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RIGOROUS NUMERICS FOR FAST-SLOW SYSTEMS

WITH ONE-DIMENSIONAL SLOW VARIABLE:

TOPOLOGICAL SHADOWING APPROACH

Kaname Matsue

Abstract. We provide a rigorous numerical computational method to vali-

date periodic, homoclinic and heteroclinic orbits as the continuation of

singular limit orbits for the fast-slow system{
x′ = f(x, y, ε),

y′ = εg(x, y, ε)

with one-dimensional slow variable y. Our validation procedure is based on

topological tools called isolating blocks, cone conditions and covering rela-
tions. Such tools provide us with existence theorems of global orbits which

shadow singular orbits in terms of a new concept, the covering-exchange.

Additional techniques called slow shadowing and m-cones are also devel-
oped. These techniques give us not only generalized topological verification

theorems, but also easy implementations for validating trajectories near

slow manifolds in a wide range, via rigorous numerics. Our procedure is

available to validate global orbits not only for sufficiently small ε > 0 but all
ε in a given half-open interval (0, ε0]. Several sample verification examples

are shown as a demonstration of applicability.
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1. Introduction

1.1. Background of problems and our aims. In this paper, we consider

the dynamical system in Rn × R of the following form:

(1.1)

x′ = f(x, y, ε),

y′ = εg(x, y, ε),

where ′ = d/dt is the time derivative and f, g are Cr-functions with r ≥ 1. The

factor ε is a nonnegative but sufficiently small real number. We shall write (1.1)

as (1.1)ε if we explicitly represent the ε-dependence of the system. System (1.1)

can be reformulated with a change of time-scale variable as

(1.2)

εẋ = f(x, y, ε),

ẏ = g(x, y, ε),

where ˙ = d/dτ and τ = t/ε. One tries to analyze the dynamics of (1.1), equiva-

lently (1.2), by suitably combining the dynamics of the layer problem

(1.3)

x′ = f(x, y, 0),

y′ = 0,

and the dynamics of the reduced problem

(1.4)

0 = f(x, y, 0),

ẏ = g(x, y, 0),

which are the limiting problems for ε = 0 on the fast and the slow time scale,

respectively. Notice that (1.4) makes sense only on f(x, y, 0) = 0, while (1.3)

makes sense in the whole Rn+1 as the y-parameter family of x-systems. The

meaning of the “ε → 0-limit” is thus different for (1.1) and (1.2). This is why

(1.1) or (1.2) is a kind of singular perturbation problems. In particular, (1.1) or

(1.2) is known as fast-slow systems (or slow-fast systems), where x dominates the

behavior in the fast time scale and y dominates the behavior in the slow time

scale.

When we study the dynamical system of the form (1.1), we often consider

limit systems (1.3) and (1.4) independently at first. Then one tries to match

them in an appropriate way to obtain trajectories for the full system (1.1). One

of major methods for completely solving singularly perturbed systems like (1.1)

is the geometric singular perturbation theory formulated by Fenichel [11], Jones–

Kopell [21], Szmolyan [33] and many researchers. A series of theories are es-

tablished so that formally constructed singular limit orbits of (1.3) and (1.4)

can perturb to true orbits of (1.1) for sufficiently small ε > 0. In geometric

singular perturbation theory, there are mainly two key points to consider. One
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is the description of slow dynamics for sufficiently small ε near the nullcline

{(x, y) | f(x, y, 0) = 0}. The other is the matching of fast and slow dynamics.

As for the former, Fenichel [11] provided the Invariant Manifold Theorem for

describing the dynamics on and around locally invariant manifolds, called slow

manifolds, for sufficiently small ε > 0. Such manifolds can be realized as the

perturbation of normally hyperbolic invariant manifolds at ε = 0, which are

often given by submanifolds of nullcline in (1.3). As for the latter, Jones and

Kopell [21] originally formulated the geometric answer for the matching problem

deriving the Exchange Lemma. This lemma informs that the manifold configura-

tion upon exit from the neighbourhood of slow manifolds under the assumption

of transversal intersection between tracking invariant manifolds and the stable

manifold of slow manifolds. Afterwards, the Exchange Lemma has been extended

in various directions, see e.g. [20], [23], [34]. Combining these terminologies, one

can prove the existence of homoclinic or heteroclinic orbits of invariant sets near

singular orbits for sufficiently small ε > 0. There are also topological ways

to prove their existence for sufficiently small ε provided by, say, Carpenter [4],

Gardner–Smoller [13], etc., by using algebraic-topological concepts such as the

mapping degree or the Conley index [7], [26]. Such topological approaches also

mention the existence of periodic orbits near singular orbits.

On the other hand, all such mathematical results do not give us how large

such sufficiently small ε is. In other words, it remains an open problem whether

there exist global orbits given by the continuation of singular orbits for a given ε.

This intrinsic problem has been mentioned in many discussions (e.g. [18]). From

the viewpoint of numerical computations, if ε > 0 is sufficiently small, (1.1) be-

comes the stiff problem and numerically unstable. Although the effective method

for computing slow manifolds is provided by Guchenheimer and Kuehn [17],

computations for extremely small ε (e.g. close to machine epsilon) is still hard

to operate correctly. These circumstances show that there are gaps between

mathematical results (i.e. sufficiently small ε) and numerical observations (i.e.

given ε) for completely understanding dynamics of fast-slow systems. These are

mainly because there are no estimations to measure mathematically rigorous

consequences not only quantitatively but also qualitatively. The construction

of procedures which bridge mathematical results and numerical observations is

necessary to completely understand phenomena in concrete dynamical systems,

which is also the case of singular perturbation problems.

Our main aim in this paper is to provide implementations for validating the

continuation of various global orbits of (1.1) for all ε ∈ [0, ε0] rigorously, where

ε0 > 0 is a given number. In other words, we provide a method to validate

(M1) the singular limit orbit H0 for (1.1) with ε = 0, as well as

(M2) global orbits Hε near H0 for all ε ∈ (0, ε0] for a given ε0 > 0.
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Singular limit orbit means the union of several heteroclinic orbits in (1.3) and the

submanifolds of the nullcline {f(x, y, 0) = 0}. Global orbits mean homoclinic,

heteroclinic orbits of invariant sets and periodic orbits.

To this end, we provide the notion of covering-exchange, which is a topo-

logical analogue of the Exchange Lemma. This concept consists of the follow-

ing topological notions with suitable assumptions: (i) isolating blocks, (ii) cone

conditions and (iii) covering relations. These three notions have been already

applied to validations of global orbits in dynamical systems very well, as stated

in Section 1.2. The covering-exchange is constructed involving these notions,

and informs us about

• the existence of slow manifolds for (1.1) as well as normally hyperbolic

invariant manifolds for (1.3), and

• the existence of trajectories which not only converge to invariant sets on

slow manifolds but which also exist neighbourhoods of slow manifolds

after time T = O(1/ε).

These properties and the general consequence of covering relations yield the ex-

istence of global orbits. We also generalize the covering-exchange by introducing

the additional notion of slow shadowing, which guarantees the local existence

of trajectories which shadow slow manifolds with nonlinear structure. This no-

tion enables us to trace trajectories which not only tend to slow manifolds but

also stay near slow manifolds for time O(1/ε) from topological viewpoint. This

concept is also very compatible with numerical computations, in particular, for

validating trajectories near slow manifolds.

The other main tool to establish our procedure is the assistance of rigorous

numerics, namely, computations of enclosures where mathematically correct ob-

jects are contained in the phase space. All such computations can be realized

by interval arithmetics and mathematical error estimates. Combination of the

covering-exchange, slow shadowing and rigorous numerics in reasonable processes

provide us with a method proving (M1) and (M2) simultaneously.

Note that there are two approaches to consider singular perturbation prob-

lems; one is the continuation of structures from the singular limit systems (ε = 0)

to the full systems (i.e. ε > 0), and the other is the consideration of full systems

to the singular limit ε → 0. Our attitude is the former. In particular, we con-

sider our problems via topological approach on the basis of geometric singular

perturbation theory.

This paper is organized as follows. In Section 2, we briefly review Fenichel’s

invariant manifold theorem and topological notions called covering relations and

isolating blocks. A systematic procedure of isolating blocks for validations of

invariant manifolds with computer assistance (e.g. [24], [43]) is also discussed.
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In Section 3, we show how slow manifolds can be validated in given regions

with an explicit range [0, ε0] of ε. One sees that our fundamental arguments

are basically followed by the proof in Jones’ article [19]. Such arguments can

be validated via the construction of isolating blocks and singular perturbation

problems’ version of cone conditions (cf. [40]) and the Lyapunov condition [24].

In Section 4, we discuss treatments of slow dynamics. First we introduce the

new notion called the covering-exchange for describing the behavior of trajecto-

ries around slow manifolds (Section 4.1). This concept is a topological analogue

of the Exchange Lemma so that we can reasonably validate tracking invariant

manifolds near slow manifolds in a suitable sense. This concept also solves the

matching problem between fast and slow dynamics. We also provide a generaliza-

tion of the covering-exchange; a collection of local behavior near slow manifolds

called the slow shadowing, drop and jump (Section 4.3). These concepts enable

us to construct true trajectories in full system which shadow ones on slow mani-

folds in reasonable way via rigorous numerics. Furthermore, we provide a slight

extension of cones, called m-cones, which enables us to sharpen enclosures of

stable and unstable manifolds of normally hyperbolic invariant manifolds (Sec-

tion 4.4). The main idea itself is just a slight modification of cone conditions

stated in Section 3. But this technique gives us a lot of benefits in many scenes

incorporating with rigorous numerics. On the other hand, dynamics on slow

manifolds should be considered when slow manifolds exhibit the nontrivial dy-

namics such as equilibria, periodic orbits, homoclinic orbits, etc. As an example,

we discuss validations of equilibria on slow manifolds (Section 4.5). In the end

of Section 4, we discuss unstable manifolds of invariant sets on slow manifolds

(Section 4.6). To deal with these manifolds, we discuss the invariant foliations of

slow manifolds, and translate this fiber bundle structure into the terms of cones

and covering relations. This is one of key considerations of heteroclinic orbits

in (1.1)ε.

In Section 5, the existence theorems for periodic and heteroclinic orbits near

singular limit orbits with an explicit range [0, ε0] of ε are presented.

As a demonstration of our proposing implementations, we study the FitzHugh

–Nagumo equation:

(1.5)


u′ = v,

v′ = δ−1(cv − f(u) + w),

w′ = εc−1(u− γw),

where f(u) = u(u− a)(1− u), a ∈ (0, 1/2) and c, γ, δ > 0.

The existence of global orbits such as periodic or homoclinic orbits for suffi-

ciently small ε are widely discussed by many authors (e.g. [4], [13]). Note that,
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as we mentioned before, the existence of these orbits for a given ε remains an

open question. We propose ideas which suggest a road to answer this question.

Computer Assisted Result 1.1 (Existence of homoclinic orbits). Con-

sider (1.5) with a = 0.3, γ = 10.0 and δ = 9.0. Then for all c ∈ [0.799, 0.801],

there exist the following two kinds of trajectories:

• At ε = 0, a singular heteroclinic chain H0 consisting of

– a heteroclinic orbit from the equilibrium p0 near (0, 0, 0) ∈ R3 to

the equilibrium q1 near (1, 0, 0) ∈ R3,

– a heteroclinic orbit from the equilibrium p1 near

(0.870020061, 0, 0.06362) ∈ R3

to the equilibrium q0 near (−0.12966517, 0, 0.06335) ∈ R3, and

– two branches of nullcline {(u, v, w) | v = 0, f(u) = w} connecting

two heteroclinic orbits.

• For all ε ∈ (0, 5.0× 10−5], a homoclinic orbit Hε of pε ≈ p0 near H0.

The precise statements and other sample validation results are shown in

Section 6. Throughout the rest of this paper we make the following assumption,

which is essential to our whole discussions herein.

Assumption 1.2. Vector fields f and g have the following form:

f(x, y, ε) = f0(x, y) +

m∑
i=1

εifi(x, y) + o(εm), f0 6≡ 0,

g(x, y, ε) = g0(x, y) +

m∑
i=1

εigi(x, y) + o(εm), g0 6≡ 0.

General dynamical systems depend on parameters. For example, the Fitz-

Hugh–Nagumo system (1.5) contains a, c, γ, δ as parameters. Throughout this

paper we do not care about parameter dependence of dynamical systems unless

otherwise specified.

1.2. Several preceding works related to global trajectories and sin-

gular perturbation problems with rigorous numerics. There are many

preceding works for the existence of global orbits with rigorous numerics for

regular dynamical systems, namely, the g ≡ 0 case. For example, Wilczak and

Zgliczyński [38] apply the topological tool called covering relations to the ex-

istence of various type of trajectories in dynamical systems, such as periodic

orbits, homoclinic orbits and heteroclinic orbits. The essence of covering rela-

tions is to describe the behavior of rectangular-like sets called h-sets and apply

the mapping degree to the existence of solutions. One of powerful properties

of covering relations is that every h-set can be used as a joint of trajectories

and that we can validate various complicating behaviors of dynamical systems.
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Indeed, for example, [36] and [37] by Wilczak validate various types of complex

trajectories such as Shil’nikov homoclinic solutions, heteroclinic solutions and

infinitely many periodic solutions in concrete systems (e.g. Michelson system or

Rössler system).

On the other hand, van der Berg et al. [35] produce the other approach of

rigorous numerical computations of connecting orbits using the radii polynomi-

als and the parametrization technique. Their main idea is to reduce the original

problem to a projected boundary value problem in an infinite dimensional func-

tional space via a fixed point argument. Their formulation involves a higher

order parametrization of invariant manifolds near equilibria for describing stable

and unstable manifolds. Their approach is free from integrations of vector fields.

Hence one can validate various additional properties of invariant manifolds with-

out any knowledge of existence of trajectories [5].

As for rigorous numerics for singular perturbation problems, Gameiro et al.

[12] provide a validation method combined with the algebraic-topological singular

perturbation analysis. Such analysis is known as the Conley index theory [7], [26].

They actually apply its singular perturbation version [15], [14] to the singularly

perturbed predetor-prey model with two slow variables. As a result, they prove

the existence of topological horseshoe, in particular, infinite number of periodic

orbits with computer assistance. Their results show, however, the existence of

solutions for only sufficiently small ε and hence the bound of ε > 0 where the

existence result holds is not given. When we apply the Conley index technique,

it is necessary to provide an appropriate neighbourhood of desired orbits whose

boundary transversally intersects the vector field defined by the full system (1.1).

On the other hand, Guckenheimer et al. [16] discuss rigorous enclosures of

slow manifolds with computer assistance within explicit ranges of ε. They in-

troduce a concept of computational slow manifolds related to slow manifolds

in geometric singular perturbation theory and succeed with validations of slow

manifolds in their settings with explicit ranges of ε, while the validated ranges

of ε are bounded away from ε = 0, say, ε ∈ [10−6, 10−2]. Note that [16] also dis-

cusses validations of tangential bifurcations of slow manifolds for all ε ∈ (0, ε0],

where ε0 is a given number, say, 10−3. One of the other works is a very recent

one by Arioli and Koch [1], which studies the existence and stability of traveling

pulse solutions for the (singularly perturbed) FitzHugh–Nagumo system. This

study, however, focuses only on the parameter range which is not so small, say,

ε ≈ 0.1 or 0.001. In other words, the singular perturbation structure is ignored.

In the case of singular perturbation problems, direct computations of global

orbits without any ideas are not practical in various scenes both in the rigorous

and in the non-rigorous sense.
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Direct applications of the mentioned works without any modifications would

yield the failure of operations if we try to cover not only ε which is not so

small (e.g. ε = 10−5 or 10−6) but also extremely small ε, possibly smaller than

machine epsilon. This failure is due either to the stiffness of problems or to the

effect of fast dynamics. Even if it succeeds, there would be huge computation

costs due to very slow behavior around slow manifolds. Of course, there is still

a matching problem connecting fast and slow behavior, which typically arises

in singular perturbation problems. If we can overcome all such difficulties as

simply as possible, the scope of applications of the preceding concepts will extend

dramatically.

2. Preliminaries

When we consider a fast-slow system (1.1) from the viewpoint of geometric

singular perturbation theory following Fenichel (e.g. [11]), the central issue is

normally hyperbolic invariant manifolds. Fenichel’s theory provides us with very

rich structure of normally hyperbolic invariant manifolds consisting of equilibria

and their small perturbations. Such structures can be fully applicable to our

arguments. In the beginning of this section, we review several results on normally

hyperbolic invariant manifolds for fast-slow systems.

Our main methodologies to consider fast-slow systems are well-known topo-

logical tools called covering relations, isolating blocks and cone conditions. These

tools well describe the behavior of solution sets as well as their asymptotic be-

havior. In successive sections we will see that these tools work well even for

fast-slow systems. In this section, we also review two of such tools. Moreover,

we provide a procedure of isolating blocks suitable for fast-slow systems so that

they validate slow manifolds, which are available to various systems with com-

puter assistance. Cone conditions for singular perturbation problems are stated

later. Note that all results in Sections 2 and 3 are valid for (1.1)–(1.4) as systems

for (x, y) ∈ Rn × Rl with l ≥ 1.

Finally note that readers who are familiar with the mentioned topics can skip

this section.

2.1. Fenichel’s Invariant Manifold Theorems: review. Here we brief-

ly review Fenichel’s Invariant Manifold Theorems (e.g. [11]), following arguments

in [19]. The central goal of these results is the description of a flow near the set

S0 = {(x, y, 0) | f(x, y, 0) = 0} with manifold structures: the critical manifold.

The critical manifold S0 can be considered as the y-parameter family of equilibria

of the layer problem (1.3). Under appropriate hypotheses, S0 can be represented

by the graph of a function x = h(y) for y ∈ K, where K ⊂ Rl is a compact,

simply connected set.
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A central assumption in Fenichel’s theory is the normal hyperbolicity and the

graph representation of S0.

(F) The set S0 is given by the graph of the C∞-function h0(y) for y ∈ K,

where the set K is a compact, simply connected domain whose boundary

is an (l−1)-dimensional C∞-submanifold. Moreover, we assume that S0

is normally hyperbolic.

Remark 2.1 (cf. [19]). Recall that the manifold S0 is normally hyperbolic if

the linearization of (1.3) at each point in S0 has exactly l 0-eigenvalues.

A set M is said to be locally invariant under the flow generated by (1.1) if

it has a neighbourhood V of M so that no trajectory can leave M without also

leaving V . In other words, it is locally invariant if for all x ∈M , ϕ([0, t], x) ⊂ V
implies that ϕ([0, t], x) ⊂ M , similarly with [0, t] replaced by [t, 0] when t < 0,

where ϕ is a flow.

Without loss of generality, we can assume that h0(y) = 0 for all y ∈ K.

Then, there exist stable and unstable eigenspaces, S(y) and U(y), such that

dimS(y) = s and dimU(y) = u hold for all y ∈ K. With this in mind, we take

the transformation x(∈ Rn) 7→ (a, b) ∈ Ru+s so that (1.1) is expressed by

(2.1)


a′ = A(y)a+ F1(x, y, ε),

b′ = B(y)b+ F2(x, y, ε),

y′ = εg(x, y, ε).

Here A(y) denotes a u×u matrix which all eigenvalues have positive real part and

B(y) denotes an s × s matrix which all eigenvalues have negative real part. F1

and F2 denote higher order terms which admit a positive number γ = γ(K) > 0

satisfying

|Fi| ≤ γ(|x|+ ε) as |x| → 0.

More precisely, assumptions for A(y) and B(y) are as follows: there exist quan-

tities λA > 0 and µB < 0 such that

λA < Reλ for all λ ∈ Spec(A(y)) and y ∈ K,(2.2)

µB > Reλ for all λ ∈ Spec(B(y)) and y ∈ K.(2.3)

The key consideration of slow manifolds is the following Fenichel’s invariant

manifold theorem in terms of graph representations.

Proposition 2.2 (Persistence of invariant manifolds, cf. [19]). Under as-

sumption (F), for sufficiently small ε > 0, there is a function x = hε(y) defined

on K. The graph Sε = {(x, y) | x = hε(y)} is locally invariant under (1.1).

Moreover, hε is Cr, for any r < +∞, jointly in y and ε.
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Proposition 2.2 is just a consequence of the second Invariant Manifold The-

orem which states

Proposition 2.3 (Stable and unstable manifolds, cf. [19]). Under assump-

tion (F), for sufficiently small ε > 0, for some ∆ > 0:

(a) There is a function a = hs(b, y, ε) defined on {(b, y, ε) | |b| ≤ ∆, y ∈
K}, such that the graph W s(Sε) = {(a, b, y) | a = hs(b, y, ε)} is locally

invariant under (1.1). Moreover, a = hs(b, y, ε) is Cr, for any r < +∞,

jointly in y and ε.

(b) There is a function b = hu(s, y, ε) defined on {(a, y, ε) | |a| ≤ ∆, y ∈
K}, such that the graph W u(Sε) = {(a, b, y) | b = hu(a, y, ε)} is locally

invariant under (1.1). Moreover, b = hu(a, y, ε) is Cr, for any r < +∞,

jointly in y and ε.

Fenichel’s theorems, Propositions 2.2 and 2.3, state that normally hyperbolic

invariant manifolds as well as their stable and unstable manifolds persist to lo-

cally invariant manifolds in the full system (1.1) for sufficiently small ε > 0.

The perturbed manifold Sε for ε > 0 is called slow manifold. In other words,

slow manifolds can be realized as the ε-continuation of normally hyperbolic crit-

ical manifolds in the layer problem (1.3). One of strategies for constructing

such manifolds is the construction of a family of isolating blocks and moving

cones (see [19]). Isolating blocks describe the behavior of vector fields which are

transversal to their boundaries, which are widely discussed in the Conley index

theory [7], [26]. Isolating blocks are reviewed in Section 2.3.

Fenichel’s invariant manifold theory informs us not only about the existence

of perturbed slow manifolds but also about invariant foliations of W s(Sε) and

W u(Sε). More precisely, the following result (the third Invariant Manifold The-

orem) is known.

Proposition 2.4 (Fenichel fibering, cf. Theorems 6, 7 in [19]). Under as-

sumption (F), for sufficiently small ε > 0, the following statements hold. For

each v = vε = (ŷ, ε) ∈ Sε:
(a) There is a function (a, y) = hvs (b) for |b| ≤ ∆ sufficiently small so that the

graph W s(v) = {(a, b, y, ε) | (a, y) = hvs (b)} ⊂W s(Sε) forms a locally in-

variant manifold in the sense that ϕε,N (t,W s(v)) ⊂W s(ϕε(t, v)) holds if

ϕε(s, v) ∈ N for all s ∈ [0, t] with t > 0. Here the set ϕε,N (t,D) denotes

the forward evolution of a set D restricted to N given by ϕε,N (t,D) =

{ϕε(t, u) | u ∈ D and ϕε([0, t], u) ⊂ N}. Moreover, (a, y) = hvs (b) is Cr

in v and ε jointly for any r <∞.

(b) There is a function (b, y) = hvu(a) for |a| ≤ ∆ sufficiently small so that

the graph W u(v) = {(a, b, y, ε) | (b, y) = hvu(a)} ⊂W u(Sε) forms a locally

invariant manifold in the sense that ϕε,N (t,W u(v)) ⊂W u(ϕε(t, v)) holds
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if ϕε(s, v) ∈ N for all s ∈ [t, 0] with t < 0. Moreover, (b, y) = hvu(a) is

Cr in v and ε jointly for any r <∞.

These invariant foliations are sometimes referred to as Feniciel fiberings.

These fiberings ensure the following representations:

W u(D) =
⋃
v∈D

W u(v), W s(D) =
⋃
v∈D

W s(v),

where D is a subset of slow manifolds.

2.2. Covering relations: review. Our main approach for tracking solu-

tion orbits is a topological tool called the covering relations. Covering relations

describe topological transversality of rectangular-like domains called h-sets rela-

tively to continuous maps, and there are various studies not only of the mathe-

matical viewpoint but also of applications with rigorous numerics (e.g. [3], [36],

[38], [40], [42]). In the present study, we apply this topological methodology to

singular perturbation problems. In this section, we summarize notions of the

theory of covering relations. For a given norm on Rm, let Bm(c, r) be the open

ball of radius r centered at c ∈ Rm. For simplicity, also let Bm = Bm(0, 1). We

set R0 = {0}, B0(0, r) = {0} and ∂B0(0, r) = ∅.

Definition 2.5 (h-set, cf. [40], [42]). An h-set consists of the following set,

integers and a map:

(a) A compact subset N ⊂ Rm.

(b) Nonnegative integers u(N) and s(N) such that u(N) + s(N) = n with

n ≤ m.

(c) A homeomorphism cN : Rn → Ru(N) × Rs(N) satisfying

cN (N) = Bu(N) ×Bs(N).

Finally define the dimension of an h-set N by dimN := n.

We shall write an h-set (N, u(N), s(N), cN ) simply as N if no confusion

arises. Let

Nc := Bu(N) ×Bs(N),

N−c := ∂Bu(N) ×Bs(N), N+
c := Bu(N) × ∂Bs(N),

N− := c−1N (N−c ), N+ := c−1N (N+
c ).

The following notion describes the topological transversality between two

h-sets relatively to continuous maps.

Definition 2.6 (Covering relations, cf. [40], [42]). Let N , M be h-sets with

u(N) = u(M) = u. f : N → RdimM denotes a continuous map and fc :=

cM ◦ f ◦ c−1N : Nc → Ru × Rs(M). We say N f -covers M (N
f

=⇒ M) if the

following statements hold:
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(a) There exists a continuous homotopy h : [0, 1]×Nc → Ru × Rs(M) satis-

fying

h0 = fc, h([0, 1], N−c ) ∩Mc = ∅, h([0, 1], Nc) ∩M+
c = ∅,

where hλ = h(λ, · ), λ ∈ [0, 1].

(b) There exists a map A : Ru → Ru such that

(2.4)


h1(p, q) = (A(p), 0),

A(∂Bu(0, 1)) ⊂ Ru \Bu(0, 1),

deg(A,Bu, 0) 6= 0,

holds for p ∈ Bu(0, 1), q ∈ Bs(0, 1).

Remark 2.7. In the definition of covering relation between N and M , the

disagreement between dimN and dimM is not essential. On the contrary, the

equality u(N) = u(M) = u is essential because the mapping degree of the u-

dimensional map A should be derived.

The following propositions give us useful sufficient conditions for detecting

covering relations in practical situations.

Proposition 2.8 (Finding covering relations, Theorem 15 in [42]). Let N,M

be two h-sets in Rn such that u(N) = u(M) = u and s(N) = s(M) = s. Let

f : N → Rn be continuous. Let fc = cM ◦ f ◦ c−1N : Nc → Ru × Rs. Assume that

there exists q0 ∈ Bs such that following conditions are satisfied:

(a) Setting S(M)−c = {(p, q) ∈ Ru × Rs | ‖p‖ > 1},

fc(Bu×{q0}) ⊂ int (S(M)−c ∪Mc), fc(N
−
c )∩Mc = ∅, fc(Nc)∩M+

c = ∅.

(b) Define a map Aq0 : Ru → Ru by Aq0(p) := πu(fc(p, q0)), where πu : Ru×
Rs → Ru is the orthogonal projection onto Ru, πu(p, q) = p. Assume

that Aq0(∂Bu) ⊂ Ru \Bu and deg(Aq0 , Bu, 0) 6= 0.

Then N
f

=⇒M .

Proposition 2.9 (Covering relation in the case u = 1, Definition 10 in [41]).

Let N,M be h-sets with u(N) = u(M) = 1. Let f : N → RdimM be continuous.

Set

NL
c := {−1} ×Bs(N), NR

c := {+1} ×Bs(N),

S(N)Lc := (−∞,−1)× Rs(N), S(N)Rc := (+1,+∞)× Rs(N).

