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ON JAMES AND JORDAN–VON NEUMANN TYPE

CONSTANTS AND NORMAL STRUCTURE

IN BANACH SPACES

Zhan-fei Zuo — Chun-lei Tang

Abstract. The weakly convergent sequence coefficient WCS(X) is esti-

mated by the James type constant JX,t(τ), Jordan–von Neumann type
constant Ct(X) and the Domı́nguez Benavides coefficient R(1, X), which

enable us to obtain some sufficient conditions for normal structure. The re-

sults obtained in this paper are more general than other previously known
sufficient conditions for normal structure.

1. Introduction

Let X be a nontrivial Banach space, we will use BX and SX to denote the

unit ball and unit sphere of X, respectively. Recall that a Banach space X is
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called uniformly nonsquare if there exists δ > 0 such that for all x, y ∈ SX

min {‖x+ y‖, ‖x− y‖} ≤ 2(1− δ).

It is well known that if X is uniformly nonsquare then X is reflexive. A bounded

convex subset K of a Banach space X is said to have normal structure if for

every convex subset H of K that contains more than one point there exists a

point x0 ∈ H such that

sup {‖x0 − y‖ : y ∈ H} < sup {‖x− y‖ : x, y ∈ H}.

A Banach space X is said to have weak normal structure if every weakly com-

pact convex subset of X that contains more than one point has normal structure.

In reflexive spaces, both notions coincide. Weak normal structure and normal

structure play an important role in metric fixed point theory for nonexpansive

mappings, since it was proved by Kirk that every reflexive Banach space with

normal structure has the fixed point property (see [10]). Many geometrical prop-

erties of Banach spaces implying weak normal structure or normal structure have

been studied (see [2]–[4], [6]–[9], [11]–[16], [18]–[20]).

Throughout this paper, we assume that X does not have the Schur property.

The weakly convergent sequence coefficient WCS(X), introduced by Bynum, was

reformulated by Sims and Smyth in [13] in the following equivalent form:

WCS(X) = inf
{

lim
n,m;n 6=m

‖xn − xm‖, xn
w−→ 0, ‖xn‖ = 1

}
,

where the infimum is taken over all weakly null sequences {xn} in X such that

lim
n,m;n 6=m

‖xn−xm‖ exists. It is clear that 1 ≤WCS(X) ≤ 2 and it is known that

WCS(X) > 1 implies that X has weak normal structure.

The coefficient R(1, X) was defined by Domı́nguez Benavides in [5] as

R(1, X) = sup
{

lim inf
n→∞

{‖xn + x‖
}
,

where the supremum is taken over all x ∈ X with ‖x‖ ≤ 1 and all weakly null

sequences {xn} in BX such that

D[(xn)] := lim sup
n→∞

lim sup
m→∞

‖xn − xm‖ ≤ 1.

Obviously, 1 ≤ R(1, X) ≤ 2.

The aim of this paper is to estimate the lower bounds for WCS(X) in terms

of James type constant JX,t(τ), Jordan–von Neumann type constant Ct(X) and

Domı́nguez Benavides coefficient R(1, X). By means of these bounds we iden-

tify several geometrical properties implying normal structure. We show that

properties obtained in this paper are more general than other previously known

sufficient conditions for normal structure.



James and Jordan–von Neumann Type Constants 617

2. Preliminaries

Before going to the results, let us recall some concepts and results which

will be used in the following sections. The James type modulus JX,t(τ) was

introduced by Takahashi in [14] as a generalization of the James constant J(X).

For τ ≥ 0 and −∞ ≤ t <∞, the modulus JX,t(τ) is defined as

JX,t(τ) = sup
{
Mt(‖x+ τy‖, ‖x− τy‖) : x, y ∈ SX

}
,

where Mt(a, b) is the generalized mean defined by

Mt(a, b) :=

(
at + bt

2

)1/t

(−∞ < t <∞ and t 6= 0),

M−∞(a, b) := lim
t→−∞

Mt(a, b) = min{a, b},

M0(a, b) := lim
t→0
Mt(a, b) =

√
ab,

where a and b are two positive real numbers. Particular values of JX,t(τ) include

some known constants (see [1], [6]–[7], [11], [15]) such as J(X) = JX,−∞(1),

T (X) = JX,0(1), A2(X) = JX,1(1), E(X) = 2JX,2(1)2, CG(τ,X) = JX,0(τ),

ρX(τ) = JX,1(τ)− 1 and γ(τ) = JX,2(τ)2. Some geometric properties of Banach

spaces X in terms of the modulus JX,t(τ) were investigated in [14], [18].

(i) X is uniformly nonsquare ⇔ JX,t(1) < 2 ⇔ JX,t(τ) < 1 + τ for some

0 < τ < +∞.

