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AND C1-SOLUTION SETS

OF ABSTRACT SEMILINEAR FUNCTIONAL
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Abstract. A second order semilinear neutral functional differential inclu-
sion with nonlocal conditions and multivalued impulse characteristics in

a separable Banach space is considered. By developing appropriate com-

puting techniques for the Hausdorff product measures of noncompactness,
the topological structure of C1-solution sets is established; and some inter-

esting discussion is offered when the multivalued nonlinearity of the inclu-

sion is a weakly upper semicontinuous map satisfying a condition expressed
in terms of the Hausdorff measure.

1. Introduction

In this paper, we are concerned with the sets of C1-solutions defined on

a compact real interval for second order semilinear neutral functional differential

inclusions with nonlocal conditions and multivalued impulse characteristics in

a separable Banach space. More precisely, we will consider the following second
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order semilinear differential inclusions:

(FIP)



d

dt
[x′(t)− g(t, xt)] ∈ Ax(t) + F (t, xt) a.e. t ∈ I \ {t1, . . . , tm},

x(t+k )− x(t−k ) ∈ ϕk(x(t−k )) for k = 1, . . . ,m,

x′(t+k )− x′(t−k ) ∈ ψk(x(t−k )) for k = 1, . . . ,m,

x(t) + h1(x) = φ(t), x′(0) = h2(x) for t ∈ I0,

where I = [0, a], I0 = [−r, 0], 0 < r, a < +∞ and 0 = t0 < t1 < . . . < tm <

tm+1 = a. The linear operator A : D(A) ⊂ X → X is the infinitesimal generator

of a strongly continuous cosine family {C(t)} in a real separable Banach space

X with the norm ‖ · ‖. The nonlinearity F : I ×∆( X is a multivalued map,

∆ = {u : I0 → X : u is continuously differentiable everywhere except for a finite

number of points at which u(s+), u(s−), u′(s+) and u′(s−) exist and u(s) =

u(s−)}. The neutral item g : I ×∆ → X is a single valued mapping such that

t 7→ g(t, xt) is absolutely continuous. For impulsive conditions, ϕk, ψk : X ( X

are all multivalued maps, x(t+k ) and x(t−k ) represent the right and left limits of

x(t) at t = tk, respectively. For nonlocal conditions, h1, h2 are two single valued

mappings such that h1(x), h2(x) ∈ X; φ ∈ ∆. For any function x defined on

[−r, a] and any t ∈ I, xt ∈ ∆ is defined by

xt(θ) = x(t+ θ), θ ∈ I0 = [−r, 0].

Here xt( · ) represents the history of the state from t−r, up to the present time t.

Recently, the problems of existence of solutions and controllability for some

abstract first order or second order semilinear functional differential inclusions,

with or without impulsive conditions, have been studied by several researchers

(see [1], [5], [6], [10], [14], [15], [19] and the references therein). By relying on the

theory of semigroup or cosine families and fixed point theorems for multivalued

maps, some existence and controllability results were obtained. Let us mention

that some results often contain the assumption of compactness of the semigroup

or cosine families generated by the linear part of the inclusion. It was pointed out

in [17] that, in infinite-dimensional case, these hypotheses are in contradiction

to each other.

In the present paper we assume that the linear part of the inclusion generates

a cosine family which is not necessarily compact; and the multivalued nonlinear-

ity of the inclusion is a weakly upper semicontinuous map satisfying a condition

expressed in terms of the Hausdorff measure. At the same time, we consider

nonlocal initial conditions and impulsive inclusions with multivalued jump oper-

ators. To the best of our knowledge, there are very few results for these aspects.

Our goal in this paper is to establish the topological structure of the C1-solution

set for problem (FIP), by developing appropriate computing techniques for the

Hausdorff product measures of noncompactness.
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2. Preliminaries

Throughout this paper, R is the set of all real numbers and Z+ the set of all

positive integers. Moreover, R+ = [0,+∞), I = [0, a], I1 = [0, t1], Ik = (tk−1, tk],

and Ik = [tk−1, tk], k = 2, . . . ,m + 1. Let (X, ‖ · ‖) be a real separable Banach

space. For U ⊂ X, the notations U and coU stand for the closure and the convex

hull, respectively. Let J∗ be a compact interval in R. Then C(J∗, X) denotes the

Banach space consisting of continuous functions from J∗ into X with the norm

‖x‖C = sup
t∈J∗
‖x(t)‖

and C1(J∗, X) denotes the Banach space of continuously differentiable functions

from J∗ into X with the norm

‖x‖C1 = sup
t∈J∗

[‖x(t)‖+ ‖x′(t)‖].

Let t1, . . . , tm be fixed in I. We will consider the space of piecewise continuous

functions

PC1 =
{
x : I → X : x′(t) is continuous at t 6= tk,

and x(t) is left continuous at t = tk,

and x(t+k ), x′(t+k ), x′(t−k ) exist, k = 1, . . . ,m
}
.

Endowed with the norm

‖x‖� = max
1≤k≤m+1

sup
t∈Ik

[‖x(t)‖+ ‖x′(t)‖],

PC1 is a Banach space. It is evident that

‖x‖� = sup
t∈I

[‖x(t)‖+ ‖x′(t)‖].

Note that for x ∈ PC1 we have x′−(tk) = x′(t−k ), where x′−(tk) is the left deriv-

ative of x at t = tk. Hence we can think that x′ is also left continuous at each

t = tk.

Set J = I0 ∪ I = [−r, a], and PC1(J) = {x : J → X : x ∈ ∆ ∩ PC1}. For

u ∈ ∆, the norm of u is defined by

‖u‖∆ = sup
θ∈I0

[‖u(θ)‖+ ‖u′(θ)‖].

For x ∈ PC1(J), the norm of x is defined by

‖x‖∗ = sup
t∈J

[‖x(t)‖+ ‖x′(t)‖] = max {‖x‖∆, ‖x‖�}.

∆ and PC1(J) are Banach spaces. It is evident that if {xn}∞n=0 ⊂ PC1(J), then

xn → x0 in PC1(J) if and only if xn → x0 in ∆ and in PC1.
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We denote by P(X) the family of all nonempty subsets of X and put

Pcl(X) = {Z ∈ P(X) : Z is closed},

Pbd(X) = {Z ∈ P(X) : Z is bounded},

Pcp(X) = {Z ∈ P(X) : Z is compact},

Pcv(X) = {Z ∈ P(X) : Z is convex},

Pwcp(X) = {Z ∈ P(X) : Z is weakly compact}.

Let Y be a metric space. For a multivalued map T : Y ( X we mean that it has

at least nonempty values, i.e. T : Y → P(X). A multivalued map T is said to

have convex (bounded, closed, compact, weakly compact) values if T (y) is convex

(bounded, closed, compact, weakly compact) for every y ∈ Y . For Z ∈ Pcl,bd(X)

we mean that Z ∈ Pcl(X)∩Pbd(X). A point u ∈ Y ⊂ X is called a fixed point of

T if u ∈ T (u). The fixed point set of T will be denoted by Fix(T ). T is a closed

graph map if the graph of T , i.e. Gr(T ) = {(y, u) ∈ Y ×X : u ∈ T (y)} is closed

in Y ×X. T is called (weakly) upper semicontinuous (u.s.c. for short) if for each

nonempty (weakly) closed set U ⊂ X,

T+(U) = {y ∈ Y : T (y) ∩ U 6= ∅}

is closed in Y . Evidently, if T is u.s.c., then T is weakly u.s.c. If T has weakly

compact and convex values, then T is weakly u.s.c. if and only if for each sequence

{yn} ⊂ Y with yn → y0 ∈ Y and zn ∈ T (yn) it follows that there exists a

subsequence {znk
} of {zn} such that {znk

} converges weakly to z0 ∈ T (y0)

(see [7]). T is said to be quasicompact if T (B) is relatively compact in X for

each relatively compact subset B of Y . If T is u.s.c. with closed values, then

Gr(T ) is closed (see [3], [18]). Conversely, the following assertion holds (see

Theorem 1.1.12 in [12]).

Lemma 2.1. If T : Y ( X is a quasicompact map with closed graph, then T

is a u.s.c. map.

For Z ⊂ Y and y ∈ Y , we denote d(y, Z) = inf
z∈Z

d(y, z), where d is the metric

function. For B1, B2 ⊂ Y , we denote by H(B1, B2) the Hausdorff–Pompeiu

distance between B1 and B2, that is

H(B1, B2) = max

{
sup
x∈B1

d(x,B2), sup
y∈B2

d(y,B1)

}
.