Assume that there exists q0 ∈ Bs(N) such that

f(cN ([−1, 1]× {q0})) ⊂ int (S(M)L ∪M ∪ S(M)R), f(N) ∩M+ = ∅
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and either of the following conditions holds:

f(NL) ⊂ S(M)L and f(NL) ⊂ S(M)R,

f(NL) ⊂ S(M)R and f(NL) ⊂ S(M)L.

Then N
f

=⇒M .

We also consider covering relations with respect to the inverse of continuous

maps.

Definition 2.10 (Back-covering relation, Definitions 3 and 4 in [42]). Let

N be an h-set. Define the h-set NT as follows:

(a) The compact subset of the quadruple NT is N itself.

(b) u(NT) = s(N), s(NT) = u(N).

(c) The homeomorphism cNT : Rn → Rn = Ru(NT) × Rs(NT) is given by

cNT(x) = j(cN (x)),

where j : Ru(N) × Rs(N) → Rs(N) × Ru(N) is given by j(p, q) = (q, p).

Notice that NT,+ = N− and NT,− = N+.

Next, let N,M be h-sets such that u(N) = u(M). Let g : Ω ⊂ Rn → Rn.

Assume that g−1 : M → Rn is well defined and continuous. Then we say N

g-back-covers M (N
g⇐= M) if MT g−1

=⇒ NT holds.

A fundamental result in the theory of covering relations is the following

proposition.

Proposition 2.11 (Theorem 4 in [42]). Let Ni, i = 0, . . . , k, be h-sets such

that u(Ni) = u for i = 0, . . . , k and let fi : Ni → Rdim(Ni+1), i = 0, . . . , k − 1, be

continuous. Assume that, for all i = 0, . . . , k − 1, either of the following holds:

Ni
fi

=⇒ Ni+1 or Ni ⊂ D(f−1i ) and Ni
fi⇐= Ni+1.

Then there is a point p ∈ intN0 such that

fi ◦ . . . ◦ f0(p) ∈ intNi for all i = 0, . . . , k − 1.

If we additionally assume Nk
fk

=⇒ N0, then the point p ∈ intN0 can be chosen

so that fk ◦ . . . ◦ f0(p) = p.

We sometimes consider an infinite sequence of covering relations. To deal

with such a situation, we define the following concept.

Definition 2.12 (Admissibility, cf. Definition 2.4 in [36]). Let {Mi}ki=1 be

h-sets in Rm and f :
m⋃
i=1

Mi → Rm be a continuous map. We say that the

index sequence {ij}j∈Z ⊂ {1, . . . , k}Z is admissible with respect to f if Mij
f

=⇒
Mij+1 holds for all j ∈ Z. Similarly, we say that the index sequence {ij}j∈Z ⊂
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{1, . . . , k}Z is back-admissible with respect to f if Mij
f⇐= Mij+1

holds for all

j ∈ Z. In this case, f−1 is assumed to be well defined in a neighbourhood of
m⋃
i=1

Mi and continuous.

Recall that the second Invariant Manifold Theorem, Proposition 2.3, claims

that the stable and unstable manifolds of normally hyperbolic invariant manifolds

can be described by graphs of smooth functions. The concepts of horizontal and

vertical disks are useful for description of asymptotic trajectories in terms of

covering relations for realizing these situations.

Definition 2.13 (Horizontal and vertical disks, e.g. [36], [40]). Let N be an

h-set. Let bs : Bs(N) → N be continuous and let (bs)c = cN ◦ bs. We say that bs
is a vertical disk in N if there exists a homotopy h : [0, 1]×Bs(N) → Nc such that

h0 = (bs)c,

h1(x) = (0, x), for all x ∈ Bs(N),

h(t, x) ∈ N+
c , for all t ∈ [0, 1] and x ∈ ∂Bs(N).

Let bu : Bu(N) → N be continuous and let (bu)c = cN ◦ bu. We say that bu is

a horizontal disk in N if there exists a homotopy h : [0, 1]×Bu(N) → Nc such that

h0 = (bu)c,

h1(x) = (x, 0), for all x ∈ Bu(N),

h(t, x) ∈ N−c , for all t ∈ [0, 1] and x ∈ ∂Bu(N).

Combining these concepts with covering relations, we obtain the following

result, which is often applied to the existence of homoclinic and heteroclinic

orbits.

Proposition 2.14 (Theorem 3 in [38], Theorem 3.9 in [36]). Let Ni, i =

0, . . . , k, be h-sets such that u(Ni) = u for i = 0, . . . , k, and let fi : Ni →
Rdim(Ni+1), i = 0, . . . , k − 1, be continuous. Let b : Bu → N0 be a horizontal

disk in N0 and let v : Bs(Nk) → Nk be a vertical disk in Nk. If Ni
fi

=⇒ Ni+1

holds for i = 0, . . . , k − 1, then there exists τ ∈ Bu such that

(fi ◦ . . . ◦ f0)(b(τ)) ∈ Ni+1, for i = 0, . . . , k − 2,

(fk−1 ◦ . . . ◦ f0)(b(τ)) ∈ v(Bs(Nk)).

2.3. Isolating blocks: review and applications to fast-slow systems.

A concept of isolating blocks is typically discussed in the Conley index theory

(e.g. [7], [26]), which studies the structure of isolated invariant sets from the

algebraic-topological viewpoint. Central notions in the Conley index theory are

isolating neighbourhoods or index pairs, but we concentrate our attention on

isolating blocks defined as follows. In our case, the blocks can be considered
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very flexible from the viewpoint of not only covering relations but also rigorous

numerics. Moreover, isolating blocks play a central role for the existence of slow

manifolds (cf. [19] and Section 3). In this section, we firstly review the definition

of isolating blocks. Secondly, we show a procedure of isolating blocks around

equilibria and their alternatives for fast-slow systems with computer assistance,

following [43].

2.3.1. Definition.

Definition 2.15 (Isolating block). Let N ⊂ Rm be a compact set. We say

N is an isolating neighbourhood if Inv(N) ⊂ int (N) holds, where

Inv(N) := {x ∈ N | ϕ(R, x) ⊂ N}

for a flow ϕ : R × Rm → Rm on Rm. Next let B ⊂ Rm be a compact set

and x ∈ ∂B. We say x is an exit (resp. entrance) point of B, if for every

solution σ : [−δ1, δ2] → Rm through x = σ(0), with δ1 ≥ 0 and δ2 > 0 there are

0 ≤ ε1 ≤ δ1 and 0 < ε2 ≤ δ2 such that, for 0 < t ≤ ε2,

σ(t) 6∈ B (resp. σ(t) ∈ int (B)),

and, for −ε1 ≤ t < 0,

σ(t) 6∈ ∂B (resp. σ(t) 6∈ B)

hold. Bexit (resp. Bent) denote the set of all exit (resp. entrance) points of the

closed set B. We call Bexit and Bent the exit and the entrance of B, respectively.

Finally B is called an isolating block if ∂B = Bexit ∪ Bent holds and Bexit is

closed in ∂B.

Obviously, an isolating block is also an isolating neighbourhood.

2.3.2. Construction around equilibria via rigorous numerics: a basic form.

For the preceding work on the systematic construction of isolating blocks around

equilibria, see [43]. Here we briefly review the method therein keeping the fast-

slow system (1.1) in mind. The first part is the review of [43]. As the second

part, we discuss the analogue of arguments to fast-slow systems. One will see

that such procedures are very suitable for analyzing dynamics around invariant

manifolds.

Let K ⊂ Rl be a compact, connected and simply connected set. Consider

first the differential equation of the following abstract form:

(2.5) x′ = f(x, λ), x ∈ Rn, λ ∈ K, f : Rn ×K → Rn,

which corresponds to the layer problem (1.3). For simplicity, assume that f

is C∞. Our purpose here is to construct an isolating block which contains an

equilibrium of (2.5).
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Let p0 be a numerical equilibrium of (2.5) at λ0 ∈ K and rewrite (2.5) as

a series around (p0, λ0):

(2.6) x′ = fx(p0, λ0)(x− p0) + f̂(x, λ),

where fx(p0, λ0) is the Fréchet differential of f with respect to x-variable at

(p0, λ0). f̂(x, λ) denotes the higher order term of f with O(|x− p0|2 + |λ− λ0|).
This term may in general contain an additional term arising from the numerical

error f(p0, λ0) ≈ 0.

Here assume that the n × n-matrix fx(p0, λ0) is nonsingular. Diagonalizing

fx(p0, λ0), which is generically possible, (2.6) is further rewritten as the following

perturbed diagonal system around (p0, λ0):

(2.7) z′j = µjzj + f̃j(z, λ), j = 1, . . . , n.

Here µj ∈ C, z = (z1, . . . , zn) and f̃(z, λ) = (f̃1(z, λ), . . . , f̃n(z, λ))T are de-

fined by x = Pz + p0 and f̃(x, λ) = P−1(f̂(z, λ)), where P = (Pij)i,j=1,...,n is

a nonsingular matrix diagonalizing fx(p0, λ0) and ∗T is the transpose.

Let N ⊂ Rn be a compact set containing p0. Assume that each f̃j(z, λ) has

a bound [δ−j , δ
+
j ] in N ×K, namely,

{f̃j(z, λ) | x = Pz + p0 ∈ N, λ ∈ K} ( [δ−j , δ
+
j ].

Then z′j must satisfy

µj

(
zj +

δ−j
µj

)
< z′j < µj

(
zj +

δ+j
µj

)
,

for all z with x = Pz + p0 ∈ N , for all λ ∈ K. For simplicity we assume that

each µj is real. We then obtain the candidate of an isolating block B in the

z-coordinate given by the following:

B :=

n∏
j=1

Bj , Bj = [z−j , z
+
j ] :=

[
−
δ+j
µj
,−

δ−j
µj

]
if µj > 0,(2.8)

Bj = [z−j , z
+
j ] :=

[
−
δ−j
µj
,−

δ+j
µj

]
if µj < 0.(2.9)

Remark 2.16. In the case that µj is complex-valued for some i, fx(p0, λ0)

contains the complex conjugate of µj as the other eigenvalue. Without loss of

generality, we may assume µj = αj +
√
−1βj , µj+1 = µj = αj−

√
−1βj , βj > 0.

To be simplified, we further assume that µj and µj+1 are the only complex pair of

eigenvalues of fx(p0, λ0). The general case can be handled in the same manner.

The dynamics for zj and zj+1 is formally written as

z′j = µjzj + f̃j(z, λ), z′j+1 = µj+1zj+1 + f̃j+1(z, λ).
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Now we would like to consider real dynamical systems. To do this we transform

the above form into

w′j = αjwj + βjwj+1 + f j(w, λ), w′j+1 = −βjwj + αjwj+1 + f j+1(w, λ)

via Q =
(

1 1√
−1 −

√
−1

)
, (wj , wj+1)T = Q(yj , yj+1)T, (f j , f j+1)T = Q(f̃j , f̃j+1)T,

where w = (w1, . . . , wn) is the new coordinate satisfying wi = yi for i 6= j, j + 1.

Let rj(w, λ) :=
√
f j(w, λ)2 + f j+1(w, λ)2 and assume that rj(w, λ) is bounded

from above by a positive number rj uniformly on N × K. Our aim here is to

construct a candidate for an isolating block and hence we assume that

• the scalar product of the vector field and the coordinate vector

(wj , wj+1) ·
(
αjwj + βjwj+1 + f j(w, λ),−βjwj + αjwj+1 + f j+1(w, λ)

)
has the identical sign and the above function never attains 0 on{

(wj , wj+1)

∣∣∣∣ √w2
j + w2

j+1 ≤ bj
}
, bj > 0.

With this assumption in mind, we set as the candidate for the isolating block in

i- and i+ 1-th coordinate

Bj,j+1 :=

{
(wj , wj+1)

∣∣∣∣ √w2
j + w2

j+1 ≤
rj
|αj |

}
.

Its boundary becomes exit if αj > 0 and entrance if αj < 0. Finally, replace

Bj ×Bj+1 in the definition of B ((2.8) and (2.9)) by Bj,j+1.

A series of estimates for error terms involves N and it makes sense only if it

is self-consistent, namely, {p0}+PB ⊂ N . If it is the case, then B is the desired

isolating block for (2.5). Indeed, if µj > 0, then

z′j |zj=z−j < 0 and z′j |zj=z+j > 0

hold. Namely, the set {z ∈ B | zj = z±j } is contained in the exit. Similarly if

µj < 0 then

z′j |zj=z−j > 0 and z′j |zj=z+j < 0

hold. So, the set {z ∈ B | zj = z±j } is contained in the entrance. Obviously,

∂B is the union of the closed exit and the entrance, which shows that B is an

isolating block.

Once such an isolating block B is constructed, one obtains an equilibrium

in B.

Proposition 2.17 (cf. [43]). Let B be an isolating block constructed as above.

Then B contains an equilibrium of (2.5) for all λ ∈ K.
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This proposition is a consequence of the general theory of the Conley in-

dex ([25]). Note that the construction of isolating blocks described in Proposi-

tion 2.17 around points which are not necessarily equilibria implies the existence

of rigorous equilibria inside blocks. With an additional property such as unique-

ness or hyperbolicity of equilibria, this procedure will provide with a smooth

λ-parameter family of equilibria, which is stated in Section 3.

When we apply these ideas to the fast-slow system (1.1), we consider only

the fast system x′ = f(x, y, ε). Let K ⊂ Rl be as above, ε0 > 0 and x = p0
be a numerical zero of f(x, y0, 0) at y = y0 ∈ K. In this case we set ε = 0

for computing numerical zeros. Via the above procedure, the fast system x′ =

f(x, y, ε) can be generically written in the following form:

(2.10) a′ = Aa+ F1(a, b, y, ε), b′ = Bb+ F2(a, b, y, ε).

Here A is a u × u dimensional diagonal matrix each of whose eigenvalues has

positive real part. Similarly, B is an s×s dimensional (u+s = n) diagonal matrix

each of whose eigenvalues has negative real part. F1 and F2 are higher order

terms depending on p0 and y0. Equivalently, writing (2.10) component-wise,

a′j = µajaj + F1,j(x, y, ε), Reµaj > 0, j = 1, . . . , u,

b′j = µbjbj + F2,j(x, y, ε), Reµbj < 0, j = 1, . . . , s.

Let N ⊂ Rn be a compact set containing p0. As before, assume that every µaj
and µbj are real and that each Fi,ji , i = 1, 2, j1 = 1, . . . , u, j2 = 1, . . . , s, admits

the following enclosure with respect to N ×K × [0, ε0]:

(2.11)
{
Fi,ji(x, y, ε) | x = P (a, b) + p0 ∈ N, y ∈ K, ε ∈ [0, ε0]

}
( [δ−i,ji , δ

+
i,ji

].

Define the set Dc ⊂ Rn+l as follows:

(2.12)

Dc :=

u∏
j=1

[a−j , a
+
j ]×

s∏
j=1

[b−j , b
+
j ]×K,

[a−j , a
+
j ] :=

[
−
δ+1,j
µaj

,−
δ−1,j
µaj

]
, [b−j , b

+
j ] :=

[
−
δ−2,j
µbj

,−
δ+2,j
µbj

]
.

If {(p0, y0)} + P̃Dc ⊂ N × K holds with the linear transform P̃ ≡ P × idl on

Rn+l, then this procedure is self-consistent. Due to this self-consistence, we

immediately know that

a′j > 0 for all (a, b, y, ε) ∈ Dc × [0, ε0] with aj = a+j ,

a′j < 0 for all (a, b, y, ε) ∈ Dc × [0, ε0] with aj = a−j ,

b′j < 0 for all (a, b, y, ε) ∈ Dc × [0, ε0] with bj = b+j ,

b′j > 0 for all (a, b, y, ε) ∈ Dc × [0, ε0] with bj = b−j .
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Remark that these inequalities hold for all ε ∈ [0, ε0]. This observation is the

key point of the construction not only of limiting critical manifolds but of slow

manifolds for ε ∈ (0, ε0], which is provided in Section 3.

Definition 2.18 (Fast-saddle-type block). Let Dc ⊂ Rn+l be constructed

by (2.12). Assume that K = Bl ⊂ Rl. We call Dc, equivalently D := c−1D (D)

via a homeomorphism cD, a fast-saddle-type block. Moreover, set

Df,−
c := {(a, b, y) ∈ Dc | aj = a±j , j = 1, . . . , u},

Df,+
c := {(a, b, y) ∈ Dc | bj = b±j , j = 1, . . . , s},

Ds
c := {(a, b, y) ∈ Dc | y ∈ ∂Bl},

Df,− := c−1D (Df,−
c ), Df,+ := c−1D (Df,+

c ), Ds := c−1D (Ds
c).

We call Df,−
c (equivalently Df,−) the fast-exit of D and Df,+

c (equivalently Df,+)

the fast-entrance of D.

Remark 2.19. Obviously, D is an h-set, but the integers u(D) and s(D) in

Definition 2.5 are not necessarily equal to u and s, respectively. We do not pose

any assumptions on Ds in the above definition. Indeed, D is not necessarily an

isolating block in the sense of Definition 2.15. That is why we omit the word

“isolating” in the definition of D.

This construction can be slightly extended. Let {η±i,ji}
i=1,2
j1=1,...,u, j2=1,...,s be

a sequence of positive numbers. Defining

(2.13)

D̂c :=

u∏
j=1

[â−j , â
+
j ]×

s∏
j=1

[̂b−j , b̂
+
j ]×K,

[â−j , â
+
j ] :=

[
−
δ+1,j
µaj
− η−1,j1 ,−

δ−1,j
µaj

+ η+1,j1

]
,

[̂b−j , b̂
+
j ] :=

[
−
δ−2,j
µbj
− η−2,j2 ,−

δ+2,j
µbj

+ η+2,j2

]
,

we can prove that D̂c is also a fast-saddle-type block if P̃ D̂c+{(p0, y0)} ⊂ N×K
holds. We further know that

a′j > 0 for all (a, b, y, ε) ∈ D̂c × [0, ε0] with aj ∈ [a+j , â
+
j ],

a′j < 0 for all (a, b, y, ε) ∈ D̂c × [0, ε0] with aj ∈ [â−j , a
−
j ],

b′j < 0 for all (a, b, y, ε) ∈ D̂c × [0, ε0] with bj ∈ [b+j , b̂
+
j ],

b′j > 0 for all (a, b, y, ε) ∈ D̂c × [0, ε0] with bj ∈ [̂b−j , b
−
j ].

This extension leads to the explicit lower bound estimate of distance between

D̂f,± and slow manifolds, which is stated in Section 3.
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2.3.3. Construction around equilibria via rigorous numerics: the predictor-

corrector approach. Here we provide another approach for validating fast-saddle-

type blocks. In the previous subsection, fast-saddle-type blocks are constructed

centered at {(x, y) | y ∈ K}, where K ⊂ Rl is a small compact neighbourhood

of y ∈ K. All transformations concerning eigenpairs are done at a point (x, y).

Figure 1 (a) briefly shows this situation. On the other hand, we can reselect

the center of a candidate of blocks so that blocks can be chosen smaller. As

continuation of equilibria with respect to parameters, the predictor-corrector

approach is one of effective ones. We now revisit the construction of fast-saddle-

type blocks with the predictor-corrector approach.

Let (x, y) be a (numerical) equilibrium for (1.3), i.e. f(x, y, 0) ≈ 0, such that

fx(x, y, 0) is invertible. Let K be a compact neighbourhood of y. The central

idea is to choose the center as follows instead of (x, y):

(2.14)

(
x+

dx

dy
(y)(y − y), y

)
≡
(
x− fx(x, y, 0)−1fy(x, y, 0)(y − y), y

)
,

where x = x(y) is the parametrization of x with respect to y such that x = x(y)

and that f(x(y), y, 0) = 0, which is actually realized in a small neighbourhood

of y in Rl since fx(x, y, 0) is invertible. See Figure 1 (b). Obviously, the identifi-

cation in (2.14) makes sense thanks to the Implicit Function Theorem.

(a) (b)

Figure 1. Fast-saddle-type blocks with (a) basic form, and (b) predictor-
corrector form. (a) The center point x̄ of blocks in the x-coordinate is
fixed. The blue rectangle shows a fast-saddle-type block at y ∈ K. This

procedure can be realized just by extending error bounds in (2.11) to y-

directions. However, the “higher order” term Fi,ji (x, y, ε) may contain the
linear term with respect to y. This may cause the increase of error bounds.
(b) The center point of blocks is moved along the tangent line (or plane
for higher dimensional systems) at (x, y). The blue rectangle shows a fast-
saddle-type block at y ∈ K. In principle, sizes of blocks will be smaller than

(a) since the linear term with respect to y in error term is approximately

dropped.
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Around the new center, we define the new affine transformation T : (z, w) 7→
(x, y) as

(2.15) (x, y) = T (z, w) :=
(
Pz + x− fx(x, y, 0)−1fy(x, y, 0)w, w + y

)
,

where P is a nonsingular matrix diagonalizing fx(x, y, 0). Over the new (z, w)-

coordinate, the fast system x′ = f(x, y, ε) is transformed into the following:

z′ = P−1(x′ + fx
−1
fyw

′)

= P−1(f(x, y, ε) + εfx
−1
fyg(x, y, ε))

= P−1
(
fx(Pz − fx

−1
fyw) + f̂(z, w, ε) + εfx

−1
fyg(x, y, ε)

)
= Λz + P−1

(
−fyw + f̂(z, w, ε) + εfx

−1
fyg(Pz + x− fx

−1
fyw,w + y, ε)

)
≡ Λz + F (z, w, ε),

where fx = fx(x, y, 0), Dyf = fy(x, y, 0), and Λ = diag(µa1 , . . . , µ
a
u, µ

b
1, . . . , µ

b
s).

The function f̂(z, w, ε) denotes the higher order term of f with O(|z|2+|w|+|ε|).
Dividing z into (a, b) corresponding to eigenvalues with positive real parts and

negative real parts, respectively, as in (2.10), we can construct a candidate set of

fast-saddle-type blocks as in (2.12). By similar implementations to Section 2.3.2,

we can construct fast-saddle-type blocks centered at (2.14) for y ∈ K.

Note that the higher order term f̂(z, w, ε) contains the linear term of w

as fyw with small errors in a sufficiently small neighbourhood K of y. This

fact indicates that, in principle, sizes of blocks become smaller than those in

Section 2.3.2, as seen in Figure 1 (b). This benefit is also useful for the future

arguments.

3. Slow manifold validations

In this section, we provide a verification theorem for slow manifolds as well

as their stable and unstable manifolds. Our goal here is to provide sufficient

conditions to validate not only the critical manifold S0 but also the perturbed

slow manifold Sε of (1.1)ε for all ε ∈ (0, ε0] in given regions.

Recall that Fenichel’s results (Propositions 2.2, 2.3) assume normal hyper-

bolicity and graph representation of the critical manifold S0. These assumptions

are nontrivial, but very essential to prove the persistence. Our verification the-

orem contains the verification of normal hyperbolicity and graph representation

of S0.

The main idea is based on discussions in [19]. For technical reasons, we use

a multiple of ε as the new auxiliary variable. We set ε = ησ and σ := ε0 > 0,

where ε0 is a given positive number. We add the equation η′ = 0 to (2.1).
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Furthermore, we consider the following system instead of (2.1) for simplicity:

(3.1)


a′ = Aa+ F1(x, y, ε),

b′ = Bb+ F2(x, y, ε),

y′ = εg(x, y, ε),

η′ = 0.

Here A denotes the u × u matrix which all eigenvalues have positive real part

and B denotes the s × s matrix which all eigenvalues have negative real part.

Note that matrices A and B are (locally) independent of y. This formulation is

natural when the construction of fast-saddle-type blocks stated in Section 2.3 is

taken into account.

Let M be a fast-saddle-type block for (3.1). Section 2.3 implies that the

coordinate representation, Mc, is given by (2.12) (or (2.13)), which is directly

obtained from system (3.1). A fast-saddle-type block M has the form (2.12),

which has the a-, b- and y-coordinates following (3.1). With this in mind, we

make following notations.

Notations 3.1. Let πa, πb, πy, πa,b, πa,y and πb,y be the projections onto the

a-, b-, y-, (a, b)-, (a, y)- and (b, y)-coordinates in M , respectively. If no confusion

arises, we drop the phrase “in M” in the notations.

We identify nonlinear terms F1(x, y, ε), F2(x, y, ε), g(x, y, ε) with F1(a, b, y, ε),

F2(a, b, y, ε) and g(a, b, y, ε), respectively, via an affine transform x(∈ Rn) 7→
(a, b) ∈ Ru+s.

For a squared matrix A with Spec(A) ⊂ {λ ∈ C | Reλ > 0}, λA > 0 denotes

a positive number such that

(3.2) λA < Reλ, for all λ ∈ Spec(A).

Similarly, for a squared matrix B with Spec(B) ⊂ {λ ∈ C | Reλ < 0}, µB < 0

denotes a negative number such that

(3.3) µB > Reµ, for all µ ∈ Spec(B).

Finally, let dist( · , · ) be the distance between A and B, A,B ⊂ Rn+l, given

by dist(A,B) = inf
x∈A, y∈B

|x− y|.

The following assumptions are other keys of our verification theorem, the

so-called cone conditions.

Assumption 3.2. Consider (3.1). Let N ⊂ Rn+l be a fast-saddle-type block

for all ε = ησ ∈ [0, ε0], such that the coordinate representation Nc is actually

given by (2.12), and z = (x, y, ε).

Define σAu1 = σAu1 (z), σAu2 = σAu2 (z), σBu1 = σBu1 (z), σBu2 = σBu2 (z), σgu1 =

σgu1 (z) and σgu2 = σgu2 (z) be maximal singular values of the following matrices
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at z, respectively:

σAu1 : Au1 (z) =

(
∂F1

∂a
(z)

)
, u× u-matrix,

σAu2 : Au2 (z) =

(
∂F1

∂b
(z)

∂F1

∂y
(z)

∂F1

∂η
(z)

)
, u× (s+ l + 1)-matrix,

σBu1 : Bu1 (z) =

(
∂F2

∂a
(z)

)
, s× u-matrix,

σBu2 : Bu2 (z) =

(
∂F2

∂b
(z)

∂F2

∂y
(z)

∂F2

∂η
(z)

)
, s× (s+ l + 1)-matrix,

σgu1 : gu1 (z) =

(
∂g

∂a
(z)

)
, l × u-matrix,

σgu2 : gu2 (z) =

(
η
∂g

∂b
(z) η

∂g

∂y
(z) g(z) + η

∂g

∂η
(z)

)
, l × (s+ l + 1)-matrix.

Assume that the following inequalities hold:

(3.4) λA − (supσAu1 + supσAu2 ) > 0,

(3.5) λA − µB −
{

supσAu1 + supσAu2 + supσBu1 + supσBu2

+ σ(supσgu1 + supσgu2 )
}
> 0,

where λA and µB are real numbers satisfying (3.2) and (3.3), respectively, and

the notation “ sup” means the supremum on N × [0, ε0].

Assumption 3.3. Consider (3.1). Let N ⊂ Rn+l be a fast-saddle-type block

for all ε = ησ ∈ [0, ε0], such that the coordinate representation Nc is actually

given by (2.12), and z = (x, y, ε).