(ii) X is uniformly smooth ⇔ lim
τ→0+

ρX(τ)
τ = 0 ⇔ lim

τ→0+

JX,t(τ)−1
τ = 0 for

1 ≤ t ≤ 2.

Let −∞ ≤ t <∞, the Jordan–von Neumann type modulus Ct(X) is defined as

follows (see [14]):

Ct(X) = sup

{
J2
X,t(τ)

1 + τ2
: 0 ≤ τ ≤ 1

}
.

The choice t = −∞ gives the constant C−∞(X) which has been discussed in

[14], [16], [20]. It is clear that the Jordan–von Neumann type modulus is a

generalization of the Jordan–von Neumann constant CNJ(X) = C2(X) and the

Zbăganu constant CZ(X) = C0(X). Some properties and inequalities among

them have been indicated in [14], [16].

(i) Let −∞ < t <∞ and t 6= 0, then for any Banach space X,

Ct(X) = sup

{
[(‖x+ y‖t + ‖x− y‖t)/2]2/t

‖x‖2 + ‖y‖2
: x ∈ SX , y ∈ BX

}
.

Let t = −∞, then

C−∞(X) = sup

{
min{‖x+ y‖2, ‖x− y‖2}

‖x‖2 + ‖y‖2
: (x, y) 6= (0, 0)

}
.

(ii) Let −∞ ≤ t <∞, X is uniformly nonsquare if and only if Ct(X) < 2.
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(iii) J2(X)/2 ≤ C−∞(X) ≤ CZ(X) ≤ CNJ(X) ≤ J(X). Moreover, the above

inequalities are strict in some Banach spaces.

3. Main results

Theorem 3.1. Let τ ≥ 0 and t ∈ [−∞,+∞). Then for any Banach space X,

WCS(X) ≥ 1 + τ/R(1, X)

JX,t(τ)
.

Proof. If JX,t(τ) = 1 + τ , the estimate is trivial since WCS(X) ≥ 1 and

1 ≤ R(1, X) ≤ 2. Suppose that JX,t(τ) < 1 + τ , then X is uniformly nonsquare

and therefore reflexive. Let {xn} be a weakly null sequence in SX such that

d = lim
n,m,n 6=m

‖xn − xm‖ exists. We consider a normalized functional sequence

{x∗n} such that x∗n(xn) = 1. Note that the reflexivity of X guarantees, by passing

to a subsequence if necessary, that x∗n
w∗

−→ x∗. Let 0 < ε < 1 and choose N large

enough so that |x∗(xN )| < ε/2 and d − ε < ‖xm − xN‖ < d + ε for all m > N .

Note that

lim
n 6=m

∥∥∥∥xm − xnd+ ε

∥∥∥∥ ≤ 1,

∥∥∥∥ xN
d+ ε

∥∥∥∥ ≤ 1.

By the definition of R(1, X), we can choose M > N large enough such that

(i) x∗N (xM ) < ε;

(ii) |(x∗M − x∗)(xN )| < ε/2;

(iii) ||(xM + xN )/(d+ ε)|| ≤ R(1, X) + ε.

Hence

|x∗M (xN )| ≤ |(x∗M − x∗)(xN )|+ |x∗(xN )| < ε.

Denote R := R(1, X). Let us put

x =
xN − xM
d+ ε

, y =
xN + xM

(d+ ε)(R+ ε)
.

It is easy to check that x, y ∈ BX and for τ ≥ 0

(d+ ε)‖x+ τy‖ =

∥∥∥∥(1 +
τ

R+ ε

)
xN −

(
1− τ

R+ ε

)
xM

∥∥∥∥
≥
(

1 +
τ

R+ ε

)
x∗N (xN )−

(
1− τ

R+ ε

)
x∗N (xM )

≥ 1 +
τ

R+ ε
− ε,

(d+ ε)‖x− τy‖ =

∥∥∥∥(1 +
τ

R+ ε

)
xM −

(
1− τ

R+ ε

)
xN

∥∥∥∥
≥
(

1 +
τ

R+ ε

)
x∗M (xM )−

(
1− τ

R+ ε

)
x∗M (xN )

≥ 1 +
τ

R+ ε
− ε.
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By the definition of JX,t(τ), for t ∈ [−∞,+∞),

(d+ ε)JX,t(τ) ≥ 1 +
τ

R+ ε
− ε.

Since the sequence {xn} and ε are arbitrary,

WCS(X) ≥ 1 + τ/R(1, X)

JX,t(τ)
. �

Corollary 3.2. Let X be a Banach space with

JX,t(τ) < 1 +
τ

R(1, X)

for some τ ≥ 0 and t ∈ [−∞,+∞), then X has normal structure. In particular,

if J(X) < 1 + 1/R(1, X) then X has normal structure.