T : Y ( X is called an L-Lipschitz map if there exists L > 0 such that

H(Tx, Ty) ≤ Ld(x, y), for all x, y ∈ Y ;

and is called a contraction if L < 1. Let βH be the Hausdorff measure of

noncompactness defined on a collection of nonempty, bounded subsets B of X
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or Y by

βH(B) = inf {ε > 0 : B has a finite ε -net}.

T is said to be βH-condensing if, for each bounded nonrelatively-compact subset

B of Y , T (B) is bounded and satisfies βH(T (B)) < βH(B). If T is an L-Lipschitz

map with compact values, then βH(T (B)) ≤ LβH(B) for each bounded B ⊂ Y

(see [20]). The key tool in our approach is the following fixed point theorem.

Lemma 2.2 (see [12, Corollary 3.3.1]). Let X be a Banach space, D a bounded

convex closed subset of X and T : D → Pcp,cv(D) a u.s.c. βH-condensing multi-

valued map. Then Fix(T ) is a nonempty compact set.

Let L(I) be the Lebesgue σ-algebra of I. A multivalued map T : I ( X is

said to be Lebesgue measurable if for each closed set U ⊂ X, T+(U) ∈ L(I).

If T is measurable and has closed values, then T admits a measurable selector

(see [2], [3]). By L1(I,X) we denote the Banach space of all Bochner integrable

mappings from I into X with the norm

‖x‖L =

∫ a

0

‖x(t)‖ dt.

If α ∈ L1(I,R+), then α(t) ≥ 0 for almost every t ∈ I and

‖α‖L =

∫ a

0

α(t) dt < +∞.

The following lemma is a generalization of the Dunford–Pettis weak compactness

criterion.

Lemma 2.3 (see [22, Proposition 11] or [8, Corollary 2.6]). Suppose the func-

tion p0 ∈ L1(I,R+) and the sequence {fn(t)} ⊂ L1(I,X) are such that:

(a) ‖fn(t)‖ ≤ p0(t) for almost every t ∈ I and all n ∈ Z+;

(b) for almost every t ∈ I the sequence {fn(t)} is relatively weakly compact

in X.

Then the sequence {fn} is relatively weakly compact in L1(I,X).

Lemma 2.4 (Corollary to Mazur’s Theorem, see [11]). Suppose that {fn}∞n=1

is a sequence which converges weakly to f0 in L1(I,X). Then there exists a se-

quence {gn}∞n=1 with gn ∈ co {fi : i ≥ n} such that {gn(t)} converges to f0(t) in

X for almost every t ∈ I.

Lemma 2.5 (see [12], [17]). Let X be a separable Banach space and T : I ( X

an integrable map. If there exist p0, α ∈ L1(I,R+) such that sup
z∈T (t)

‖z‖ ≤ p0(t)

and βH(T (t)) ≤ α(t) for almost every t ∈ I, then

βH

(∫ t

0

T (s)ds

)
≤
∫ t

0

α(s) ds, for all t ∈ I.
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Let F : I ×∆( X be a multivalued map. F is said to be locally integrably

bounded (or pλ-locally integrably bounded) if for each λ > 0, there exists pλ ∈
L1(I,R+) such that

‖u‖∆ ≤ λ ⇒ sup {‖z‖ : z ∈ F (t, u)} ≤ pλ(t) for a.e. t ∈ I.

For x ∈ PC1(J), we use the notation S1
F (x) to denote the set of integrable

selectors (possibly empty), i.e.

(2.1) S1
F (x) =

{
f ∈ L1(I,X) : f(t) ∈ F (t, xt) for a.e. t ∈ I

}
.

In what follows, {C(t) : t ∈ R} will denote a strongly continuous cosine family

of bounded linear operators and {S(t) : t ∈ R} is the associated sine family

defined by S(t)x =
∫ t

0
C(τ)x dτ , x ∈ X, t ∈ R. The infinitesimal generator

of {C(t) : t ∈ R} is the linear operator A : D(A) ⊂ X → X, where D(A) =

{x ∈ X : C(t)x is twice continuously differentiable in t}. Also, E denotes the

space E = {x ∈ X : C(t)x is once continuously differentiable in t}; B(E,X)

stands for the Banach space of bounded linear operators from E into X with the

norm | · |∗, and we abbreviate this notation to B(X) when E = X.

Lemma 2.6 (see [21]). Let {C(t) : t ∈ R} be a strongly continuous cosine

family in X with infinitesimal generator A. Then the following assertions are

true.

(a) A is a closed linear operator in D(A); D(A) ⊂ E; D(A) is dense in X,

i.e. D(A) = X.

(b) S(t+ τ) + S(t− τ) = 2S(t)C(τ), for all t, τ ∈ R.

(c) There exist M0 ≥ 1 and ω > 0 such that for all t ∈ R, |C(t)|∗ ≤M0e
ω|t|,

|S(t)|∗ ≤M0|t|eω|t|.
(d) C(t+ τ)− C(t− τ) = 2AS(t)S(τ) for all t, τ ∈ R.

(e) d
dt S(t)x = C(t)x, for all x ∈ X and t ∈ R.

(f) d
dt C(t)x = AS(t)x, for all x ∈ E and t ∈ R.

(g) If x ∈ E, then lim
t→0

AS(t)x = 0.

Lemma 2.7 (see [4], [14], [23]). Each of the following conditions is equivalent

to the norm-continuity (or uniform continuity) of C( · ):
(a) lim

t→0
|C(t)− IX |∗ = 0, where IX is the identity operator in X;

(b) the infinitesimal generator A is bounded (i.e. D(A) = X).

It is known from Kisińsky [13], that E endowed with the norm

‖x‖E = ‖x‖+ sup
t∈I
‖AS(t)x‖

is a Banach space. From this definition it follows that MA = sup
t∈I
|AS(t)|∗ ≤ 1

in B(E,X). If an operator W ∈ B(X), then we have W ∈ B(E,X) and

|W |∗B(E,X) ≤ |W |∗B(X) since ‖ · ‖ ≤ ‖ · ‖E . Clearly, if {AS(t) : t ∈ I} ⊂ B(X)



Hausdorff Product Measures and C1-Solution Sets 279

and MA < +∞, then from Lemma 2.6 (c) (d) and Lemma 2.7 we see that A is

bounded and D(A) = E = X. For the sake of simplicity, the space E mentioned

in the sequel means (E, ‖ · ‖E). For t, s ∈ I, τ ∈ [0,min{t, s}], from Lemma 2.6

we have

|S(t− τ)− S(s− τ)|∗ ≤ 2M0e
ωa|S((t− s)/2)|∗ in B(X),

|C(t− τ)− C(s− τ)|∗ ≤ 2MA|S((t− s)/2)|∗ in B(E,X).

3. Several auxiliary results

Lemma 3.1. Let A be the infinitesimal generator of a strongly continuous

cosine family C(t) and let f ∈ L1(I,X). If x ∈ PC1(J) is a solution of the

problem

(FIP)∗



d

dt
[x′(t)− g(t, xt)] = Ax(t) + f(t) for a.e. t ∈ I \ {t1, . . . , tm},

x(t+k )− x(t−k ) = uk for k = 1, . . . ,m,

x′(t+k )− x′(t−k ) = vk for k = 1, . . . ,m,

x(t) + h1(x) = φ(t), x′(0) = h2(x) for t ∈ I0,

then it is given by x(t) = φ(t)− h1(x) for t ∈ I0; and

x(t) =C(t)[φ(0)− h1(x)] + S(t)[h2(x)− g(0, φ)](3.1)

+
∑

0<tk<t

[C(t− tk)uk + S(t− tk)vk]

+

∫ t

0

C(t− τ)g(τ, xτ ) dτ +

∫ t

0

S(t− τ)f(τ) dτ, for t ∈ I.

Proof. Suppose that x ∈ PC1(J) is a solution of problem (FIP)∗, p(τ) =

C(t − τ)x(τ) and q(τ) = S(t − τ)[x′(τ) − g(τ, xτ )] for fixed t ∈ I. Then x(t) ∈
D(A). For τ ∈ I \ {t1, . . . , tm}, we have

p′(τ) = − S(t− τ)Ax(τ) + C(t− τ)x′(τ);(3.2)

q′(τ) = − C(t− τ)[x′(τ)− g(τ, xτ )] + S(t− τ)
d

dτ
[x′(τ)− g(τ, xτ )].(3.3)

For almost every τ ∈ I, from (3.2) and (3.3), it follows that

p′(τ) + q′(τ) =C(t− τ)g(τ, xτ )(3.4)

+ S(t− τ)

(
−Ax(τ) +

d

dτ
[x′(τ)− g(τ, xτ )]

)
=C(t− τ)g(τ, xτ ) + S(t− τ)f(τ).
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Integrating equation (3.4), for 0 < t < t1, we have∫ t

0

C(t− τ)g(τ, xτ ) dτ +

∫ t

0

S(t− τ)f(τ) dτ = p(t) + q(t)− p(0)− q(0)

= x(t)− C(t)[φ(0)− h1(x)]− S(t)[h2(x)− g(0, φ)].