Define σAs1 = σAs1(z), σAs2 = σAs2(z), σBs1 = σBs1(z), σBs2 = σBs2(z), σgs1 = σgs1 (z)

and σgs2 = σgs2 (z) be maximal singular values of the following matrices at z,

respectively:

σAs1 : As1(z) =

(
∂F1

∂b
(z)

)
, u× s-matrix,

σAs2 : As2(z) =

(
∂F1

∂a
(z)

∂F1

∂y
(z)

∂F1

∂η
(z)

)
, u× (u+ l + 1)-matrix,

σBs1 : Bs1(z) =

(
∂F2

∂b
(z)

)
, s× s-matrix,

σBs2 : Bs2(z) =

(
∂F2

∂a
(z)

∂F2

∂y
(z)

∂F2

∂η
(z)

)
, s× (u+ l + 1)-matrix,

σgs1 : gs1(z) =

(
∂g

∂b
(z)

)
, l × s-matrix,

σgs2 : gs2(z) =

(
η
∂g

∂a
(z) η

∂g

∂y
(z) g(z) + η

∂g

∂η
(z)

)
, l × (u+ l + 1)-matrix.
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Assume that the following inequalities hold:

µB + (supσBs1 + supσBs2) < 0,(3.6)

λA − µB −
{

supσAs1 + supσAs2 + supσBs1 + supσBs2(3.7)

+ σ(supσgs1 + supσgs2 )
}
> 0,

where λA and µB are real numbers satisfying (3.2) and (3.3), respectively, and

the notation “sup” means the supremum on N × [0, ε0].

Definition 3.4 (Cone conditions). We say a fast-saddle-type block N sat-

isfies the unstable cone condition for (1.1)ε if Assumption 3.2 holds. Similarly,

we say a fast-saddle-type block N satisfies the stable cone condition for (1.1)ε if

Assumption 3.3 holds. They make sense only when ε ∈ [0, ε0].

By following the proof of Theorem 4 in [19], we obtain the next result, which

is the main result in this section.

Theorem 3.5. Consider (3.1). Let N ⊂ Rn+l be a fast-saddle-type block

such that the coordinate representation Nc is actually given by (2.12) with πyN =

K ⊂ Rl. Then:

(a) If we assume

(3.8)

λA −
[

supσAu1 +
supσAu2 + supσBs2

2

]
> 0,

|µB | −
[

supσBs1 +
supσAu2 + supσBs2

2

]
> 0,

there is an l-dimensional normally hyperbolic invariant manifold S0 ∩
N in Rn+l for the limit system (1.3) such that S0 ∩ N is the graph of

a smooth function depending on y.

(b) In addition to assumptions in (a), if the unstable cone condition is satis-

fied, there exists a Lipschitz function a = hs(b, y, ε) defined in Bs×Bl×
[0, ε0] such that the graph

W s(Sε) := {(a, b, y, ε) | a = hs(b, y, ε)}

is locally invariant with respect to (3.1).

(c) In addition to assumptions in (a), if the stable cone condition is satisfied,

there exists a Lipschitz function b = hu(a, y, ε) defined in Bu×Bl×[0, ε0]

such that the graph

W u(Sε) := {(a, b, y, ε) | b = hu(a, y, ε)}

is locally invariant with respect to (3.1).

As a consequence, under stable and unstable cone conditions, Sε := W s(Sε) ∩
W u(Sε) can be defined by the locally invariant l-dimensional submanifold of Rn+l

inside N for any ε ∈ [0, ε0].
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Proof. Our proof is based on a slight modification of the proof of Theorem 4

in [19] for our current setting. The proof consists of three parts:

(1) normal hyperbolicity and graph representation of S0,

(2) existence of the graph representation of W s(Sε), and

(3) coincidence of the graph of such a derived function with the whole

W s(Sε).

We shall prove them by tracing discussions in [19]. Readers, who are not familiar

with the Invariant Manifold Theorem in singular perturbation problems very

well, are referred to Chapter 2 in [19]. Here we shall derive discussions only

for the stable manifold W s(Sε), while the case of the unstable manifold can be

derived replacing matrices in Assumption 3.2 by those in Assumption 3.3 and

time reversal. Remark that an assumption for Nc implies that all discussions are

done in terms of (2.12). Without loss of generality, we may assume N = Nc.

(1) Normal hyperbolicity and the graph representation of S0. First of all,

consider the special case ε = 0. In this case, the slow variable y is just a param-

eter. Inequalities in (3.8) yield the existence of local Lyapunov functions, which

is a consequence of arguments in [24] with a little modifications as follows. Fix

y ∈ K. Define a function Ly : Rn → R by

Ly(a(t), b(t)) := −|a(t)− ay|2 + |b(t)− by|2,

where (ay, by, y) is an equilibrium for (3.1) with ε = 0 in N at y. The existence

of (ay, by, y) follows from Proposition 2.17. Then

dLy
dt

(a(t), b(t))

∣∣∣∣
t=0

= − d

dt
(a− ay)T · (a− ay)− (a− ay)T · d

dt
(a− ay)

+
d

dt
(b− by)T · (b− by) + (b− by)T · d

dt
(b− by)

= −(Aa+ F1(a, b, y, 0))T · (a− ay)− (a− ay)T · (Aa+ F1(a, b, y, 0))

+ (Bb+ F1(a, b, y, 0))T · (b− by) + (b− by)T · (Bb+ F1(a, b, y, 0)).

Let 0k be the k-dimensional k-vector and Ok1,k2 be the (k1, k2)-zero matrix. Now

we obtain

−(Aa+ F1(a, b, y, 0))T · (a− ay)

= −


a− ay
b− by

0l
0


TA+

∂F1

∂a
(z̃1)

∂F1

∂b
(z̃1)

∂F1

∂y
(z̃1)

∂F1

∂η
(z̃1)

Ou,s Os,s Ol,s O1,s

Ou,l Os,l Ol,l O1,l


Ta− ayb− by

0l


≤ −λA|a− ay|2 + σAu1 (z̃1)|a− ay|2 + σAu2 (z̃1)|a− ay||b− by|

≤ −λA|a− ay|2 + σAu1 (z̃1)|a− ay|2 +
σAu2 (z̃1)

2
(|a− ay|2 + |b− by|2)
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via the Mean Value Theorem, where z̃1 = (ã1, b̃1, y, 0) ∈ N × [0, ε0]. The same

inequalities hold for (a− ay)T · (Aa+ F1(a, b, y, 0)). Similarly, we obtain

(Bb+ F2(a, b, y, 0))T · (b− by)

=


a− ay
b− by

0l
0


T

Ou,u Os,u Ol,u O1,u

∂F2

∂a
(z̃2) B +

∂F2

∂b
(z̃2)

∂F2

∂y
(z̃2)

∂F2

∂η
(z̃2)

Ou,l Os,l Ol,l O1,l


Ta− ayb− by

0l


≤ µB |b− by|2 + σBs1(z̃2)|b− by|2 + σBs2(z̃2)|a− ay||b− by|

≤ µB |b− by|2 + σBs1(z̃2)|b− by|2 +
σBs2(z̃2)

2
(|a− ay|2 + |b− by|2)

via the Mean Value Theorem, where z̃2 = (ã2, b̃2, y, 0) ∈ N × [0, ε0]. The same

inequalities hold for (b−by)T·(Bb+F2(a, b, y, 0)). Summarizing these inequalities,

we obtain

1

2

dLy
dt

(a(t), b(t))

∣∣∣∣
t=0

≤
(
−λA + σAu1 (z̃1) +

σAu2 (z̃1) + σBs2(z̃2)

2

)
|a− ay|2

+

(
µB + σBs1(z̃2) +

σAu2 (z̃1) + σBs2(z̃2)

2

)
|b− by|2

≤
(
−λA + sup

N×[0,ε0]
σAu1 +

supN×[0,ε0] σAu2 + supN×[0,ε0] σBs2
2

)
|a− ay|2

+

(
µB + sup

N×[0,ε0]
σBs1 +

supN×[0,ε0] σAu2 + supN×[0,ε0] σBs2
2

)
|b− by|2.

The right-hand side is strictly negative unless (a, b, y) = (ay, by, y), which follows

from (3.4) and (3.6). Obviously, dLy/dt = 0 if and only if (a, b, y) = (ay, by, y).

Therefore, Ly is a Lyapunov function. This observation leads to the following

facts:

• (a, b, y) = (ay, by, y) is an equilibrium for (1.3) which is unique in N with

fixed y.

• The linearized matrix−A−
∂F1

∂a
(z̃1) −∂F1

∂b
(z̃1)

∂F2

∂a
(z̃2) B +

∂F2

∂b
(z̃2)


is strictly negative definite for all z̃1, z̃2 ∈ N . This implies that (a, b, y) =

(ay, by, y) is a hyperbolic equilibrium for the layer problem (1.3).

These observations hold for arbitrary y ∈ K. Thanks to the Implicit Function

Theorem, we can construct the graph of a smooth y-parameter family of such
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hyperbolic equilibria, which is S0. In particular, S0 has the structure of normally

hyperbolic invariant manifold with graph representation.

(2) The graph representation of W s(Sε). We perform the modification to

deal with slow directions. We choose a set K̂ whose interior contains K so that

its boundary is given by the condition ν̂(y) = 0 for some C∞-function ν̂(y) and

that ν̂(y) satisfies ∇ν̂(y) 6= 0 for all y ∈ ∂K̂. The function ν̂(y) is assumed to be

normalized so that ∇ν̂(y) = ny is a unit inward (1) normal vector for ∂K̂. Let

ρ(y) be a C∞-function that has the following values:

ρ(y) =

1 if y ∈ K̂c,

0 if y ∈ K.

We now modify our system (3.1) by adding the term δρ(y)ny, where δ is a positive

number which remains to be chosen.

We add an equation for the small parameter ε. Following Jones [19], we use

a multiple of ε as the new auxiliary variable, ε = ησ, and append the equation

η′ = 0 to (3.1), as noted in the beginning of this section. We then obtain the

system (2)

(3.9)


a′ = Aa+ F1(x, y, ε),

b′ = Bb+ F2(x, y, ε),

y′ = ησg(x, y, ε) + δρ(y)ny,

η′ = 0.

As in (3.1) it is understood that x is a function of a and b, which is already

realized in Section 2.3, and ε is a function of η. If Theorem 3.5 is restated with

ε replaced by η and proved in that formulation, its original version can easily be

recaptured by substituting ε back in.

We define the new family of sets N̂ by N̂ := πa,bN × K̂ × [0, 1]. Define the

set Γs := {(a, b, y, η) | ϕ̃ε(t, (a, b, y, η)) ∈ N̂ for all t ≥ 0}, where ϕ̃ε is the flow

(1) In the lecture note by Jones [19], ny denotes the outward normal vector. We should

remark that it is wrong. We shall determine the immediate exit and entrance of a block later.

Our claim here is that the exit is {(a, ζ | a ∈ ∂(πaN))} and does not contain ∂K̂. To this end,

ny should be the inward normal vector. If we prove the existence of Wu(Sε), ny is chosen as

the outward normal vector.

(2) This modification guarantees that the vector field has the inflowing property with

respect to (N̂, ∂K̂) (e.g. [6], [11]). Namely, at any point p ∈ ∂K̂, the vector field at p goes inside

N̂ . This property plays an important role to prove the existence of center-stable manifolds via

the graph representation. In the case of Wu(Sε) or generally center-unstable manifolds, we

modify the vector field so that the vector field has the overflowing property with respect to

(N̂, ∂K̂). Namely, at any point p ∈ ∂K̂, the vector field at p goes outside N̂ or tangently to

∂N̂ . In our case, it is sufficient to choose the unit vector ny as the unit outward normal vector

to ∂K̂ and to choose ν in the similar manner to W s(Sε).
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generated by (3.9). In this part we shall prove that Γs is the graph of a function

of (b, y, η), say, a = hs(b, y, η).

Set ζ = (b, y, η) and N̂ζ̂ denote the crossing section N̂ζ̂ := {(a, ζ̂) ∈ N̂} of

N̂ at ζ = ζ̂. We shall show that there is at least one point (a, ζ̂) ∈ N̂ for which

ϕ̃ε(t, (a, ζ̂)) ∈ N̂ for all t ≥ 0. To achieve this, we use the Ważewski Principle.

If the exit N̂ exit is closed in ∂N̂ and N̂ is an isolating block for (3.9), then the

map W : N̂ → N̂ exit given by

W (z) = ϕ̃ε(τ
−(z), z), z = (a, b, y, η),

τ−(z) = sup{t ≥ 0 | ϕ̃ε([0, t], z) ∩N exit = ∅},

is continuous. It is the general consequence of isolating blocks (see [32, Chap-

ter 22]; in [19], such N̂ is called the Ważewski set). Since N is of saddle-type, the

flow is repelling on the fast-exit N̂f,− for all η ∈ [0, 1] and is attracting on the

fast-entrance N̂f,+ for all η ∈ [0, 1]. It is actually satisfied by choosing K̂ ⊃ K

sufficiently small, if necessary. The rest are the y-direction and the η-direction.

Note that an appropriate choice of K̂ enables us to construct local Lyapunov

functions Ly in (1) for all y ∈ K̂, which is due to continuous dependence of

estimates on y.

For points on N̂ with y ∈ ∂K̂, we know

〈y′, ny〉 = ε〈g(x, y, ε), ny〉+ δ〈ny, ny〉

since ρ = 1 holds on ∂K̂, where 〈 · , · 〉 denotes an inner product on appropriate

vector spaces. Setting MN̂ := sup
N̂

{|g|, |Dg|}, the above can be estimated as

〈y′, ny〉 ≥ δ − ε0MN̂ > 0,

if δ > ε0MN̂ . Since we can choose δ arbitrarily, then it can be achieved. There-

fore, ∂K̂ ∩ N̂ is a part of entrance. Finally, in the case η = 0 or 1, both of

these sets are invariant since η′ = 0 holds everywhere and thus render neither

the entrance nor the exit.

The exit N̂ exit is then seen to be {(a, ζ) | a ∈ ∂(πaN)}. By our construction

of N , for any ζ̂, the set N̂ζ̂ is a ball of dimension u. Suppose that Γs∩N̂ζ̂ = ∅. All

points in N̂ζ̂ then go to N̂ exit in finite time and hence, restricting the Ważewski

map to the crossing section, we obtain a continuous map W : N̂ζ̂ → N̂ exit. If

we follow this by the projection πa(a, ζ) = a, we see that πa ◦ W maps a u-

dimensional ball onto its boundary, while keeping the boundary fixed. This

contradicts the well-known No-Retract Theorem. There is thus a point in Γs∩N̂ζ̂ .
Since ζ̂ is arbitrary, this gives at least one value for a as a function of (b, y, η).

We shall put it hs(b, y, η).

(3) Uniqueness of W s(Sε) as a graph of a = hs(b, y, η). In the sequel we show

that the graph of the above derived function is all of Γs. At the same time, it
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will be shown that the function is, in fact, Lipschitz continuous with Lipschitz

constant 1. A comparison between the growth rates in different directions will

be derived in the following proposition in our setting. Let (ai(t), ζi(t)), i = 1, 2,

be two solutions of (3.9), set ∆a := a1(t)−a2(t) and ∆ζ := ζ2(t)−ζ1(t). Further

we define

M(t) := |∆a(t)|2 − |∆ζ(t)|2.

Proposition 3.6 (cf. Lemma 2 in [19]). Under Assumption 3.2, if M(t) = 0

then M ′(t) > 0 holds as long as the two solutions stay in N̂ , unless ∆a = 0.

Proof of Proposition 3.6. Discussions in our proof are based on the

proof of Lemma 2 in [19] with arrangements in our setting. We will estimate

each of the quantities 〈∆a,∆a′〉, etc. The equation for ∆a is

∆a′ = A(a2 − a1) + F1(a2, b2, y2, η2)− F1(a1, b1, y1, η1),

which we rewrite as

(3.10) ∆a′ = A∆a+ ∆F1,

where ∆F1 = F1(a2, b2, y2, η2)−F1(a1, b1, y1, η1). Since N̂ is the product of h-sets

associated with an affine transformation, thanks to the Mean Value Theorem,

one can derive the following equality:

∆F1 =
∂F1

∂a
(ã1, b̃1, ỹ1, η̃1)∆a+

∂F1

∂b
(ã1, b̃1, ỹ1, η̃1)∆b

+
∂F1

∂y
(ã1, b̃1, ỹ1, η̃1)∆y +

∂F1

∂η
(ã1, b̃1, ỹ1, η̃1)∆η

for some points (ã1, b̃1, ỹ1, η̃1) =: z̃1 ∈ N̂ . Such an estimate makes sense since N̂

is convex.

We can estimate 〈∆a,∆a〉′ = 2〈∆a,∆a′〉 by taking the inner product of

(3.10) with ∆a. As a result, we obtain

(3.11) 〈∆a,∆a′〉 = (∆a)T ·
{
A∆a+

∂F1

∂a
(z̃1)∆a+

∂F1

∂b
(z̃1)∆b

+
∂F1

∂y
(z̃1)∆y +

∂F1

∂η
(z̃1)∆η

}
.

We also obtain the following equalities in the same manner:

(3.12) 〈∆b,∆b′〉 = (∆b)T ·
{
B∆b+

∂F2

∂a
(z̃2)∆a+

∂F2

∂b
(z̃2)∆b

+
∂F2

∂y
(z̃2)∆y +

∂F2

∂η
(z̃2)∆η

}
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as well as

(3.13) 〈∆y,∆y′〉 = σ(∆y)T ·
{
η
∂g

∂a
(z̃3)∆a+ η

∂g

∂b
(z̃3)∆b

+ η
∂g

∂y
(z̃3)∆y +

(
g(z̃3) +

∂g

∂η
(z̃3)

)
∆η

}
for some z̃i ∈ N̂ , i = 2, 3. Obviously 〈∆η,∆η′〉 = 0 since η′ = 0.

Recall that our final objective is the estimate of

M ′(t) = 2{〈∆a,∆a′〉 − (〈∆b,∆b′〉+ 〈∆y,∆y′〉)}.

To this end, we estimate (3.11)–(3.13) as the quadratic form associated with non-

square matrices. For example, equality (3.11) can be rewritten is the following

matrix form:

〈∆a,∆a′〉 = (∆a)TA∆a+ (∆a)TAu


∆a

∆b

∆y

∆η


:= (∆a)TA∆a+ (∆a)TAu1∆a+ (∆a)TAu2∆ζ,

where Au1 is the u×u-matrix given by (∂F1/∂a)(z̃1) and Au2 is the u× (s+ l+1)-

matrix given by

Au2 = Au2 (z̃1) :=

(
∂F1

∂b
(z̃1)

∂F1

∂y
(z̃1)

∂F1

∂η
(z̃1)

)
.

Denoting by ‖ · ‖2 the (matrix) 2-norm, general theory of linear algebra yields

(∆a)TAu


∆a

∆b

∆y

∆η

 ≤ |∆a|(‖Au1‖2|∆a|+ ‖Au2‖2|∆ζ|)
= σAu1 (z̃1)|∆a|2 + σAu2 (z̃1)|∆a||∆ζ|,

where σAui = σAui (z̃1), i = 1, 2, is the maximal singular value of Aui at z̃1 ∈ N̂
stated in Assumption 3.2. We obtain the following estimate of (3.11):

(3.14) 〈∆a,∆a′〉 ≥
(
λA − sup

N̂

σAu1

)
|∆a|2 − sup

N̂

σAu2 |∆a||∆ζ|,

where λA is a positive number satisfying (3.2). In a similar manner we also

obtain the estimate of 〈∆b,∆b′〉 and 〈∆y,∆y′〉 by

〈∆b,∆b′〉 ≤ µB |∆b|2 + |∆b|
(

sup
N̂

σBu1 |∆a|+ sup
N̂

σBu2 |∆ζ|
)
,

〈∆y,∆y′〉 ≤ σ|∆y|
(

sup
N̂

σgu1 |∆a|+ sup
N̂

σgu2 |∆ζ|
)
,
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where µB denotes a negative number satisfying (3.3). Functions σBu1 = σBu1 (z̃),

σBu2 = σBu2 (z̃), σgu1 = σgu1 (z̃) and σgu2 = σgu2 (z̃) are maximal singular values of

the matrix-valued functions defined in Assumption 3.2 at z̃, respectively. In

particular, at a point satisfying M(t) = 0, we further obtain

〈∆a,∆a′〉 ≥
(
λA − sup

N̂

σAu1 − sup
N̂

σAu2

)
|∆a|2,

〈∆b,∆b′〉 ≤
(
µB + sup

N̂

σBu1 + sup
N̂

σBu2

)
|∆a|2,

〈∆y,∆y′〉 ≤ σ|∆y|
(

sup
N̂

σgu1 |∆a|+ sup
N̂

σgu2 |∆ζ|
)

to show

M ′(t) ≥ 2

[
λA − µB −

{
sup
N̂

σAu1 + sup
N̂

σAu2 + sup
N̂

σBu1

+ sup
N̂

σBu2 + σ

(
sup
N̂

σgu1 + sup
N̂

σgu2

)}]
|∆a|2,

which proves our statement. Note that the coefficient of |∆a|2 can be positive if

K̂ ⊃ K is sufficiently small, thanks to cone conditions. �

We go back to the proof in (3). We have already shown that the set Γs

contains the graph of a function denoted by a = hs(b, y, η). Suppose that Γs

contains more than one point with the same value of b, y, η. There would then

be a1 and a2 so that both (a1, b, y, η) and (a2, b, y, η) lie in Γs. At t = 0, we

have |∆a| ≥ |∆ζ|. By Proposition 3.6, |∆a(t)| ≥ |∆ζ(t)| holds for all t ≥ 0. In

estimate (3.14) we can then replace |∆ζ| by |∆a| to obtain {|∆a|2}′ ≥ 2(λA −
β)|∆a|2. A positive number β can be chosen as supN̂ σAu1 + supN̂ σAu2 . See

(3.4). From which it can be easily concluded that ∆a grows exponentially, which

contradicts the hypothesis that both points stay in N̂ for all t ≥ 0.

The same argument can be used to show that hs is also Lipschitz. If (a1, ζ1)

and (a2, ζ2) are both in Γs and |a2 − a1| ≥ |ζ2 − ζ1|, then |a2 − a1| grows

exponentially, which contradicts the hypothesis again that both points lie in Γs.

We then have shown that the set Γs is the graph of a Lipschitz function. In

particular, the Lipschitz function a = hs(b, y, ε) is well defined. This manifold

is W s(Sε) when y ∈ K̂ is restricted to K, in which the modified equation (3.9)

agrees with the original one (3.1). �

A direct consequence of graph representations of W s(Sε) as well as W u(Sε)

is that they are homotopic to flat hyperplanes inside h-sets. In terms of the

theory of covering relations (Section 2.2), W s(Sε) is a vertical disc and W u(Sε)

is a horizontal disc in a given fast-saddle-type block.
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Corollary 3.7. Let N ∈ Rn+l be a fast-saddle-type block for (3.1) such that

the coordinate representation Nc is actually of the form (2.12). Assume that N

satisfies (3.4) and (3.5). Let b = hu(a, y, ε) be a function defining W u(Sε) in Nc.

Then there is a homotopy H : [0, 1]×Nc × [0, ε0]→ Nc × [0, ε0] satisfying

H0(a, b, y, ε) = H(0, a, b, y, ε) = (a, hu(a, y, ε), y, ε), H1(a, b, y, ε) = (a, 0, y, ε).

Similarly, if Nc satisfies (3.6) and (3.7) and a = hs(b, y, ε) denotes a function

defining W s(Sε) in N , then there is a homotopy H : [0, 1]×Nc × [0, ε0]→ Nc ×
[0, ε0] satisfying

H0(a, b, y, ε) = H(0, a, b, y, ε) = (hs(b, y, ε), b, y, ε), H1(a, b, y, ε) = (0, b, y, ε).

Proof. When Nc satisfies (3.4) and (3.5), define a map H on [0, 1]×Nc ×
[0, ε0]→ Rn+l+1 by H(λ, a, b, y, ε) := (a, (1−λ)hu(a, y, ε), y, ε). By the construc-

tion of hu, H is continuous. Since Nc is convex, then H maps [0, 1]×Nc× [0, ε0]

into Nc × [0, ε0]. Thus H is our desired homotopy. The proof of the case that

Nc satisfies (3.6) and (3.7) is similar. �

Remark 3.8. We do not need to assume the normal hyperbolicity of the

critical manifold S0 and the graph representation of S0 in Theorem 3.5, while

the Fenichel’s classical theory needs to assume them. Indeed, part (a) in the

proof of the theorem shows that this assumption can be validated by computable

estimates (3.8).

Let D and D̂ be fast-saddle-type blocks given by (2.12) and (2.13), respec-

tively. Theorem 3.5 says that, under cone conditions, the slow manifold Sε is

contained in D. Obviously, Sε is also contained in D̂ since D ⊂ D̂. Moreover,

Sε is uniquely determined in D̂. If d0 ≤ dist(∂(πa,bD̂), πa,bD), then our ob-

servations imply that the distance between Sε and ∂D̂ in fast components is

greater than d0. For example, the distance of ∂D̂c and Sε in the a1-component

is greater than min{η±1,1}. Summarizing these arguments we have the following

result, which is essential to Section 4.3.

Corollary 3.9 (Fast-saddle-type blocks with spaces). Consider (2.10). Let

D, D̂ ⊂ Rn+l be fast-saddle-type blocks for (2.10) such that the coordinate rep-

resentations Dc and D̂c are actually given by (2.12) and (2.13), respectively, for

a given sequence of positive numbers {η±i,ji}
i=1,2
j1=1,...,u, j2=1,...,s. Assume that stable

and unstable cone conditions hold in D̂c. Then the same statement as Theorem

3.5 holds in D̂c. Moreover, the distance between ∂D̂c and the validated slow

manifold Sε is estimated by

dist(πa(∂D̂c), πa(W s(Sε))) ≥ min
j=1,...,u

{η±1,j},

dist(πb(∂D̂c), πb(W
u(Sε))) ≥ min

j=1,...,s
{η±2,j} for ε ∈ [0, ε0].
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The main feature of our present results is that slow manifolds as well as

their stable and unstable manifolds in Fenichel’s theorems are validated in given

blocks with an explicit range ε ∈ [0, ε0]. Our criteria can be explicitly validated

with rigorous numerics, as many preceding works (e.g. [36], [38]). We end this

section noting that all results in this section still hold for y ∈ Rl and R-valued

functions g with appropriate smoothness and l > 1.

4. Covering-exchange and dynamics around slow manifolds

In Section 3 we have discussed the validation of slow manifolds. In this

section, we move to the next stage; the behavior near and on validated slow

manifolds. There are mainly two cases of the exhibition of slow dynamics. One

is monotone and the other is nontrivial in the sense that dynamics on slow

manifolds admits nontrivial invariant sets such as equilibria or periodic orbits.

First we consider the dynamics near slow manifolds. If, for sufficiently small

ε > 0, a point qε ∈ Rn+1 is sufficiently close to slow manifolds, the trajectory

through qε moves near slow manifolds spending a long time. However, the pre-

cise description of trajectories off slow manifolds is not easy since they clearly

have an influence of fast dynamics ẋ = f(x, y, ε). In order to describe such be-

havior as simply as possible, we introduce an extension of covering relations: the

covering-exchange (Section 4.1), so that it can be appropriately applied to sin-

gular perturbation problems. This extension is a topological counterpart of the

(C0-version of) well-known Exchange Lemma. In the successive subsections, we

provide a generalization of covering-exchange: the slow shadowing and m-cones

(Sections 4.2–4.4). These concepts enable us to validate slow manifolds with

nonlinear structures as well as their stable and unstable manifolds in reasonable

ways via rigorous numerics, keeping the essence of covering-exchange property.

Next, we consider the nontrivial dynamics on slow manifolds, namely, the

presence of nontrivial invariant sets. We can use ideas discussed in Section 2.3

to validate nontrivial invariant sets even on slow manifolds.

Finally, we discuss the unstable manifold of invariant sets on slow manifolds.

The invariant foliation structure with respect to slow manifolds is essentially

applied to validating unstable manifolds of invariant sets in terms of covering

relations.

