∂Ω,

where “g jumps eigenvalues”, meaning that the limits

lim
s→−∞

g(s)

s
< lim
s→+∞

g(s)

s

form an interval that contains at least one eigenvalue of (−∆, H1
0 (B1)). More-

over, the existence of multiple solutions depends heavily on a usual hypothesis

regarding a suitable parametrization of the forcing term f , which is extensively

considered in almost all Ambrosetti–Prodi problems starting from the work of

J. Kazdan and F. Warner in [15].

Since our work deals with non-linearities in critical growth range, let us fo-

cus our discussion on more specifically related studies. As far as we know, the

first paper that addressed an Ambrosetti–Prodi problem involving critical non-

linearities was the work of D. YinBin [29]. There, the author considered a func-

tion that was superlinear both in +∞ and −∞ and, so, asymptotically jumping

all the eigenvalues of (−∆, H1
0 (Ω)). In [12], D. Figueiredo and J. Yang dealt with

one-sided critical growth, which allowed to explore more jumping possibilities.

Due to natural limitations on the techniques they used, the existence of multiple

solutions was investigated in dimensions N ≥ 7 only. In [6], M. Calanchi and

B. Ruf extended their results and proved that the same problem has at least two

solutions provided N ≥ 6. They also added a lower order growth term to the

non-linearity, which guaranteed the existence of solutions in lower dimensions

as well.

If we turn our attention to problems on domains in R2, where the critical

growth is well known to be exponential, we find the paper of M. Calanchi et al. [7],

which considered the following problem:−∆u = λu+ g(u+) + f(x) in Ω,

u = 0 on ∂Ω,

where Ω is bounded and smooth in R2 and g has a subcritical or critical Trudin-

ger–Moser growth. They proved the existence of two solutions for some forcing

terms f , depending on the usual parametrization f(x) = h(x) + tφ1(x). This

result was a natural extension of the ones found in [6], [12].

Here we consider a similar problem with the weight |x|α of the non-linearity.

This term is proper for Hénon equations, originally introduced by M. Hénon

in [14], which stems from the study of rotating stellar structures. In [19], W. Ni

worked with this kind of problems in the context of the elliptic equations. For an
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idea about the rapidly increasing literature on Hénon type problems, see [2], [3],

[16], [26], [27] for a non-linearity of Sobolev type, and [25], [8] for a non-linearity

with Trudinger–Moser growth.

We prove existence of at least two solutions to the Ambrosetti–Prodi problem

for a Hénon type equation with exponential growth using variational methods.

We get a first solution ψ using the Fredholm Alternative in a related linear

equation. A second solution is obtained via the Mountain Pass Theorem, if

λ < λ1, or the Linking Theorem, if λ > λ1. In order to use these well-known

critical point results, we need to prove some geometric conditions satisfied by

the functional associated to the problem and, for the critical case, we need to

estimate the minimax levels, which have to lie below some appropriate constants.

Under certain condition, we can see that the first solution we obtained is

radially symmetric, due to a celebrated result of R. Palais known as the Principle

of Symmetric Criticality (see [20]). After that, we get a second solution that is

radially symmetric as well. In the subcritical case, we obtain this second solution

with almost the same arguments regardless the space we consider, H1
0 (B1) or

H1
0,rad(B1). However, in the critical case, we must consider the Trudinger–Moser

inequality as given in (1.2), when we work inH1
0 (B1), or as in (1.3), inH1

0,rad(B1),

which will dramatically change the arguments. In the last case, the minimax

levels have a higher upper boundedness, that should indicate an easier task, but,

since we can only work with radial functions, it is impossible to follow the steps

we give in the H1
0 (B1) framework.

1.4. Outline. This paper is organized as follows. In Section 2, we study

a linear problem related to our equation. This is an important step to guarantee

a first solution to the problem, which will be denoted by ψ and is non-positive.

This case is almost identical to the previous results in [24], [7], [6], [12], but we

give a little remark concerning existence of a radially symmetric solution when

the forcing term is also radial. In Section 3, we introduce a variational frame-

work and prove the boundedness of Palais–Smale sequences of the functional

associated to problem (1.10). We also show that this functional satisfies the

(PS) condition, in the subcritical case. In Section 4, we obtain geometric condi-

tions for the functional in order to prove the existence of a second solution to the

problem, considering the subcritical growth both in H1
0 (B1) and H1

0,rad(B1). In

Sections 5 and 6, we consider the problem in the critical growth range and guar-

antee the existence of a second solution in H1
0 (B1) and H1

0,rad(B1), respectively.

In these cases, we also show that geometric conditions are satisfied and we prove

the boundedness of the minimax levels by appropriate constants depending on

β0 when we consider the functional defined in H1
0 (B1) and on β0 and α when

the functional is considered in H1
0,rad(B1).
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2. Linear problem

In this section, we prove Theorem 1.1, for that we consider the linear problem

(2.1)

−∆ψ = λψ + f(x) in B1,

ψ = 0 on ∂B1.

It is easy to see that if f is such that this linear problem admits a non-positive

solution, then it will also be a solution to problem (1.1). Considering f decom-

posed as in (f1), we will see that the sign of the (unique) solution to (2.1) can be

established depending on t. Moreover, we give an idea on how to obtain radial

solutions as well.

Proof. Up to the point where we discuss the radial case, this proof follows

exactly the same arguments found in [24], [7], [6], [12], but we bring it here for

the sake of completeness.

Since λ 6= λj for all j ∈ N, we obtain, by the Fredholm Alternative, a unique

solution ψ to (2.1) in H1
0 (B1). Using (f1), we can write ψ = ψt = ω+ stφ1, with∫
B1

ωφ1 dx = 0 and st =
t

λ1 − λ
.

We recall that f ∈ Lµ(B1), with µ > 2. Thus, by the elliptic regularity, we have

ω ∈ C1,ν for some 0 < ν < 1. Then∥∥∥∥λ1 − λ
t

ψ − φ1

∥∥∥∥
C1

=

∣∣∣∣λ1 − λ
t

∣∣∣∣‖ω‖C1 .

Let ε > 0 be such that v > 0 for all v ∈ C1,ν such that ‖v − φ1‖C1 < ε. Since

we want ψ < 0, we must have

λ− λ1

t
> 0 and

λ1 − λ
t
‖ω‖C1 < ε.

So there exists T > 0 such that for λ < λ1 and t < −T or for λ > λ1 and t > T ,

we have ψ < 0.

Now we notice that ψ is a solution to (2.1) if only if it is a critical point of

the functional I : H1
0 (B1)→ R, given by

I(ψ) :=
1

2

∫
B1

|∇ψ|2 dx− λ 1

2

∫
B1

ψ2 dx−
∫
B1

f(x)ψ dx.

When we restrict I to H1
0,rad(B1), we also obtain a critical point of this functional

on this subspace. If f is radially symmetric, by the Principle of Symmetric

Criticality of Palais (see [20]), we can see that all critical points on H1
0,rad(B1)

are also critical points on H1
0 (B1). So, due to the fact that I admits only one

critical point in the whole space, we get that ψ is also radially symmetric. This

completes the proof of Theorem 1.1. �
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3. Variational formulation

We consider a real C1-functional Φ defined on a Banach space E. When

looking for critical points of Φ it has become standard to assume the following

compactness condition:

(PS)c any sequence (uj) in E such that

(3.1) Φ(uj)→ c and Φ′(uj)→ 0 in E∗

has a convergent subsequence. A sequence that satisfies (3.1) is called a

(PS) sequence (at level c).

We shall use two well-known critical point theorems, namely, the Mountain

Pass and Linking Theorems, to λ < λ1 and λj < λ < λj+1, respectively, both

without the (PS) conditions in the case of critical growth range. Let us state

them here, for the sake of completeness. For the proofs we refer the reader to

[4], [5], [10], [17], [21].

Theorem 3.1 (Mountain Pass Theorem). Let Φ be a C1-functional on a

Banach space E satisfying:

(Φ1) There exist constants ρ, δ > 0 such that Φ(u) ≥ δ if u ∈ E and ‖u‖ = ρ.

(Φ2) Φ(0) < δ and Φ(v) < δ for some v ∈ E such that ‖v‖ > ρ.

Consider Γ := {η ∈ C([0, 1], E) : η(0) = 0 and η(1) = v} and set

c = inf
η∈Γ

max
t∈[0,1]

Φ(η(t)) ≥ δ.