More generally, for tk < t < tk+1, we have∫ t

0

C(t− τ)g(τ, xτ ) dτ +

∫ t

0

S(t− τ)f(τ) dτ

=

k∑
j=1

∫ tj

tj−1

[p′(τ) + q′(τ)] dτ +

∫ t

tk

[p′(τ) + q′(τ)] dτ

=x(t)− C(t)[φ(0)− h1(x)]− S(t)[h2(x)− g(0, φ)]

−
∑

0<tk<t

[C(t− tk)uk + S(t− tk)vk].

i.e. (3.1) holds, which shows the lemma. �

Definition 3.2. A function x ∈ PC1(J) is said to be a C1-solution of

problem (FIP) if there exist f ∈ L1(I,X), uk ∈ ϕk(x(tk)) and vk ∈ ψk(x(tk))

(k = 1, . . . ,m) such that f(t) ∈ F (t, xt) for almost every t ∈ I and x(t) is given

by Lemma 3.1. Suppose that x ∈ PC1(J) and f ∈ L1(I,X). Let Γ: L1(I,X)→
PC1(J) be a linear operator defined by

(3.5) (Γf)(t) =


0 for t ∈ I0,∫ t

0

S(t− τ)f(τ) dτ for t ∈ I.

Let Λ0,Λ: PC1(J)→ PC1(J) be single valued mappings defined by

(Λ0x)(t) =

φ(t)− h1(x) for t ∈ I0,
C(t)[φ(0)− h1(x)] + S(t)[h2(x)− g(0, φ)] for t ∈ I,

(3.6)

(Λx)(t) =


0 for t ∈ I0,∫ t

0

C(t− τ)g(τ, xτ ) dτ for t ∈ I.
(3.7)

Let Ψ: PC1(J)( PC1(J) be a multivalued map defined by

(3.8) Ψ(x) =


η ∈ PC1(J) :

η(t) =

0, t ∈ I0,∑
0<tk<t

[C(t− tk)uk + S(t− tk)vk], t ∈ I,

uk ∈ ϕk(x(tk)), vk ∈ ψk(x(tk)), k = 1, . . . ,m.


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Let F : I×∆( X be a multivalued map and S1
F (x) 6= ∅ for all x ∈ PC1(J),

where S1
F (x) is defined by (2.1). Now we define a multivalued map T : PC1(J)(

PC1(J) by

(3.9) T (x) = {y ∈ PC1(J) : y(t) = (Λ0x)(t) + (Λx)(t) + η(t) + (Γf)(t),

η ∈ Ψ(x), f ∈ S1
F (x)},

i.e. T = Λ0 + Λ + Ψ + Γ ◦ S1
F .

It is clear that all C1-solutions of problem (FIP) are fixed points of the

multivalued map T in PC1(J).

Remark 3.3. The notion of C1-solution is different from the one of mild

solution in [10], [19], [16].

Lemma 3.4. Suppose that ϕk, ψk : X ( E are maps (k = 1, . . . ,m), h1, h2 :

PC1(J)→ E and g : I ×∆→ E are mappings, φ(0) ∈ E and S1
F (x) 6= ∅ for all

x ∈ PC1(J). Then, for each x ∈ PC1(J), T (x) ⊂ PC1(J).

Proof. Let Γ,Λ0,Λ,Ψ be defined by (3.5)–(3.8), respectively. Suppose that

x ∈ PC1(J) and f ∈ S1
F (x). If t ∈ I0, then it is clear that Λ0x ∈ ∆ and

(Λ0x)′(t) = φ′(t), everywhere except for a finite number of t. Suppose that t ∈ I.

By the strong continuity of S(t) and C(t), we see that Γf,Λ0(x),Λ(x) ∈ C(I,X).

Suppose that

x(t) =

x(t) if t ∈ Ik,
x(t+k−1) if t = tk−1,

and x′(t) =

x′(t) if t ∈ Ik,
x′(t+k−1) if t = tk−1.

It is clear that x ∈ PC1 if and only if x ∈ C1(Ik, X) for k = 1, . . . ,m + 1.

Hence, from the strong continuity of S(t) and C(t), it is easy to check that η(t)

is continuous in each Ik and η(t+k−1) exists, for each η ∈ Ψ(x). Moreover, we

have, for t ∈ I,

(Γf)′(t) =

∫ t

0

C(t− τ)f(τ) dτ,(3.10)

(Λ0x)′(t) =AS(t)[φ(0)− h1(x)] + C(t)[h2(x)− g(0, φ)],(3.11)

(Λx)′(t) = g(t, xt) +

∫ t

0

AS(t− τ)g(τ, xτ ) dτ,(3.12)

and for t ∈ I \ {t1, . . . , tm}, η ∈ Φ(x),

(3.13) η′(t) =
∑

0<tk<t

[AS(t− tk)uk + C(t− tk)vk],

uk ∈ ϕk(x(tk)), vk ∈ ψk(x(tk)), k = 1, . . . ,m.

By Lemma 2.6 (b) (g), from the hypotheses it is easy to see that (Γf)′, (Λ0x)′,

(Λx)′ in C(I,X) and η′(t) is continuous in each Ik and η′(t+k−1) exists, for η ∈



282 J.-Z. Xiao — Z.-Y. Wang — J. Liu

Ψ(x). Hence, Γf,Λ0x,Λx ∈ PC1(J), and Ψ(x) ⊂ PC1(J). From (3.9) we see

that T (x) ⊂ PC1(J). �

Lemma 3.5. Let Y be a metric space and X a Banach space. If T1, T2 : Y (

X are all closed graph maps and T1 is quasicompact, then T1 + T2 is a closed

graph map.

Proof. Suppose that {yn}∞n=1 ⊂ Y , yn → y0, xn ∈ (T1+T2)yn and xn → x0.

Then, there exist zn ∈ T1yn and wn ∈ T2yn such that xn = zn+wn for all n ∈ Z+.

Since T1{yn} is relatively compact, there exists a subsequence {znk
} of {zn}

which converges to z0. Thus, {wnk
} converges to x0 − z0. Since T1, T2 : Y ( X

are all closed graph maps, we have z0 ∈ T1y0 and x0 − z0 ∈ T2y0. This implies

that x0 ∈ (T1 + T2)y0, and hence T1 + T2 is a closed graph map. �

Lemma 3.6. Let X1, X2 be two Banach spaces and the norm in X1 ×X2 be

defined by

‖(x1, x2)‖ = ‖x1‖+ ‖x2‖, for (x1, x2) ∈ X1 ×X2.

Let A0 : X1 → X2 be a bounded linear operator.

(a) If B ⊂ X1 is bounded, then βH(A0(B)) ≤ |A0|∗βH(B).

(b) If B1 ⊂ X1 and B2 ⊂ X2 are bounded, then βH(B1 × B2) ≤ βH(B1) +

βH(B2).

The proof of Lemma 3.6 is easy, so we omit it.

Lemma 3.7. Let J∗ be a compact interval in R, B ⊂ C1(J∗, X) and t ∈ J∗.
Let B(t), B(J∗), B

′(t), B′(J∗) be subsets of X defined respectively by

B(t) = {x(t) : x ∈ B}, B(J∗) = {x(t) : x ∈ B, t ∈ J∗},

B′(t) = {x′(t) : x ∈ B}, B′(J∗) = {x′(t) : x ∈ B, t ∈ J∗}.

If B is bounded in C1(J∗, X) and B′ is equicontinuous in C(J∗, X), then:

(a) βH(B(J∗)) = max
t∈J∗

βH(B(t)) and βH(B′(J∗)) = max
t∈J∗

βH(B′(t)).

(b) max {βH(B(J∗)), βH(B′(J∗))} ≤ βH(B) ≤ βH(B(J∗)) + βH(B′(J∗)).

Proof. Since B is bounded, there is M > 0 such that ‖x‖C1 ≤ M for all

x ∈ B. This implies that ‖x(t)‖ ≤ M and ‖x′(t)‖ ≤ M for all t ∈ J∗. Thus, for

x ∈ B and t1, t2 ∈ J∗, we have

‖x(t1)− x(t2)‖ ≤ sup
s∈J∗
‖x′(s)‖|t1 − t2| ≤M |t1 − t2|,

which shows that B is also equicontinuous in C(J∗, X). Suppose that ε > 0 is

given and J∗ = [a0, b0]. From equicontinuity it follows that there exist {sj}Nj=0 ⊂
J∗, a0 = s0 < s1 < . . . < sN−1 < sN = b0 such that

(3.14) ‖x(t)− x(s)‖ < ε, ‖x′(t)− x′(s)‖ < ε,
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for all x ∈ B, all s, t ∈ [sj−1, sj ], j = 1, . . . , N .