4.1. Covering-exchange with one-dimensional slow variable. First

we consider the case that the vector field near slow manifolds is monotone. In

such a case, geometric singular perturbation theory has an answer which de-

scribes dynamics around slow manifolds in terms of locally invariant manifolds;

the Exchange Lemma (e.g. [19], [20], [21], [34]). The Exchange Lemma solves

matching problems between fast dynamics and slow dynamics. More precisely,

if a family of tracking invariant manifolds {Σε}ε≥0 has transversal intersection
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Σ0 ∩T W s(S0) at ε = 0, then a trajectory ϕε([0, Tε], qε) for a point qε ∈ Σε de-

scribes the match of fast and slow trajectories near the slow manifold in the full

system (1.1)ε for sufficiently small ε > 0. Moreover, the Exchange Lemma also

states that the manifold ϕε(Tε,Σε) is O(ε)-close to the unstable manifold W u(J)

of a segment J ⊂ S0 in a neighbourhood of ϕε(Tε, qε). However, the Exchange

Lemma requires the assumption of transversality between a tracking (locally

invariant) manifold and the stable manifold of a slow manifold, which is not

easy to validate in rigorous numerics. Alternatively, we consider the topological

analogue of statements in the (C0-)Exchange Lemma.

Every trajectories in fast-saddle-type blocks leaves them through exits. Note

that our desired trajectories are the continuation of chains consisting of critical

manifolds and heteroclinic orbits in the limit system (1.3). One thus expects that

singularly perturbed global trajectories typically leave fast-saddle-type blocks

through fast-exits. To describe our expectations precisely, we define the following

notions. For our purpose, we restrict u = u(M) for h-sets to u = 1 unless

otherwise noted.

Definition 4.1 (Fast-exit face). Let M be an (n+1)-dimensional h-set with

the following expression via a homeomorphism cM : Rn+1 → Ru(M)+s(M):

Mc = cM (M) = Bu ×Bs × [0, 1]

with u = u(M) = 1 and s(M) = s + 1. We call an h-set Ma a fast-exit face of

M if u(Ma) = u, s(Ma) = s and there exist an element a ∈ ∂Bu and a compact

interval K0 ⊂ (0, 1) such that cM (Ma) = {a} ×Bs ×K0. See also Figure 2.

Definition 4.2 (Covering-exchange). Consider (1.1)ε with fixed ε ≥ 0. Let

N ⊂ Rn+1 be an h-set with u(N) = u = 1 and M be an (n + 1)-dimensional

h-set in Rn+1 with u(M) = 1. We say N satisfies the covering-exchange property

for (1.1)ε with respect to M if the following statements are satisfied:

(CE1) M is a fast-saddle-type block with the coordinate system

Mc = B1 ×Bs × [0, 1], a ∈ B1, (b1, . . . , bs) ∈ Bs, y ∈ [0, 1].

(CE2) Stable and unstable cone conditions (Definition 3.4) for (1.1)ε are satis-

fied in M .

(CE3) For q ∈ {±1}, q · g(x, y, ε) > 0 holds in M . We shall call q the slow

direction number.

(CE4) Letting ϕε be the flow of (1.1)ε, there exists T > 0 such thatN
ϕε(T, · )

=⇒ M .

(CE5) M possesses a fast-exit face Ma ⊂Mf,− with the expression

cM (Ma) = {a} ×Bs × [y−, y+], a ∈ ∂B1, [y−, y+] ⊂ (0, 1)
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such that sup(πyϕε(T,N) ∩M) < y− if q = +1,

inf (πyϕε(T,N) ∩M) > y+ if q = −1,

holds.

In this situation we shall call the pair (N,M) the covering-exchange pair for

system (1.1)ε.

A brief illustration of the covering-exchange property is shown in Figure 2.

(CE2) implies the existence of a slow manifold Sε as well as a limiting normally

hyperbolic critical manifold S0 at ε = 0, as shown in Theorem 3.5. Combining

with (CE1), one sees that M is repelling in the a-direction and attracting in the

b-direction. (CE3) means that slow dynamics in M is monotone. Remark that

the monotonicity is assumed not only on Sε but also in the whole region M .

(CE4) topologically describes the transversality of the stable manifold W s(Sε)

of the slow manifold Sε and the h-set ϕε(T,N).

For a fast-saddle-type block M of the form in Definition 4.2 with q = +1, we

call M s,−
c ≡ B1 × Bs × {1} and M s,+

c ≡ B1 × Bs × {0} (equivalently M s,− and

M s,+) the slow exit and slow entrance of M , respectively. Similarly, in the case

of q = −1, M s,−
c ≡ B1×Bs×{0} and M s,+

c ≡ B1×Bs×{1} are called the slow

exit and slow entrance of M , respectively.

Figure 2. Illustrations of the covering-exchange pair and a fast-exit face.
The rectangular parallelepiped M is an h-set with u(M) = 1 and s(M) = 2.

Arrows colored red, blue and black show the fast unstable direction, fast

stable direction and slow direction of (3.1) at corresponding boundaries,
respectively. The black curve is an image ϕε(T,N) of another h-set N for

some T > 0. This figure describes N
ϕε(T, · )

=⇒ M . Since the y-component of

the vector field in M is monotone and the fast component of the vector field
on ∂M is already validated concretely, then ϕε(T,N) keeps the covering

relation N
ϕε(t,·)
=⇒ M for all t ≥ T until N exits M from its top. A fast-exit

face Ma is colored green, in which case u = 1, s = 1, l = 1.
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Define the Poincaré map PMε : M → ∂M in M by

PMε (z) := ϕε(tε(z), z), tε(z) := sup{t | ϕε([0, t], z) ⊂M}.

If no confusion arises, we use this notation for representing the Poincaré map in

a set M .

Notations 4.3. For ŷ ∈ [0, 1] and any set A ⊂ Rn+1, let Aŷ := A∩{y = ŷ},
A≤ŷ := A ∩ {y ≤ ŷ} and A≥ŷ := A ∩ {y ≥ ŷ}.

Lemma 4.4. Fix ε > 0. Let M be an h-set satisfying (CE1)–(CE3) in Defi-

nition 4.2 with the slow direction number q = +1, and M exit be the fast-exit face

with (M exit)+ ⊂Mf,+, where

cM (M exit) = {1} ×Bs × [y−, y+], [y−, y+] ⊂ (0, 1).

Then, the restriction of the Poincaré map PMε to ((PMε )−1(M exit))ŷ is a home-

omorphism for each ŷ ∈ [0, y−). Moreover, there exists an h-set M̃ ⊂ M such

that M̃
PMε=⇒M exit.

Proof. Via a homeomorphism cM , we may assume that M = B1×Bs×[0, 1].

Since M is an isolating block for ϕε, then PMε is continuous on M , which is the

consequence of standard theory of isolating blocks [7], [19], [32]. Consider the

backward Poincaré map PM,−
ε : M → ∂M given by

PM,−
ε (z) := ϕε(τ(z), z), τ(z) := inf {t ≤ 0 | ϕε([t, 0], z) ⊂M}.

This is obviously well defined via the property of flows. Since M is also an

isolating block for the backward flow, then the exit of M in backward time is

closed and hence PM,−
ε is also continuous. The correspondence between points

on (PMε )−1(M exit)∩ {y = ŷ} and their image is one-to-one and onto under PMε .

This property holds since M ∩ {y = ŷ} is a crossing section from (CE3). By

restricting M to M≥ŷ and redefining PMε and PM,−
ε for M≥ŷ, their continuity

yields that (PMε )−1(M exit) ∩ {y = ŷ} is compact. Therefore, the restriction of

PMε to (PMε )−1(M exit) ∩ {y = ŷ} is a homeomorphism.

Next consider P
M≥ŷ
ε instead of PMε . Since M ⊂ Rn+1 is a fast-saddle-type

block with u(M) = 1 satisfying stable and unstable cone conditions, the stable

manifold W s(Sε) divides M into two components, where Sε is the slow manifold

in M . Let M+ be the component of M \W s(Sε) containing M exit. Now we can

construct an h-set with the desired covering relation as follows.

Consider a section M+,̂b = {(a, b̂, ŷ) | (a, b̂, ŷ) ∈ N}. Let ab̂ ∈ B1 be such that

W s(Sε) ∩ {(b, y) = (̂b, ŷ)} = {(ab̂, b̂, ŷ)}. Since P
M≥ŷ
ε |M+ : M+ → P

M≥ŷ
ε (M+) ⊂

∂M is homeomorphic, g(x, y, ε) > 0 holds and

P
M≥ŷ
ε (1, b̂, ŷ) = (1, b̂, ŷ) ∈Mf,−, P

M≥ŷ
ε (ab̂, b̂, ŷ) ∈Ms,−
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hold, Proposition 3.6 implies that z0, z1, z2 ∈ M with z0 ∈ W s(Sε), z1, z2 ∈
Cu(z0), |πa(z1−z0)| > |πa(z2−z0)| and πy(z1) = πy(z2) satisfy πy(P

M≥ŷ
ε (z1)) <

πy(P
M≥ŷ
ε (z2)). Here Cu(z) denotes the unstable cone with the vertex z:

Cu(z) =
{

(a, b, y) | |a− πa(z)|2 ≥ |b− πb(z)|2 + |y − πy(z)|2
}
.

Thus there exist points (a±
b̂
, b̂, ŷ) ∈M+,̂b such that P

M≥ŷ
ε (a±

b̂
, b̂, ŷ) ∈ ∂M ∩ {y =

y±} with ab̂ < a+
b̂
< a−

b̂
.

Let ψ± : Bs → B1 be given by ψ±(̂b) = a±
b̂

. Thanks to the continuity of

P
M≥ŷ
ε , both ψ± are continuous. Finally, define M̃ŷ by

M̃ŷ := {(a, b, ŷ) | ψ+(b) ≤ a ≤ ψ−(b), b ∈ Bs}.

It is indeed an h-set with

(4.1)
M̃−ŷ := {(a, b, ŷ) | a = ψ±(b), b ∈ Bs},

M̃+
ŷ = {(a, b, ŷ) | ψ+(b) ≤ a ≤ ψ−(b), b ∈ ∂Bs}.

Slight modifications of ψ± yield the correspondence

πy
(
P
M≥ŷ
ε (ψ−(b), b, ŷ)

)
∈ (ŷ, y−), πy

(
P
M≥ŷ
ε (ψ+(b), b, ŷ)

)
∈ (y+, 1)

for b ∈ Bs. We rewrite the corresponding h-set as M̃ŷ again.

Note that P
M≥ŷ
ε (M̃−ŷ ) ∩M exit = ∅ by definition of ψ±. Also, P

M≥ŷ
ε (M̃y) ∩

(M exit)+ = ∅ holds since (M exit)+ is on Mf,+. The arbitrary choice of q0 ∈ Bs

leads to the statement in Proposition 2.8. In particular, M̃ŷ
P
M≥ŷ
ε=⇒ M exit holds.

Of course, M̃ŷ
PMε=⇒ M exit also holds since P

M≥ŷ
ε is just a restriction of PMε

in M≥ŷ. Moreover, the union M̃ :=
⋃

y∈[0,ŷ]
M̃ŷ also satisfies M̃

PMε=⇒ M exit. The

proof of the case q = −1 is similar. �

The following proposition is the core of the covering-exchange property.

Proposition 4.5. Let (N,M) be a covering-exchange pair for (1.1)ε with

a fast-exit face M exit. Then there exists an h-set M̃ ⊂M such that

N
ϕε(T, · )

=⇒ M̃
PMε=⇒M exit.

Proof. Without loss of generality, we may assume that M = B1×Bs× [0, 1]

and M exit = {1}×Bs×[y−, y+] via a homomorphism cM , where [y−, y+] ⊂ (0, 1).

Also, let q = +1.

By Lemma 4.4, we can construct an h-set depending on ŷ ∈ [0, y−) which

PMε -covers M exit. Let M̃ŷ be such an h-set. Note that such an h-set can be

constructed for all ŷ ∈ [0, y−). Now choose ŷ± ∈ [0, y−) so that

ŷ− < inf πy(ϕ(T,N) ∩M) < supπy(ϕ(T,N) ∩M) < ŷ+,
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and define a set M̃ by M̃ :=
⋃

y∈[ŷ−,ŷ+]

M̃y. The monotonicity of g and homeomor-

phic correspondence of the flow imply that M̃ is actually an h-set with M̃± =⋃
y∈[ŷ−,ŷ+]

M̃±y , where M̃±y are given by (4.1). The covering relation M̃
PMε=⇒M exit

immediately holds from the proof of Lemma 4.4. Moreover, N
ϕε(T, · )

=⇒ M̃ also

holds by the construction of M̃ and the assumption N
ϕε(T, · )

=⇒ M . �

Proposition 4.5 shows that the covering-exchange property enables us to

track solution orbits near slow manifolds. This is just a consequence of Propo-

sition 2.11.

Remark 4.6. Our implementations of the covering-exchange property auto-

matically solve the matching problem in singular perturbation problems. Indeed,

let (N,M) be a covering-exchange pair with a fast-exit face M exit. In most cases,

N is a family of tracking invariant manifolds whose behavior is mainly dominated

by fast dynamics. On the other hand, the behavior of points in M̃ obtained in

Proposition 4.5 is mainly dominated by the slow dynamics until it leaves M .

If such a point is also on ϕε(T,N), then we can prove the existence of a point

qε ∈ N which goes to M along the fast dynamics in the first stage, stays M

dominated by the slow dynamics until it leaves M through M exit in the sec-

ond stage and goes outside M along the fast dynamics again in the third stage.

The trajectory through qε is actually dominated by the full system (1.1)ε. Such

a behavior is thus considered as the match of dynamics in different time scales.

One of the other key points of the covering-exchange is that the choice of u-

dimensional variables is changed during time evolutions around slow manifolds.

Indeed, the covering relation N
ϕε(T, · )

=⇒ M̃ typically corresponds to validation

of codimension p connecting orbits between saddle-type equilibria in the limit

system. In such a case, the u = u(N) = p-dimensional variables are chosen from

y-variables, while the u-dimensional variables of M̃ are chosen from a-variables:

fast-unstable directions, which is natural from the viewpoint of codimension p

connecting orbits. Finally, during the covering relation M̃
PMε=⇒ M exit, the u-

dimensional variables return to the part of y-variables, since M exit is regarded

as the initial data of other codimension p connecting orbits in the limit system.

Consequently, we observe the “exchange” of u-dimensional variables during the

covering relation M̃
PMε=⇒ M exit in Proposition 4.5. In this sense, we call this

phenomenon the covering-“exchange”. Needless to say, one can describe such

matching property without solving any differential equations in M .

4.2. Expanding and contracting rate of disks. Assumptions of the

covering-exchange in the previous subsection require that each branch of slow
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manifolds should be validated by one fast-saddle-type block. However, slow man-

ifolds may have nontrivial curvature in general. It is not thus realistic to validate

slow manifolds by one block with computer assistance without any knowledge

of vector fields. To overcome such computational difficulties, we provide several

techniques for generalizing conditions in the covering-exchange.

As a preliminary to next subsections, we consider the expansion and con-

traction rate of disks in a fast-saddle-type block. Consider system (3.1). Note

that A in (3.1) is the u× u-diagonal matrix such that all eigenvalues of A have

positive real part, and that B in (3.1) is the s× s-diagonal matrix such that all

eigenvalues of B have negative real part. Let N ⊂ Rn+1 be a fast-saddle-type

block satisfying stable and unstable cone conditions for fixed ε > 0. Without

loss of generality, via homomorphism cN , we may assume that

N = Bu ×Bs × [0, 1].

Here we also assume that g(x, y, ε) > 0 holds in N . Two cross sections Bu ×
Bs × {0, 1} then become the slow entrance N s,+ and the slow exit N s,− of ϕε,

respectively.

Definition 4.7. An α-Lipschitz unstable disk is the graph of a Lipschitz

function ψ : Bu → Bs × [0, 1] with Lip(ψ) ≤ α. Similarly, an α-Lipschitz stable

disk is the graph of a Lipschitz function ψ : Bs → Bu × [0, 1] with Lip(ψ) ≤ α.

Next we consider the expanding and contracting rate of stable and unstable

disks.

Lemma 4.8. Let N ⊂ Rn+1 be a fast-saddle-type block satisfying stable and

unstable cone conditions. Let Du(r) and Ds(r) be a 1-Lipschitz unstable disk

and a stable disk of the diameter r, respectively, contained in N . Let T > 0 be

fixed.

(a) Assume that ϕε([0, T ], Du(r)) ⊂ N . Then, for all z1, z2 ∈ Du(r), the

following inequality holds:

|πa(z1(t)− z2(t))| ≥ eλmint|πa(z1 − z2)| for t ∈ [0, T ],

where λmin = λA − (supσAu1 + supσAu2 ) > 0 is given by (3.4). Here λA
denotes a positive number satisfying (3.2).

(b) Assume that ϕε([−T, 0], Ds(r)) ⊂ N . Then, for all z1, z2 ∈ Ds(r), the

following inequality holds:

|πb(z1(−t)− z2(−t))| ≥ e−µmint|πb(z1 − z2)| for t ∈ [0, T ],

where µmin = µB + (supσBs1 + supσBs2) < 0 is given by (3.6). Here µB
denotes a negative number satisfying (3.3).
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The above inequalities imply that the expanding rate of Du(r) is uniformly

bounded below by λmin and that the contracting rate of Ds(r) is uniformly

bounded above by µmin.

Proof. (a) Assume first that z1, z2 ∈ Du(r). The unstable cone condition

with our assumption implies that z2 ∈ Cu(z1) and z2(t) ∈ Cu(z1(t)) hold for

all t ∈ [0, T ]. In particular, |πa(z1(t) − z2(t))| ≥ |πb,y(z1(t) − z2(t))| holds for

all t ∈ [0, T ]. Let ∆a(t) := πa(z1(t) − z2(t)), ∆b(t) := πb(z1(t) − z2(t)) and

∆y(t) := πy(z1(t)− z2(t)). The first variation equation in the a-direction yields

〈∆a′,∆a〉 ≥ λA|∆a|2 − (supσAu1 |∆a|
2 + supσAu2 |∆a|

2),

which is obtained by arguments in the proof of Proposition 3.6. Here we used

the fact that |∆a(t)| ≥ (|∆b(t)|2 + |∆y(t)|)1/2 holds in Cu(z1(t)) for all t ∈
[0, T ]. This inequality leads to (|∆a|2)′ ≥ 2λmin|∆a|2, and hence |∆a(t)| ≥
exp(λmint)|∆a(0)|.

(b) Next assume that z1, z2 ∈ Ds(r). The stable cone condition with our

assumption implies that z2 ∈ Cs(z1), z2(−t) ∈ Cs(z1(−t)) hold for all t ∈ [0, T ],

where Cs(z) = {(a, b, y) | |b−πb(z)|2 ≥ |a−πa(z)|2 + |y−πy(z)|2}. In particular,

|πb(z1(−t)− z2(−t))| ≥ |πa,y(z1(−t)− z2(−t))| holds for all t ∈ [0, T ].

The backward first variation equation in the b-direction yields

1

2

d

dt̃
|∆b|2 ≥ |µB ||∆b|2 − (supσBs1 |∆b|

2 + supσBs2 |∆b|
2), where t̃ = −t.

Here we used the fact that |∆b(−t)| ≥ (|∆a(−t)|2 + |∆y(−t)|)1/2 holds in

Cs(z1(−t)) for all t ∈ [0, T ]. This inequality leads to (|∆b|2)′ ≥ 2|µmin||∆b|2,

and hence |∆b(−t)| ≥ exp(−µmint)|∆b(0)|. �

Note that Lemma 4.8 holds even when u 6= 1.

4.3. Slow shadowing, drop and jump. Under suitable assumptions, slow

manifolds as well as limiting critical manifolds are represented by graphs of

nonlinear functions. In such cases, it is not easy to validate slow manifolds by

one block of fast-saddle-type. It is thus natural to construct enclosure of such

manifolds by the finite sequence of fast-saddle-type blocks, which will be easier

than validation by one h-set. However, the union of finite fast-saddle-type blocks

is not generally convex and hence we cannot apply arguments of the covering-

exchange directly. In particular, we have to consider the effect of slow exits and

slow entrances of the union. Nevertheless, the behavior in the y-direction is much

slower than the behavior in the (a, b)-direction for sufficiently small ε. It is thus

natural to consider that slow exits and entrances cause no effect on validation

of trajectories sufficiently close to slow manifolds for (1.1). Here we construct

a sufficient condition to guarantee such expectation. The key feature consists

of two parts: (i) the comparison of expansion and contraction rate with the
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speed of slow vector field, and (ii) the abstract construction of covering relations

around slow manifolds. The proposing concept, named the slow shadowing,

expresses both features. The slow shadowing can incorporate with the covering

relations in Proposition 4.5; the drop corresponding to N
ϕε(T, · )

=⇒ M̃ and the

jump corresponding to M̃
PMε=⇒M exit. As a consequence, the concept of covering-

exchange is generalized to the finite union of fast-saddle-type blocks.

The center of our considerations is a sequence of fast-saddle-type blocks {Nj}
satisfying all assumptions in Theorem 3.5. In this case, Theorem 3.5 indicates

that the stable manifold W s(Sε)j is given by the graph of a Lipschitz function hjs
in each Nj . Cone conditions also yield that these manifolds are patched globally

in
⋃
Nj .

Lemma 4.9. Let {Nj}
mj
j=0 be a sequence of fast-saddle-type blocks satisfying

all assumptions in Theorem 3.5. Assume that, for all j, Nj ∩Nj+1 6= ∅ and that

each section (Nj ∩ Nj+1)y contains a unique point of the critical manifold S0.

Then, for all ε ∈ [0, ε0], validated stable manifolds W s(Sε)j and W s(Sε)j+1 in

blocks Nj and Nj+1, respectively, coincide with each other in the intersection

Nj ∩Nj+1 for j = 0, . . . ,mj − 1. A similar result holds for W u(Sε).

Proof. The same arguments as in Theorem 3.5 for (a1, b, y) ∈ Nj ∩Nj+1 ∩
W s(Sε)j and (a2, b, y) ∈ Nj ∩ Nj+1 ∩ W s(Sε)j+1 with a fixed (b, y) yield the

result. �

Consider two fast-saddle-type blocks N1 and N2. Assume that each Ni is con-

structed in the local coordinate ((ai, bi), yi) whose origin corresponds to (xi, yi)

such that (1.1) locally has the form (3.1). Two coordinate systems {((ai, bi), yi) |
i = 1, 2} are related to each other by the following commutative diagram:

(4.2)

((a1, b1), y1)
(T12)c

//

P1×I1=c−1
N1

��

((a2, b2), y2)

P2×I1=c−1
N2

��

(x− x1, y1)
translation

// (x− x2, y2)

where P1, P2 : Rn → Rn are nonsingular matrices determining the approximate

diagonal form (3.1) around (x1, y1) and (x2, y2), respectively, and Im : Rm → Rm

denotes the identity map on Rm. The map T12 ≡ c−1N2
◦ (T12)c ◦ cN1

denotes the

composition map given by

((a2, b2), y2) = (T12)c((a1, b1), y1) ≡ ((Tx,12)c(a1, b1), (Ty,12)cy1)

:= (P2 × I1)−1{(P1(a1, b1), y1) + (x1 − x2, y1 − y2)}.

We assume

(SS1) u(N1) = u(N2) = u.
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(SS2) N1∩N2 6= ∅. For given sequences of positive numbers {ηk,±i,ji }
i=1,2
j1=1,j2=1,...,s,

k = 1, 2, (Nk)c is constructed by (2.13) with {ηk,±i,ji }
i=1,2
j1=1,...,u, j2=1,...,s.

The y-component of Nk is given by πy(Nk) = [y−k , y
+
k ] with

y−k < y+k (k = 1, 2), y−2 ∈ (y−1 , y
+
1 ], y+1 ∈ [y−2 , y

+
2 ),

where πy is the projection onto the slow variable component.

(SS3) All assumptions in Theorem 3.5 are satisfied in N1 and N2. Moreover,

q·ε(x, y, ε) > 0 holds with the slow direction number q ∈ {±1} inN1∪N2.

(SS4) For k = 1, 2, let Ak and Bk be diagonal matrices representing (2.10)

in Nk, and αk and βk be real numbers satisfying (3.2) for Ak and (3.3)

for Bk, respectively. Also, let

ra,k := min
j=1,···,u

ηk,±1,j , ra := min{ra,1, ra,2}, ra,k := diam(πa(Nk)),

rb,k := min
j=1,···,s

ηk,±2,j , rb := min{rb,1, rb,2}, rb,k := diam(πb(Nk)),

h ∈
(

0, min
k=1,2

{y+k − y
−
k }
)
,

(4.3)

εupk := sup
Nk×[0,ε0]

εg(x, y, ε), εlowk := inf
Nk×[0,ε0]

εg(x, y, ε),

εk := max{|εupk |, |ε
low
k |}

λk := αk −
(

sup
Nk×[0,ε0]

σAu1 + sup
Nk×[0,ε0]

σAu2

)
,

µk := βk +

(
sup

Nk×[0,ε0]
σBs1 + sup

Nk×[0,ε0]
σBs2

)
.

See Assumptions 3.2 and 3.3 for the definition of σAu1 , σAu2 , σBs1 and σBs2 .

(SS5) Fix positive numbers da, db ∈ (0, 1) arbitrarily. Let Du
1 ⊂ N1 and Ds

2 ⊂
N2 be families of disks given by

(Du
1 )c =

( ⋃
q∈Wu(Sε)c

Bs(q, dbrb)

)
∩ (N1)c,

(Ds
2)c =

( ⋃
q∈W s(Sε)c

Bu(q, dara)

)
∩ (N2)c

via cN1 and cN2 , respectively. Then

(4.4) (Du
1 )y

Tx,12
=⇒ (Ds

2)y

holds for all y ∈ πy(N1) ∩ πy(N2).

Since both P1 and P2 are linear maps, the covering relation (4.4) is just

a transversality of rectangular domains relative to an affine map.
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Definition 4.10 (Slow shadowing pair). Let χ ∈ (0, 1] be a fixed number.

Assume (SS1)–(SS5). We say the pair {N1, N2} satisfies the slow shadowing

condition (with the ratio χ and the slow direction number q) if the following

inequality holds:

(4.5) max

{
1

λk
log

(
ra,k − ra
dara

)
,

1

|µk|
log

(
rb,k − rb
dbrb

)}
< χ

h

εk
, k = 1, 2.

We shall call the pair {N1, N2} the slow shadowing pair (with χ and the slow

direction number q) if {N1, N2} satisfies the slow shadowing condition (with q).

We call the number χ the slow shadowing ratio.

In practical computations, we set sequences of positive numbers {ηk,±1,j }uj=1

and {ηk,±2,j }sj=1, k = 1, 2, as identical positive numbers, which make settings in

practical computations simple. Assumption (SS5) admits a sufficient condition

for validations in terms of cones. We revisit the condition in the end of Sec-

tion 4.4.

The slow shadowing condition can be generalized to a sequence of fast-saddle-

type blocks as follows.

Definition 4.11 (Slow shadowing sequence). Consider a finite sequence of

fast-saddle-type blocks {Ni}mi=0. We shall say the sequence {Ni, χi}mi=0 of blocks

and positive numbers satisfies the slow shadowing condition (with {χi}mi=0 and

q ∈ {±1}) if, for i = 0, · · · ,m − 1 and hi satisfying (SS4), each pair {Ni, Ni+1}
is a slow shadowing pair with an identical slow direction number q in Defini-

tion 4.10, where χi is the slow shadowing ratio for {Ni, Ni+1}. We shall call

such a sequence {Ni}mi=0 the slow shadowing sequence (with q).

The slow shadowing ratio χ gives us a benefit in practical computations. We

mention this point concretely in Section 6.2.

The core of the slow shadowing is that all disks transversal to stable and

unstable manifolds of slow manifolds rapidly expand and contract, respectively,

so that the covering relation on a crossing section can be derived. In what follows

we only consider the case q = +1. The corresponding results for q = −1 can be

shown in a similar manner.