Then there exists a sequence (uj) in E satisfying (3.1). Moreover, if Φ satisfies

(PS)c, then c is a critical value for Φ.

Theorem 3.2 (Linking Theorem). Let Φ be a C1-functional on a Banach

space E = E1 ⊕ E2 such that dimE1 is finite and:

(Φ1) There exist constants δ, ρ > 0 such that Φ(u) ≥ δ if u ∈ E2 and ‖u‖ = ρ.

(Φ2) There exists z ∈ E2 with ‖z‖ = 1 and there exists R > ρ such that

Φ(u) ≤ 0 for all u ∈ ∂Q,

where Q := {v + sz : v ∈ E1, ‖v‖ ≤ R and 0 ≤ s ≤ R}.

Consider Γ := {η ∈ C(Q,E) : η(u) = u if u ∈ ∂Q} and set

c = inf
η∈Γ

max
u∈Q

Φ(η(u)) ≥ δ.

Then there exists a sequence (uj) in E satisfying (3.1). Moreover, if Φ satisfies

(PS)c, then c is a critical value for Φ.
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We will denoteH = H1
0 (B1) orH = H1

0,rad(B1), depending on which theorem

we are considering, with the Dirichlet norm

‖u‖ =

(∫
B1

|∇u|2 dx
)1/2

for all u ∈ H.

Recalling that our efforts are searching for a non-trivial weak solution to problem

(1.10), we define the functional Jλ : H → R as

(3.2) Jλ(u) =
1

2

∫
B1

|∇u|2 dx− λ

2

∫
B1

|u|2 dx−
∫
B1

|x|αG(u+ ψ)+ dx,

where α, λ ≥ 0 and λ 6= λj for all j ∈ N. By (g0), (g1) and (1.4) or (1.5), we

have that the functional Jλ is C1 and we can see that its derivative is given by

(3.3) 〈J ′λ(u), v〉 =

∫
B1

∇u∇v dx− λ
∫
B1

uv dx−
∫
B1

|x|αg(u+ ψ)+v dx,

for all v ∈ H and the critical points of Jλ are (weak) solutions to (1.10). We

observe that u = 0 satisfies J ′λ(0) = 0, which corresponds to the negative solu-

tion ψ to (1.6). To find a second solution to (1.1) we shall look for critical points

of the functional Jλ with critical values c > 0.

3.1. Palais–Smale condition. Initially, from (g1), we can see that for ev-

ery σ > 0 there exists sσ > 0 such that

(3.4) 0 < G(s) ≤ 1

σ
g(s)s for all s ≥ sσ.

The proof of the Palais–Smale condition for the subcritical case is essentially

standard. For the reader’s convenience, we sketch the proof in the next lemma.

We must point out that it is not necessary to suppose that g(s) is O(s2) at s = 0

as required in [7]. The well-known techniques we use here can also be handled

in case α = 0 and for that it is sufficient to admit that g(s) = o(s) at s = 0,

following usual assumptions.

Lemma 3.3. Suppose (g0)–(g2) hold. Let (un) ⊂ H be a (PS)c sequence of

Jλ. Then (un) is bounded in H.

Proof. Let (un) ⊂ H be a (PS)c sequence of Jλ, that is,

(3.5)

∣∣∣∣12 ‖un‖2 − λ

2
‖un‖22 −

∫
B1

|x|αG(un + ψ)+ dx− c
∣∣∣∣→ 0

and

(3.6)

∣∣∣∣ ∫
B1

∇un∇v dx− λ
∫
B1

unv dx−
∫
B1

|x|αg(un + ψ)+v dx

∣∣∣∣ ≤ εn‖v‖
for all v ∈ H, where εn → 0. By (3.4), let us take s0 > 0 such that

(3.7) G(s) ≤ 1

4
g(s)s for all s ≥ s0.
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Using (3.5)–(3.7), we get

c+
εn‖un‖

2
≥ 1

4

∫
B1

|x|αg(un + ψ)+(un + ψ)+ dx− C0.

Thus, we have

(3.8)

∫
B1

|x|αg(un + ψ)+(un + ψ)+ dx ≤ C + εn‖un‖ with C > 0

and, consequently,

(3.9)

∫
B1

|x|αg(un + ψ)+ dx ≤ C + εn‖un‖.

First, we consider the case 0 ≤ λ < λ1. Using (3.6) and (3.8), we have

εn‖un‖ ≥
(

1− λ

λ1

)
‖un‖2 − (C + εn‖un‖).

Thus, (un) is a bounded sequence.

Now we consider the case: λk < λ < λk+1. It is convenient to decompose H

into appropriate subspaces:

(3.10) H = Hk ⊕H⊥k ,

where Hk is the finite dimensional subspace spanned by first k eigenfunctions,

precisely,

(3.11) Hk = 〈φ1, . . . , φk〉.

This notation is standard when dealing with this framework of high order eigen-

values, and we will use it throughout this paper.

For all u in H, let us take u = uk + u⊥, where uk ∈ Hk and u⊥ ∈ H⊥k . We

notice that

(3.12)

∫
B1

∇u∇uk dx− λ
∫
B1

uuk dx = ‖uk‖2 − λ‖uk‖22

and

(3.13)

∫
B1

∇u∇u⊥ dx− λ
∫
B1

uu⊥ dx = ‖u⊥‖2 − λ‖u⊥‖22.

By (3.6), (3.12) and the characterization of λk, we can see that

−εn‖ukn‖ ≤
∫
B1

∇un∇ukn dx− λ
∫
B1

unu
k
n dx−

∫
B1

|x|αg(un + ψ)+u
k
n dx

≤
(

1− λ

λk

)
‖ukn‖2 −

∫
B1

|x|αg(un + ψ)+u
k
n dx.

Therefore,

(3.14) C‖ukn‖2 ≤ εn‖ukn‖ −
∫
B1

|x|αg(un + ψ)+u
k
n dx with C > 0.
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Similarly, we get

(3.15) C‖u⊥n ‖2 ≤ εn‖u⊥n ‖+

∫
B1

|x|αg(un + ψ)+u
⊥
n dx.

Then, since Hk is a finite dimensional subspace, by (3.9) and (3.14), we obtain

C‖ukn‖2 ≤ εn‖ukn‖+ ‖ukn‖∞
∫
B1

|x|αg(un + ψ)+ dx(3.16)

≤ εn‖ukn‖+ C‖ukn‖(C + εn‖un‖) ≤ C + C‖un‖+ Cεn‖un‖2.

Using (3.8), (3.9) and (3.15), we have

C‖u⊥n ‖2 ≤ εn‖u⊥n ‖+

∫
B1

|x|αg(un + ψ)+un dx+ ‖ukn‖∞(C + εn‖un‖)(3.17)

≤ εn‖u⊥n ‖+

∫
B1

|x|αg(un + ψ)+(un + ψ) dx

+ ‖ψ‖∞
∫
B1

|x|αg(un + ψ)+ dx+ ‖ukn‖∞(C + εn‖un‖)

≤ εn‖u⊥n ‖+ C + εn‖un‖

+ ‖ψ‖∞
∫
B1

g(un + ψ)+ dx+ C‖un‖(C + εn‖un‖)

≤C + C‖un‖+ Cεn‖un‖2.

By summing the inequalities in (3.17) and (3.16), we reach

‖un‖2 ≤ C + C‖un‖+ Cεn‖un‖2,

proving the boundedness of the sequence (un) as desired. �

Remark 3.4. In the proof of Lemma 3.3 there is no difference between

assuming subcritical or critical growth or considering the radial case or not. So

we can conclude that even in the case of critical growth, every Palais–Smale

sequence is bounded.

In case of subcritical growth, we can obtain the (PS)c condition for all levels

in R.

Lemma 3.5. Assume (g0)–(g2) and (1.4) hold. Then the functional Jλ sat-

isfies the (PS)c condition for all c ∈ R.

Proof. Let (un) be a (PS)c sequence. By Lemma 3.3, we know that (un)

is bounded. So we consider a subsequence denoted again by (un) such that, for
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some u ∈ H, we have

un ⇀ u weakly in H,

un(x) → u(x) almost everywhere in B1,

un → u strongly in Lq(B1) or Lqrad(|x|αB1) for all q ≥ 1,

Notice that there is nothing else to prove if ‖un‖ → 0. Thus, one may suppose

that ‖un‖ ≥ k > 0 for n sufficiently large.