(a) From the continuity of βH(B(t)) it follows that max
t∈J∗

βH(B(t)) exists.

Since B(t) ⊂ B(J∗) for all t ∈ J∗, we have max
t∈J∗

βH(B(t)) ≤ βH(B(J∗)). Suppose

that B(sj) has (βH(B(sj)) + ε)-net {xij(sj)}
Kj

i=1, j = 0, . . . , N . Then for each

x(t) ∈ B(J∗) there exist j, i such that t ∈ [sj−1, sj ] and ‖x(sj) − xij(sj)‖ <
βH(B(sj)) + ε. Thus, from (3.14) we have

‖x(t)− xij(sj)‖ ≤‖x(t)− x(sj)‖+ ‖x(sj)− xij(sj)‖

≤βH(B(sj)) + 2ε ≤ max
t∈J∗

βH(B(t)) + 2ε,

which shows that βH(B(J∗))≤max
t∈J∗

βH(B(t)). Hence βH(B(J∗))=max
t∈J∗

βH(B(t)).

Similarly, we have βH(B′(J∗)) = max
t∈J∗

βH(B′(t)).

(b) Suppose that B has (βH(B)+ε)-net {zi}Ki=1. We consider the set {zi(sj) :

i = 1, . . . ,K; j = 0, . . . , N}. For x(t) ∈ B(J∗), there exist j, i such that t ∈
[sj−1, sj ] and ‖x− zi‖C1 < βH(B) + ε. Thus, from (3.14) we have

‖x(t)− zi(sj)‖ ≤ ‖x(t)− x(sj)‖+ ‖x(sj)− zi(sj)‖

≤ ‖x(t)− x(sj)‖+ ‖x− zi‖C1 ≤ βH(B) + 2ε,

which shows that βH(B(J∗)) ≤ βH(B). Similarly, we have βH(B′(J∗)) ≤ βH(B).

Hence max{βH(B(J∗)), βH(B′(J∗))} ≤ βH(B). Set

G(t) = {(x(t), x′(t)) : x ∈ B}, t ∈ J∗,

G(J∗) = {(x(t), x′(t)) : x ∈ B, t ∈ J∗}.

Since G(J∗) ⊂ B(J∗) × B′(J∗), using Lemma 3.6 (b) we have βH(G(J∗)) ≤
βH(B(J∗)) +βH(B′(J∗)). To prove βH(B) ≤ βH(G(J∗)), we suppose that G(sj)

has a (βH(G(sj)) + ε)-net {(xij(sj), x′ij(sj))}
Kj

i=1, j = 0, . . . , N . Then for each

x ∈ B and t ∈ J∗ there exist j, i such that t ∈ [sj−1, sj ] and ‖(x(sj), x
′(sj)) −

(xij(sj), x
′
ij(sj))‖ < βH(G(sj)) + ε. From (3.14) it follows that

‖x(t)− xij(t)‖ + ‖x′(t)− x′ij(t)‖

≤‖x(t)− x(sj)‖+ ‖x(sj)− xij(sj)‖+ ‖xij(sj)− xij(t)‖

+ ‖x′(t)− x′(sj)‖+ ‖x′(sj)− x′ij(sj)‖+ ‖x′ij(sj)− x′ij(t)‖

≤‖(x(sj), x
′(sj))− (xij(sj), x

′
ij(sj))‖+ 4ε

<βH(G(sj)) + 5ε ≤ βH(G(J∗)) + 5ε.

Hence ‖x− xij‖C1 ≤ βH(G(J∗)) + 5ε, and so βH(B) ≤ βH(G(J∗)), which is the

desired inequality. �

Lemma 3.8. Let F : I × ∆ → Pwcp,cv(X) be a map such that t 7→ F (t, xt)

is measurable and u 7→ F (t, u) is weakly u.s.c. and locally integrably bounded.

Then:
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(a) the map S1
F : PC1(J)( L1(I,X) has nonempty, closed, convex values,

(b) if Γ: L1(I,X) → PC1(J) is a continuous linear operator, then

Γ ◦ S1
F : PC1(J)( PC1(J) is a closed graph map.

Proof. (a) Suppose that x ∈ PC1(J) and ‖x‖∗ = λ. Then ‖x(t)‖ ≤ λ for

all t ∈ J , and so ‖xt‖∆ ≤ λ for all t ∈ I. Since t 7→ F (t, xt) is measurable and

F (t, xt) is closed, there exists a measurable mapping f0 : I → X satisfying f0(t) ∈
F (t, xt). Since F is locally integrably bounded, there exists pλ ∈ L1(I,R+) such

that ‖f0(t)‖ ≤ pλ(t), for almost every t ∈ I. This implies that f0(t) ∈ L1(I,X),

and so f0 ∈ S1
F (x). Hence, S1

F (x) 6= ∅. By the convexity and closedness of

F (t, xt) for x ∈ PC1(J) it is easy to check that S1
F (x) is convex and closed.

(b) Suppose that {xn}∞n=1 ⊂ PC1(J), xn → x0, yn = Γ(S1
F (xn)) and

yn → y0. Then, for each n ∈ Z+, there exist fn ∈ S1
F (xn) and λ > 0 such

that yn = Γfn and

sup {‖x0‖∗, ‖xn‖∗ : n ∈ Z+} ≤ λ.

Let xnt(θ) = xn(t+ θ) and x0t(θ) = x0(t+ θ), for θ ∈ I0. Then fn(t) ∈ F (t, tnt)

for almost every t ∈ I and sup {‖xnt‖∆, ‖x0t‖∆ : n ∈ Z+} ≤ λ for each t ∈ I.

Since ‖xn(t) − x0(t)‖ → 0 and ‖x′n(t) − x′0(t)‖ → 0 are valid uniformly on J ,

we have xnt → x0t in ∆ for t ∈ I. Since u 7→ F (t, u) is weakly u.s.c. for

almost every t ∈ I and F has weakly compact convex values, there exists a

subsequence of {fn(t)} which converges weakly to a point in F (t, x0t) for fixed

t ∈ I. This means that {fn(t)} is weakly relatively compact for almost every

t ∈ I; and also, for fixed t ∈ I, there exist a subsequence {fnk
(t)} of {fn(t)} and

a sequence {gk(t)} ⊂ F (t, x0t) such that {fnk
(t)− gk(t)} converges weakly to 0.

Since F is locally integrably bounded, there exists pλ ∈ L1(I,R+) such that

‖fn(t)‖ ≤ pλ(t). From this fact and Lemma 2.3 it follows that {fn} is weakly

relatively compact in L1(I,X), and so is {fnk
}. Without loss of generality we

suppose that {fnk
} converges weakly to f0 in L1(I,X), and so f0(t) is measurable

and integrable. In view of Lemma 2.4, there exists a sequence {Pk}∞k=1 with

Pk ∈ co {fni
: i ≥ k} such that {Pk(t)} converges to f0(t) for almost every

t ∈ I. Since {fnk
(t)− gk(t)} converges weakly to 0, there exists a corresponding

sequence {Qk}∞k=1 with Qk ∈ co {gi : i ≥ k} such that {Qk(t)} converges weakly

to f0(t). Hence, from the convexity and weak closedness of F (t, x0t) it follows

that f0(t) ∈ F (t, x0t) for almost every t ∈ I, and so f0 ∈ S1
F (x0). Suppose

that Γ∗ is the adjoint operator of Γ and x∗ is any bounded linear functional on

PC1(J). Then we have

x∗(Γfnk
) = (Γ∗x∗)fnk

→ (Γ∗x∗)f0 = x∗(Γf0),

which shows that {Γfnk
} converges weakly to Γf0 in PC1(J). Letting k →∞ in

ynk
= Γfnk

under weak topology, we obtain y0 = Γf0, which means that Γ ◦ S1
F

is a closed graph map. �
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4. The solution sets

We first give an existence result for problem (FIP) when A is not necessarily

bounded.

Theorem 4.1. Suppose that the following conditions are satisfied:

(H0) A is an infinitesimal generator of a strongly continuous cosine family

{C(t) : t ∈ R}; {S(t) : t ∈ R} is a sine family associated to the cosine

family; φ(0) ∈ E; and MA = sup
t∈I
|AS(t)|∗ in B(E,X).

(H1) F : I × ∆ → Pwcp,cv(E) is a map such that t 7→ F (t, xt) is measurable

and u 7→ F (t, u) is weakly u.s.c. and it is pλ-locally integrably bounded,

and there exists a function α ∈ L1(I,R+) such that

βH(F (t,B)) ≤ α(t)βH(B), for each B ∈ Pbd(∆) and a.e. t ∈ I.