Proposition 4.12 (Slow shadowing). Let {N1, N2} be a slow shadowing

pair with the ratio χ. Then there exist h-sets M1 ⊂ (N1)y = N1 ∩ {y = y} with

y ∈ [y−1 , y
+
1 − h] ∩ [y−2 − χh, y

+
2 − h] and M2 ⊂ (N2)y+χh = N2 ∩ {y = y + χh}

such that

M1
P

(N1)≤y+χh
ε =⇒ M2,

where P
(N1)≤y+χh
ε : (N1)≤y+χh → ∂(N1)≤y+χh is the Poincaré map.
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Proof. For simplicity, we assume χ = 1. All arguments below are valid for

general χ.

Let Sε be the slow manifold validated in N1 ∪ N2. For simplicity, we write

N1 ≡ (N1)y+h, N1,≤ ≡ (N1)≤y+h and P
1

ε ≡ P
(N1)≤y+h
ε .

First note that εk is an upper bound of the absolute speed in the y-direction.

This implies that any point in (N1)y which arrives at N1 through the orbit in N1

takes at least time h/ε1. Also note that W s(Sε) and W u(Sε) can be represented

by families of 1-Lipschitz stable and unstable disks, respectively, which follows

from cone conditions.

Let My(δ1) ⊂ (N1)y be the δ1-neighbourhood of W s(Sε)∩ {y = y} in (N1)y,

namely,

My(δ1) =
{
z = (a, b, y) ∈ N1 | dist(z,W s(Sε)) < δ1

}
.

Also, let My;̂b(δ1) be a section of My(δ1) at (b, y) = (̂b, y), namely,

My;̂b(δ1) = {z = (a, b̂, y) ∈My(δ)}.

Obviously, all points in My;̂b are contained in a unstable cone Cu(z0(̂b, y)), where

z0(̂b, y) is the unique point in W s(Sε)∩{(b, y) = (̂b, y)}. The local positive invari-

ance of the unstable cone implies that z1(t) ∈ Cu(z0(t; b̂, y)), where {z0(t; b̂, y)}
is the solution orbit with z0(0; b̂, y) = z0(̂b, y), and z1(t) is the solution orbit with

z1(0) ∈My;̂b(δ1). This relationship holds for all t ≥ 0 until z1(t) arrives at ∂N1.

Lemma 4.8 (a) then yields

|πa(z1(t)− z0(t; b̂, y))| ≥ eλ1t|πa(z1(0)− z0(0; b̂, y))|, t ≥ 0.

The slow shadowing condition implies that the unstable disk My;̂b(δ1) expands

through the flow, and all points on the boundary arrive at Nf,−
1 before time

T = h/ε1 if δ1 ≥ dara. In this case, PN1
ε (My(δ1)) has an intersection with

Nf,−
1 ∩ {a = â} for all â ∈ ∂Bu. This observation holds for arbitrary b̂ ∈ Bs.

The preimage M1 ≡ (P
1

ε)
−1(P

1

ε(My(δ1)) ∩N s,−
1,≤) ∩ (N1)y thus satisfies

sup
z∈M1

dist(πa(z), πaW
s(Sε)) < dara.

Note that N
s,−
1,≤ is equal to N1 ≡ (N1)y+h.

Lemma 4.13. The set M1 is an h-set.

Proof. We may assume thatN1 = Bu×Bs×[0, 1] via a homeomorphism cN1
.

M1 is contained in My(δ) for some δ1 ∈ (0, dara). For each b̂ ∈ Bs, consider the

section My;̂b(δ1) = {(a, b̂, y) | a ∈ Bu}. Let ab̂,y be such that (ab̂,y, b̂, y) =

z0(̂b, y), which is uniquely determined for each b̂ ∈ Bs. Note that, for each

b̂ ∈ Bs, (ab̂,y, b̂, y) = z0(̂b, y) is contained in M1.
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Since P
1

ε|(N1)y : (N1)y→P
1

ε((N1)y) ⊂ ∂N1,≤ is homeomorphic, g(x, y, ε)>0

holds in N1 and

P
1

ε(â, b̂, y) = (â, b̂, y) ∈ Nf,−
1,≤ for â ∈ ∂Bu,

P
1

ε(ab̂,y, b̂, y) ∈ N1,

then for all θ ∈ ∂Bu ∼= Su−1, there exists ab̂,y(θ)∈Bu such that P
1

ε(ab̂,y(θ), b̂, y)∈
N1 ∩ N

f,−
1,≤ ∩ {a = θ}, which is uniquely determined by the property of flows.

Notice that |πa(ab̂,y(θ), b̂, y) − πa(ab̂,y, b̂, y)| monotonically increases along the

flow for all θ ∈ ∂Bu. Since P
1

ε is continuous, then ab̂,y(θ) depends continuously on

b̂ ∈ Bs and θ ∈ Su−1. As a result, we have a continuous graph ψ1,y : Bs×Su−1 →
Bu given by ψ1,y(b, θ) = ab,y(θ). Then M1 is given by

(4.6) M1 =
{

(a, b, y) | a = (1− λ)ab,y + λψ1,y(b, θ),

b ∈ Bs, θ ∈ Su−1, λ ∈ [0, 1]
}
,

which is an h-set. �

We go back to the proof of Proposition 4.12. The next interest is

δ2 = sup
z∈P 1

ε(M1)

dist(πb(z), πb(W
u(Sε))).

Consider the behavior of sections

M1;â := {z = (â, b, y + h) ∈ N1 | b ∈ Bs} ∩ P
1

ε(M1)

in the backward flow. Since each M1;â is a stable disk with Lipschitz constant

less than 1, then each point z1 ∈ M1;â is contained in Cs(z0(â, y + h)), where

z0(â, y + h) is the unique point in W u(Sε) ∩M1;â. Lemma 4.8 (b) yields

|πb(z1(t)− z0(t; â, y + h))| ≥ eµ1t|πb(z1(0)− z0(0; â, y + h))| for t ≤ 0.

The slow shadowing condition implies that the stable disk M1;â expands in the

b-direction through the backward flow, and its boundary arrives at Nf,+
1 before

time T = h/ε1 if δ2 ≥ drb. Note that M1 ⊂ (N1)y is an h-set given by (4.6),

which implies that there exists some t ∈ [−T , 0) such that the image ϕε(t,M1,â)

must have intersections with N1∩{b = b} for all b ∈ ∂Bs. This observation holds

for arbitrary â with (â, b, y + h) ∈ N1. Therefore, δ2 should be less than dbrb.

The same arguments enable us to construct an h-set M2 ⊂ (N2)y+h in the

same way as M1 under assumptions of (4.5). In this case, our assumptions and

the definition of the slow shadowing imply

sup
z∈M2

dist(πa(z), πaW
s(Sε)) < dara.
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h-sets of M1, M2 and their boundaries are given by

M1 =
{

(a, b, y) | a = (1− λ)ab,y + λψ1,y(b, θ), b ∈ Bs, θ ∈ Su−1, λ ∈ [0, 1]
}
,

M2 =
{

(a, b, y + h) | a = (1− λ)ab,y+h + λψ2,y+h(b, θ),

b ∈ Bs, θ ∈ Su−1, λ ∈ [0, 1]
}
,

M−1 = {(a, b, y) | a = ψ1,y(b, θ), b ∈ Bs}, M+
1 = M1 ∩Nf,+

1 ,

M−2 = {(a, b, y + h) | a = ψ2,y+h(b), b ∈ Bs}, M+
2 = M2 ∩Nf,+

2 ,

where ψ2,y+h : Bs × Su−1 → Bu is the map associated with M2, which is con-

structed in the same way as ψ1,y.

Now we check if all assumptions in Proposition 2.8 hold with f = P
1

ε.

The estimate sup
z∈M2

dist(πa(z), πaW
s(Sε)) < dara implies M2 ⊂ Ds

2∩(N2)y+h.

Similarly, the estimate sup
z∈P 1

ε(M1)

dist(πb(z), πbW
u(Sε)) < dbrb implies P

1

ε(M1) ⊂

(Tx,12 × I1)Du
1 ∩ (N1)y+h. From our constructions of M1 and M2 as well as

Lemma 4.13, P
1

ε(M1) and M2 can be regarded as families of horizontal and verti-

cal disks in Du
1 and Ds

2, respectively. In particular, from (SS5), M2∩(Du
1 )f,− = ∅,

where (Du
1 )f,− = Du

1 ∩ N
f,−
1 . This disjointness yields P

1

ε(M
−
1 ) ∩ M2 = ∅.

Similarly, P
1

ε(M1) ∩ (Ds
2)f,+ = ∅, which yields P

1

ε(M1) ∩ M+
2 = ∅, where

(Ds
2)f,+ = Ds

2 ∩ N
f,+
2 . The rest of assumptions obviously holds if we choose

q0 ∈ Bs so that (a, q0, y) ∈ Sε for some a ∈ Bu. The property of degree obviously

holds since P ε : (N1)y → (N1)y+h is just a composite of uniformly contracting

and expanding maps in corresponding directions. �

Proposition 4.12 can be generalized to a slow shadowing sequence {Ni}mi=1,

which is straightforward.

The same arguments as in Proposition 4.5 yield the following result

Proposition 4.14 (Covering-Exchange: Drop). Let {N1, N2} be a slow

shadowing pair with the ratio χ. Assume that there is an h-set N such that

N
ϕε(T, · )

=⇒ (N1)≤y holds for some T > 0, where y ∈ (y−1 , y
+
1 −h]∩[y−2 −χh, y

+
2 −h].

Then there are h-sets M̃ ⊂ (N1)≤y and M2 ⊂ (N2)y+χh such that

N
ϕε(T, · )

=⇒ M̃
P

(N1)≤y+χh
ε =⇒ M2.

Proof. As in the proof of Proposition 4.12, we may assume χ = 1.

Let M1 ⊂ (N1)y and M2 ⊂ (N2)y+h be as in Proposition 4.12 and M̃ :=

(P
(N1)≤y
ε )−1(M1). Obviously, N

ϕε(T, · )
=⇒ M̃ holds since N

ϕε(T, · )
=⇒ (N1)≤y. By the

construction of M̃ , the covering relation M̃
P

(N1)≤y+h
ε =⇒ M2 also holds. �
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We provide the slow shadowing when a fast-saddle-type block admits a fast-

exit face, which corresponds to the covering relation M̃
PMε=⇒ M exit in Proposi-

tion 4.5: the covering-exchange: jump. We restrict the unstable dimension u

to 1 in the current considerations.

Proposition 4.15 (Covering-Exchange: Jump). Let {N1, N2} be a slow

shadowing pair with u = 1. Also, let N exit
2 ⊂ Nf,−

2 be the fast-exit face of N2 and

y ∈ [y−1 , y
+
1 −h]∩ [y−2 −χh, y

+
2 −h]. Assume that dist(N exit

2 , {y = y+χh}) ≥ χh.

Then there are h-sets M1 ⊂ (N1)y and M2 ⊂ (N2)y+χh such that

M1
P

(N1)≤y+χh
ε =⇒ M2

PN2
ε=⇒ N exit

2 .

Proof. As in the proof of Proposition 4.12, we may assume χ = 1. The

proof consists of two parts: (i) M2
PN2
ε=⇒ N exit

2 and (ii) M1
P

(N1)≤y+h
ε =⇒ M2. Part (i)

is a consequence of Lemma 4.4 with additional property of M2 ⊂ (N2)y+h. The

assumption dist(N exit
2 , {y = y+h}) > h and slow shadowing condition allow M2

to satisfy

sup
x∈M2

dist(z,W s(Sε) ∩ {y = y + h}) < dara.

Therefore, the same arguments as in Proposition 4.12 yield M1
P

(N1)≤y+h
ε =⇒ M2,

the statement (ii). Note that W s(Sε) ∩M2 = ∅. See also Figure 3 (e). �

For the convenience and correspondence to Definition 4.2, we introduce the

following notion.

Definition 4.16 (Covering-exchange sequence). Let N ⊂ Rn+1 be an h-set

and {N j
ε }
jM
j=0 be a sequence of fast-saddle-type blocks. Assume that:

(a) (Slow shadowing) {N j
ε }
jM−1
j=0 is a slow shadowing sequence with u = 1.

(b) (Drop) N
ϕε(T, · )

=⇒ (N0
ε )≤y holds for some T > 0, where y is given in

Proposition 4.14.

(c) (Jump) {N jN−1
ε , N jN

ε } is a slow shadowing pair with a fast-exit face

N exit
ε of N jN

ε satisfying assumptions in Proposition 4.15.

Then we call the triple (N, {N j
ε }
jN
j=0, N

exit
ε ) the covering-exchange sequence.

Obviously, the case jN = 1 is nothing but the notion of the covering-exchange

pair. Remark that, in the current setting, covering-exchange sequences are al-

ways assumed to be defined with u = 1.

Throughout the rest of this paper, the bold-style phrases Drop and Jump

denote the corresponding descriptions stated in Definition 4.16.
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(a) (b) (c)

(d) (e)

Figure 3. Slow shadowing, drop and jump: schematic illustrations. Note

that all figures here show the projection onto the (a, b)-space.

Slow shadowing. The covering relation M1
P

(N1)≤y+h
ε =⇒ M2 in Proposition

4.12 is described by the process “(a)→ (b)→ (d)” where PNε : N → ∂N is
the Poincaré map in N . A set colored blue in (a) denotes M1. The Poincaré

map P
(N1)≤y+h
ε maps M1 to P

(N1)≤y+h
ε (M1) ⊂ (N1)y+h described by the

red set in (b) and (d). The slow shadowing condition admits the choice of
M2 in (N2)y+h drawn by the blue set in (d).

Covering-Exchange: Drop. The covering relation N
ϕε(T, · )

=⇒ M̃
P

(N1)≤y+h
ε =⇒

M2 in Proposition 4.14 is described by the process “(c) → (b) → (d). In

(c), the set colored red denotes ϕε(T,N) and the blue one denotes M̃ . The

Poincaré map P
(N1)≤y+h
ε maps M̃ to P

(N1)≤y+h
ε (M̃) ⊂ (N1)y+h described

by the red set in (b) and (d). The slow shadowing condition admits the
choice of M2 in (N2)y+h drawn by the blue set in (d).

Covering-Exchange: Jump. The covering relation M1
P

(N1)≤y+h
ε =⇒ M2

P
N2
ε=⇒

Nexit
2 in Proposition 4.15 is described by the process “(a) → (b) → (e)”.

A set colored blue in (a) denotes M1. The Poincaré map P
(N1)≤y+h
ε maps

M1 to P
(N1)≤y+h
ε (M1) ⊂ (N1)y+h described by the red set in (b) and (e).

The slow shadowing condition admits the choice of M2 in (N2)y+h drawn

by the blue set in (e). The h-set M2 PN2
ε -covers Nexit

2 ⊂ Nf,−
2 . The

fast exit Nf,−
2 is drawn by the edge of the white rectangle which admits

horizontal red arrows.
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4.4. m-cones. We have discussed in Section 3 that it is systematically pos-

sible to construct fast-saddle-type blocks as well as cone conditions. However,

such blocks are generally too small compared with validation enclosures of tra-

jectories, if we try to validate covering-exchange sequences. Moreover, when we

solve differential equations with a fast-exit face as initial data in this situation,

solution orbits will hardly move in the early stage because the vector field is

close to zero. This phenomenon causes accumulation of computational errors

(e.g. wrapping effect) and extra computational costs (e.g. memory or time). In

particular, there is little hope to validate covering-exchange sequences. Such

difficulties can be avoided if we find a large fast-saddle-type block directly. A di-

rect approach would be finding crossing sections which form boundaries of a large

fast-saddle-type block. It is not realistic to find such sections via interval arith-

metics because vector fields are nonlinear and we have to consider the effect of

slow dynamics. In many cases, direct search of blocks would be based on trial

and error, which is not systematic. Our aim in this subsection is to provide an

appropriate method to overcome difficulties with respect to solving differential

equations.

In Section 3, we have constructed cones of the form Cu = {|a − a0| > |ζ −
ζ0|} and Cs = {|b − b0| > |ν − ν0|} with a vertex (a, b, y) = (a0, b0, y0) and

fixed ε, where ζ = (b, y) and ν = (a, y). See Figure 4 (a) for the illustration of

cones and the unstable manifold of a saddle equilibrium. One expects that, in

a neighbourhood of Cu, for example, Cu can be extended to C̃ like in Figure 4 (b).

On the other hand, if the unstable manifold is sufficiently regular, one also

expects that such an extended cone can be sharper. More precisely, Cu can

be extended to the union of Cu and a collection of m-cones Cu
m = {|a − a0| >

m|ζ− ζ0|} for some m > 1 keeping isolation, which is shown in Figure 4 (c). The

same expectation is valid for Cs.

Proposition 3.6 means that the difference of two solutions in a fast-saddle-

type block N̂ along dynamics is restricted by the moving cone Cu = {(a, b, y, η) |
M(t) > 0}. The analogue of this argument in the case of sharper cones is derived

below.

Assumption 4.17. Consider (3.1). Let N ⊂ Rn+1 be an h-set, z = (x, y, ε)

and fix m > 0. Define σmAu1 = σmAu1 (z), σmAu2 = σmAu2 (z), σmBu1 = σmBu1 (z), σmBu2 = σmBu2 (z),

σmgu1 = σmgu1 (z) and σmgu2 = σmgu2 (z) be maximal singular values of the following

matrices at z, respectively:

σmAu1 : A1(z) =

(
∂F1

∂a
(z)

)
, u× u-matrix,

σmAu2 : A2(z) = m−1
(
∂F1

∂b
(z)

∂F1

∂y
(z)

∂F1

∂η
(z)

)
, u× (s+ 1 + 1)-matrix,
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σmBu1 : B1(z) = m

(
∂F2

∂a
(z)

)
, s× u-matrix,

σmBu2 : B2(z) =

(
∂F2

∂b
(z)

∂F2

∂y
(z)

∂F2

∂η
(z)

)
, s× (s+ 1 + 1)-matrix,

σmgu1 : g1(z) = m

(
∂g

∂a
(z)

)
, 1× u-matrix,

σmgu2 : g2(z) =

(
η
∂g

∂b
(z) η

∂g

∂y
(z) g(z) + η

∂g

∂η
(z)

)
, 1× (s+ 1 + 1)-matrix.

Assume that the following inequalities hold:

(4.7) λA −
(

supσmAu1 + supσmAu2

)
> 0,

(4.8) λA − µB −
{

supσmAu1 + supσmAu2 + supσmBu1 + supσmBu2

+ σ
(

supσmgu1 + supσmgu2

)}
> 0,

where λA and µB are real numbers satisfying (3.2) and (3.3), respectively, and

the notation “ sup” means the supremum on N × [0, ε0].

Proposition 4.18 (Unstable m-cone). Consider (3.1). Let N ⊂ Rn+1 be

an h-set and fix m > 0. Assume that inequalities (4.7) and (4.8) in Assumption

4.17 hold. Then, letting Mu,m(t) := |∆a(t)|2 −m2|∆ζ(t)|2, Mu,m′(t) > 0 holds

for all points in N satisfying Mu,m(t) = 0 unless ∆a = 0, where ζ = (b, y, η).

Proof. Follow the same arguments as in the proof of Proposition 3.6, re-

placing M(t) by Mu,m(t). �

Assumption 4.19. Consider (3.1). Let N ⊂ Rn+1 be an h-set, z = (x, y, ε)

and fix m > 0. Define σmAs1 = σmAs1(z), σmAs2 = σmAs2(z), σmBs1 = σmBs1(z), σmBs2 = σmBs2(z),

σmgs1 = σmgs1 (z) and σmgs1 = σmgs1 (z) be maximal singular values of the following

matrices at z, respectively:

σmAs1 : A1(z) = m

(
∂F1

∂b
(z)

)
, u× s-matrix,

σmAs2 : A2(z) =

(
∂F1

∂a
(z)

∂F1

∂y
(z)

∂F1

∂η
(z)

)
, u× (u+ 1 + 1)-matrix,

σmBs1 : B1(z) =

(
∂F2

∂b
(z)

)
, s× s-matrix,

σmBs2 : B2(z) = m−1
(
∂F2

∂a
(z)

∂F2

∂y
(z)

∂F2

∂η
(z)

)
, s× (u+ 1 + 1)-matrix,

σmgs1 : g1(z) = m

(
∂g

∂b
(z)

)
, 1× s-matrix,

σmgs2 : g2(z) =

(
η
∂g

∂a
(z) η

∂g

∂y
(z) g(z) + η

∂g

∂η
(z)

)
, 1× (u+ 1 + 1)-matrix.
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Assume that the following inequalities hold:

(4.9) µB +
(

supσmBs1 + supσmBs2

)
< 0,

(4.10) λA − µB −
{

supσmAs1 + supσmAs2 + supσmBs1 + supσmBs2

+ σ
(

supσmgs1 + supσmgs2

)}
> 0,

where λA and µB are real numbers satisfying (3.2) and (3.3), respectively, and

the notation “sup” means the supremum on N × [0, ε0].

Proposition 4.20 (Stable m-cone). Consider (3.1). Let N ∈ Rn+1 be an h-

set and fix m > 0. Assume that inequalities (4.9) and (4.10) in Assumption 4.17

hold. Then, defining a function Ms,m(t) := |∆b(t)|2−m2|∆ν(t)|2, Ms,m′(t) < 0

holds for all points on N satisfying Ms,m(t) = 0 unless ∆b = 0, where ν =

(a, y, η).

Proof. Follow the same arguments as in the proof of Proposition 3.6, re-

placing M(t) by Ms,m(t). �

Definition 4.21 (m-cone conditions). We shall call inequalities (4.7) and

(4.8) in Assumption 4.17 the unstable m-cone condition in N . Similarly, we shall

call inequalities (4.9) and (4.10) in Assumption 4.19 the stable m-cone condition

in N . When these conditions are satisfied, the unstable m-cone and the stable

m-cone with the vertex z = (a0, b0, y0) (in the (a, b, y)-coordinate) are given as

follows, respectively:

Cu
m(z) := {(a, b, y) | |a− a0|2 ≥ m2(|b− b0|2 + |y − y0|2)},

Cs
m(z) := {(a, b, y) | |b− b0|2 ≥ m2(|a− a0|2 + |y − y0|2)}.

Validations of m-cones themselves are in fact independent of the construction

of fast-saddle-type blocks discussed in Section 2.3. Moreover, the choice of m

can be arbitrary as long as the corresponding cone conditions hold.

An implementation of m-cones in the unstable direction is the following.

(1) Prepare a fast-saddle-type block N such that Nc is given by (2.13) sat-

isfying the unstable cone condition. Via a homeomorphism cN we may

assume that N is represented by

N =

u∏
j=1

[a−j , a
+
j ]×

s∏
j=1

[b−j , b
+
j ]× [0, 1].

(2) Choose a fast-exit face N exit. For example, set

N exit =

j0−1∏
j=1

[a−j , a
+
j ]×{a∗j0}×

u∏
j=j0−1

[a−j , a
+
j ]×

s∏
j=1

[b−j , b
+
j ]× [y−, y+], ∗ ∈ {±},
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where [y−, y+] ⊂ [0, 1]. Let ` > 0 is a given number and V u,j0m be an

h-set given by

V u,j0m =

u∏
j=1

[ã−j , ã
+
j ]×

s∏
j=1

[
b−j −

`

m
, b+j +

`

m

]
×
[
y− − `

m
, y+ +

`

m

]
,(4.11)

[ã−j , ã
+
j ] =


[a−j , a

+
j + `] if j = j0 and ∗ = +,

[a−j − `, a
+
j ] if j = j0 and ∗ = −,

[a−j , a
+
j ] otherwise.

See Figure 4 (c).

(3) Verify the unstable m-cone condition, (4.7) and (4.8), in V u,j0m .

The following lemma is a consequence of discussions in Lemma 4.18 and

arguments in Theorem 3.5.

Lemma 4.22. Let N be a fast-saddle-type block satisfying the stable cone con-

dition, and V u,j0m be given by (4.11). Assume that the m-unstable cone condition

is satisfied in V u,j0m . Then any point on N exit leaves the set N ∪ Cu,j0m , where

Cu,j0m :=
{

(a, ζ) = (a, b, y) ∈ V u,j0m | |a− a0| ≥ m|ζ − ζ0|, (a0, ζ0) ∈ N exit
}

under the flow through (Cu,j0m )∗ := Cu,j0m ∩ {a = ã∗j0}, ∗ ∈ {±}. The sign ∗ is

exactly the location of N exit.

m-cones in the stable direction are constructed in a similar manner.

(1) Prepare a fast-saddle-type block N such that Nc is given by (2.13) sa-

tisfying the stable cone condition. Via a homeomorphism cN we may

assume that N is represented by

N =

u∏
j=1

[a−j , a
+
j ]×

s∏
j=1

[b−j , b
+
j ]× [0, 1].

(2) Choose a face of the fast-entrance N ent. As an example, set

N ent =

u∏
j=1

[a−j , a
+
j ]×

j0−1∏
j=1

[b−j , b
+
j ]× {b∗j0} ×

s∏
j=j0−1

[b−j , b
+
j ]× [y−, y+], ∗ ∈ {±},

where [y−, y+] ⊂ [0, 1]. Let ` > 0 be a given number and V s,j0m be an

h-set given by

V s,j0m =

u∏
j=1

[
a−j −

`

m
, a+j +

`

m

]
×

s∏
j=1

[̃b−j , b̃
+
j ]×

[
y− − `

m
, y+ +

`

m

]
,(4.12)

[̃b−j , b̃
+
j ] =


[b−j , b

+
j + `] if j = j0 and ∗ = +,

[b−j − `, b
+
j ] if j = j0 and ∗ = −,

[b−j , b
+
j ] otherwise.
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(3) Verify the stable m-cone condition, (4.9) and (4.10), in V s,j0m .

(a) (b)

(c) (d)

Figure 4. Unstable m-cones. (a) A fast-saddle-type block N containing

the slow manifold Sε validated in Theorem 3.5. In this figure, a black

ball corresponds to the slow manifold Sε and a black curve corresponds to
its unstable manifold Wu(Sε). The accuracy of the stable (resp. unstable)

manifold W s(Sε) (resp. Wu(Sε) is measured by the size of the fast-entrance

Nf,+ (resp. the fast-exit Nf,−). In general, blocks are small and the flow
stays near these blocks for small t, what causes the accumulation of various

computational errors. (b) A candidate for extended cones. One expects

that our validated cones stated in Theorem 3.5 can be locally extended.
However, one can imagine that it is quite too large for the enclosure of
Wu(Sε) if Wu(Sε) is sufficiently smooth. The extension of cones drawn

here is thus quite coarse for smooth manifolds. (c) Validation of the m-cone
condition. It is sufficient to verify the m-cone condition on a rectangular

domain V um given by (4.11). The set V um is colored green. The orange region

is the m-cone with a vertex in N . The m-cone conditions imply that all
points in an m-cone stay in the m-cone until they leave V ∗m. (d) An unstable

m-cone Cu
m of N , which is the union of m-cones with vertices on Nexit. The

union N ∪ Cu
m is colored yellow. All trajectories through Nexit leave V um

through Cu
m ∩ ∂V um. In general, Cu

m ∩ ∂V um is far from slow manifolds.

This fact helps us with validations and reasonable computational steps and

accuracy. See also Section 6.3.

The following lemma is a consequence of similar arguments to Lemma 4.22.

Lemma 4.23. Let N be a fast-saddle-type block satisfying the stable cone

condition, and V s,j0m be given by (4.12). Assume that the m-stable cone condition

is satisfied in V s,j0m . Then any point on N ent leaves N ∪ Cs,j0m , where

Cs,j0m :=
{

(b, ν) ∈ V s,j0m | ν = (a, y), |b− b0| ≥ m|ν − ν0|, (b0, ν0) ∈ N ent
}
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under the backward flow through (Cs,j0m )∗ := Cs,j0m ∩ {b = b̃∗j0}, ∗ ∈ {±}. The

sign ∗ is exactly the location of N ent.