It follows from (g1) and [11, Lemma 2.1] that

(3.18)

∫
B1

|x|αG(un + ψ)+ dx→
∫
B1

|x|αG(u+ ψ)+ dx.

We will prove that

(3.19)

∫
B1

|x|αg(un + ψ)+un dx→
∫
B1

|x|αg(u+ ψ)+u dx.

In fact, we have∣∣∣∣ ∫
B1

|x|αg(un + ψ)+un dx−
∫
B1

|x|αg(u+ ψ)+u dx

∣∣∣∣
≤
∣∣∣∣ ∫
B1

|x|α[g(un+ψ)+− g(u+ψ)+]u dx

∣∣∣∣+ ∣∣∣∣ ∫
B1

|x|αg(un+ψ)+(un−u) dx

∣∣∣∣.
First, let us focus on the second integral in the left side of this last estimate. By

(1.4), we get∣∣∣∣ ∫
B1

|x|αg(un + ψ)+(un − u) dx

∣∣∣∣ ≤ C ∫
B1

eβu
2
n |un − u| dx for all β > 0.

Using the Hölder inequality, we obtain∫
B1

eβu
2
n |un − u| dx ≤

(∫
B1

eqβ(un/‖un‖)2‖un‖2 dx

)1/q

‖un − u‖q′ ,

where 1/q + 1/q′ = 1. We take q > 1 and by (1.4) and Lemma 3.3, we can

choose β sufficiently small such that qβ‖un‖2 ≤ 4π. Thus by the Trudinger–

Moser inequality, we have

(3.20)

∫
B1

eβu
2
n |un − u| dx ≤ C1‖un − u‖q′ .

Since un → u strongly in Lq
′
, one has∣∣∣∣ ∫

B1

|x|αg(un + ψ)+(un − u) dx

∣∣∣∣→ 0.

It remains to prove that∣∣∣∣ ∫
B1

|x|α[g(un + ψ)+ − g(u+ ψ)+]u dx

∣∣∣∣→ 0
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as well. Indeed. Let ε > 0 be given. By analogous arguments used to prove

(3.20), there exists C2 such that

‖g(un + ψ)+ − g(u+ ψ)+‖2,|x|α ≤ C2.

Consider ξ ∈ C∞0 (B1) such that ‖ξ − u‖2 < ε/2C2. Now, since∫
B1

|x|α|g(un + ψ)+ − g(u+ ψ)+| dx→ 0,

for this ε, there exists nε such that∫
B1

|x|α|g(un + ψ)+ − g(u+ ψ)+| dx <
ε

2‖ξ‖∞

for all n ≥ nε. Therefore∣∣∣∣ ∫
B1

|x|α[g(un + ψ)+ − g(u+ ψ)+]u dx

∣∣∣∣
≤
∫
B1

|x|α|g(un + ψ)+ − g(u+ ψ)+||ξ| dx

+

∫
B1

|x|α|g(un + ψ)+ − g(u+ ψ)+||ξ − u| dx < ε

for all n ≥ nε, as desired. Consequently, we conclude that (3.19) holds.

Now taking v = u and n→∞ in (3.6), we have

‖u‖2 = λ‖u‖22 +

∫
B1

|x|αg(u+ ψ)+u dx.

On the other hand, if n→∞ in (3.6) with v = un,

‖un‖2 → λ‖u‖22 +

∫
B1

|x|αg(u+ ψ)+u dx

again by (3.19). Consequently, ‖un‖ → ‖u‖ and so un → u in H. �

Remark 3.6. Notice that (3.20) holds because, since we are supposing (1.4),

we can choose β small enough. This fact is not true if we assume (1.5). Thus,

only in the subcritical case, we can conclude the (PS)c condition is satisfied for

all c ∈ R .

4. Proof of Theorem 1.2. Subcritical case

This section is devoted to the proof of Theorem 1.2. Here, we consider ψ

radially symmetric and H = H1
0,rad(B1). In the case that ψ is not necessarily

radial and H = H1
0 (B1), the proof uses the same arguments.
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4.1. Geometric condition. First, we consider λ < λ1. We will show that

the hypotheses of the Mountain Pass Theorem hold for the functional Jλ.

Proposition 4.1. Suppose that λ < λ1, (g0)–(g2) and (1.4) hold. Then

there exist ρ, a > 0 such that Jλ(u) ≥ a if ‖u‖ = ρ.

Proof. Initially, we notice that from (g0)–(g2), we can see, for all ε > 0 and

β > 0, if g satisfies (1.4) or β > β0 if g satisfies (1.5), that there exists Kε such

that

(4.1) G(u) ≤ εu2 +Kεu
qeβu

2

for all q ≥ 1.

From (4.1), with q = 3 and the variational characterization of the eigenvalues,

we obtain

Jλ(u) ≥ C‖u‖2 − ε
∫
B1

|x|α(u+ ψ)2
+ dx−Kε

∫
B1

|x|αeβ(u+ψ)2+(u+ ψ)3
+ dx.

Moreover, due to the Hölder inequality, we have∫
B1

|x|α(u+ ψ)2
+ dx ≤

(∫
B1

|x|2α dx
)1/2(∫

B1

(u+ ψ)4
+ dx

)1/2

≤ C‖u‖2

and ∫
B1

|x|αeβ(u+ψ)2+(u+ ψ)3
+ dx ≤ C

(∫
B1

e2β‖u‖2(u/‖u‖)2 dx

)1/2

‖u‖3.

Let us choose δ small enough such that ‖u‖2 < δ, βδ ≤ 4π, and

Jλ(u) ≥ C‖u‖2 − C‖u‖3 > 0

for all u ∈ H with ‖u‖ < min{1, δ1/2}. The second constant comes from the

Trudinger–Moser inequality. Therefore, take ρ = ‖u‖ and a = Cρ2 − Cρ3. �

Proposition 4.2. Suppose (g0)–(g2) and (1.4) hold. Then, there exists R >

ρ such that Jλ(Rφ1) ≤ 0, where φ1 is a first eigenfunction of (−∆, H) (with

φ1 > 0 and ‖φ1‖ = 1) and ρ is given in Proposition 4.1.

Proof. We fix R0 > ρ and 0 < r < 1 such that

φ1(x) ≥ 2‖ψ‖∞
R0

almost everywhere in Br.

We observe that (3.4) gives us

(4.2) G(t) ≥ Cσtσ −Dσ

for σ > 2 and Cσ, Dσ ≥ 0. Thus, we obtain

Jλ(Rφ1) ≤ R2

2
−RσCσ

∫
Br

|x|α
(
φ1 +

ψ

R

)σ
+

dx+ πr2Dσ.
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Let R ≥ R0. We estimate the last integral∫
Br

|x|α
(
φ1 +

ψ

R

)σ
+

dx ≥
(
‖ψ‖∞
R0

)σ
2r2+απ

2 + α
= τ > 0.

It follows that

Jλ(Rφ1) ≤ R2

2
− CσRστ + πr2Dσ.

Since σ > 2, we can choose R > ρ such that Jλ(Rφ1) ≤ 0, which is the desired

conclusion. �

Next, we consider λk < λ < λk+1. Before we proof geometric conditions

of the Linking Theorem for Jλ, we need to split H1
0,rad(B1) into two orthogo-

nal subspaces as we have done with H1
0 (B1) in (3.10). Recalling the notation

introduced in (3.11), we observe that since φ1 is radially symmetric, we have

H1 = H1 ∩H1
0,rad(B1). Now, we set

H∗k = Hk ∩H1
0,rad(B1) for all k ∈ N

and, analogously with H1
0 (B1), we can write

(4.3) H1
0,rad(B1) =

∞⋃
k=1

H∗k .

Moreover, it is straightforward to prove that the spectrum of (−∆, H1
0,rad(B1)) is

a subsequence of (λk) that we will denote by λ∗1 = λ1 ≤ λ∗2 ≤ λ∗3 ≤ . . . ≤ λ∗k ≤ . . .,
where λ∗j ≥ λj for all j = 1, 2, . . .

Remark 4.3. In the proof of Lemma 3.3, when we consider the radial case,

we use the decomposition given by (4.3).