(H2) The maps ϕk, ψk : X → Pcp,cv(E) are ak, bk-Lipschitz (k = 1, . . . ,m).

(H3) The mapping hi : PC
1(J)→ E is σi-Lipschitz, where i = 1, 2.

(H4) The mapping g : I ×∆ → E satisfies that u 7→ g(t, u) is l-Lipschitz for

almost every t ∈ I.

If ξ + γ0 < 1 and lim sup
λ→+∞

‖pλ‖L/λ < (1− ξ)/M , then the set of C1-solutions of

problem (FIP) is a nonempty and compact set, where

M = max {M0e
ωa +MA,M0e

ωa(a+ 1)};

ξ = l(Ma+ 1) +M(σ1 + σ2) +M

m∑
k=1

(ak + bk);

γ0 = M‖α‖L.

Next we consider the multivalued maps Γ ◦ S1
F ,Ψ, T and the single valued

mappings Λ0,Λ defined by Definition 3.2, respectively. To prove the result, we

need the following lemmas.

Lemma 4.2. The mapping Γ: L1(I,X) → PC1(J) is a continuous linear

operator.

Proof. For f ∈ L1(I,X), from (3.5), (3.10) and Lemma 2.6 (c) we have

‖Γf‖∗ = ‖Γf‖� = sup
t∈I

[‖(Γf)(t)‖+ ‖(Γf)′(t)‖]

= sup
t∈I

[∥∥∥∥ ∫ t

0

S(t− τ)f(τ) dτ

∥∥∥∥+

∥∥∥∥ ∫ t

0

C(t− τ)f(τ) dτ

∥∥∥∥]
≤M0e

ωa(a+ 1)‖f‖L ≤M‖f‖L,

which shows that Γ is bounded, i.e. Γ is a continuous linear operator. �

Lemma 4.3. S1
F (x) 6= ∅ for each x ∈ PC1(J), and Γ ◦ S1

F : PC1(J) (

PC1(J) is a closed graph map with closed, convex values.
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Proof. From (H1) and Lemma 3.8 (a) we see that the map S1
F : PC1(J)(

L1(I,X) has nonempty, closed, convex values. Hence the assertion immediately

follows from (H1), Lemmas 4.2 and 3.8 (b). �

Lemma 4.4. βH(Γ ◦ S1
F (B)) ≤ γ0βH(B), for each bounded subset B ∈

PC1(J).

Proof. For each ε > 0, B has a finite (β0 + ε)-net {z1, . . . , zk}, where

β0 = βH(B). Setting Bτ = {xτ : x ∈ B} for each τ ∈ I, we first show that

{z1τ , . . . , zkτ} is a (β0 + ε)-net of Bτ , where ziτ is an element of ∆ such that

ziτ (θ) = zi(τ + θ) for θ ∈ I0. In fact, if xτ ∈ Bτ , then x ∈ B, and so there exists

zi (1 ≤ i ≤ k) such that ‖x− zi‖∗ < β0 + ε. Thus, we have

‖xτ − ziτ‖∆ ≤ ‖x− zi‖∗ < β0 + ε.

This implies that βH(Bτ ) ≤ β0. Observe that

{f(τ) : f ∈ S1
F (B)} ⊂ {F (τ, xτ ) : x ∈ B} ⊂ F (τ,Bτ ).

From (H1) and Lemma 3.6 (a), it follows that

βH({S(t− τ)f(τ) : f ∈ S1
F (B)}) ≤ |S(t− τ)|∗βH({f(τ) : f ∈ S1

F (B)})(4.1)

≤ |S(t− τ)|∗βH(F (τ,Bτ ))

≤ |S(t− τ)|∗α(τ)βH(Bτ ) ≤M0e
ω(t−τ)aα(τ)β0;

βH({C(t− τ)f(τ) : f ∈ S1
F (B)}) ≤M0e

ω(t−τ)α(τ)β0.(4.2)

In order to prove that {(Γf)′ : f ∈ S1
F (B)} is equicontinuous, we suppose that

f ∈ S1
F (B), t, s ∈ I and 0 ≤ s < t ≤ a. Since B is bounded, there exists λ0 > 0

such that ‖x‖∗ ≤ λ0 for all x ∈ B. For each ε > 0, from the uniform continuity

of S(t) and the absolutely integral continuity of pλ0
, we see that there exists

δ = δ(ε) > 0 such that

|S((t− s)/2)|∗ < ε and

∫ t

s

pλ0
(τ) dτ < ε,

when 0 < t− s < δ. Thus, by (2.3), we have

‖(Γf)′(t) − (Γf)′(s)‖

≤
∥∥∥∥∫ t

0

[C(t− τ)− C(s− τ)]f(τ) dτ

∥∥∥∥+

∥∥∥∥∫ t

s

C(s− τ)f(τ) dτ

∥∥∥∥
≤ 2MA|S((t− s)/2)|∗‖pλ0

‖L +M0e
ωa

∫ t

s

pλ0
(τ) dτ ≤M(2‖pλ0

‖L + 1)ε.
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This shows that {(Γf)′ : f ∈ S1
F (B)} is equicontinuous in J . Hence, according

to Lemma 3.7, from (4.1) and (4.2), we have

βH(Γ ◦ S1
F (B)) ≤ max

t∈I
βH

(∫ t

0

S(t− τ)f(τ) dτ : f ∈ S1
F (B)

)
+ max

t∈I
βH

(∫ t

0

C(t− τ)f(τ) dτ : f ∈ S1
F (B)

)
≤M0e

ωa(a+ 1)β0

∫ a

0

α(τ) dτ ≤M‖α‖Lβ0 = γ0βH(B). �

Lemma 4.5. Ψ is a γ-Lipschitz map with compact and convex values, where

γ = M
m∑
k=1

(ak + bk).

Proof. Since ϕk, ψk have convex values, and S(t), C(t) are linear, it is easy

to check that Ψ has convex values.

Suppose that x ∈ PC1(J) and {ηn}∞n=1 ⊂ Ψ(x). Then there exist unk ∈
ϕk(x(tk)) and vnk ∈ ψk(x(tk)) such that

(4.3) ηn(t) =
∑

0<tk<t

[C(t− tk)unk + S(t− tk)vnk].

Since ϕk(x(tk)) and ψk(x(tk)) (1 ≤ k ≤ m) are compact, without loss of genera-

lity we suppose that {unk} converges to u0k ∈ ϕk(x(tk)) and {vnk} converges to

v0k ∈ ψk(x(tk)), k = 1, . . . ,m. From the boundedness of C(t− tk) and S(t− tk)

it follows that {C(t − tk)unk} converges to C(t − tk)u0k and {S(t − tk)vnk}
converges to S(t− tk)v0k as n→∞. Set

η0(t) =
∑

0<tk<t

[C(t− tk)u0k + S(t− tk)v0k].

Then η0 ∈ Ψ(x). Letting n→∞ in (4.3) we see that {ηn} converges to η0, which

shows that Ψ(x) is compact.

Let x1, x2 ∈ PC1(J), x1 6= x2, and η1 ∈ Ψ(x1). Then from (3.8) we see that

there exist u1k ∈ ϕk(x1(tk)) and v1k ∈ ψk(x1(tk)) such that for t ∈ I,

η1(t) =
∑

0<tk<t

[C(t− tk)u1k + S(t− tk)v1k].

Let ε > 0 be arbitrarily given. From (H2) it follows that

d(u1k, ϕk(x2(tk))) ≤H(ϕk(x1(tk)), ϕk(x2(tk)))

< (1 + ε)ak‖x1(tk)− x2(tk)‖ ≤ (1 + ε)ak‖x1 − x2‖∗.

Thus, there exist u2k ∈ ϕk(x2(tk)) and v2k ∈ ψk(x2(tk)) such that

(4.4) ‖u1k−u2k‖E ≤ (1+ε)ak‖x1−x2‖∗; ‖v1k−v2k‖E ≤ (1+ε)bk‖x1−x2‖∗.
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Suppose that for each t ∈ I,

η2(t) =
∑

0<tk<t

[C(t− tk)u2k + S(t− tk)v2k].

Then, η2 ∈ Ψ(x2), from (3.8), (3.13), (4.4) and Lemma 2.6 (c) we have

(4.5) ‖η1 − η2‖� ≤ (1 + ε)‖x1 − x2‖∗
m∑
k=1

[(M0e
ωa +MA)ak +M0e

ωa(a+ 1)bk]

≤ (1 + ε)γ‖x1 − x2‖∗.