Proof. Firstly, observe that JX,t(τ) < 1 + τ/R(1, X) ≤ 1 + τ and therefore

X is uniformly nonsquare, then X is reflexive so weak normal structure coincides

with normal structure and it is sufficient to prove that WCS(X) > 1. By the

assumption that JX,t(τ) < 1 + τ/R(1, X), it follows that

WCS(X) ≥ 1 + τ/R(1, X)

JX,t(τ)
> 1. �

Remark 3.3. (1) It was proved by Mazcuñán-Navarro in [12] that J(X) ≥
R(1, X). Take t = −∞ and τ = 1 in Theorem 3.1, then we obtain [4, Theorem

3.2]. More precisely, it is clear that

WCS(X) ≥ 1 + 1/R(1, X)

J(X)
=
J(X) + J(X)/R(1, X)

[J(X)]2
≥ J(X) + 1

[J(X)]2
.

Meanwhile, Corollary 3.2 also improves Proposition 26 in [12], Corollary 11 in

[3], and Corollary 4 in [8].

(2) Let t = −∞ and τ = 1 in Theorem 3.1. In the particular case that X is

a Hilbert space, it follows that

WCS(X) ≥ 1 + 1/R(1, X)

J(X)
=

1 + 1/
√

3/2√
2

≈ 1.28.

In [3], Casini et al. obtained the following bound for WCS(X):

WCS(X) ≥ 2

2J(X) + 1−
√

5
.

In the particular case that X is a Hilbert space, it follows that

WCS(X) ≥ 2

2J(X) + 1−
√

5
=

2

2
√

2 + 1−
√

5
≈ 1.25.

However, the real value of WCS(X) is
√

2 in this case, so the result in Theo-

rem 3.1 is better than Casini’s result in some space.
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Theorem 3.4. Let X be a Banach space, for t ∈ [−∞,+∞),

WCS(X)2 ≥ 1 + 1/R(1, X)2

Ct(X)
.

Proof. If Ct(X) = 2, the estimate is trivial since WCS(X) ≥ 1 and 1 ≤
R(1, X) ≤ 2. Suppose that Ct(X) < 2, then X is uniformly nonsquare and

therefore reflexive. Let {xn} be a weakly null sequence in SX such that d =

lim
n 6=m
‖xn−xm‖. Take xN , xM , x

∗
N , x

∗
M as in Theorem 3.1, we can choose M > N

large enough such that

(i) x∗N (xM ) < ε, x∗M (xN ) < ε;

(ii) |(x∗M − x∗)(xN )| < ε/2;

(iii) ||(xM + xN )/(d+ ε)|| ≤ R(1, X) + ε.

Denote R := R(1, X), let us put

x =
xN − xM
d+ ε

, y =
xN + xM

(d+ ε)(R+ ε)2
,

it is easy to check that x ∈ BX , ‖y‖ ≤ 1/(R+ ε) ≤ 1, so

(d+ ε)‖x+ y‖ =

∥∥∥∥(1 +
1

(R+ ε)2

)
xN −

(
1− 1

(R+ ε)2

)
xM

∥∥∥∥
≥
(

1 +
1

(R+ ε)2

)
x∗N (xN )−

(
1− 1

(R+ ε)2

)
x∗N (xM )

≥
(

1 +
1

(R+ ε)2

)
(1− ε),

(d+ ε)‖x− y‖ =

∥∥∥∥(1 +
1

(R+ ε)2

)
xM −

(
1− 1

(R+ ε)2

)
xN

∥∥∥∥
≥
(

1 +
1

(R+ ε)2

)
x∗M (xM )−

(
1− 1

(R+ ε)2

)
x∗M (xN )

≥
(

1 +
1

(R+ ε)2

)
(1− ε).

For −∞ < t <∞ and t 6= 0, by the equivalent definition of Ct(X),

Ct(X) ≥

(
‖x+ y‖t + ‖x− y‖t

2

)2/t

‖x‖2 + ‖y‖2
≥

(
1 +

1

(R+ ε)2

)
(1− ε)2

(d+ ε)2
.

For t = −∞ and t = 0, we similarly get the following inequalities:

C−∞(X) ≥ min{‖x+ y‖2, ‖x− y‖2}
‖x‖2 + ‖y‖2

≥

(
1 +

1

(R+ ε)2

)
(1− ε)2

(d+ ε)2
.