For λk < λ, we consider the corresponding subspace Hk and we write

H1
0,rad(B1) as

(4.4) H = H1
0,rad(B1) = H∗l ⊕ ((H∗l )⊥ ∩H1

0,rad(B1))

where H∗l ⊂ Hk with l = max{j : H∗j ⊂ Hk}. Since H∗l ⊂ Hk, we notice that

(H∗l )⊥ ∩ H1
0,rad(B1) ⊂ H⊥k . This decomposition will allow us to use the same

variational inequalities that characterize λk and λk+1 in the H1
0 (B1) environ-

ment.

Proposition 4.4. Suppose that λk < λ < λk+1, (g0)–(g2) and (1.4) hold.

Then there exist ρ, a > 0 such that Jλ(u) ≥ a for all u ∈ (H∗l )⊥ ∩ H1
0,rad(B1)

with ‖u‖ = ρ.

Proof. We use the variational characterization of λk+1 and (4.4), and the

proof of this proposition is similar to that of Proposition 4.1. �
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Proposition 4.5. Suppose that λk < λ < λk+1, (g0)–(g2) and (1.4) hold.

There exists z ∈ (H∗l )⊥ ∩H1
0,rad(B1) ⊂ H⊥k and R > 0 such that R‖z‖ > ρ and

Jλ(u) ≤ 0 for all u ∈ ∂Q, where Q := {v ∈ H∗l : ‖v‖ ≤ R} ⊕ {sz : 0 ≤ s ≤ R}.

Proof. We fix R0 > ρ and choose z ∈ (H∗l )⊥ ∩ H1
0,rad(B1) ⊂ H⊥k and

x0 ∈ B1 such that

(a) ‖z‖2 < λ/λk − 1;

(b) Br(x0) ⊂ B1 and z(x) ≥ (K + 2‖ψ‖∞/R0) almost everywhere in Br(x0)

with K > 0 satisfying ‖v‖∞ ≤ K‖v‖ for all v ∈ Hk. This choice is possible

because (H∗l )⊥ ∩ H1
0,rad(B1) contains unbounded functions and Hk has finite

dimension.

We consider a usual split ∂Q = Q1 ∪Q2 ∪Q3, where

Q1 = {v ∈ H∗l : ‖v‖ ≤ R},

Q2 = {v + sz : v ∈ H∗l , ‖v‖ = R and 0 ≤ s ≤ R},

Q3 = {v +Rz : v ∈ H∗l and ‖v‖ ≤ R}.

Let u be on Q1, by (g0) and characterization of λk, it follows that

Jλ(u) ≤ 1

2

(
1− λ

λk

)
‖u‖2 ≤ 0,

independently of R > 0.

For Q2, from (g0) and since v ∈ H∗l and z ∈ (H∗l )⊥ ∩H1
0,rad(B1), we get

Jλ(v + sz) ≤ 1

2
‖v‖2 +

1

2
s2‖z‖2 − λ

2
‖v‖22 ≤

1

2
R2

(
1− λ

λk
+ ‖z‖2

)
< 0,

independently of R > 0.

Now for Q3, using (4.2), let R ≥ R0 and so, we can see that

Jλ(v +Rz) ≤ R2

2
‖z‖2 −RσCσ

∫
B1

|x|α
(
z +

ψ + v

R

)σ
+

dx+ πDσ

≤ R2

2
‖z‖2 − CσRστ + πDσ,

where

τ =

(
‖ψ‖∞
R0

)σ
2πr2+α

2 + α
> 0.

Since σ > 2, we finish the proof. �

4.2. Proof of Theorem 1.2. We have proved that Jλ satisfies geometric

and compactness conditions required in the Mountain Pass Theorem when λ <

λ1 and in the Linking Theorem if λk < λ < λk+1. Thus there exists a non-trivial

critical point for Jλ and thus a solution to (1.10). �
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5. Proof of Theorem 1.3. Critical case in H1
0 (B1)

It is well known that for non-linear elliptic problems involving critical growth

some concentration phenomena may occur, due to the action of the non-compact

group of dilations. For problems (1.2) and (1.3) there is loss of compactness

at the limiting exponent β = 4π and β = 2π(2 + α) respectively. Thus, the

energy functional Jλ fails to satisfy the (PS)c condition for certain levels c. Such

a failure makes it difficult to apply the standard variational approach to this class

of problems. Our proof here relies on a Brezis–Nirenberg type argument: We

begin by proving the geometric condition of the Mountain Pass Theorem when

λ < λ1 and the geometric condition in the Linking Theorem if λk < λ < λk+1.

In the second step we show that the minimax levels belong to the intervals where

the (PS) condition holds for the functional Jλ.

5.1. Geometric conditions. Initially we consider λ < λ1. We will prove

the geometric condition of the Mountain Pass Theorem.

Proposition 5.1. Assume (g0)–(g2), λ < λ1 and (1.5) hold. Then, there

exist a, ρ > 0 such that Jλ(u) ≥ a if ‖u‖ = ρ.

Proof. We can now proceed analogously to the proof of Proposition 4.1.�

Now, let us introduce the so-called Moser sequence. That is, for each n, we

define

(5.1) zn(x) =
1√
2π


(log n)1/2 for 0 ≤ |x| ≤ 1/n,

log(1/|x|)
(log n)1/2

for 1/n ≤ |x| ≤ 1.

It is known that zn ∈ H, ‖zn‖ = 1 for all n and ‖zn‖2 = O(1/(log n)1/2). For

details see [18].

In order to apply our techniques, we shall consider a suitable translation of

Moser’s functions in a region of B1 far from the origin where the presence of |x|α

can be neglected. We begin by noticing that, from (1.8), we obtain ε0 and s0

such that

(5.2)
log(h(s))

s
≥ ε0 for all s > s0.

Since ψ ≡ 0 on ∂B1, we can fix r > 0, small enough, and x0 sufficiently close to

∂B1, such that

(5.3) ‖ψ‖∞,r := ‖ψ|Br2 (x0)‖∞ ≤
ε0

2β0
and |x| ≥ 1

2
in Br2(x0),

with Br(x0) ⊂ B1.
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Let us take the following family of functions:

(5.4) zrn(x) =
1√
2π


(log n)1/2 for 0 ≤ |x− x0| ≤ r2/n,

log(r2/|x− x0|)
(log n)1/2

for r2/n ≤ |x− x0| ≤ r2,

0 for |x− x0| ≥ r2.

We notice that supp zrn = Br2(x0) and, for all n ∈ N, one has

(5.5) ‖zrn‖2 =

∫
B1

2∑
i=1

(
∂zrn
∂xi

)2

dx = 2π
1

2π log n

∫ r2

r2/n

1

r̃2
r̃ dr̃ = 1,

where r̃ = |x− x0|.
This sequence will be used to guarantee the existence of a minimax level lying

under an appropriate constant which will allow us to recover the compactness

properties for Jλ that are lost when dealing with critical growth ranges. Before

that, we see in the next proposition that for large n we still have the same

geometric condition proved in Proposition 4.2 with zrn taking the place of φ1.

Proposition 5.2. Suppose that (g0)–(g2) and condition (1.5) hold. Then,

there exists Rn = R(n) > ρ such that Jλ(Rnz
r
n) ≤ 0.

Proof. We fix R0 > ρ and N ∈ N, such that for all n > N , we have

zrn(x) ≥ 2‖ψ‖∞
R0

almost everywhere in Br2/n(x0).

Using (4.2), let us take R > R0. We get

Jλ(Rzrn) ≤ R2

2
− CσRστ +

r4

n2
πDσ,

where

τ = τ(n, α) =

(
‖ψ‖∞
R0

)σ
2πr(2(2+α))

(2 + α)n2+α
.

Since σ > 2, we can choose Rn ≥ R0 such that Jλ(Rnz
r
n) ≤ 0 and the proof is

complete. �

Now consider λk < λ < λk+1 and H = H1
0 (B1). Before proving the geometry

of linking let us split the supports of the Moser sequence and of k eigenfunctions,

thus simplifying the proof.

Let us take x0 and Br(x0) as in (5.3) and set ζr : B1 → R be

ζr(x) =


0 in Br2(x0),

|x− x0|
√
r − r2

√
r

r
√
r − r2

√
r

in Br(x0) \Br2(x0),

1 in B1 \Br(x0).

Define φrj = ζrφj and consider the finite-dimensional subspace Hr
k = [φr1, . . . , φ

r
k].
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Now we will prove the next result, which is a two-dimensional version of [13,

Lemma 2].