Thus, from (4.5) it follows that d(η1,Ψ(x2)) ≤ (1 + ε)γ‖x1 − x2‖∗. Since ε is

arbitrary, we have d(η1,Ψ(x2)) ≤ γ‖x1 − x2‖∗, and so

sup
η1∈Ψ(x1)

d(η1,Ψ(x2)) ≤ γ‖x1 − x2‖∗.

Similarly, we can show that

sup
η2∈Ψ(x2)

d(η2,Ψ(x1)) ≤ γ‖x1 − x2‖∗.

Combining with the two inequalities, we have

H(Ψ(x1),Ψ(x2)) ≤ γ‖x1 − x2‖∗. �

Lemma 4.6. Λ is a γ1-Lipschitz mapping, where γ1 = l(Ma+ 1).

Proof. Let x1, x2 ∈ PC1(J), x1 6= x2. Let x1t(θ) = x1(t + θ), x2t(θ) =

x2(t+ θ), for θ ∈ I0. Then, for τ ∈ I, by (H4), we have

‖g(τ, x1τ )− g(τ, x2τ )‖E ≤ l‖x1τ − x2τ‖∆ ≤ l‖x1 − x2‖∗.

From (3.7) and (3.12) it follows that

‖Λx1 − Λx2‖� ≤ sup
t∈I

{∫ t

0

|C(t− τ)|∗‖g(τ, x1τ )− g(τ, x2τ )‖E dτ

+ ‖g(t, x1t)− g(t, x2t)‖E

+

∫ t

0

|AS(t− τ)|∗‖g(τ, x1τ )− g(τ, x2τ )‖E dτ
}

≤ l‖x1 − x2‖∗(M0e
ωaa+ 1 +MAa) ≤ γ1‖x1 − x2‖∗,

and so ‖Λx1 − Λx2‖∗ = ‖Λx1 − Λx2‖� ≤ γ1‖x1 − x2‖∗. �

Lemma 4.7. Λ0 is a γ2-Lipschitz mapping, where γ2 = M(σ1 + σ2).

Proof. Let x1, x2 ∈ PC1(J). From (H3) we have

‖Λ0x1 − Λ0x2‖∆(4.6)

= sup
{
‖(Λ0x1)(t)− (Λ0x2)(t)‖+ ‖(Λ0x1)′(t)− (Λ0x2)′(t)‖ : t ∈ I0

}
= sup {‖h1(x2)− h1(x1)‖E : t ∈ I0} ≤ σ1‖x1 − x2‖∗;
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‖Λ0x1 − Λ0x2‖�(4.7)

= sup
{
‖(Λ0x1)(t)− (Λ0x2)(t)‖+ ‖(Λ0x1)′(t)− (Λ0x2)′(t)‖ : t ∈ I

}
≤ sup

{
|C(t)|∗‖h1(x2)− h1(x1)‖E + |S(t)|∗‖h2(x1)− h2(x2)‖E

+ |AS(t)|∗‖h1(x2)− h1(x1)‖E + |C(t)|∗‖h2(x1)− h2(x2)‖E : t ∈ I
}

≤ (M0e
ωa +MA)σ1‖x1 − x2‖∗ +M0e

ωa(1 + a)σ2‖x1 − x2‖∗.

Inequalities (4.6) and (4.7) yield

‖Λ0x1−Λ0x2‖∗ = max {‖Λ0x1−Λ0x2‖∆, ‖Λ0x1−Λ0x2‖�} ≤ γ2‖x1− x2‖∗. �

Proof of Theorem 4.1. From the assumptions and Lemma 3.4 we see

that T (x) ⊂ PC1(J) for x ∈ PC1(J). We will prove that T is an u.s.c. βH -

condensing map with compact and convex values. For x1, x2 ∈ PC1(J), in view

of Lemmas 4.5 and 4.6, we have

(4.8) H((Λ + Ψ)(x1), (Λ + Ψ)(x2)) ≤ ‖Λ(x1)− Λ(x2)‖∗ +H(Ψ(x1),Ψ(x2))

≤ (γ + γ1)‖x1 − x2‖∗.

Hence, Λ + Ψ is (γ + γ1)-Lipschitz continuous. Now we show that T is a βH -

condensing multivalued map. Suppose that B is a bounded subset of PC1(J).

Note that βH((Λ + Ψ)(B)) ≤ (γ + γ1)βH(B) due to (4.8). Hence, from Lemmas

4.4 and 4.7, we have

βH(T (B)) =βH((Λ + Ψ + Λ0 + Γ ◦ S1
F )(B))(4.9)

≤βH((Λ + Ψ)(B)) + βH(Λ0B) + βH(Γ ◦ S1
F (B))

≤ (ξ + γ0)βH(B),

which shows that T is a βH -condensing map due to ξ + γ0 < 1.

Since Ψ has compact and convex values, and Γ ◦ S1
F has closed and convex

values, we infer that Ψ + Γ ◦ S1
F has closed and convex values, and so does T .

For each x ∈ PC1(J), from (4.9) we have

βH(T (x) ≤ (ξ + γ0)βH({x}) = 0,

i.e. T (x) is relatively compact. Hence T has compact and convex values.

Next, we show that T is u.s.c. In fact, from Lemma 4.5 we see that Ψ is a

u.s.c. map with close values. Thus, Ψ is a closed graph map. From Lemma 4.3

we see that Γ ◦ S1
F is also a closed graph map. Let B∗ be a relatively compact

subset of PC1(J). Then by (4.9), Lemmas 4.4 and 4.5, we have

βH(T (B∗)) ≤ (ξ + γ0)βH(B∗) = 0,

βH(Γ ◦ S1
F (B∗)) ≤ γ0βH(B∗) = 0,

βH(Ψ(B∗)) ≤ γβH(B∗) = 0.
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This shows that Γ ◦ S1
F ,Ψ and T are quasicompact, and so is Ψ + Γ ◦ S1

F . Using

Lemma 3.5, Ψ+Γ◦S1
F has closed graph. Since the single-valued mapping Λ+Λ0

is continuous due to (H3) and Lemma 4.6, Λ+Λ0 has closed graph. Using Lemma

3.5 again, we deduce that T = (Ψ + Γ ◦ S1
F ) + (Λ + Λ0) is a closed graph map.

Thus, the upper semicontinuity of T follows from Lemma 2.1.

Suppose that C0, C1, C2, C∗ are four constants given by

C0 = sup
t∈I
‖g(t, 0)‖E ;

C1 = M(‖φ‖∆ + ‖g(0, φ)‖E + ‖h1(0)‖E + ‖h2(0)‖E);

C2 = M

m∑
k=1

[H(0, ϕk(0)) +H(0, ψk(0))];

C∗ = C0(Ma+ 1) + C1 + C2.

Since ξ < 1, M ≥ 1 and lim sup
λ→+∞

‖pλ‖L/λ < (1− ξ)/M , we take a constant ν

such that

lim sup
λ→+∞

‖pλ‖L
λ

< ν <
1− ξ
M

.

Thus, there exists a constant λ∗ such that

λ∗ >
C∗

1− ξ −Mν
and

‖pλ∗‖L
λ∗

< ν.

Set D = {x ∈ PC1(J) : ‖x‖∗ ≤ λ∗}. Then D is a bounded closed convex

subset of PC1(J). We claim that T (D) ⊂ D. In fact, if x ∈ D be any element

and y ∈ T (x), then there exist ηx ∈ Ψ(x) and fx ∈ S1
F (x) such that y =

Λ0x+ Λx+ ηx + Γfx. From (H3) it follows that

‖h1(x)‖E ≤ σ1‖x‖∗ + ‖h1(0)‖E , ‖h2(x)‖E ≤ σ2‖x‖∗ + ‖h2(0)‖E .

Thus, we obtain

‖Λ0x‖∆ ≤ sup {‖φ(t)− h1(x)‖+ ‖φ′(t)‖ : t ∈ I0} ≤ ‖φ‖∆ + σ1‖x‖∗ + ‖h1(0)‖E ;

‖Λ0x‖� = sup {‖(Λ0x)(t)‖+ ‖(Λ0x)′(t)‖ : t ∈ I}

≤ (M0e
ωa +MA)[‖φ‖∆ + σ1‖x‖∗ + ‖h1(0)‖E ]

+M0e
ωa(1 + a)[‖g(0, φ)‖E + σ2‖x‖∗ + ‖h2(0)‖E ];

and so

(4.10) ‖Λ0x‖∗ = max {‖Λ0x‖∆, ‖Λ0x‖�} ≤ C1 + γ2‖x‖∗ ≤ C1 + γ2λ∗.

If t ∈ I, then from (H4) it follows that

‖g(t, xt)‖E ≤ ‖g(t, xt)− g(t, 0)‖E + ‖g(t, 0)‖E ≤ l‖xt‖∆ + C0.