Definition 4.24 (m-cones). We call the set of the form Cu,j0m an unstable

m-cone of N with the length `. Similarly, we call the set of the form Cs,j0m a stable

m-cone of N with the length `.

Using m-cones, we can extend an h-set after construction of a small fast-

saddle-type block. Such an h-set keeps isolation in radial direction, thanks to

m-cone conditions. Moreover, we can obtain a priori estimates of trajectories

far from equilibria, keeping their accuracy as well as possible by adjustments of

m and `. Of course, we do not need to solve differential equations to obtain

such estimates. This technique reduces extra computational costs mentioned

at the beginning of this subsection. Furthermore, in layer problems (1.3), m-

cones immediately yield continuation of stable and unstable manifolds of critical

invariant manifolds. Indeed, the unions N ∪ Cu,j0m and N ∪ Cs,j0m are h-sets

satisfying m-(un)stable cone conditions. The unstable (resp. stable) manifold

is hence represented by a horizontal (resp. vertical) disk in N ∪ Cu,j0m (resp.

N ∪ Cs,j0m ). See [40] for details.

Remark 4.25. Arguments involving Propositions 4.18 and 4.20 still hold re-

placing y ∈ R and an R-valued function g by y ∈ Rl and an Rl-valued function g,

respectively.

In what follows we show applications of m-cones to fast-slow systems. In the

case of fast-slow systems, we have to care about movements of trajectories in the

slow direction. With the help of the slow shadowing condition, we can construct

a sequence of covering relations for m-cones. For technical reasons we restrict

u and s to 1, in particular, n = 2. This is exactly the case in our verification

examples, Section 6. Consider (3.1) again.

Definition 4.26 (Departure time, arrival time). Let N be a fast-saddle-type

block such Nc is given by (2.13) with u = s = 1. Also, let V um be a set of the

form (4.11) with u = s = 1 satisfying the unstable m-cone condition. Define the

departure time Tdep in V um by

(4.13) Tdep = Tdep(V um) :=
1

2

∫ (ra+`)
2

(dara)2

1

λmin(a)

d(a2)

a2
+ δ,

where da is a given number in (SS5), ra = diam(πa(N)), ra is given in (4.3),

δ > 0 is a sufficiently small number,

λmin(ã) := λA −
(

sup
z∈V um∩{a≤ã}

σmAu1 (z) + sup
z∈V um∩{a≤ã}

σmAu2 (z)

)
and λA > 0 is a real number satisfying (3.2). Note that the unstable m-cone

condition implies that λmin(ã) > 0 for ã ∈ (dara, ra + `).
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Similarly, let V sm be a set of the form (4.12) with u = s = 1 satisfying the

stable m-cone condition. Define the arrival time Tarr in V sm by

(4.14) Tarr = Tarr(V
s
m) := −1

2

∫ (rb+`)
2

(dbrb)2

1

µmin(b)

d(b2)

b2
+ δ,

where db is a given number in (SS5), rb = diam(πb(N)), rb is given in (4.3),

δ > 0 is a sufficiently small number,

µmin(̃b) := µB +

(
sup

z∈V sm∩{b≤b̃}
σmBs1(z) + sup

z∈V sm∩{b≤b̃}
σmBs2(z)

)
and µB < 0 is a real number satisfying (3.3). Note that the stable m-cone

condition implies that µmin(̃b) < 0 for b̃ ∈ (dbrb, rb + `).

Remark 4.27. In practical computations, we use the following upper bounds

of departure and arrival times:

1

2

∫ (ra+`)
2

(dara)2

1

λmin(a)

d(a2)

a2

≤ 1

2

T−1∑
j=0

λmin

(
dara +

(j + 1)La
T

)−1 ∫ (dara+(j+1)La/T )2

(dara+jLa/T )2

d(a2)

a2

=

T−1∑
j=0

λmin

(
dara +

(j + 1)La
T

)−1
log

(
Tdara + (j + 1)La
Tdara + jLa

)
,

−1

2

∫ (rb+`)
2

(dbrb)2

1

µmin(b)

d(b2)

b2

≤ −1

2

T−1∑
j=0

µmin

(
dbrb +

(j + 1)Lb
T

)−1 ∫ (dbrb+(j+1)Lb/T )2

(dbrb+jLb/T )2

d(b2)

b2

= −
T−1∑
j=0

µmin

(
dbrb +

(j + 1)Lb
T

)−1
log

(
Tdbrb + (j + 1)Lb
Tdbrb + jLb

)
,

where La = ra + ` − dara and Lb = rb + ` − dbrb. Usually, the bigger the

number of partitions T is, the smaller right-hand sides of above inequalities are.

We may set the difference between summations with different T ’s as δ in (4.13)

and (4.14).

The following results show that m-cones generate additional covering rela-

tions to validate global orbits for (1.1)ε.

Proposition 4.28. Let N be a fast-saddle-type block for (3.1) in R3 with

u = s = 1 which forms N = [a−, a+] × [b−, b+] × [y−0 , y
+
0 ] and actually given

by (2.13). Also, let V um be a set of the form (4.11) with u = s = 1 which



412 K. Matsue

contains N . Assume that the unstable m-cone condition is satisfied in V um. Let

Tdep = Tdep(V um) be the departure time in V um. Define

ε+ := sup
V um×[0,ε0]

εg(x, y, ε), ε− := inf
V um×[0,ε0]

εg(x, y, ε)

N exit := {a∗} × [b−, b+]× [y−, y+]

with [y−, y+] ∪ [y− + ε−Tdep, y
+ + ε+Tdep] ⊂ [y−0 , y

+
0 ],

(Cu
m)exit :=Cu

m ∩
(
{ã∗} ×

[
b− − `

m
, b+ +

`

m

]
(4.15)

× [y− + ε+Tdep, y
+ + ε−Tdep]

)
,

where ∗ ∈ {±} is chosen so that either ã− = a−− ` or ã+ = a+ + ` holds. Then

N exit P
Cu
m

ε=⇒ (Cu
m)exit holds.

Proof. Let z1 = (a1, ζ1) ∈ W s(Sε) ⊂ N and z2 = (a2, ζ2) ∈ N exit be

such that ζ1 = ζ2 and that πy(z1) = πy(z2) ∈ [y−, y+]. The unstable m-cone

condition and Lemma 4.18 imply that z2(t) ∈ Cu
m(z1(t)) for all t ≥ 0 until

z2(t) arrives at (Cu
m)∗, where (Cu

m)∗ is given in Lemma 4.22. The difference

∆a ≡ a2(t)− a1(t) = πa(z2(t))− πa(z1(t)) satisfies

(|∆a|2)′ ≥ 2λmin(a2)|∆a|2,

which follows from the same argument as the proof of Lemma 4.8. This implies

that the solution orbit z2(t) with z2(0) = z2 arrives at (Cu
m)∗ at time t < Tdep

and that

πy(Pε(N
exit ∩ {y = y+})) ( (y+ + ε−Tdep, y

+ + ε+Tdep),

πy(Pε(N
exit ∩ {y = y−})) ( (y− + ε−Tdep, y

− + ε+Tdep).

Thus Pε(N
exit∩{y = y±})∩ (Cu

m)exit = ∅ holds. Note that ∂(Cu
m)exit consists of

(Cu
m)exit,− =Cu

m ∩
(
{ã∗} ×

[
b− − `

m
, b+ +

`

m

]
× {y± + ε∓Tdep}

)
,

(Cu
m)exit,+ = ∂Cu

m \ {a = a∗, ã∗}

∩
(
{ã∗} ×

[
b− − `

m
, b+ +

`

m

]
× [y− + ε+Tdep, y

+ + ε−Tdep]

)
.

Moreover, (Cu
m)exit,+∩Pε(N exit) = ∅ holds by Proposition 4.18. Then N exit P

Cu

ε=⇒
(Cu

m)exit holds by Proposition 2.8 with q0 ∈ N exit ∩W u(Sε). �

Definition 4.29. We shall call (Cu
m)exit given in (4.15) the fast-exit face

of Cu
m.

The following statements also hold due to the same arguments under the

backward flow.
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Proposition 4.30. Let N1 and N2 be fast-saddle-type blocks for (3.1) in R3

with u = s = 1 which form

N1 = [a−1 , a
+
1 ]× [b−1 , b

+
1 ]× [y−1 , y

+
1 ], N2 = [a−2 , a

+
2 ]× [b−2 , b

+
2 ]× [y−2 , y

+
2 ]

such that {N1, N2} is a slow shadowing pair with the slow direction number

q = +1 and h given below. Also, let V sm be a set of the form (4.12) with u = s = 1

containing N1. Assume that the stable m-cone condition is satisfied in V sm. Let

Tarr = Tarr(V
s
m) be the arrival time in V sm. Define

ε+ := sup
V sm×[0,ε0]

εg(x, y, ε), ε− := inf
V um×[0,ε0]

εg(x, y, ε),

N ent
1 := [a−1 , a

+
1 ]× {b+1 } × [y−, y] with [y−, y] ⊂ [y−1 , y

+
1 ].

Assume that there is an h-set N0 and T0 > 0 such that N0
ϕε(T0, · )

=⇒ Cs
m ∩ {y ∈

[y−, y]} and that

(4.16) y− < inf πy(ϕε(T0, N)) + ε−Tarr, supπy(ϕε(T0, N)) + ε+Tarr < y.

Let h > 0 be such that y + h < y+1 . Then there exist h-sets M̃1 ⊂ (N1 ∪ Cs
m)≤y

and M2 ⊂ (N2)y+h such that

N0
ϕε(T0, · )

=⇒ M̃1
P

(N1∪C
s
m)

y+h
ε =⇒ M2.

Proof. First let Sε be the slow manifold validated in N1 ∪ N2. Also, let

M1 ⊂ (N1)y and M2 ⊂ (N2)y+h be h-sets such that M1
P

(N1)≤y+h
ε =⇒ M2, which

are constructed in Proposition 4.12. Note that M1 contains W s(Sε) ∩ (N1)y.

Let M̃ := (P
(N1)≤y
ε )−1(M1) ⊂ N1 and M̃ ent := M̃ ∩ N ent

1 . Clearly the set M̃

contains W s(Sε) ∩ (N1)≤y.

Next, let w1 = (b1, ν1) ∈ M̃ ent and w2 ∈W u(Sε) be such that w2 ∈ Cs
m(w1).

The stable m-cone condition and Lemma 4.23 imply that w2(−t) ∈ Cs
m(w1(−t))

for all t ≥ 0 until w2(−t) arrives at ∂Cs
m under the backward flow. The difference

∆b ≡ b2(−t)− b1(−t) = πb(w2(−t))− πb(w1(−t)) satisfies

d

dt̃
(|∆b|2) ≥ 2µmin(b2)|∆b|2

by the same argument as in the proof of Lemma 4.8, where t̃ = −t. This

inequality implies that the backward solution orbit w2(−t) with w2(0) = w2

arrives at ∂Cs
m at time t < Tarr and that

πy
(
(P

Cs
m

ε )−1(M̃ ent ∩ {y = y})
)
( (y − ε+Tarr, y − ε−Tarr),

πy
(
(P

Cs
m

ε )−1(M̃ ent ∩ {y = y−})
)
( (y− − ε+Tarr, y− − ε−Tarr).
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Define an h-set M̃1 := M̃ ∪ (P
Cs
m

ε )−1(M̃ ent), where

M̃+
1 = (M̃1 ∩ {b = b̃±}) ∪ (M̃ ∩ {y = y, y−}) ∪ (P

Cs
m

ε )−1(M̃ ent ∩ {y = y, y−}),

M̃−1 = ∂M̃1 \ M̃+
1 .

Note that ϕε(T0, N0) ∩ M̃+
1 = ∅ follows from (4.16) and N0

ϕε(T0,·)
=⇒ Cs

m ∩
{y ∈ [y−, y]}. The relationship ϕε(T0, N

−
0 ) ∩ M̃1 = ∅ immediately follows from

N0
ϕε(T0, · )

=⇒ Cs
m ∩ {y ∈ [y−, y]}. Then the covering relation N0

ϕε(T0, · )
=⇒ M̃1 also

follows from N0
ϕε(T0, · )

=⇒ Cs
m ∩ {y ∈ [y−, y]}. �

The slow shadowing sequence with extended m-cones determines the gener-

alized sequence of covering-exchange sequence in Definition 4.16.

Definition 4.31 (Covering-exchange sequence with extended cones). Con-

sider (1.1)ε in R3. Let N ⊂ R3 be an h-set with u(N) = 1 and {N j
ε }
jN
j=0 be

a sequence such that

(a) {N j
ε }
jN
j=0 is a slow shadowing sequence for (1.1)ε with u = s = 1;

(b) {N jN−1
ε , N jN

ε } is a slow shadowing pair for (1.1)ε with the exit N exit
ε ⊂

(N jM
ε )f,−.

Also, let Cu
mu be the unstable mu-cone of N jN

ε and Cs
ms be the stable ms-cone

of N0
ε . Assume that

(c) all assumptions in Proposition 4.28 are satisfied with N exit
ε and Cu

m =

Cu
mu ;

(d) all assumptions in Proposition 4.30 are satisfied with N0 = N , Ni =

N i−1
ε and Cs

m = Cs
ms .

Then we call the collection (N, {N j
ε }
jM
j=1, N

exit
ε , Cu

mu , C
s
ms) the covering-exchange

sequence with extended cones Cu
mu , C

s
ms .

Another benefit of m-cones is that we can validate assumption (SS5) in the

slow shadowing in terms of m-cones. In the following proposition, we do not

pose any restrictions on u and s.

Proposition 4.32 (A sufficient condition for (SS5)). Consider two fast-

saddle-type blocks N1 and N2 constructed in the local coordinates ((ai, bi), yi),

where (1.1) locally forms (3.1) in each coordinate with the commutative diagram

(4.2). Assume that both N1 and N2 satisfy the unstable mu-cone condition and

the stable ms-cone condition for mu,ms ≥ 1, and that (SS1)–(SS4) are satisfied.

Independently, consider two h-sets D̃u
1 and D̃s

2 given by

(D̃u
1 )c := Bu(0, ra)×Bs

(
0, dbrb +

ra
mu

)
,

(D̃s
2)c := Bu

(
0, dara +

rb
ms

)
×Bs(0, rb)
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via cN1
and cN2

, respectively, where ra, rb, da, db denote positive numbers given

in (SS4)–(SS5). Write the nonsingular matrix P ≡ P−12 P1 in (4.2) in the block

form

P =

(
p11 p12
p21 p22

)
,

where the first row (p11 p12) acts on the u-dimensional vector a1 and the sec-

ond row (p21 p22) acts on the s-dimensional vector b1. Finally, assume that

D̃u
1

Tx,12
=⇒ D̃s

2, and that

(4.17) m−2s <
m2
u ·min(1, p2

2 − σ21p2 − 2σ2
12/m

2
u)

2p1
2 +m2

uσ21p2
,

where pi and pi are the maximal and the minimal eigenvalues of the matrix pii,

respectively, and σij denotes the maximal singular value of pij. Then (4.4) holds.

Proof. First we set

(D̃u
1 )−c =∂Bu(0, ra)×Bs

(
0, dbrb +

ra
mu

)
,

(D̃u
1 )+c =Bu(0, ra)× ∂Bs

(
0, dbrb +

ra
mu

)
(D̃s

2)−c :=∂Bu

(
0, dara +

rb
ms

)
×Bs(0, rb),

(D̃s
2)+c :=Bu

(
0, dara +

rb
ms

)
× ∂Bs(0, rb)

corresponding to the h-set structure.

We embed Tx,12(D̃u
1 ) and D̃s

2 into (N1)y and (N2)y, respectively, so that

the origin of both Tx,12(D̃u
1 ) and D̃s

2 is the point q ∈ Sε ∩ (N1 ∩ N2)y. We

write the embedded sets as Tx,12(D̃u
1 ) and D̃s

2 again, respectively. Without loss

of generality, we may assume that the representation of q in the (a2, b2, y2)-

coordinates is given by q = (0, 0, y). Note that, in this case, Du
1 ∩ D̃u

1 is a family

of horizontal disks in D̃u
1 and Ds

2 ∩ D̃s
2 is a family of vertical disks in D̃s

2.

Define two sets D̂u
1 and D̂s

2 as follows (see also Figure 5):

(D̂u
1 )c := (D̃u

1 )c ∪
⋃

z∈(D̃u
1 )
−
c

(Cu
mu(z) ∩ {z = (a1, b1, y1) | |a1| ≥ ra}),

(D̂s
2)c := (D̃s

2)c ∪
⋃

z∈(D̃s
2)

+
c

(Cs
ms(z) ∩ {z = (a2, b2, y2) | |b2| ≥ rb}).

Unstable mu-cone and stable ms-cone conditions imply that Du
1 ∩ Γ ⊂ D̂u

1 and

Ds
2 ∩ Γ ⊂ D̂s

2, where Du
1 and Ds

2 are given in (SS5) and Γ = {y = y}. Indeed,

Du
1 is given by a tube Bs(W

s(Sε)c, dbrb) in (N1)c. The unstable manifold W u(q)

is contained in the unstable mu-cone Cu
mu(q). If W u(Sε)c runs on the range
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(a) (b)

(c) (d)

Figure 5. Illustration of Proposition 4.32. (a) The set D̂u
1∩Γ with u=s=1,

where Γ = {y = y}. The red curve represents the slice of the unstable
manifold W s(Sε) by Γ. The green tube represents the set Du

1 ∩ Γ. The

definition of D̂u
1 and unstable mu-cone conditions indicate the inclusion

Du
1 ∩ Γ ⊂ D̂u

1 . Note that Du
1 ∩ D̃u

1 consists of a collection of horizontal

disks. (b) The set D̂s
2 ∩ Γ with u = s = 1, where Γ = {y = y}. The

blue curve represents the slice of the stable manifold W s(Sε) by Γ. The

orange tube represents the set Ds
2 ∩ Γ. The definition of D̂s

2 and stable

ms-cone conditions indicate the inclusion Ds
2∩Γ ⊂ D̂s

2. Note that Ds
2∩ D̃s

2

consists of a collection of vertical disks. (c) Covering relation D̃u
1

Tx,12
=⇒ D̃s

2

and (4.17). The inequality (4.17) indicates that two cones outside D̃u
1

and D̃s
2 are sufficiently sharp satisfying (πa2,b2 ◦ (Tx,12 × I1))(D̂u

1 \ D̃u
1 ) ∩

πa2,b2 (D̂s
2 \ D̃s

2) = ∅.

{|a| ≤ ra} in the a-direction, the enclosure of W u(Sε)c in the b-direction is

bounded by {|b| ≤ ra/mu}. Similar arguments yield that the enclosure of the

tube Bs(W
u(Sε)c, dbrb) ∩ {|a| ≤ ra} in the b-direction is bounded by {|b| ≤

dbrb+ra/mu}. Relations between unstable manifolds through q ∈ Sε and Cu
mu(q)

thus yield that Du
1 ∩ Γ ⊂ D̂u

1 . The similar arguments for Ds
2 yield the second.

In particular, the covering relation πa1,b1D̂
u
1

Tx,12
=⇒ πa2,b2D̂

s
2 implies (SS5). Note

that this argument is independent of q ∈ Sε ∩N1 ∩N2, in particular, πy(q).

By the construction of D̂u
1 and D̂s

2, it is sufficient to prove the following two

conditions to verify πa1,b1D̂
u
1

Tx,12
=⇒ πa2,b2D̂

s
2:

• D̃u
1

Tx,12
=⇒ D̃s

2,

• (πa2,b2 ◦ (Tx,12 × I1))(D̂u
1 \ D̃u

1 ) ∩ πa2,b2(D̂s
2 \ D̃s

2) = ∅.
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The former is just one of our assumptions. The latter concerns intersections

between subsets of cones. Since an m-cone Cu
m(z) is a collection of lines inside

Cu
m(z) through z, it is sufficient to consider the location of lines through base

sets.

Now we consider the image of the unstable mu-cone Cc ≡
⋃

z∈(D̃u
1 )
−
c

Cu
mu(z)

under T̃c ≡ (Tx,12)c × I1. Since T̃c is the nonsingular affine map, any lines are

mapped into lines via T̃c. Choose a point (a12, b12, y2) ∈ (D̃u
1 )−c . The boundary

∂Cc is a subset of
⋃

(a12,b12,y2)∈(D̃u
1 )
−
c

{|a11 − a12|2 = m2
u(|b11 − b12|2 + |y1 − y2|2)}.

The transformation T̃c : (a1i, b1i, yi) 7→ (a2i, b2i, yi) yields

|a21 − a22|2 = |p11(a11 − a12) + p12(b11 − b12)|2

= m2
u(|p21(a11 − a12) + p22(b11 − b12)|2 + |y1 − y2|2).

The triangular inequality yields

|p11(a11 − a12) + p12(b11 − b12)|2

≤ |p11(a11 − a12)|2 + 2|p11(a11 − a12)||p12(b11 − b12)|+ |p12(b11 − b12)|2

≤ 2(|p11(a11 − a12)|2 + |p12(b11 − b12)|2)

≤ 2(p1
2|a11 − a12|2 + σ2

12|b11 − b12|2),

|p21(a11 − a12) + p22(b11 − b12)|2 + |y1 − y2|2

≥ (|p21(a11 − a12)| − |p22(b11 − b12)|)2 + |y1 − y2|2

= |p21(a11 − a12)|2 − 2|p21(a11 − a12)||p22(b11 − b12)|

+ |p22(b11 − b12)|2 + |y1 − y2|2

≥ |p21(a11 − a12)|2 − 2σ21p2|a11 − a12||b11 − b12|+ p2
2|b11 − b12|2 + |y1 − y2|2

≥ − σ21p2(|a11 − a12|2 + |b11 − b12|2) + p2
2|b11 − b12|2 + |y1 − y2|2.

Thus

2(p1
2|a11 − a12|2 + σ2

12|b11 − b12|2)

≥ m2
u

{
−σ21p2(|a11 − a12|2 + |b11 − b12|2) + p2

2|b11 − b12|2 + |y1 − y2|2
}
.

Furthermore,

(2p1
2 +m2

uσ21p2)|a11 − a12|2

≥m2
u

{(
p2

2 − σ21p2 −
2σ2

12

m2
u

)
|b11 − b12|2 + |y1 − y2|2

}
≥m2

u ·min

(
1, p2

2 − σ21p2 −
2σ2

12

m2
u

)
{|b11 − b12|2 + |y1 − y2|2},
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equivalently,

|a11 − a12|2 ≥
m2
u ·min(1, p2

2 − σ21p2 − 2σ2
12/m

2
u)

2p1
2 +m2

uσ21p2
{|b11 − b12|2 + |y1 − y2|2}.

Let

m2 :=
m2
u ·min(1, p2

2 − σ21p2 − 2σ2
12/m

2
u)

2p1
2 +m2

uσ21p2
.

The above inequality indicates that any line in D̂u
1 is mapped into another one

included in Cu
m(z) for some z. By our construction, we know that any (half) lines

in T̃ D̂u
1 \ D̃u

1 lie on ones with vertices in Tx,12D̃
u
1 ∩ (D̃s

2 \ (D̃s
2)+). Such vertices

can be also chosen as points on Tx,12(D̃u
1 )−, which are disjoint from D̃s

2. Remark

that Tx,12D̃
u
1 ∩ (D̃s

2)+ = ∅ follows from the covering relation D̃u
1

Tx,12
=⇒ D̃s

2.

For any point z ∈ Tx,12D̃u
1 ∩ D̃s

2, we easily know that Cu
m(z) ∩Cs

ms(z) = {z}
if (mms)

2 > 1. This implies that any lines in T̃ D̂u
1 \ D̃u

1 are disjoint from Cs
ms(z)

with z ∈ Tx,12D̃u
1 ∩ D̃s

2. This fact holds for any z ∈ Tx,12D̃u
1 ∩ D̃s

2.

On the other hand, for any point w ∈ (D̃s
2)+, there is a point z ∈ Tx,12D̃u

1∩D̃s
2

such that Cs
ms(w) ⊂ Cs

ms(z), which follows from the property of cones and the

structure of Tx,12D̃
u
1 ∩ D̃s

2 from the covering relation D̃u
1

Tx,12
=⇒ D̃s

2. Consequently,

we know that the set D̂s
2 \ D̃s

2 is contained in the union of Cs
ms(z) with z ∈

Tx,12D̃
u
1 ∩ D̃s

2.

Combining these observations, we obtain T̃ (D̂u
1 \ D̃u

1 ) ∩ D̂s
2 \ D̃s

2 = ∅. �

4.5. Invariant sets on slow manifolds. We move to discussions of invari-

ant sets on slow manifolds. When ε > 0, the dynamics on slow manifolds can

generally exhibit nontrivial dynamics. In other words, slow manifolds can have

nontrivial invariant sets, such as equilibria, periodic orbits and so on, for slow

dynamics. Such sets play a key role in describing nontrivial global solutions such

as singularly perturbed homoclinic or heteroclinic orbits.

Consider the slow manifold Sε in a fast-saddle-type block M satisfying stable

and unstable cone conditions. Theorem 3.5 implies that Sε is represented by the

graph of a function x = hε(y) continuously depending on y and ε including ε = 0.

Substituting hε(y) into (1.1), one sees that the y-equation will decouple from the

x-equation. Since Sε is parameterized by y, the resulting decoupled equation

y′ = εg(hε(y), y, ε)

describes the dynamics on Sε. After time rescaling τ = t/ε we obtain

(4.18) ẏ = g(hε(y), y, ε), ˙ =
d

dτ
,

to show that the dynamics on slow manifolds is reduced to the regular perturba-

tion problem. Taking the limit ε → 0 in (4.18) we obtain the dynamics on the
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critical manifold S0 ⊂ {f(x, y, 0) = 0}:

(4.19) ẏ = g(h0(y), y, 0).

When we want to study dynamics on slow manifolds, such as the existence of

equilibria and their stability, (4.18) as well as (4.19) are in the center of our

considerations.

In general, what we know about Sε is just the fact that it is the graph of a

function x = hε(y), and its concrete description is quite difficult to obtain. As for

the normally hyperbolic critical manifold S0 = {x = h0(y)}, we know that it is

a subset of the nullcline {f(x, y, 0) = 0}. Thanks to this property, we can study

the details of S0 such as the differential of h0 as a y-function via the implicit

function differential equation fx(h0(y), y, 0)(∂h0/∂y)+fy(h0(y), y, 0)=0. On the

contrary, the function hε(y) does not possess such simple and useful properties.

For example, f(hε(y), y, ε) ≡ 0 does not necessarily hold. In general, hε(y) is

the solution of the following nonlinear partial differential equation:

(4.20) ε
∂hε

∂y
(y)g(hε(y), y, ε) = f(hε(y), y, ε).

In order to calculate the differential ∂hε/∂y for studying the stability of equilibria

on slow manifolds, for example, we have to solve equation (4.20) rigorously.

Nevertheless, from the viewpoint of rigorous numerics, it will be more reasonable

to regard hε as h0 with small errors than to solve (4.20) directly. With this in

mind, we consider (4.18) as the differential inclusion

ẏ ∈
{
g(hε(y), y, ε) | ε ∈ [0, ε0], (hε(y), y) ∈M

}
,

where M is a fast-saddle-type block containing Sε. The right-hand side possesses

h0(y) as the representative of the enclosure.

As an example of dynamics on Sε via rigorous numerics, we consider the

validation of equilibria for (4.18) on Sε as well as their stability for ε ∈ (0, ε0].

Thanks to regular perturbation relationship between (4.18) and (4.19), it is nat-

ural to assume that equilibria of (4.18) on Sε will be close to those of (4.19)

on S0. We then rewrite (4.18) as

ẏ = g(h0(y), y, 0) + {g(hε(y), y, ε)− g(h0(y), y, 0)}.