Lemma 5.3. If r → 0, then φrj → φj in H for all j = 1, . . . , k. Moreover, for

each r small enough, we have that there exists ck such that

‖v‖2 ≤ (λk + %rck)‖v‖22 for all v ∈ Hr
k ,

where lim
r→0

%r = 0.

Proof. For j ∈ {1, . . . , k} fixed, we have

‖φj − φrj‖2 =

∫
B1

|∇(φj − φrj)|2 dx(5.6)

=

∫
B1

|∇φj(1− ζr)− φj∇ζr|2 dx

≤
∫
Br

|∇φj |2|1− ζr|2 dx

+ 2

∫
Br\Br2

|∇φj |(1− ηr)|φj ||∇ζr| dx+

∫
Br\Br2

|φj |2|∇ζr|2 dx

≤C1‖∇φj‖2∞
r2+2

√
r

(r
√
r − r2

√
r)2

+ C2‖φj‖∞‖∇φj‖∞
r2+2

√
r+1/2

(r
√
r − r2

√
r)2

+ C3‖φj‖2∞
r2+2

√
r−1

(r
√
r − r2

√
r)2

≤C r

(1− r
√
r)2

.

It is straightforward to prove that

lim
r→0

r

(1− r
√
r)2

= 0.

Consequently, ‖φj − φrj‖ → 0.

Now, let us take vr ∈ Hr
k such that ‖vr‖2 = 1. Notice that

vr =

k∑
j=1

cjζrφj = ζrv where v =

k∑
j=1

cjφj ∈ Hk

and ‖vr − v‖ = o(1) when r → 0. Thus,

‖vr‖2 = (‖vr‖2 − ‖v‖2) + ‖v‖2 ≤ C̃k%̃r + λk‖v‖22
≤C̃k%̃r + λk[(‖v‖22 − ‖vr‖22) + ‖vr‖22] = ck%r + λk,

as desired. �

As usual, we must continue by choosing an appropriate decomposition for H.

Notice that for r small enough, we can split the space H as H = Hr
k ⊕H⊥k .
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First of all, we need to do some estimates which will be used to prove the

geometric conditions of the Linking Theorem. Since λ > λk, the previous lemma

guarantees that there exists r small enough in order to have

(5.7)
λ

λk + ck%r
− 1 > 0.

Now we choose δ sufficiently small such that

(5.8) δ2 <
λ

λk + ck%r
− 1.

The next two propositions regard geometric conditions of the Linking Theorem

using this non-orthogonal direct sum.

Proposition 5.4. Suppose that λk < λ < λk+1, (g0)–(g2) and (1.5) hold.

Then there exist ρ, a > 0 such that Jλ(u) ≥ a if u ∈ H⊥k with ‖u‖ = ρ.

Proof. We can now proceed analogously to the proof of Proposition 4.4.�

For the next proposition, let us remark that, since

(5.9) |supp zrn ∩ supp v| = |∂Br2(x0)| = 0 for all v ∈ Hr
k ,

one has zrn ∈ (Hr
k)⊥.

Proposition 5.5. Suppose that λk < λ < λk+1, (g0)–(g2) and (1.5) hold.

For each n large enough, there exists Rn = R(n) > 0 such that

Jλ(u) ≤ 0 for all u ∈ ∂Qδr,

where Qδr := {v + sδzrn : v ∈ Hr
k , ‖v‖ ≤ Rn and 0 ≤ s ≤ Rn}.

Proof. Fix R0 > ρ and N ∈ N such that for all n > N , we have

(5.10) zrn(x) ≥ 2‖ψ‖∞,r
δR

in Br2/n(x0) for all R > R0.

Let us take R > R0 and as in Proposition 4.5 we split ∂Qδr as follows:

Q1 = {v ∈ Hr
k : ‖v‖ ≤ R};

Q2 = {v + sδzrn : v ∈ Hr
k , ‖v‖ = R and 0 ≤ s ≤ R};

Q3 = {v +Rδzrn : v ∈ Hr
k , ‖v‖ ≤ R}.

If v ∈ Q1, from Lemma 5.3, we obtain

Jλ(v) ≤ 1

2

(
1− λ

λk + ck%r

)
‖v‖2 for all v ∈ Hr

k .

Since λ > λk and due to the choice of r in (5.7), we can take C1 > 0 such that

(5.11) Jλ(v) ≤ −C1‖v‖2 ≤ 0

for all v ∈ Hr
k independently of R > 0. Using (5.9), we observe that

(5.12) Jλ(v + sδzrn) = Jλ(v) + Jλ(sδzrn) for all v ∈ Hr
k .
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For Q2, using (5.5), and the choice of δ in (5.8), we get

Jλ(v + sδzrn) = Jλ(v) + Jλ(Rδzrn) ≤ 1

2
R2

(
1− λ

λk + ck%r
+ δ2

)
< 0,

independently of R > 0.

For Q3, using (4.2), (5.11) and (5.12), we obtain

Jλ(v +Rδzrn) ≤ Jλ(v) + Jλ(Rδzrn)

≤ δ2R2

2
−RσCσ

∫
Br2/n(x0)

|x|α
(
δzrn −

‖ψ‖∞,r
R

)σ
+

dx+
πr4

n2
Dσ.

Using (5.10), we can choose n sufficiently large and Rn ≥ R0 such that

Jλ(v + δRnz
r
n) ≤ R2

nδ
2

2
− CσRσnτ +

πr4

n2
Dσ ≤ 0,

where

τ = τ(n, α) =

(
‖ψ‖∞,r
R0

)σ
2πr2(2+α)

(2 + α)n2+α
> 0

and this completes the proof. �

5.2. Control of minimax levels. For the Mountain Pass case, we define

the minimax level of Jλ by

(5.13) c̃ = c̃(n) = inf
υ∈Γ

max
w∈υ([0,1])

Jλ(w)

where Γ = {υ ∈ C([0, 1], H) : υ(0) = 0 and υ(1) = Rnz
r
n}, with Rn such that

Jλ(Rnz
r
n) ≤ 0 as in Proposition 5.2.

Proposition 5.6. Let c̃(n) be given as in (5.13). Then there exists n large

enough such that c̃(n) < 2π/β0.

Proof. We claim that there exists n such that

(5.14) max
t≥0

Jλ(tzrn) <
2π

β0
.

Let us fix some constants that we shall use in this proof. We can assume,

without loss of generality, that there exists C0 > 0 such that

(5.15) ε0 ≤
log(h(s))

s
≤ C0

for all s large enough, where ε0 is given in (5.2).

Indeed, note that if h satisfies (1.8), there exists h̃ such that h(s) ≥ h̃(s) for

all s large enough and

(5.16) 0 < lim inf
s→+∞

log(h̃(s))

s
≤ lim sup

s→+∞

log(h̃(s))

s
< +∞.

By (5.3), we have

(5.17) ‖ψ‖∞,r ≤
ε0

2β0
.
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Finally, we consider γ given by (1.7) such that

(5.18) γ >
22+α

r4β0
exp

(
C2

0

4β0

)
.

Now suppose by contradiction that (5.14) is not true. So, for all n, this

maximum is larger than or equal to 2π/β0 (it is indeed a maximum, in view of

Proposition 5.2). Let tn > 0 be such that

(5.19) Jλ(tnz
r
n) = max

t≥0
Jλ(tzrn).

Then

(5.20) Jλ(tnz
r
n) ≥ 2π

β0
for all n ∈ N,

and, consequently, from (5.5),

(5.21) t2n ≥
4π

β0
for all n ∈ N.

Let us prove that t2n → 4π/β0. From (5.19) we get

d

dt
(Jλ(tzrn))

∣∣∣∣
t=tn

= 0.

So we have

t2n ≥
∫
Br2/n(x0)

|x|αg(tnz
r
n + ψ)+tnz

r
n dx

≥
∫
Br2/n(x0)

|x|αg(tnz
r
n + ψ)+(tnz

r
n + ψ)+ dx.

Then, (1.7) and (5.3) imply that there exists s0 large enough such that

t2n ≥
1

2α
γ

∫
Br2/n(x0)

h

(
tn√
2π

log1/2 n+ ψ

)
exp

(
β0

(
tn√
2π

log1/2 n+ ψ

)2)
dx,

where we have taken n sufficiently large such that(
tn√
2π

log1/2 n+ ψ

)
≥
(

tn√
2π

log1/2 n− ‖ψ‖∞,r
)
≥ s0 in Br2/n(x0).