Thus, from (H4) and (H1) we have

‖(Λx)(t)‖+ ‖(Λx)′(t)‖ ≤
∫ t

0

|C(t− τ)|∗‖g(τ, xτ )‖E dτ + ‖g(t, xt)‖E



Hausdorff Product Measures and C1-Solution Sets 291

+

∫ t

0

|AS(t− τ)|∗‖g(τ, xτ )‖E dτ

≤C0 + l‖xt‖∆ + (M0e
ωa +MA)

∫ t

0

(C0 + l‖xτ‖∆) dτ

≤C0(Ma+ 1) + l‖xt‖∆ +Ml

∫ t

0

‖xτ‖∆ dτ,

‖(Γfx)(t)‖+ ‖(Γfx)′(t)‖ ≤
∫ t

0

‖S(t− τ)fx(τ)‖dτ +

∫ t

0

‖C(t− τ)fx(τ)‖ dτ

≤M0e
ωa(a+ 1)

∫ t

0

pλ∗(τ)dτ ≤M
∫ t

0

pλ∗(τ) dτ,

and so

(4.11) ‖Λx‖∗ + ‖Γfx‖∗ = ‖Λx‖� + ‖Γfx‖� ≤ C0(Ma+ 1) + γ1λ∗ +M‖pλ∗‖L.

For uk ∈ ϕk(x(tk)) and vk ∈ ψk(x(tk)), from (H2) it follows that

‖uk‖ ≤H(0, ϕk(x(tk))) ≤ H(0, ϕk(0)) + ak‖x(tk)‖,

‖vk‖ ≤H(0, ψk(x(tk))) ≤ H(0, ψk(0)) + bk‖x(tk)‖.

Thus, we have

‖ηx‖∗ = ‖ηx‖� ≤ sup
t∈I

∑
0<tk<t

[
|C(t− tk)|∗‖uk‖E + |S(t− tk)|∗‖vk‖E

]
(4.12)

+ sup
t∈I

∑
0<tk<t

[
|AS(t− tk)|∗‖uk‖E + |C(t− tk)|∗‖vk‖E

]
≤M

m∑
k=1

[H(0, ϕk(0)) + ak‖x(tk)‖]

+M

m∑
k=1

[H(0, ψk(0)) + bk‖x(tk)‖] ≤ C2 + γλ∗.

Combining with (4.10)–(4.12) we have

‖y‖∗ ≤‖Λ0x‖∗ + ‖Λx‖∗ + ‖Γfx‖∗ + ‖ηx‖∗
≤C0(Ma+ 1) + C1 + C2 + (γ1 + γ2 + γ)λ∗ +M‖pλ∗‖L
=C∗ + ξλ∗ +M‖pλ∗‖L
< (1− ξ −Mν)λ∗ + ξλ∗ +Mνλ∗ = λ∗,

which means that T (D) ⊂ D.

As a consequence of Lemma 2.2 we deduce that Fix(T ) is a nonempty and

compact set. Therefore, the set of C1-solutions of problem (FIP) is a nonempty

and compact set. This completes the proof. �

If A is bounded, then we can obtain a existence result for problem (FIP)

under some weak impulsive conditions and nonlocal conditions.
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Theorem 4.8. Suppose that the following conditions are satisfied :

(h0) A is a bounded infinitesimal generator of a strongly continuous cosine

family {C(t) : t ∈ R}; {S(t) : t ∈ R} is a sine family associated to the

cosine family.

(h1) The map F : I × ∆ → Pwcp,cv(X) is a map such that t 7→ F (t, xt) is

measurable and u 7→ F (t, u) is weakly u.s.c. and it is pλ-locally integrably

bounded, and there exists a function α ∈ L1(I,R+) such that

βH(F (t,B)) ≤ α(t)βH(B), for each B ∈ Pbd(∆) and a.e. t ∈ I.

(h2) For k = 1, . . . ,m, the maps ϕk, ψk : X → Pcp,cv(X) are u.s.c.; ϕk(X),

ψk(X) ∈ Pbd(X); and there exist nonnegative constants ak, bk such that

βH(ϕk(D))≤akβH(D) and βH(ψk(D))≤bkβH(D) for each D∈Pbd(X).

(h3) The mappings h1, h2 : PC1(J)→ X are continuous and there exist non-

negative constants σi, di such that βH(hi(D)) ≤ σiβH(D) for each

bounded set D ⊂ PC1(J), and ‖hi(x)‖ ≤ di for each x ∈ PC1(J),

where i = 1, 2.

(h4) The mapping g : I ×∆ → X satisfies that u 7→ g(t, u) is l-Lipschitz for

almost every t ∈ I.

(h5) φ′ is continuous in I0.

If γ1 +µ < 1 and lim sup
λ→+∞

‖pλ‖L/λ < (1− γ1)/M , then the set of C1-solutions of

problem (FIP) is a nonempty and compact set, where

M =M0e
ωa[amax(|A|∗, 1) + 1)];

γ1 = l(Ma+ 1);

µ =M‖α‖L +M(σ1 + σ2) +M

m∑
k=1

(ak + bk).

To prove Theorem 4.8, we need the following lemmas. Since conditions (h1)

and (H1) are identical, from Lemmas 4.3 and 4.4 we have the following Lem-

mas 4.9 and 4.10.

Lemma 4.9. Γ ◦ S1
F : PC1(J)( PC1(J) is a closed graph map with closed,

convex values.

Lemma 4.10. βH(Γ ◦ S1
F (B)) ≤ γ0βH(B), for each bounded subset B ∈

PC1(J), where γ0 = M‖α‖L.

Since conditions (h4) and (H4) are identical, from Lemma 4.6 we have the

following assertion.

Lemma 4.11. Λ is a γ1-Lipschitz mapping, where γ1 = l(Ma+ 1).

Lemma 4.12. Ψ(B)′ is equicontinuous in Ik+1, where B is a bounded subset

of PC1(J) and k = 1, . . . ,m.
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Proof. Suppose that t, s ∈ Ik+1 and tk < s < t ≤ tk+1. Since ϕi(B), ψi(B)

are all bounded by (h2), there exists M∗ > 0 such that ‖ui‖ ≤M∗ and ‖vi‖ ≤M∗
for all ui ∈ ϕi(B), vi ∈ ψi(B), where i = 1, . . . ,m. For each ε > 0, from

the uniform continuity of S(t), we see that there exists δ = δ(ε), 0 < δ <

min
0≤k≤m

(tk+1 − tk) such that |S((t − s)/2)|∗ < ε, when 0 < t − s < δ. Thus, by

(2.2) and (2.3) we have, for i = 1, . . . , k,

|C(t− ti)− C(s− ti)|∗ < 2a|A|∗M0e
ωaε,

|AS(t− ti)−AS(s− ti)|∗ < 2|A|∗M0e
ωaε.

Hence, from (3.13), it follows that, for each η ∈ Ψ(B),

‖η′(t)− η′(s)‖∗

≤
k∑
i=1

|AS(t− ti)−AS(s− ti)|∗‖ui‖+ |C(t− ti)− C(s− ti)|∗‖vi‖

≤ 2mM∗(a+ 1)|A|∗M0e
ωaε.

This shows that Ψ(B)′ is equicontinuous in Ik+1. �

Lemma 4.13. Ψ is a closed graph map with compact and convex values and

βH(Ψ(B)) ≤ γβH(B), where B is a bounded subset of PC1(J) and

γ = M

m∑
k=1

(ak + bk).

Proof. Since the maps ϕk, ψk : X ( X have all compact and convex values

(k = 1, . . . ,m), in the same manner as Lemma 4.5, we can show that Ψ has

compact and convex values. Since ϕk, ψk are u.s.c., they have closed graph. But

(h2) implies that ϕk, ψk are quasicompact. Using Lemma 3.5 we deduce that Ψ

is a closed graph map. Let B is a bounded subset of PC1(J). From (h2) and

Lemma 3.7, it follows that

βH{ϕk(x(tk)) : x ∈ B} ≤ akβH{x(tk) : x ∈ B}(4.13)

≤ akβH(B(I)) ≤ akβH(B);

βH{ψk(x(tk)) : x ∈ B} ≤ bkβH{x(tk) : x ∈ B}(4.14)

≤ bkβH(B(I)) ≤ bkβH(B).