Using the Mean Value Theorem, the error term has the following expression:

g(hε(y), y, ε)− g(h0(y), y, 0) = g(hε(y), y, ε)− g(h0(y), y, ε)

+ g(h0(y), y, ε)− g(h0(y), y, 0),

g(hε(y), y, ε)− g(h0(y), y, ε) =
∂g

∂x
(x̃, y, ε)(hε(y)− h0(y)) for some x̃ ∈M,

g(h0(y), y, ε)− g(h0(y), y, 0) =
∂g

∂ε
(h0(y), y, ε̃)ε for some ε̃ ∈ [0, ε0].
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The difference between hε(y) and h0(y) can be estimated as |(hε(y)−h0(y))xi | ≤
βxi . Here βxi corresponds to the size of the i-th component in the x-coordinate

of a fast-saddle-type block M obtained by rigorous numerics. It is precisely

computable. Such an estimate can be realized because both hε(y) and h0(y)

belong to an identical h-set. Finally we obtain the following estimate:

(4.21) {g(hε(y), y, ε)− g(h0(y), y, 0)}

∈ ∂g

∂x
(x̃, y, ε)βxi [−1, 1] +

∂g

∂ε
(h0(y), y, ε̃)[0, ε0].

Let y0 be the numerical zero of g(h0(y), y, 0) = 0. The principal part

g(h0(y), y, 0) can be then expanded as

g(h0(y), y, 0) = g(h0(y0), y0, 0) +
(
gxh

0
y + gy

)
y=y0

(y − y0) + h.o.t.

The Jacobian matrix J0 ≡ gxh
0
y + gy at ε = 0 can be explicitly calculated via

the Implicit Function Theorem to obtain

gxh
0
y + gy = −gx(fx)−1fy + gy.

One can explicitly calculate eigenvalues of J0, which will be close to those of the

Jacobian matrix of Jε ≡ ∂g/∂y for ε > 0. On the other hand, the chain rule

yields

Jε =
∂g

∂x
(hε(y), y, ε)

∂hε

∂y
(y) +

∂g

∂y
(hε(y), y, ε)

and it contains ∂hε/∂y from (4.20). We additionally need to write the Fréchet

differential of error terms in the form g(hε(y), y, ε) − (∂hε/∂y) · (y − y0), when

we try to validate the unique existence or hyperbolicity of equilibria via cone

conditions [40] or Lyapunov conditions [24], for example. Instead, we apply

a topological tool with J0 to validate the invariant sets on slow manifolds.

Here we construct isolating blocks on slow manifolds. Using enclosures like

(4.21) and eigenvalues of J0, we can compute the rigorous enclosure of vector

fields on crossing sections on slow manifolds.

Consider the case l = 1, which is our original setting. Assume that we

have an ε-parameter family of slow manifolds {Sε}ε∈(0,ε0] as well as the critical

manifold S0, which can be validated by the method in Section 3. Then one

would have obtained a fast-saddle-type block M surrounding {Sε}ε∈[0,ε0]. The

schematic illustration of such a procedure is shown in Figure 6. Let y0 ∈ S0 be

a numerical zero of g(x, y, 0). One expects that there exists an equilibrium yε
on Sε for sufficiently small ε > 0. We calculate the enclosure of g(hε(y), y, ε) on
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(a) (b)

(c)

Figure 6. Invariant sets on slow manifolds. (a) The critical manifold S0

(ε = 0, colored ash), and the perturbed slow manifold Sε (ε ∈ (0, ε0],

colored black) via Theorem 3.5. The yellow rectangle with red arrows de-

scribes a fast-saddle-type block with the fast-exit. The critical manifold S0

is a subset of the nullcline f(x, y, 0) = 0. In general, Sε exhibits a nontriv-

ial structure such as equilibria (drawn by a black ball). (b) Validation of

vector fields on Sε (ε ∈ [0, ε0]). One cannot detect the position of the slow
manifold Sε in advance. In order to detect the vector field on such invari-

ant manifolds, one puts a section S (colored green) having an intersection

with Sε and validates the vector field on S with rigorous numerics. This
contains information of the vector field on S∩Sε. (c) An illustration of the

isolating block containing an equilibrium on Sε. Analysis in (b) contains

the information of the rigorous vector field on Sε, which gives an isolat-
ing neighbourhood colored red. General topological arguments such as the

mapping degree or the Conley index guarantee the existence of nontrivial

invariant sets. In the case of illustration described here, there exists an
equilibrium on Sε, namely, an equilibrium of the full system (1.1).

{y = y0 ± δ} for small δ in such a situation. It can be done by

g(hε(y), y, ε)|y=y0±δ = g(h0(y), y, 0) + {g(hε(y), y, ε)− g(h0(y), y, 0)}

= g(h0(y0), y0, 0) + (gxh
0
y + gy)y=y0(y − y0) + h.o.t.

∈{g(h0(y0), y0, 0)± J0δ + h.o.t.}+
∂g

∂x
(x̃, y, ε)βx[−1, 1] +

∂g

∂ε
(h0(y), y, ε̃)ε,

where βx > 0 can be determined by the size of M . Remark that the enclosure

of all terms on the right-hand side is rigorously computable and that they make

sense for all ε ∈ [0, ε0]. The principal term is ±J0δ. g(h0(y0), y0, 0) is very close
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to 0 since y0 is assumed to be a numerical zero of g(h0(y0), y0, 0). If

(4.22) g(hε(y), y, ε)|y=y0−δ > 0 and g(hε(y), y, ε)|y=y0+δ < 0

are validated on M × [0, ε0], then the set Bε := {(hε(y), y, ε) ∈ M × [0, ε0] |
y ∈ [y0 − δ, y0 + δ]} is an isolating block on Sε for ẏ = g(hε(y), y, ε) with the

attracting boundary. Similarly, if

(4.23) g(hε(y), y, ε)|y=y0−δ < 0 and g(hε(y), y, ε)|y=y0+δ > 0

are validated on M × [0, ε0], then the set Bε = {(hε(y), y, ε) ∈ M × [0, ε0] |
y ∈ [y0 − δ, y0 + δ]} is an isolating block on Sε for ẏ = g(hε(y), y, ε) with the

repelling boundary. In both cases, the general Conley index theory [7] yields

that Inv(Bε) 6= ∅ for all ε ∈ (0, ε0]. Inv(Bε) is actually the ε-parameter family

of invariant sets on slow manifolds. The direction of vector fields corresponds

to the stability of Inv(Bε). Moreover, Proposition 2.17 shows the existence of

equilibria in Inv(Bε) for (4.18), which leads to an equilibrium in the full system

(1.1). Note that isolating blocks can be constructed by the same implementations

as in Section 2.3.

Remark 4.33. In terms of the Conley index theory, sets {Bε}ε∈[0,ε0] are

singular isolating neighbourhoods. Indeed, for ε = 0, B0 consists of the curve

of hyperbolic equilibria and hence it is not an isolating neighbourhood. On the

other hand, for ε ∈ (0, ε0] it is an isolating neighbourhood for ẏ = g(hε(y), y, ε).

The general theory of the Conley index can be referred e.g. to [7], [26], [32].

In particular, [26] gives an explanation of singular perturbation version of the

Conley index. More advanced topics for singular perturbation problems with the

Conley index are shown in [12], [15], [14], for example.

Remark 4.34. All validations of vector fields such as (4.22) and (4.23) make

sense only on slow manifolds {Sε}ε∈[0,ε0], since the decoupled vector field (4.18)

makes sense only on slow manifolds. In other words, estimates of vector fields

discussed here do not always give reasonable information on vector fields off slow

manifolds. Calculations of vector fields discussed here and Section 4.1 should be

thus considered independently.

A simpler way to study the dynamics on slow manifolds will be to focus on the

dynamics (4.19), namely, neglect the error term g(hε(y), y, ε)−g(h0(y), y, 0). We

then study the dynamics (4.18) on slow manifolds via the regular perturbation

theory. The essence of this idea is the same as ours, but such results make sense

only for sufficiently small ε > 0. One of our main purposes here is to study the

slow dynamics for all ε ∈ (0, ε0] and hence such simpler idea is not sufficient to

our study.
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4.6. Unstable manifolds of invariant sets on slow manifolds. We dis-

cuss the unstable manifold of invariant sets in the full system. Combining the

covering-exchange property with graph representations of locally invariant man-

ifolds, the standard consequence of covering relation (Proposition 2.14) yields

the existence of connecting orbits between slow manifolds for (1.1)ε. However, it

does not always mean the existence of connecting orbits between invariant sets

for (1.1)ε. This difference comes from the fact that the role of slow variable y

changes between ε = 0 and ε > 0. When we apply the covering relations to con-

necting orbits between equilibria for (1.1)0: namely (1.3), a natural approach

is to prove the existence of orbits connecting points on the stable and unsta-

ble manifolds of equilibria at a certain y. This immediately yields validation of

a connecting orbit at y = y.

On the other hand, if ε > 0, a parameter y becomes a time dependent variable

and slow manifolds do not always consist of a family of equilibria or general

invariant sets. In fact, if unstable manifolds of normally hyperbolic invariant

manifolds are perturbed for ε > 0, then the negatively invariant manifolds (e.g.

unstable manifolds) of invariant sets are drastically collapsed in general. In

particular, dimensions of h-sets corresponding to unstable manifolds of invariant

sets change. The standard argument of covering relations is not thus sufficient

to validating connecting orbits in (1.1)ε.

To overcome this difficulty, we apply further structure of slow manifolds,

called the Fenichel fibering, to validate (un)stable manifolds of invariant sets on

slow manifolds. A direct consequence of discussions in the previous subsection

is stated as follows. This result can be generalized to arbitrary dimensions, but

we omit the details because we do not make use of such generalized arguments

in this paper.

Lemma 4.35. Let N be a fast-saddle-type block for (1.1)ε satisfying stable

and unstable cone conditions, and Iε ⊂ intN be a subset of 1-dimensional slow

manifold in N . Assume that Iε is an isolating block on the slow manifold whose

boundaries are repelling (cf. (4.23)). Then a trivial collection {Iε} is admissible

with respect to ϕε(t, · ) for all sufficiently small t > 0 (cf. Definition 2.12). Simi-

larly, assume that Iε is an isolating block on the slow manifold whose boundaries

are attracting (cf. (4.22)). Then a trivial collection {Iε} is back-admissible with

respect to ϕε(t, · ) for all sufficiently small t > 0. Here we regard the flow ϕε
in the full system as that restricted to Iε in both cases. This restriction makes

sense since slow manifolds are locally invariant.

Since Iε is 1-dimensional, if Iε is repelling, the covering relation Iε
ϕε(t, · )
=⇒ Iε is

nothing but Iε ⊂ ϕε(t, Iε). Similarly, if Iε is attracting, the back-covering relation

Iε
ϕε(t, · )⇐= Iε is nothing but Iε ⊂ ϕε(−t, Iε). For simplicity, we write k-covering
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relations N
f

=⇒ N for an h-set N and a continuous map f by
{
N

f
=⇒ N

}
k
. Let{

N
f⇐= N

}
k

be defined in a similar manner.

Lemma 4.35 gives the other proof of existence of an invariant set in Iε. Note

that this invariant set is actually invariant for the full system (1.1)ε.

A key essence of the Fenichel fibering are cone conditions on validated locally

invariant manifolds. In the case of fast-slow systems, the property that the

unstable fiber Im(hzf,u) ∩N in W u(Sε) for z ∈ Sε becomes a horizontal disk in N

is nontrivial, which is due to dynamics in the slow direction.

From now on we relate the fiber bundle structure of slow manifolds to cov-

ering relations. The fiber bundle structure of W u(Iε) for Iε ⊂ Sε leads to the

construction of a deformation retract rλ of unstable manifolds so that the fiber

bundle W u(Iε) rλ-covers a fast-exit face. Namely, the following lemma holds.

Lemma 4.36. Consider (3.1). Let N ⊂ Rn+1 be a fast-saddle-type block

with u = 1 satisfying the stable cone and the unstable fiber-cone conditions

(Appendix B) such that the coordinate representation Nc is actually given by

Nc = B1 × Bs × [0, 1]. Here ∗c denotes the image of objects under the homeo-

morphism cN . Also, let N exit be a fast-exit face of N with

πaN
exit
c = {1} ⊂ ∂B1, (N exit

c )− = {y±} ⊂ [0, 1] with 0 < y− < y+ < 1,

and Iε ⊂ intN be a connected subset of 1-dimensional slow manifold in N .

Assume that, for any z ∈ Iε, the Lipschitz function (b, y) = bzu,ε(a) is a horizontal

disk in N representing W u(z). We also assume that, at z± ∈ ∂Iε with z+ > z−,

πy((b
z+
u,ε)c(1)) > y+ and πy((b

z−
u,ε)c(1)) < y− hold. Then Iε

r1◦b∗u,ε
=⇒ N exit, where

rλ ◦ bzu,ε is the deformation retract given by

(4.24) (rλ ◦ bzu,ε)c(a) := (λ+ (1− λ)a, bzu,ε(λ+ (1− λ)a)), λ ∈ [0, 1], z ∈ Iε.

If πaN
exit = {−1}, then the same statement holds by replacing rλ in (4.24) by

(4.25) (rλ ◦bzu,ε)c(a) := (−λ+(1−λ)a, bzu,ε(−λ+(1−λ)a)), λ ∈ [0, 1], z ∈ Iε.

Proof. Our assumptions imply that rλ ◦ bz±u,ε(B1) ∩ N exit = ∅. Note that

graphs of b
z±
u,ε lie on the unstable manifold W u(Iε), which implies rλ ◦ bzu,ε(B1)∩

(N exit)+ = ∅ for all z ∈ Iε. The rest of assumptions in Propositions 2.8 or 2.9 is

easy to check. �

If we additionally assume that Iε is a singular isolating neighbourhood, then

we can describe unstable manifolds of invariant sets.

Proposition 4.37. In addition to assumptions in Lemma 4.36, we assume

that Iε is an isolating block on the slow manifold which is either repelling or

attracting. Then there exists a point z ∈ Inv(Iε) such that W u(z) ∩N exit 6= ∅.
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Proof. Since Iε is isolated, Lemma 4.35 yields the covering relation{
Iε

ϕε(t, · )
=⇒ Iε

}
k

for arbitrary k ≥ 1 and all sufficiently small t > 0 if Iε

is repelling. Similarly, if Iε is attracting, the covering relation
{
Iε

ϕε(t, · )⇐= Iε
}
k

holds for arbitrary k ≥ 1.

We only deal with the attracting case. By Proposition 2.11 there exists

a point zk ∈ Iε such that

(4.26) ϕε(−k′t, zk) ∈ Iε for all k′ = 0, . . . , k, W u(zk) ∩N exit 6= ∅.

Since Iε is compact, then the sequence {zk}k≥1 contains a convergent subse-

quence. Let z∞ be the limit. We can choose a sufficiently small tε > 0 such

that ϕε([−tε, 0), z) ∩ Iε = ∅ holds for all z ∈ ∂Iε, since Iε is an isolating block.

Note that ∂Iε means the boundary with respect to the slow manifold in N . Ob-

viously, we can choose a limit point z∞ from (4.26) with t = tε. The properties

of tε, z∞ and (4.26) thus imply ϕε([−ktε, 0], z∞) ⊂ Iε for all k ∈ N, which yields

ϕε((−∞, 0], z∞) ⊂ Iε. The inclusion ϕε([0,∞), z∞) ⊂ Iε is obvious since Iε is

attracting. As a consequence, z∞ ∈ Inv(Iε). By continuity of the graph bzu,ε
with respect to z, then W u(z∞) is well-defined and W u(z∞) ∩N exit 6= ∅. �

The validation of Iε being an isolating block on slow manifolds can be done

by arguments in Section 4.5. On the other hand, if we apply Lemma 4.36, we

have to know the location of fibers W u(z) for all z ∈ Iε. The unstable fiber-cone

condition indicates that, for z ∈ Iε, the fiber W u(z) is included in the unstable

cone Cu
(slu)−1(z) where slu is the slope of unsatble fibers whose detail is shown in

Appendix B. We can apply this cone to validating assumptions in Lemma 4.36.

Namely, the following lemma holds, which can be validated by rigorous numerics.

Lemma 4.38. Consider (3.1) with fixed ε ∈ [0, ε0]. Let N ⊂ Rn+1 be a

fast-saddle-type block with u = 1 satisfying the stable cone and the unstable fiber-

cone conditions such that the coordinate representation Nc is actually given by

Nc = B1 ×Bs × [0, 1]. Also, let N exit be a fast-exit face of N with

πaN
exit
c = {1}, (N exit

c )− = {y±} with 0 < y− < y+ < 1

and Iε ⊂ intN be a connected subset of 1-dimensional slow manifold in N .

Assume that the unstable fiber-cone condition (Appendix B) is satisfied in N

with the slope of fiber slu and that, at z± ∈ ∂Iε, the unstable cones Cu
sl−1

u
(z±)

satisfy the following properties:

(Cu
sl−1

u
(z±)) ∩ ∂N ⊂Nf,−,(4.27)

inf(πy(Cu
sl−1

u
(z+)) ∩ {a = 1}) > y+,(4.28)

sup(πy(Cu
sl−1

u
(z−)) ∩ {a = 1}) < y−.(4.29)

Then all assumptions in Lemma 4.36 hold.
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Proof. The unstable cone condition indicates, as mentioned, that the graph

of the Lipschitz function bzu,ε is contained in Cu
(slu)−1(z) for all z ∈ Iε. Since cones

have the identical shape for z ∈ Iε and Iε is 1-dimensional, then the condition

{(a, (bzu,ε)c(a)) | a ∈ B1} ⊂ N for all z ∈ Iε obviously follows from (4.27).

Inequalities πy((b
z+
u,ε)c(1)) > y+ and πy((b

z−
u,ε)c(1)) < y− are direct consequences

of (4.28) and (4.29), respectively. �

5. Topological existence theorems

of singularly perturbed trajectories

Now we are ready to state our verification theorems. In this section we derive

existence theorems for periodic and heteroclinic orbits which can be applied

to (1.1).

5.1. Existence of periodic orbits. First we state the existence theorems

for periodic orbits near singular orbits.

Theorem 5.1 (Existence of periodic orbits). Consider (1.1). Assume that

there exist ρ ∈ N, ε0 > 0 such that (1.1) admits the following ε (∈ [0, ε0])-

parameter family of sets in Rn+1 (see also Figure 7 (a)):

• Sjε , j = 0, . . . , ρ: a fast-saddle-type block with u = 1 satisfying the

covering-exchange property with respect to F j−1ε defined below and for

T j−1 > 0.

• F jε , j = 0, . . . , ρ: a fast-exit face of Sjε . Identify F−1ε with Fρε .

Then the following statements hold:

(a) When ε ∈ (0, ε0], (1.1) admits a periodic orbit {Γε(t) | t ∈ R} with

a sequence of positive numbers 0<t0f <t
1
s <t

1
f < . . .< tρf < t0s ≡ Tε<∞

such that

Γε(Tε) = Γε(0) ∈ F0
ε ,

Γε([t
j
f , t

j+1
s ]) ⊂ Sj+1

ε , Γε(t
j+1
s ) ∈ Fj+1

ε (j = 0, . . . , ρ− 1), ,

Γε([t
ρ
f , Tε]) ⊂ S

0
ε .

(b) When ε = 0, (1.1) admits the collection of heteroclinic orbits {Γj =

{xyj (t)}t∈R}
ρ
j=0 with

lim
t→−∞

xyj (t) = pj ∈ Sj0 with f(pj , yj , 0) = 0,

lim
t→+∞

xyj (t) = qj ∈ Sj+1
0 with f(qj , yj , 0) = 0 (j = 0, . . . , ρ− 1),

lim
t→−∞

xyρ(t) = pρ ∈ Sρ0 with f(pρ, yρ, 0) = 0,

lim
t→+∞

xyρ(t) = qρ ∈ S00 with f(qρ, yρ, 0) = 0,

Γj ∩ F jε 6= ∅ (j = 0, . . . , ρ)



Rigorous Numerics for Fast-Slow Systems 427

bridging 1-dimensional normally hyperbolic invariant manifolds Sj0 ⊂
Sj0 and Sj+1

0 ⊂ Sj+1
0 for j = 0, . . . , ρ − 1. In case that j = ρ such

a heteroclinic orbit connects Sρ0 ⊂ S
ρ
0 and S0

0 ⊂ S00 .

(a)

(b)

Figure 7. Illustration of {Sjε ,Fjε}ρj=0 in Theorems 5.1 and 5.6, ρ = 4.

Rectangular parallelepipeds (colored red and yellow) are fast-saddle-type

blocks with fast-exit faces (colored green) satisfying the covering-exchange
property. Vertical black arrows show the slow vector field. Bold black

curves outside blocks describe heteroclinic orbits {Γj}ρj=0. Black lines in-

side blocks correspond to limit critical manifolds. Their union generates

a singular limit orbit Γ0. Theorem 5.1 claims that there exists a family of
periodic orbits {Γε}ε∈(0,ε0] near Γ0.

Proof. First consider the case ε ∈ (0, ε0]. By Proposition 4.5 and our

assumption, there exist h-sets S̃jε ⊂ Sjε such that we get the sequence of covering

relations

Fρε
ϕε(Tρ, · )

=⇒ S̃0ε
P 0
ε=⇒ F0

ε

ϕε(T0, · )
=⇒ S̃1ε

P 1
ε=⇒ · · · ϕε(Tρ−1, · )

=⇒ S̃ρε
Pρε=⇒ Fρε ,
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where P jε : Sjε → ∂Sjε is the Poincaré map of Sjε . Then our statement is just

a consequence of Proposition 2.11. The case ε = 0 is just a consequence of

Proposition 2.14. All arguments with respect to horizontal and vertical disks are

valid due to Corollary 3.7. �

Remark 5.2. The standard Exchange Lemma says that the period when

trajectories stay near slow manifolds in O(ε)-distance is O(1/ε) (actually, dis-

cussed in [20], O(exp(−c/ε)) for some c > 0). The period Tε is thus expected to

be O(1/ε) for ε ∈ (0, ε0].

Theorem 5.1 can be generalized as stated below, replacing covering-exchange

pairs by covering-exchange sequences.

Corollary 5.3 (Validation of periodic orbits with slow shadowing). Con-

sider (1.1). Assume that there exist ρ ∈ N, ε0 > 0 such that (1.1) admits the

following ε (∈ [0, ε0])-parameter family of sets in Rn+1 (see also Figure 8):

• {N j,i
ε }

j=0,...,ρ
i=0,...,mj

: a sequence of h-sets with u = 1 which forms a covering-

exchange sequence with F j−1ε defined below.

• F jε , j = 0, . . . , ρ: a fast-exit face of N
j,mj
ε . Identify F−1ε with Fρε .

Then all statements in Theorem 5.1 hold with Sjε =
mj⋃
i=0

N j,i
ε .

Figure 8. Illustration of {Sjε ,Fjε}ρj=0 in Corollary 5.3, ρ = 2. Rectan-

gular parallelepipeds (colored red and yellow) are fast-saddle-type blocks

with fast-exit faces (colored green) satisfying the covering-exchange prop-
erty and slow shadowing. Vertical black arrows show the slow vector field.

Bold black curves outside blocks describe heteroclinic orbits {Γj}ρj=0. The

union of heteroclinic orbits Γj and critical manifolds inside blocks generates

a singular limit orbit Γ0. Theorem 5.1 claims that there exists a family of
periodic orbits {Γε}ε∈(0,ε0] near Γ0.

Proof. We only consider the case ε ∈ (0, ε0]. By Propositions 4.12, 4.14,

4.15 and our assumptions, there is a sequence of h-sets {M j,i
ε }

j=0,...,ρ
i=0,...,mj

with
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M j,i
ε ⊂ N j,i

ε which admits a sequence of covering relations

Fρε
ϕε(Tρ, · )

=⇒ M0,0
ε

P 0,0
ε=⇒M0,1

ε

P 0,1
ε=⇒ · · · P

0,m0−1
ε=⇒ M0,m0

ε

P 0,m0
ε=⇒ F0

ε

ϕε(T0, · )
=⇒ M1,0

ε

P 1,0
ε=⇒ · · · P

ρ,mρ−1
ε=⇒ Mρ,mρ

ε
P
ρ,mρ
ε=⇒ Fρε ,

where P j,iε : (N j,i
ε )≤yj,i+hj,i→ ∂(N j,i

ε )≤yj,i+hj,i is the Poincaré map in the fam-

ily (N j,i
ε )≤yj,i+hj,i with appropriate choices of y = yj,i and h = hj,i following

Propositions 4.12, 4.14 and 4.15. Then our statement is just a consequence of

Proposition 2.11. �

Note that points on the slow manifold Sjε are contained in all h-sets {M i,j
ε }

in the proof of Corollary 5.3. This observation implies that true orbits in the

full system (1.1) shadow trajectories on Sjε via covering relations (cf. [27]). This

fact gives us a suggestion to describe true trajectories for fast-slow systems with

multi-dimensional slow variables from the viewpoint of shadowing.

Corollary 5.3 can be further generalized as stated below, at least in the

case u = s = 1, replacing covering-exchange sequences by covering-exchange

sequences with extended cones.

Corollary 5.4 (Validation of periodic orbits with slow shadowing and

m-cones). Consider (1.1). Assume that there exist ρ ∈ N, ε0 > 0 such that

(1.1) admits the following ε (∈ [0, ε0])-parameter family of sets in R3:

• {N j,i
ε }

j=0,...,ρ
i=0,...,mj

: a sequence of fast-saddle-type blocks with u = 1 which

admits a sequence of faxt-exit faces {N j,exit
ε }j=0,...,ρ with N j,exit

ε ⊂ N j,mj
ε .

The collection (F j−1ε , {N j,i
ε }i=0,...,mj , N

j,exit
ε , Cu

muj
, Cs

msj
) forms a covering-ex-

change sequence with extended cones Cu
muj
, Cs

msj
. Associating sets Cu

muj
, Cs

msj
and

F jε are defined below.

• Cu
muj

(j = 0, . . . , ρ): the unstable mu
j -cones of N

j,mj
ε . Identify Cu

mu−1
with

Cu
muρ

.

• Cs
msj

(j = 0, . . . , ρ): the stable ms
j-cone of N j,0

ε .

• F jε (j = 0, . . . , ρ): a fast-exit face (Cu
muj

)exit of Cu
muj

. Identify F−1ε
with Fρε .

Then all statements in Theorem 5.1 hold with Sjε = Cs
msj
∪
mj⋃
i=0

N j,i
ε ∪ Cu

muj
.

Proof. Replace F jε and M j,0
ε in the proof of Corollary 5.3 by N j,exit

ε
P
muj
ε=⇒ F jε

and M̃ j,0
ε , respectively. Here P

muj
ε : Cu

muj
→ ∂Cu

muj
is the Poincaré map and

M̃ j,0
ε ⊂ (N j,0

ε ∪ Cs
msj

) is the h-set corresponding to M̃1 in Proposition 4.30. �

Remark 5.5. The key essence of our validation near slow manifolds consists

of the following three pieces:
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(a) Construction of fast-saddle-type blocks.

(b) Stable and unstable cone conditions.

(c) Slow shadowing condition (if necessary).

As long as validations of the above procedures pass, we can extend slow manifolds

in an arbitrary range keeping the existence of points near slow manifolds which

exit their neighbourhoods after time T = O(1/ε), as stated in the Exchange

Lemma.

5.2. Existence of connecting orbits. Similar settings and arguments to

the previous subsection yield the existence of heteroclinic orbits near singular

orbits.