We still have

t2n ≥
1

2α
γ

∫
Br2/n(x0)

exp

[
−
(

log[h((tn/
√

2π) log1/2 n+ ψ)]

2
√
β0((tn/

√
2π) log1/2 n+ ψ)

)2

+ β0

(
(tn/
√

2π) log1/2 n+ ψ +
log[h((tn/

√
2π) log1/2 n+ ψ)]

2
√
β0((tn/

√
2π) log1/2 n+ ψ)

)2]
dx

and taking an even larger n, (5.16) shows that

t2n ≥
1

2α
γ
πr4

n2
exp

(
− C

2
0

4β0

)
exp

(
β0

(
tn√
2π

log1/2 n− ‖ψ‖∞,r +
ε0

2β0

)2)
.
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By (5.17), we see that

t2n ≥
1

2α
exp

(
− C

2
0

4β0

)
γ
πr4

n2
exp

(
β0
t2n
2π

log n

)
(5.22)

=
1

2α
exp

(
− C

2
0

4β0

)
γπr4 exp

((
β0
t2n
2π
− 2

)
log n

)
,

which implies that tn is bounded. Moreover, (5.22) together with (5.21) give

t2n → 4π/β0. Letting n→∞ in (5.22), one gets

γ ≤ 22+α

r4β0
exp

(
C2

0

4β0

)
,

which contradicts to the choice of γ in (5.18). This contradiction happens be-

cause we are supposing c̃(n) ≥ 2π/β0, so we conclude this proof. �

Now we can define the minimax level for the linking case as

(5.23) ĉ = ĉ(n) = inf
ν∈Γ

max
w∈Qδr

Jλ(ν(w))

where Γ = {ν ∈ C(Qδr;H) : ν(w) = w if w ∈ ∂Q}.

Proposition 5.7. Let ĉ(n) be given as in (5.23). Then there exists n large

enough such that ĉ(n) < 2π/β0.

Proof. From (5.9) we see that we have split the support of the functions in

Hr
k of the support of zrn. Therefore, we have

ĉ(n) ≤ max{Jλ(v + tzrn) : v ∈ Hr
k , ‖v‖ ≤ Rn and t ≥ 0}

= max{Jλ(v) + Jλ(tzrn) : v ∈ Hr
k , ‖v‖ ≤ Rn and t ≥ 0}

≤ max{Jλ(v) : v ∈ Hr
k and ‖v‖ ≤ Rn}+ max{Jλ(tzrn); t ≥ 0}.

By (5.11), we see that Jλ(v) ≤ 0 for all v ∈ Hr
k . It follows that

ĉ(n) ≤ max{Jλ(tzrn) : t ≥ 0}.

From now on, we can proceed analogously to the proof of Proposition 5.6. �

5.3. Proof of Theorem 1.3. Let us take n such that c(n) < 2π/β0, where

c(n) = c̃(n), if λ < λ1 or c(n) = ĉ(n), if λ > λ1. Let us consider (um),

a (PS)-sequence at level c(n). Since it is bounded by Lemma 3.3, then, up to

a subsequence, we may assume that um ⇀ u weakly in H, um → u strongly in

Lp(B1) for all p ≥ 1 and almost everywhere in B1. Therefore, we notice that u

is a solution to (1.10). Indeed, for each v ∈ C∞c (B1) we have

0← 〈J ′λ(um), v〉 =

∫
B1

∇um∇v dx− λ
∫
B1

umv dx−
∫
B1

|x|αg(um + ψ)+v dx.
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To see this fact we use that∫
B1

∇um∇v dx →
∫
B1

∇u∇v dx,∫
B1

umv dx →
∫
B1

uv dx,∫
B1

|x|αg(um + ψ)+v dx →
∫
B1

|x|αg(u+ ψ)+v dx

(the last one is due to (3.8), and using Lemma 2.1 in [11] and (g1)). Thus, we

can easily conclude that 〈J ′λ(u), v〉 = 0 for all v ∈ C∞c (B1). Consequently u is

a weak solution to (1.10). We still need to ensure that u 6≡ 0.

Suppose, instead, that u ≡ 0. So, we must have ‖um‖2 → 0 and, again using

(3.8), (g1) and Lemma 2.1 in [11], we have∫
B1

|x|αG(um + ψ)+ dx→
∫
B1

|x|αG(u+ ψ)+ dx = 0.

Moreover, since

c(n) = lim
m→∞

Jλ(um) =
1

2
lim
m→∞

‖um‖2,

and c(n) < 2π/β0, one can find δ > 0 and m0 such that

(5.24) ‖um‖2 ≤
4π

β0
− δ for all m ≥ m0.

Consider a small ε > 0 and p > 1 (sufficiently close to 1) in order to have

p(β0 + ε)(4π/β0 − δ) ≤ 4π.

By (1.5), one can take C > 0 sufficiently large such that

(5.25) g(s)p ≤ ep(β0+ε)s2 + C for all s ≥ 0.

From the fact that 〈J ′λ(um), um〉 = εm → 0, we can see that

‖um‖2 ≤ λ‖um‖22 +

∫
B1

|x|αg(um + ψ)+um dx+ εm.

We need to estimate the integral on the right of this last inequality. The Hölder

inequality and (5.25) give∫
B1

|x|αg(um + ψ)+um dx ≤
(∫

B1

(g(um + ψ)+)p dx

)1/p(∫
B1

|um|p
′
dx

)1/p′

≤
[(∫

B1

exp(p(β0 + ε)u2
m dx

)1/p

+ Cπ1/p

]
‖um‖p′
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and then we have

‖um‖2 ≤λ‖um‖22 + εm

+

[(∫
B1

e(p(β0+ε)(4π/β0−δ)(um/‖um‖)2)dx

)1/p

+ Cπ1/p

]
‖um‖p′

≤λ‖um‖22 + εm +

[(∫
B1

e(4π(um/‖um‖)2) dx

)1/p

+ Cπ1/p

]
‖um‖p′ .

Since the last integral in the estimates above is bounded (because of the Trudin-

ger–Moser inequality), we get ‖um‖ → 0. Hence um → 0 in H and then

Jλ(um) → 0 = c(n). This is impossible since c(n) ≥ a > 0 for all n. Thus

u 6≡ 0 is the desired solution. �

6. Proof of Theorem 1.4. Critical case in H1
0,rad(B1)

In this section, we treat the radial case with g having critical growth. In this

case, a solution u to problem (1.10) is in H = H1
0,rad(B1), which will force us to

change some calculations.

6.1. Geometric conditions. If λ < λ1, we observe that the geometric

conditions follow from Propositions 5.1 and 5.2, replacing zrn, given in (5.4),

with zn, given in (5.1). If λk < λ < λk+1, we use the same arguments devel-

oped in Proposition 5.4 in order to prove that 0 is a local minimum of Jλ in

((H∗l )⊥ ∩ H1
0,rad(B1)). However, we cannot take the Moser sequence with sup-

port disjoint from the eigenfunctions, as we did in Proposition 5.5. Indeed, since

now we work in an environment of radial functions, we need to use the sequence

set in (5.1), instead of the one given in (5.4). This replacement brings some

difficulties because we lose the advantage of being close to the boundary, where

the interference of ψ could be considered negligible.

Initially, let l = max{j : H∗j ⊂ Hk} and we set

Tl : H
1
0,rad(B1)→ (H∗l )⊥ ∩H1

0,rad(B1)

as the orthogonal projection. We consider (5.1) and define

(6.1) wn(x) = Tlzn(x).

Since (H∗l )⊥ ∩H1
0,rad(B1) ⊂ H⊥k , by [23, Lemma 2], we have that the following

estimates:

(6.2) 1− Ak
log n

≤ ‖wn‖2 ≤ 1,

(6.3) wn(x) ≥


− Bk

(log n)1/2
for all x ∈ B1,

(log n)1/2

√
2π

− Bk
(log n)1/2

for all x ∈ B1/n,
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where B1/n := {x ∈ R2 : |x| < 1/n} and Ak, Bk > 0 are such that

‖u‖ ≤ Ak‖u‖2 and ‖u‖∞ ≤ (Bk/B)‖u‖2 for all u ∈ Hk,

and B satisfies ‖zn‖2 ≤ B/(log n)1/2 for all n ∈ N.

Proposition 6.1. Suppose that λk < λ < λk+1, (g0)–(g2) and (1.5) hold.