CZ(X) ≥ ‖x+ y‖‖x− y‖
‖x‖2 + ‖y‖2

≥

(
1 +

1

(R+ ε)2

)
(1− ε)2

(d+ ε)2
.
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Since the sequence {xn} and ε are arbitrary, for −∞ ≤ t <∞, we have

WCS(X)2 ≥ 1 + 1/R2

Ct(X)
. �

Corollary 3.5. Let X be a Banach space with

Ct(X) < 1 +
1

R(1, X)2
, for some t ∈ [−∞,+∞),

then X has normal structure. In particular, if C−∞(X) < 1 + 1/R(1, X)2 then

X has normal structure.

Proof. Firstly, observe that Ct(X) < 1 + 1/R(1, X)2 ≤ 2 for which 1 ≤
R(1, X) ≤ 2, therefore X is uniformly nonsquare, so X is reflexive. It is sufficient

to prove that WCS(X) > 1. Since Ct(X) < 1 + 1/R(1, X)2,

WCS(X)2 ≥ 1 + 1/R(1, X)2

Ct(X)
> 1. �

Theorem 3.6. Let X be a Banach space, the conditions

(a) CZ(X) < (1 +
√

3)/2;

(b) C−∞(X) < (1 +
√

3)/2;

(c) C−∞(X) < 1 + 1/J(X)2;

(d) C−∞(X) < 1 + 1/R(1, X)2

satisfy the chain of implications (a)⇒ (b)⇒ (c)⇒ (d).

Proof. (a)⇒ (b) It is trivial due to the inequality C−∞(X) ≤ CZ(X).

(b) ⇒ (c) Since 2x(x − 1) < 1 if and only if x ∈ ((1−
√

3)/2, (1 +
√

3)/2),

we have 2C−∞(X)(C−∞(X)− 1) < 1.

On the other hand, C−∞(X) ≥ J(X)2/2, so

J(X)2(C−∞(X)− 1) ≤ 2C−∞(X)(C−∞(X)− 1) < 1

and then C−∞(X) < 1 + 1/J(X)2.

(c)⇒ (d) It is trivial due to the well-known inequality J(X) ≥ R(1, X). �

Corollary 3.7. Let X be a Banach space with

C−∞(X) < 1 +
1

J(X)2
,

then X has normal structure.

Remark 3.8. (a) In [11], Llorens-Fuster et al. obtained the following result:

if CZ(X) < (1 +
√

3)/2 then X has normal structure. Gao et al. proved in [8]:

if CZ(X) < 1 + 1/J(X)2 then X has normal structure. In view of Theorem 3.6

the hypotheses CZ(X) < (1 +
√

3)/2, CZ(X) < 1 + 1/J(X)2 are more restrictive

than the hypothesis of Corollary 3.5.

(b) We give an example showing that there are spaces satisfying the condi-

tion C−∞(X) < 1 + 1/R(1, X)2 which do not satisfy C−∞(X) < 1 + 1/J(X)2.
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Consider for λ ≥ 1 the space Xλ := (l2, | · |λ) with ‖x‖λ = max{‖x‖2, λ‖x‖∞}.
Then

C−∞(Xλ) = min{λ2, 2}, J(Xλ) = min{
√

2λ, 2},

R(1, Xλ) = max{λ/
√

2,
√

3/
√

2}.

Then, for any λ >
√

3/2, J(X) > R(1, X), and for any
√

(1 +
√

3)/2 < λ <√
5/3,

C−∞(X) > 1 +
1

J(X)2
and C−∞(Xλ) < 1 +

1

R(1, Xλ)2
.

(c) We use the space l2,∞ as a limiting case for Corollaries 3.2 and 3.5.

The Bynum space l2,∞, which is the space l2 renormed according to ‖x‖2,∞ =

max{‖x+‖2, ‖x−‖2}, where x+ and x− are the positive and the negative part

of x, respectively, defined as x+(i) = max{x(i), 0} and x− = x+ − x. It is well

known that J(l2,∞) = 1 + 1/
√

2, CNJ(l2,∞) = 3/2 (see [9]). From the inequality

C−∞(X) ≤ CNJ(X), we get that C−∞(l2,∞) ≤ 3/2, take x = (−1, 1, 0, . . .),

y = (1/2, 1/2, 0, . . .) ∈ l2,∞ and ‖x+y‖ = ‖x−y‖ = 3/2, and so C−∞(X) ≥ 3/2,

then C−∞(l2,∞) = 3/2. It was proved in [5] that R(1, l2,∞) =
√

2, so

J(X) = 1 +
1

R(1, l2,∞)
and C−∞(l2,∞) = 1 +

1

R(1, l2,∞)2
.

However, l2,∞ lacks normal structure, so we conclude that the results obtained

in the Corollaries 3.2 and 3.5 are sharp.
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stants, Nonlinear Anal. 71 (2009), 3047–3052.
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[11] E. Llorens-Fuster, E.M. Mazcuñán-Navarro and S. Reich, The Ptolemy and
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