Thus, from Lemma 4.12, inequalities (4.13), (4.14) and Lemmas 3.7 and 3.6 (a)

we have

βH(Ψ(B)) ≤ sup
t∈I

∑
0<tk<t

[
|C(t− tk)|∗akβH(B) + |S(t− tk)|∗bkβH(B)

]
+ sup

t∈I

∑
0<tk<t

[
|AS(t− tk)|∗akβH(B) + |C(t− tk)|∗bkβH(B)

]
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≤βH(B)

m∑
k=1

[
M0e

ωa(1 + a|A|∗)ak +M0e
ωa(a+ 1)bk

]
≤ γβH(B). �

Lemma 4.14. βH(Λ0(B))≤γ2βH(B), where B is a bounded subset of PC1(J)

and γ2 = M(σ1 + σ2).

Proof. From (h3) and Lemma 3.6 (a) we have, for t ∈ I0,

(4.15)
βH({(Λ0x)(t) : x ∈ B}) = βH(φ(t)− h1(B)) ≤ σ1βH(B);

βH({(Λ0x)′(t) : x ∈ B}) = 0;

and for t ∈ I,

βH({(Λ0x)(t) : x ∈ B})(4.16)

≤βH(C(t)[φ(0)− h1(B)] + S(t)[h2(B)− g(0, φ)])

≤ (|C(t)|∗σ1 + |S(t)|∗σ2)βH(B);

βH({(Λ0x)′(t) : x ∈ B})(4.17)

≤βH({AS(t)[φ(0)− h1(B)] + C(t)[h2(B)− g(0, φ)])

≤ (|AS(t)|∗σ1 + |C(t)|∗σ2)βH(B).

On the other hand, for t, s ∈ I0 and x ∈ B, we obtain

‖(Λ0x)′(t)− (Λ0x)′(s)‖ = ‖ϕ′(t)− ϕ′(s)‖;

for t, s ∈ I and x ∈ B, from (2.2) and (2.3), we obtain

‖(Λ0x)′(t) − (Λ0x)′(s)‖

≤ |AS(t)−AS(s)|∗‖φ(0)− h1(x)‖+ |C(t)− C(s)|∗‖h2(x)− g(0, φ)‖

≤ 2 max (1, a)|A|∗M0e
ωa(‖φ‖∆ + d1 + d2 + ‖g(0, φ)‖)|S((t− r)/2)|∗.

This implies that {(Λ0x)′ : x ∈ B} is equicontinuous by (h5) and the uniform

continuity of S(t). Thus, from (4.15)–(4.17) and Lemma 3.7, it follows that

βH(Λ0B) ≤ max
t∈J

βH({(Λ0x)(t) : x ∈ B}) + max
t∈J

βH({(Λ0x)′(t) : x ∈ B})

≤ [M0e
ωa(1 + a|A|∗)σ1 +M0e

ωa(1 + a)σ2]βH(B)

≤M(σ1 + σ2)βH(B) = γ2βH(B). �

Proof of Theorem 4.8. From Lemma 3.4 we see that T (x) ⊂ PC1(J) for

x ∈ PC1(J). We will prove that T is a u.s.c. βH -condensing map with compact

and convex values. Suppose that B is a bounded subset of PC1(J). Note that

βH((Λ + Λ0)(B)) ≤ (γ1 + γ2)βH(B) due to Lemmas 4.11 and 4.14. Hence, from
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Lemmas 4.10 and 4.13 we have

βH(T (B)) =βH((Λ + Ψ + Λ0 + Γ ◦ S1
F )(B))

≤βH((Λ + Λ0)(B)) + βH(Ψ(B)) + βH(Γ ◦ S1
F (B))

≤ (γ1 + γ2 + γ + γ0)βH(B) = (γ1 + µ)βH(B),

which shows that T is a βH -condensing map due to γ1 + µ < 1. In the same

manner as the proof of Theorem 4.1, from Lemmas 4.9, 4.13, 3.5 and 2.1 we can

show that T is a u.s.c. map with compact and convex values.

Suppose that C0, G1, G2, G0 are four constants given by

C0 = sup
t∈I
‖g(t, 0)‖;

G1 = M(‖φ‖∆ + d1 + d2 + ‖g(0, φ)‖);

G2 = 2mM sup

{
‖y‖ : y ∈

m⋃
k=1

[ϕk(X) ∪ ψk(X)]

}
;

G0 = C0(Ma+ 1) +G1 +G2.

Since γ1 < 1, M ≥ 1 and lim sup
λ→+∞

‖pλ‖L/λ < (1− γ1)/M , we take a constant ρ

such that

lim sup
λ→+∞

‖pλ‖L
λ

< ρ <
1− γ1

M
.

Thus, there exists a constant λ0 such that λ0>G0/(1−γ1−Mρ), ‖pλ0
‖L/λ0 < ρ.

Set

D = {x ∈ PC1(J) : ‖x‖∗ ≤ λ0}.

Then D is a bounded closed convex subset of PC1(J). Next we prove that

T (D) ⊂ D. Let x ∈ D be any element and y ∈ T (x). Then there exist ηx ∈ Ψ(x)

and fx ∈ S1
F (x) such that y = Λ0x+ Λx+ ηx + Γfx. By (h3) we obtain

‖Λ0x‖∆ ≤ sup {‖φ(t)− h1(x)‖+ ‖φ′(t)‖ : t ∈ I0}

≤ sup {‖φ(t)‖+ ‖φ′(t)‖+ ‖h1(x)‖ : t ∈ I0} ≤ ‖φ‖∆ + d1,

‖Λ0x‖� = sup {‖(Λ0x)(t)‖+ ‖(Λ0x)′(t)‖ : t ∈ I}

≤M0e
ωa(1 + a|A|∗)(‖φ‖∆ + d1) +M0e

ωa(1 + a)(d2 + ‖g(0, φ)‖);

and so

(4.18) ‖Λ0x‖∗ = max {‖Λ0x‖∆, ‖Λ0x‖�} ≤ G1.

Since conditions (h1) and (H1) are identical, (h4) and (H4) are identical, from

(4.11), we have

(4.19) ‖Λx‖∗ + ‖Γfx‖∗ = ‖Λx‖� + ‖Γfx‖� ≤ C0(Ma+ 1) + γ1λ0 +M‖pλ0‖L.
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From (h2), we have

‖ηx‖∗ = ‖ηx‖� = sup
t∈I

[‖ηx(t)‖+ ‖η′x(t)‖](4.20)

≤ sup
t∈I

∑
0<tk<t

[|C(t− tk)|∗‖uk‖+ |S(t− tk)|∗‖vk‖]

+ sup
t∈I

∑
0<tk<t

[|AS(t− tk)|∗‖uk‖+ |C(t− tk)|∗‖vk‖] ≤ G2.

Combining with (4.18)–(4.20), we have

‖y‖∗ ≤‖Λ0x‖∗ + ‖Λx‖∗ + ‖Γfx‖∗ + ‖ηx‖∗
≤C0(Ma+ 1) +G1 +G2 + γ1λ0 +M‖pλ0‖L = G0 + γ1λ0 +M‖pλ0‖L
< (1− γ1 −Mρ)λ0 + γ1λ0 +Mρλ0 = λ0,

which means that T (D) ⊂ D.

Using Lemma 2.2 we deduce that Fix(T ) is a nonempty and compact set.

Hence, the set of C1-solutions of problem (FIP) is a nonempty and compact set.�

Example 4.15. As an application of our result, we consider the impulsive

neutral partial differential inclusion of the following form:

(P)



∂2

∂t2
y(t, s)− ∂

∂t
g(t, y(t− r, s))− ∂2

∂s2
y(t, s) ∈ F (t, y(t− r, s))

a.e. t ∈ I \ {t1, . . . , tm},
y(t, 0) = y(t, π) = 0, t ∈ I,
y(t+k , s)− y(t−k , s) ∈ ϕk(y(t−k , s)), k = 1, . . . ,m,
∂

∂t
y(t+k , s)−

∂

∂t
y(t−k , s) ∈ ψk(y(t−k , s)), k = 1, . . . ,m,

y(t, s) + h1(y(0, s)) = φ(t, s), t ∈ I0,
∂

∂t
y(0, s) = h2(y(0, s)), t ∈ I0,

where s ∈ [0, π]. Let X = L2[0, π], φ(t, · ) = φ(t)( · ) and y(t, · ) = x(t). Then

we have x(t) ∈ X. Define A : D(A)→ X by Ax = x′′ with the domain

D(A) =
{
x ∈ X : x and x′ are absolutely continuous,

x′′ ∈ X and x(0) = x(π) = 0
}
,

then ∂2

∂s2 y(t, s) = Ax(t), and it is well known that (see [9, 13] for more details)

E =
{
x ∈ X : x are absolutely continuous, x′ ∈ X and x(0) = x(π) = 0

}
.

Thus, problem (FIP) is an abstract formulation of problem (P). From Theo-

rem 4.1 we can establish the topological structure of C1-solution sets for prob-

lem (P).
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