For each n large enough, there exists Rn = R(n) > 0 such that, if

Q := {v ∈ H∗l : ‖v‖ ≤ Rn} ⊕ {sδwn : 0 ≤ s ≤ Rn},

with

(6.4) δ2 ≤ λ

λk
− 1,

then Jλ(u) ≤ 0 for all u ∈ ∂Q; moreover, Rn →∞ when n→∞.

Proof. Fix R0 > ρ and let us take R > R0. As before, we split ∂Q as

follows:

Q1 = {v ∈ H∗l : ‖v‖ ≤ R};

Q2 = {v + sδwn : v ∈ H∗l , ‖v‖ = R and 0 ≤ s ≤ R};

Q3 = {v +Rδwn : v ∈ H∗l , ‖v‖ ≤ R}.

Recalling that G(s) ≥ 0 for all s ∈ R and considering v ∈ Q1, we get

(6.5) Jλ(v) ≤
(

1− λ

λk

)
‖v‖2 ≤ 0,

independently of R. For Q2, let us take δ satisfying (6.4). By (6.2), we obtain

Jλ(v + sδwn) ≤
(

1− λ

λk
+ δ2

)
R2

2
≤ 0,

independently of R > 0. For Q3, we take δ > 0 given in (6.4) and v+Rδwn with

‖v‖ ≤ R and v ∈ H∗l . Using (4.2), we obtain

Jλ(v+Rδwn) ≤ 1 + δ2

2
R2−Rσ

∫
B1

|x|α
(
−(‖v‖∞ + ‖ψ‖∞)

R
+ δwn

)σ
+

dx+Dσ.

Since H∗l ⊂ Hk has finite dimension, it follows that ‖v‖∞ ≤ CkR for some

Ck > 0. We can suppose that R0, previously fixed, satisfies ‖ψ‖∞/R0 ≤ Ck.

Then, by (6.3) and considering R > R0, we have

Jλ(v +Rδwn) ≤ 1 + δ2

2
R2 − CnRσ + πDσ,

where

Cn =

(
− 2Ck + δ

(
(log n)1/2

√
2π

− Bk
(log n)1/2

))σ
+

2π

(2 + α)n2+α
> 0.
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Since σ > 2, the result is then proved by taking Rn large enough so that

δ‖wn‖Rn > ρ and, thus, we obtain

Jλ(v +Rnδwn) ≤ 1 + δ2

2
Rn − CnRσn + πDσ ≤ 0

and since Cn → 0 when n → ∞, we can see that Rn → ∞. This concludes the

proof. �

6.2. Control of minimax levels. Here we can notice another important

difference between the cases studied in H1
0 (B1) and in H1

0,rad(B1). Since, in the

radial case, we need to work with radially symmetric functions whose supports

have the center at 0 ∈ R2, we cannot neglect the weight |x|α as we did in the

critical case. Actually, although the estimates are harder to obtain, it turns out

to be an advantage because the environment of symmetric functions changes the

boundedness of the minimax levels: in the critical case, we had that they were

bounded by the constant 2π/β0. On the other hand, working in H1
0,rad(B1), this

boundedness can be obtained by a greater value that depends on β0 and α.

For the Mountain Pass problem, we define the minimax level of Jλ by

(6.6) c = c(n) = inf
υ∈Γ

max
w∈υ([0,1])

Jλ(w),

where Γ = {υ ∈ C([0, 1], H) : υ(0) = 0 and υ(1) = Rnzn}, with Rn such that

Jλ(Rnzn) ≤ 0.

Proposition 6.2. Let c(n) be given in (6.6). Then there exists n large

enough such that

(6.7) c(n) <
(2 + α)π

β0
.

Proof. We claim that exists n such that

(6.8) max
t≥0

Jλ(tzn) <
(2 + α)π

β0
.

First of all, let us fix some constants that we shall use in this proof. Analogously

as we have done in Proposition 5.6, we can assume, without loss of generality,

that

(6.9) K0 ≤
log(h(s))

s
≤ C0

for all s large enough. By (1.9), K0 can be taken large enough in order to have

(6.10) ‖ψ‖∞ ≤
K0

2β0
.

Finally, consider γ such that

(6.11) γ >
(2 + α)2

β0
exp

(
C2

0

4β0

)
.
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We suppose, by contradiction, that (6.8) is not true. In the same way as in

Theorem 1.3 with λ < λ1, we conclude that

γ ≤ (2 + α)2

β0
exp

(
C2

0

4β0

)
.

It contradicts (6.11), then we have that (6.7) holds. �

Remark 6.3. This last proposition explains why we had to assume (1.9)

instead of (1.8). In the H1
0 (B1) environment, we could control the L∞-norm

of ψ by moving the supports of our Moser sequence far away from 0 and close

enough to ∂B1 so that ‖ψ‖∞ would be sufficiently small and then it would not

interfere in the estimates. Since this could not be done in the radial case, the

interference was avoided by using (6.10).

Remark 6.4. We also point out the different choices we have made for the

constant γ in (5.18) and (6.11), which explains, in part, the role of |x|α in the

radial case. Notice that γ in (5.18) must be greater than the one given in (6.11).

Now, for the linking problem, we can define the minimax level

(6.12) č = č(n) = inf
ν∈Γ

max
w∈ν(Q)

Jλ(ν(w))

where Γ = {ν ∈ C(Q,H) : ν(w) = w if w ∈ ∂Q}.
We remark that since we did not separate the supports of the eigenfunctions

from the Moser sequence, the estimates done in Proposition 5.7 will not work in

the radial case. Therefore, we need do handle more delicate arguments in order

to achieve analogous results. This is done in the following proposition.

Proposition 6.5. Let č(n) be given as in (6.12). Then there exists n large

enough such that

č(n) <
(2 + α)π

β0
.

Proof. Suppose by contradiction that for all n we have č(n) ≥ (2+α)π/β0.

We notice that

č(n) ≤ max{Jλ(v + twn) : v ∈ H∗l with ‖v‖ ≤ Rn, t ≥ 0}

and it follows that for each n there exist vn ∈ H∗l and tn > 0 such that

(6.13) Jλ(vn + tnwn) = max{Jλ(v + twn) : v ∈ H∗l with ‖v‖ ≤ Rn, t ≥ 0}.

Therefore, we have

(6.14) Jλ(vn + tnwn) ≥ (2 + α)π

β0
for all n ∈ N.

So, since wn ∈ ((H∗l )⊥ ∩H1
0,rad(B1)), from (6.5) we obtain

(6.15) t2n ≥
2(2 + α)π

β0
for all n ∈ N.
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Let us assume the following claims whose proofs we give later:

Claim 6.6. (vn) and (tn) are bounded sequences.

Claim 6.7. t2n →
2(2 + α)π

β0
in R and vn → 0 in H.

Since vn ∈ H∗l , in view of Claim 6.7, we also get ‖vn‖∞ → 0. However, we

have vn + tnwn →∞ uniformly in B1/n.

As we also have done in Proposition 6.2, let us observe that we can assume,

without loss of generality, that

(6.16) K0 ≤
log(h(s))

s
≤ C0

for all s large enough. From (1.9), K0 can be taken large enough in order to

have

(6.17) ‖ψ‖∞ ≤
K0

4β0

and, for n large enough,

‖vn‖∞ ≤
K0

4β0
.

Finally, consider γ such that

(6.18) γ >
(2 + α)2

β0
exp

(
4(2 + α)πBk√

2π
+
C2

0

4β0

)
.

From (6.13), using the fact that the derivative of Jλ, restricted to H∗l ⊕ Rwn is

zero at vn + tnwn, we obtain

(6.19) ‖vn+tnwn‖2−λ‖vn+tnwn‖22−
∫
|x|αg(vn+tnwn+ψ)+(vn+tnwn) dx = 0

and we can conclude that

γ ≤ (2 + α)2

β0
exp

(
4(2 + α)πBk√

2π
+
C2

0

4β0

)
,

which contradicts to the choice of γ in (6.18). This contradiction follows from

the assumption č(n) ≥ (2 + α)π/β0 for all n ∈ N, which concludes the proof. �

Proof of Claim 6.6. It is sufficient to prove that all subsequences of (tn)

and (vn) have bounded subsequences. Let us suppose that this is not true. So,

we can find subsequences, which by convenience we still denote by (tn) and (vn),

respectively, such that all of their subsequences are unbounded. That means, we

can assume that

(6.20) tnk + ‖vnk‖ → ∞ for all subsequences (nk).

Therefore, one of the following two possibilities has to hold:

(i) either there exists a constant C0 > 0 such that tn/‖vn‖ ≥ C0, or

(ii) there are subsequences such that tn/‖vn‖ → 0.
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Assume that (i) holds and using (6.20), we have that tn →∞. Now we can see

from (1.7) that

t2n ≥
∫
B1/n

|x|αg(vn + tnwn + ψ)+(vn + tnwn + ψ)+ dx

≥ γ
∫
B1/n

|x|αh(vn + tnwn + ψ) exp(β0(vn + tnwn + ψ)2) dx

for n large enough and we can see from (1.9) that

(6.21) h(s) ≥ C̃

for all s large enough. So we have

t2n ≥ γC̃
∫
B1/n

|x|α exp(β0(vn + tnwn + ψ)2) dx.

We notice that since H∗l has finite dimension, we have that ‖vn‖∞/tn is bounded

for all x ∈ B1/n. We also know that ‖ψ‖∞/tn is bounded. These facts together

with (6.3), give us

vn(x) + tnwn(x) + ψ(x) = tnwn(x)

(
1 +

vn(x) + ψ(x)

tn

1

wn

)
≥ tn√

2π

(
(log n)1/2 −

√
2πBk

(log n)1/2

)(
1− C

(
(log n)1/2

√
2π

− Bk
(log n)1/2

)−1)
≥ tn

2

1√
2π

(
(log n)1/2 −

√
2πBk

(log n)1/2

)
and taking n such that (logn)1/2 −

√
2πBk/(log n)1/2 ≥ (1/2)(log n)1/2, we ob-

tain

vn(x) + tnwn(x) + ψ(x) ≥ tn

4
√

2π
(log n)1/2

and by (6.21) it follows that

t2n ≥ γC̃
∫
B1/n

|x|α exp

(
β0

(
tn

4
√

2π
(log n)1/2

)2)
dx

= γC̃
2π

2 + α
exp

((
β0

t2n
32π
− (2 + α)

)
log n

)
.

Consequently, tn must be bounded in case (i), which contradicts tn → ∞ in

case (i).

So (ii) occurs. Since lim
n→∞

tn/‖vn‖ = 0, by (6.20) we conclude that ‖vn‖ → ∞.

By (6.19), we get

‖tnwn + vn‖2 ≥
∫
|x|αg(tnwn + vn + ψ)+(tnwn + vn)+ dx.

Using (1.7) and (6.21), for n large enough, we have

‖tnwn + vn‖2 ≥ γC̃
∫
{tnwn+vn+ψ≥cγ}

|x|αeβ0(tnwn+vn+ψ)2 dx.
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Since we are supposing (ii), it follows that

1 ≥ C̃γ
∫
{tnwn+vn+ψ≥cγ}

|x|α e
β0(tnwn+vn+ψ)2

‖tnwn + vn‖2
dx(6.22)

≥ C̃ γ
2

∫
{tnwn+vn+ψ≥cγ}

|x|α e
β0(tnwn+vn+ψ)2

‖vn‖2
dx.

On the other hand, we notice that

tnwn + vn + ψ

‖vn‖
χ{tnwn+vn+ψ≥cγ}

=
vn
‖vn‖

+
tn
‖vn‖

wn −
tnwn + vn
‖vn‖

χ{tnwn+vn+ψ≤cγ} +
ψ

‖vn‖
χ{tnwn+vn+ψ≥cγ}.

Hence, we can see that

tnwn + vn(x) + ψ

‖vn(x)‖
χ{tnwn+vn+ψ≥cγ}(x)→ v̂ a.e. in H1

0 (B1),

where v̂ ∈ Hk, with vn/‖vn‖ → v̂ and ‖v̂‖ = 1. So using Fatou’s Lemma in

(6.22) and since we have assumed that ‖vn‖ → ∞, we reach a contradiction. So

‖vn‖ is bounded and, consequently, tn is also bounded. �

Proof of Claim 6.7. First, we notice that for some appropriate subse-

quences we have vn → v0 in H and tn → t0 and since zn ⇀ 0 we get wn ⇀ 0

and wn → 0 for all x ∈ B1. Then it follows

(6.23) vn + tnwn → v0 a.e. in B1.

Moreover, in view of (6.19), we see that

(6.24)

∫
B1

|x|αg(vn + tnwnψ)+(vn + tnwnψ) dx ≤ ‖vn + tnwn‖2 ≤ C.

However, using [11, Lemma 2.1] and recalling (g1), (6.23) and (6.24), we have

(6.25)

∫
B1

|x|αG(vn + tnwn + ψ)+ dx→
∫
B1

|x|αG(v0 + ψ)+ dx.

From (6.14) and (6.25) we can see that

(6.26) Jλ(v0) +
t20
2
≥ (2 + α)π

β0

and, since v0 ∈ H∗l , in view of Jλ(v0) ≤ 0 we have

t20 ≥
2(2 + α)π

β0
.

Now we prove that t20 = 2(2 + α)π/β0. Let us suppose that this is not true. We

have t20 > 2(2 + α)π/β0. Thus we can take small enough ε > 0 so that

t2n > (1 + ε)
2(2 + α)π

β0
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for all large n. We consider

εn = sup
B1/n

|vn(x) + ψ(x)|
tnwn(x)

,

clearly we see that εn → 0, which, together with (6.21), yields

C ≥ γC̃
∫
B1/n

|x|α exp[β0(vn + ψ + tnwn)2] dx

≥ γC̃
∫
B1/n

|x|α exp[β0(−εntnwn + tnwn)2] dx.

Using (1.7) and (6.24) and n large enough, we see that

C ≥ γC̃ 2π

(2 + α)n2+α
e(β0(1−εn)2t2n[(logn)1/2/

√
2π−Bk/(logn)1/2]2)

= γC̃
2π

(2 + α)e(2+α) logn
e(β0(1−εn)2t2n[B2

k/logn−2Bk/
√

2π])e(β0(1−εn)2t2n logn/(2π)).

We notice that e(β0(1−εn)2t2n[B2
k/logn−2Bk/

√
2π]) > C1 for n large enough and some

C1 > 0, due to the facts that t2n > 2π(2 + α)/β0 and εn → 0. Thus, using

t2n > (1 + ε)2π(2 + α)/β0, we have

C ≥ C1γC̃
2π

(2 + α)
e(β0(1−εn)2t2nlogn/(2π)−(2+α) logn)

≥ C1γC̃
2π

(2 + α)
e((2+α) logn[(1−εn)2(1+ε)−1]) →∞,

which is a contradiction. Consequently, we must have t20 = 2π(2 + α)/β0 as

desired. So by (6.26) we get Jλ(v0) ≥ 0. But we know that v0 ∈ H∗l , so by (6.5),

we have Jλ(v0) = 0.

Now we must show that if v0 ∈ H∗l and Jλ(v0) = 0, then v0 = 0 and we

finish the proof of Claim 6.7. Consider v0 ∈ H∗l , then

0 = Jλ(v0) =
1

2
‖v0‖2 −

λ

2
‖v0‖22 −

∫
B1

|x|αG(v0 + ψ)+ dx

≤ 1

2

(
1− λ

λk

)
‖v0‖2 −

∫
B1

|x|αG(v0 + ψ)+ dx ≤ −
∫
B1

|x|αG(v0 + ψ)+ dx.

Since G ≥ 0, we can see that
∫
B1
|x|αG(v0 + ψ)+ dx = 0. Thus

0 = Jλ(v0) =
1

2
‖v0‖2 −

λ

2
‖v0‖22 ≤

1

2

(
1− λ

λk

)
‖v0‖2.

So we can see
1

2

(
1− λ

λk

)
‖v0‖2 ≥ 0

which gives us v0 = 0. �
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6.3. Proof of Theorem 1.4. Let us take n such that c(n) < (2 + α)π/β0,

where c(n) = c(n), if λ < λ1 or c(n) = č if λ > λ1. Consider um a (PS)-sequence

at level c(n), which is the minimax level is below (2 +α)π/β0. Consider a (PS)c
sequence (um), it is bounded by Lemma 3.3, so there exists a subsequence of

(um) and u ∈ H such that um ⇀ u weakly in H, um → u in Lprad(B1) for all

p ≥ 1 and almost everywhere in B1. In the same way as in Theorem 1.3, we

conclude that u is a solution to (1.10) and u 6= 0. �
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