Theorem 5.6 (Existence of heteroclinic orbits). Consider (1.1). Assume

that there exist ρ ∈ N and ε0 > 0 such that (1.1) admits the following ε (∈ [0, ε0])-

parameter family of sets in Rn+1 (see also Figure 7 (b)):

• Sjε , j = 0: a fast-saddle-type block satisfying stable and unstable cone

conditions. Moreover, it contains the nonempty maximal invariant sets

Sε,u.

j = ρ: a fast-saddle-type block satisfying the covering-exchange property

with respect to Fρ−1ε (defined below) except the third condition. Moreover,

it contains the nonempty maximal invariant set Sε,s. The set Sε,s is

contained in an attracting isolating block on the slow manifold in Sρε .

j = 1, . . . , ρ−1: a fast-saddle-type block satisfying the covering-exchange

property with respect to F j−1ε defined below and for T j−1 > 0. All Sjε
are assumed that u(Sjε ) ≡ u = 1

• F jε , j = 0, . . . , ρ− 1: a fast-exit face of Sjε .

If j = 0, the invariant set Sε,u admits an isolating block B(Sε,u) on the

slow manifold in S0ε such that all assumptions in Lemma 4.38 as well as

fiber-cone condition (Appendix B) in S0ε hold.

Then the following statements hold:

(a) When ε ∈ (0, ε0], (1.1) admits a heteroclinic orbit {Γε(t) | t ∈ R} with

a sequence of positive numbers 0< t0f < t1s < t1f < . . . < tρ−1s < tρ−1f <∞
such that

dist(Γε(t), Sε.u)→ 0 as t→ −∞,

Γε((−∞, 0]) ⊂W u(Sε,u) ⊂ S0ε , Γε(0) ∈ F0
ε ,

Γε([t
j−1
f , tjs]) ⊂ Sjε , Γε(t

j
s) ∈ Fjε (j = 1, . . . , ρ− 1),

Γε([t
ρ−1
f ,∞)) ⊂W s(Sε,s) ⊂ Sρε ,

dist(Γε(t), Sε.s)→ 0 as t→ +∞.
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(b) When ε = 0, (1.1) admits the collection of heteroclinic orbits {Γj =

{xyj (t)}t∈R}
ρ
j=0 with

lim
t→−∞

xyj (t) = pj ∈ Sj0 with f(pj , yj , 0) = 0,

lim
t→+∞

xyj (t) = qj ∈ Sj+1
0 with f(qj , yj , 0) = 0,

Γj ∩ F jε 6= ∅ (j = 0, . . . , ρ− 1),

bridging 1-dimensional normally hyperbolic invariant manifolds Sj0 ⊂ S
j
0

and Sj+1
0 ⊂ Sj+1

0 for j = 0, . . . , ρ− 1.

Proof. Consider the case ε ∈ (0, ε0]. We deal with the case that B(Sε,u) is

attracting. By Propositions 4.5, 4.37 and our assumptions, we get the sequence

of covering relations{
B(Sε,u)

ϕε(t, · )⇐= B(Sε,u)
}
k

r1◦b∗u,ε
=⇒ F0

ε

ϕε(T0, · )
=⇒ S̃1ε

P 1
ε=⇒ F1

ε

ϕε(T1, · )
=⇒ S̃2ε

P 2
ε=⇒ · · · ϕε(Tρ−1, · )

=⇒ Sρε ,

for all sufficiently small t > 0 and arbitrary k ∈ N. Here rλ is the deformation

retract given by (4.24) or (4.25), bzu,ε is the horizontal disk at z ∈ B(Sε,u)

whose graph is the unstable manifold W u(z) and P jε : Sjε → ∂Sjε is the Poincaré

map of Sjε . The stable manifold W s(Sε,s) is given by a vertical disk buε in Sρε
with (b, y)-coordinates as the s(Sρε )-dimensional direction of the h-set Sρε . Our

statement is just a consequence of Propositions 4.37 and 2.14. See Definition 2.13

about horizontal and vertical disks. All arguments with respect to horizontal

and vertical disks are valid due to Corollary 3.7. In the case that B(Sε,u) is

repelling, the same arguments are valid when replacing the covering relation{
B(Sε,u)

ϕε(t, · )⇐= B(Sε,u)
}
k

by
{
B(Sε,u)

ϕε(t, · )
=⇒ B(Sε,u)

}
k
.

The case ε = 0 is the same as that of Theorem 5.1. Remark that we do not

need the sequence of covering relations{
B(Sε,u)

ϕε(t,·)⇐= B(Sε,u)
}
k

r1◦b∗u,ε
=⇒ F0

ε

to prove our statements in this case. �

Theorem 5.6 can be generalized as stated below, replacing covering-exchange

pairs by covering-exchange sequences.

Corollary 5.7 (Validation of heteroclinic orbits with slow shadowing).

Consider (1.1). Assume that there exist ρ ∈ N and ε0 > 0 such that (1.1)

admits the following ε (∈ [0, ε0])-parameter family of sets in Rn+1:

• {N j,i
ε }

j=0,...,ρ
i=0,...,mj

with m0 = 0. j = 1, . . . , ρ−1: a sequence of h-sets which

forms a covering-exchange sequence with F j−1ε defined below.
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j = ρ: a sequence of h-sets which forms a covering-exchange sequence

with Fρ−1ε defined below except the last assumption in Definition 4.16.

Blocks N0,0
ε and N

ρ,mρ
ε contain nonempty maximal invariant sets Sε,u

and Sε,s, respectively. The invariant set Sε,s is contained in an attracting

isolating block on the slow manifold in N
ρ,mρ
ε . All N j,i

ε are assumed that

u(N j,i
ε ) ≡ u = 1.

• F jε , j = 0, . . . , ρ− 1: a fast-exit face of N
j,mj
ε .

If j = 0, the invariant set Sε,u admits an isolating block B(Sε,u) on the

slow manifold in N0,0
ε such that all assumptions in Lemma 4.38 as well

as fiber-cone condition (Appendix B) in N0,0
ε hold.

Then all statements in Theorem 5.6 hold with Sjε =
mj⋃
i=0

N j,i
ε .

Proof. We only consider the case ε ∈ (0, ε0] and B(Sε,u) is attracting. By

Propositions 4.37, 4.12, 4.14, 4.15 and our assumptions, there is a sequence of

h-sets {M j,i
ε }

j=0,...,ρ
i=0,...,mj

with M j,i
ε ⊂ N j,i

ε which admits a sequence of covering

relations{
B(Sε,u)

ϕε(t, · )⇐= B(Sε,u)
}
k

r1◦b∗u,ε
=⇒ F0

ε

ϕε(T0, · )
=⇒ M1,0

ε

P 1,0
ε=⇒M1,1

ε

P 1,1
ε=⇒ · · ·

· · · P
1,m1−1
ε=⇒ M1,m1

ε

P 1,m1
ε=⇒ F1

ε

ϕε(T1, · )
=⇒ M2,0

ε

P 2,0
ε=⇒ · · · P

ρ,mρ−1
ε=⇒ Mρ,mρ

ε

for arbitrary k ∈ N and sufficiently small t > 0. Here rλ is the deformation retract

given by (4.24) or (4.25), bzu,ε is the horizontal disk at z ∈ B(Sε,u) whose graph

is the unstable manifold W u(z). Also, P j,iε : (N j,i
ε )≤yj,i+hj,i → ∂(N j,i

ε )≤yj,i+hj,i
is the Poincaré map in (N j,i

ε )≤yj,i+hj,i with appropriate choices of y = yj,i and

h = hj,i following Propositions 4.12, 4.14 and 4.15. The stable manifold W s(Sε,s)

is given by a vertical disk bsε in N
ρ,mρ
ε with (b, y)-coordinates as the s(N

ρ,mρ
ε )-

dimensional direction of the h-set N
ρ,mρ
ε . Our statement is just a consequence

of Propositions 4.37 and 2.14. All arguments with respect to horizontal and

vertical disks are valid due to Corollary 3.7 and Proposition 4.37. �

Corollary 5.7 can be further generalized as stated below, at least in the

case u = s = 1, replacing covering-exchange sequences by covering-exchange

sequences with extended cones.

Corollary 5.8 (Validation of heteroclinic orbits with slow shadowing and

m-cones). Consider (1.1). Assume that there exist ρ ∈ N and ε0 > 0 such that

(1.1) admits the following ε (∈ [0, ε0])-parameter family of sets in R3:

• {N j,i
ε }

j=0,...,ρ
i=0,...,mj

, with m0 = 0. j = 1, . . . , ρ−1: a sequence of fast-saddle-

type blocks which admits a sequence of fast-exit faces {N j,exit
ε }j=0,...,ρ

with N j,exit
ε ⊂ N j,mj

ε . Moreover, the collection

(F j−1ε , {N j,i
ε }i=0,...,mj , N

j,exit
ε , Cu

muj
, Cs

msj
)
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forms a covering-exchange sequence with extended cones Cu
muj
, Cs

msj
. As-

sociating sets Cu
muj
, Cs

msj
and F jε are defined below.

j = ρ: a sequence of h-sets which forms a covering-exchange sequence

with cones with Fρ−1ε and Cs
msρ

defined below, except the last assumption

in Definition 4.16.

Blocks N0,0
ε and N

ρ,mρ
ε contain nonempty maximal invariant sets Sε,u

and Sε,s, respectively. The invariant set Sε,s is contained in an attracting

isolating block on the slow manifold in N
ρ,mρ
ε . All N j,i

ε are assumed that

u(N j,i
ε ) ≡ u = 1.

• Cu
muj

(j = 1, . . . , ρ− 1): the unstable mu
j -cones of N

j,mj
ε .

• Cs
msj

(j = 1, . . . , ρ): the stable ms
j-cones of N j,0

ε .

• F jε (j = 0, . . . , ρ− 1): a fast-exit face (Cu
muj

)exit of Cu
muj

.

If j = 0, the invariant set Sε,u admits an isolating block B(Sε,u) on the

slow manifold in N0,0
ε such that all assumptions in Lemma 4.38 hold with

the fast-exit face N0,exit
ε of N0,0

ε .

Then all statements in Theorem 5.6 hold with

Sjε =



mj⋃
i=0

N j,i
ε ∪ Cu

muj
= N0,0

ε ∪ Cu
mu0

if j = 0,

Cs
msj
∪
mj⋃
i=0

N j,i
ε if j = ρ,

Cs
msj
∪
mj⋃
i=0

N j,i
ε ∪ Cu

muj
otherwise.

Proof. Replace F jε and M j,0
ε in the proof of Theorem 5.7 by N j,exit

ε
P
muj
ε=⇒ F jε

and M̃ j,0
ε , respectively. Here P

muj
ε : Cu

muj
→ ∂Cu

muj
is the Poincaré map and

M̃ j,0
ε ⊂ (N j,0

ε ∪ Cs
msj

) is the h-set corresponding to M̃1 in Proposition 4.30. �

Remark 5.9. Changing the choice of covering-exchange sequences and fast-

saddle-type blocks containing nontrivial invariant sets, we can obtain various

types of singularly perturbed global orbits near singular orbits. For example, in

Theorem 5.6, further assuming S0ε = Sρε and Sε,u = Sε,s = {pε}, an equilibrium,

there exists an ε-family of homoclinic orbits {Hε}ε∈(0,ε0] of pε.

We can replace the fourth condition in the covering-exchange property,

F jε
ϕε(T

j , · )
=⇒ S̃j+1

ε ,

by a sequence of covering relations

F jε
ϕε(T

j , · )
=⇒ M j

1

ϕε(T
j
1 , · )=⇒ M j

2

ϕε(T
j
2 , · )=⇒ · · ·

ϕε(T
j
k−1, · )

=⇒ M j
k

ϕε(T
j
k , · )=⇒ S̃j+1

ε
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for h-sets {M j
i }ki=1 and positive numbers {T ji }ki=1 to prove the same statements

as Theorems 5.1 and 5.6. These are applications to Proposition 2.11 or 2.14 and

such extensions are useful for validating trajectories with complex behavior.

6. Sample validation results for the FitzHugh–Nagumo system

In this section we provide several examples of singularly perturbed orbits

with computer assistance. Our sample system is the FitzHugh–Nagumo system

given by

(6.1)


u′ = v,

v′ = δ−1(cv − f(u) + w),

w′ = εc−1(u− γw),

where a ∈ (0, 1/2), c, γ and δ are positive parameters and f(u) = u(u−a)(1−u).

System (6.1) is well known as the system of traveling wave solutions (U,W ) =

(ψU (x− ct), ψW (x− ct)) of the following PDE:

(6.2)

Ut = Uxx + f(U)−W,
Wt = ε(U − γW ).

Throughout this section, the map πα, α = u, v, w, denotes the projection

onto the α-component.

6.1. Strategy and parameters. Following arguments of the previous sec-

tions, we validate global orbits. The following implementation is basically com-

mon in our computations. In particular, we concentrate on the construction of

covering-exchange sequences associated with slow shadowing sequences.

Step 1. Fix ε0 > 0 and several parameters.

Step 2. For constructing the j-th slow shadowing sequence {N j,i
ε }

mj
i=0 (j =

0, . . . , ρ > 0) with πw(N j,i
ε ) = [y−j,i, y

+
j,i], we set identical positive numbers

a0, b0 and h in (SS4) in advance. Before constructing each N j,i
ε , we compute

approximate equilibria {(uj,i, 0, wj,i)}
mj
i=0 for (6.1)0 (i.e. ε = 0) along a (nor-

mally hyperbolic) branch of the nullcline. For simplicity, compute them with

|wj,i+1 − wj,i| ≡ h for all i so that {wj,i}
mj
i=0 is monotonously increasing (resp.

decreasing) in the case q = +1 (resp. q = −1).

Also, let |y+j,i−wj,i| = |wj,i−y
−
j,i| ≡ H/2 for someH > 0 for further simplicity.

Set πw(N j,exit
ε ) = [y−j,mj + h, y+j,mj − δ] in the case of q = +1. Similarly, set

πw(N exit
ε ) = [y−j,mj + δ, y+j,mj − h] in the case of q = −1. Here δ > 0 denotes

an arbitrarily small number. For validation of (SS5), we apply Proposition 4.32.

Under these settings, verify the slow shadowing condition (4.5). We revisit this

verification later in Lemma 6.1.
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In the case of validations of heteroclinic orbits, we additionally need to vali-

date W u(Iε) for an isolating block Iε on slow manifolds. To this end, verify all

assumptions in Lemma 4.38.

Step 3. If necessary, verify the unstable m-cone condition for an appropriate

m > 1 in a block of the form (4.11) (Section 4.4). Also, construct the fast-exit

face (Cu
m)exit of unstable m-cones following (4.15). Similarly, verify the stable m-

cone condition for an appropriatem > 1 in a block of the form (4.12), if necessary.

When we apply the predictor-corrector method for constructing fast-saddle-type

block (Section 2.3.3), vertices of m-cones are slid in general. In this case, we cut

the cone so that the fast-exit face is parallel to the y-axis. As a consequence, the

length `u or `s of extended cones shortens at most |fx(x, y)−1fy(x, y)H|, where

H is the height of the block in the y-direction. See Figure 9.

(a) (b)

(c)

Figure 9. Cutting m-cones. (a) A fast-saddle-type block N with the basic

form (Section 2.3.2) and associated unstable m-cone. The union of yellow
and white regions represents N ∪ Cu

m. The yellow region represents (N ∪
Cu
m)∩ {y ∈ πw(N)}. The x-components of block N are identical for y. (b)

A fast-saddle-type block with the predictor-corrector form (Section 2.3.3)
and associated unstable m-cone. The x-components of the block N as well
as the cone Cu

m are slid, since the x-component of the center point also

depends on y; (x, y) = (x + (dx/dy)(y) · (y − y), y). The fast-exit face
thus has a nontrivial angle to the y-axis. (c) Cut the edge of unstable

m-cones. The resulting fast-exit face is parallel to the y-axis. The length

`u of the extended cone shortens at most |fx(x, y)−1fy(x, y)H|, where H
is the height of the block in the y-direction.

Step 4. Solve initial value problems of ODEs for setting a fast-exit face

of each block as an initial data and verify (CE4) in Definition 4.2 or Drop

N j−1,exit
ε

ϕε(T
j
k , · )=⇒ (N j,0

ε )≤y+j,0−h
. This operation consists of direct applications of
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interval arithmetics and ODE solver libraries such as CAPD [3]. Although our

computations here are operated in full systems, slow dynamics can be regarded

as the small error since our interest in this step is mainly the behavior of fast

dynamics.

Validation of assumptions in Lemma 4.38 in Step 2 can be done as follows.

Lemma 6.1 (Validation of assumptions in Lemma 4.38). Let N be a fast-

saddle-type block with πw(N) = [y−N , y
+
N ], and I be an isolating block containing

an equilibrium in the validated slow manifold Sε with 0 < dist(Sε, N
f,−) <

diam(πa(N)) − ra, where ra > 0, and dist(Sε, N
f,+) ≥ rb > 0. Assume that N

satisfies the stable m-cone condition and the unstable fiber-L-cone condition with

(6.3) slu{diam(πa(N))− ra} < rb,

where slu = m(1 + L−2)1/2 is the slope of instable fibers stated in Appendix B.

Also assume that I can be chosen in

(6.4) N ∩ {y−N + slu{diam(πa(N))− ra} ≤ y ≤ {y+N − slu{diam(πa(N))− ra}}

and that any subset Ĩ ⊂ Sε containing I is also an isolating block with the same

isolating information as I. Then we can choose an isolating block Iε ⊂ Sε and

the fast-exit face N exit with πw(N exit) = [y−, y+] and

(6.5) y−N +2 slu{diam(πa(N))−ra} ≤ y− < y+ ≤ y+N−2 slu{diam(πa(N))−ra}

so that assumptions in Lemma 4.38 hold.

Proof. For each p ∈ I, any point q ∈ W u(p) satisfies |πb(q) − πb(p)| <
slu{diam(πa(N)) − ra}, which is a consequence of properties of unstable cones.

The same property holds for y-components. Therefore assumptions concerning

with (6.3) and (6.4) imply (4.27). Similarly, it immediately holds that we can

choose Iε and N exit with (6.5) so that (4.28)–(4.29) are satisfied. �

In practical computations, the most difficult part is Step 4. In general,

the larger both the fast-exit face N j,exit
ε and the target h-set in Drop, i.e.

(N j,0
ε )≤y+j,0−h

, are, the easier validations of covering relations are. However,

if we validate covering relations described in Step 4, the resulting h-set M j,i
ε is

very close to the slow exit, i.e. (N j,i
ε )y+j,i

(resp. (N j,i
ε )y−j,i

) in the case q = +1

(resp. q = −1). In particular, the next fast-exit face N j,exit
ε becomes too thin

to validate the next Drop. Procedures in Step 2 as well as Step 4 thus look

incompatible with each other. Nevertheless, an appropriate choice of the slow

shadowing ratio χ avoids this inconsistency.

Lemma 6.2 (Validity of Step 2). For each j = 1, . . . , ρ, consider the j-th

slow shadowing sequence {N j,i
ε }

mj
i=0 in Step 2. Assume that a covering relation
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N j−1,exit
ε

ϕε(Tj , · )
=⇒ (N j,0

ε )≤y+j,0−h
holds. Let χj be the slow shadowing ratio satis-

fying

(6.6) χj ≤ 1− H

h

( |wj,mj − wj,0| −H
h

)−1
= 1− H

h

(
mjh−H

h

)−1
with mjh > H. Finally assume that {N j,i

ε }
mj
i=0 is the slow shadowing sequence

with the identical ratio χj. Then we can choose a fast-exit face N j,exit
ε so that

πw(N j,exit
ε ) = [y−j,mj + h, y+j,mj − δ] (resp. πw(N exit

ε ) = [y−j,mj + δ, y+j,mj − h]) in

the case of q = +1 (resp. q = −1), where δ > 0 is an arbitrarily small number.

As a consequence, Steps 2 and 4 are valid simultaneously.

Proof. We only prove the case q = +1. The case q = −1 is similar. By

Proposition 4.14 with χj , we can construct a covering relation M j,0
ε

P j,0ε=⇒ M j,1
ε ,

where

M j,0
ε ⊂ (N j,0

ε )y+j,0−h
and M j,1

ε ⊂ (N j,1
ε )y+j,0−(1−χj)h

= (N j,1
ε )y+j,1−(2−χj)h

.

The last equality follows from the choice of y±j,i and wj,i in Step 2. Repeating this

argument, two h-sets describing the i-th covering relation M j,i−1
ε

P j,i−1
ε=⇒ M j,i

ε are

located on (N j,i−1
ε )Ii−1

and (N j,i
ε )Ii , respectively, where

Ii = y+j,i − {(i+ 1)− iχj}h.

We thus obtain Imj = y+j,mj −{(mj + 1)−mjχj}h. If the ratio χj can be chosen

satisfying (6.6), we obtain

{(mj + 1)−mjχj}h ≥
{

(mj + 1)−mj

{
1− H

h

( |wj,mj − wj,0| −H
h

)−1}}
h

=

{
1 +

mjH

h

(
mjh−H

h

)−1}
h.

Consequently,

y+j,mj − {(mj + 1)−mjχj}h ≤ y+j,mj − h−
mjH

h

(
mjh−H

h

)−1
h

= y+j,mj − h−
(

mjhH

mjh−H

)
≤ y+j,mj − h−H = y−j,mj − h.

Obviously, the slow shadowing pair with the ratio χj satisfies the slow shadowing

condition with the ratio χ′ for all χ′ ∈ [χj , 1]. Therefore, arranging several

χj,i’s in the slow shadowing pair {N j,i−1
ε , N j,i

ε }, we can take the h-set M
j,mj
ε

on (N
j,mj
ε )y−j,i

. Statements of the lemma follow from the same arguments as

in the proof of Proposition 4.15. Schematic pictures of the proof are shown in

Figure 10. �
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(a) (b)

Figure 10. Schematic pictures of Lemma 6.2 (q = +1). Dotted lines de-

note sections (Nj,i
ε )y for each i. (a) If the sequence of fast-saddle-type

blocks {Nj,i
ε }

mj
i=0 is a slow shadowing sequence with the ratio χj , the sec-

tion (Nj,i+1
ε )y where the covering relation Mj,i

ε
P j,iε=⇒ Mj,i+1

ε ⊂ (Nj,i+1
ε )y

gets lower than the usual version (χj = 1). (b) Repeating the procedure in

(a) sufficiently many times, we can take the section (N
j,mj
ε )y before Jump

at the bottom of N
j,mj
ε ; namely, (N

j,mj
ε )

y−j,mj
. As a consequence, we can

take the fast-exit face Nj,exit
ε large keeping the target h-set (Nj,0

ε )≤y in

Drop large.

Thanks to Lemma 6.2, we replace Step 2 by the following, which enables us

to verify assumptions of results in Section 5 with large fast-exit faces and large

target h-sets in Drop:

Step 2’. Replace the statement “verify the slow shadowing condition” in

Step 2 by “verify the slow shadowing condition with the slow shadowing ratio χj”,

where χj < 1 is a given number satisfying (6.6).

If Steps 1, 2’, 3 and 4 pass, then all assumptions of either Theorem 5.1,

Corollaries 5.3 or 5.4 are satisfied in the case of periodic orbits for all ε ∈ (0, ε0].

Similarly, all assumptions of either Theorem 5.6, Corollaries 5.7 or 5.8 are satis-

fied in the case of heteroclinic or homoclinic orbits.

In Step 2, the predictor-corrector approach discussed in Section 2.3.3 is used

for choosing local coordinates around (normally hyperbolic) invariant manifolds.

A concrete form for validations is shown in Appendix A.

Note that all our examples below are cases with u = 1. In such cases,

one can directly verify the covering relation Fj−1ε

ϕε(Tj , · )
=⇒ M j,0

ε by checking all

assumptions in Proposition 2.9. In Step 4, we apply this proposition to validating

covering relations.

Below we list parameters we deal with in computations in our settings except

the ones which arise in (6.1), before moving to practical computational examples.

These parameters are set for each branch of slow manifolds which we try to find.

Let j ∈ {0, 1, . . . , ρ} be the number of branches.
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• h: The height in the w-direction for slow shadowing condition (4.5).

A sequence of equilibria {(ui, vi, wi)} for (1.3) is set so that |wi+1−wi| ≡
h for all i.

• H: The height of fast-saddle-type blocks in the w-direction. Each w-

interval of length H corresponds to the set K in Section 2.3.2.

• w0: A given number such that |w0 − w0| < h, where w0 is the w-

component of an equilibrium (u0, v0, w0). The equilibrium (u0, v0, w0)

is computed numerically and becomes the center of the fast-saddle-type

block N j,0
ε ; the target h-set of Drop.

• wmj : A given number such that |wmj − wmj | < h, where wmj is the

w-component of an equilibrium (umj , vmj , wmj ). The equilibrium (umj ,

vmj , wmj ) is computed numerically and becomes the center of the fast-

saddle-type block N
j,mj
ε ; the last h-set of the j-th slow shadowing se-

quence containing a fast-exit face.

• χ: The slow shadowing ratio given by

χ = 1− H

h

(
|wmj − w0| −H − 2h

h

)−1
.

One can easily check that χ satisfies (6.6).

• ra, rb: The lengths of spaces in fast-saddle-type blocks introduced in

(4.3). For simplicity, these numbers are identical for all blocks. More-

over, they are assumed to be identical to each other.

• da, db: Positive numbers less than 1 introduced in (SS5).

• mu,ms: Positive numbers determining the sharpness of unstable and

stable m-cones, respectively.

• `u, `s: Positive numbers determining the length ` of unstable and stable

m-cones in (4.11) and (4.12), respectively. By using these numbers, we

compute bounds of the departure time Tdep in (4.13) to construct the

fast-exit face (Cu
m)exit of the unstable m-cone in (4.15), and the arrival

time Tarr in (4.14). The arrival time Tarr is used to validate Drop to the

target h-set (N j,0
ε ∪Cs

m)y+0 −h
in the w-direction corresponding to (4.16),

as stated in Proposition 4.30.

If we apply the predictor-corrector form (Section 2.3.3) to constructing

fast-saddle-type blocks, the practical length `u is set as `u−|fu(u)−1|H,

following Step 3 and Figure 9. The factor fu(u)−1 is the differential of

u by w at the center point (u, v, w) via the implicit function differential

for (6.1). Details are shown in Appendix A.

All computations are done by MacBook Air 2011 model (1.6 GHz, Intel

Core i5 Processor, 4GB Memory), GCC version 4.2.1 with -O2 option and CAPD

library [3] version 3.0.
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6.2. Demonstration 1: slow shadowing sequences with the ratio χ.

Validations of not only slow manifolds near critical manifolds consisting of equi-

libria for (1.3) but also the existence of trajectories which shadow slow manifolds

are our starting points of the whole considerations. Slow manifolds for (6.1) are

now expected to be near the nullcline {v = 0, f(u) = w}. The aim of this sub-

section is to test how large slow manifolds can be validated in terms of slow

shadowing sequence. Following Step 2 at the beginning of this section, we vali-

date slow shadowing sequences. Note that validations in this section also verify

Jump in Proposition 4.15.

As a demonstration, we fix a = 0.3, γ = 10.0, δ = 9.0 and c ∈ [0.799, 0.801].

These parameters are also used in Sections 6.7 and 6.8.

Computer Assisted Result 6.3. Consider (6.1) with a = 0.3, γ = 10.0

and δ = 9.0. Then for all c ∈ [0.799, 0.801] and ε ∈ [0, 5.0 × 10−5], the branch

of slow manifolds near the nullcline {v = 0, f(u) = w} in {−1.765629966434 ×
10−1 ≤ u ≤ 2.017612584956 × 10−3,−6.0 × 10−4 ≤ w ≤ 0.099} is validated. In

particular, the slow shadowing condition with q = −1 between blocks around this

slow manifold is validated with parameters listed in “First branch” in Table 1.

Similarly, the branch of slow manifolds near the nullcline {v = 0, f(u) =

w} in {0.8504842978868 ≤ u ≤ 1.021440903396,−1.58 × 10−2 ≤ w ≤ 0.07} is

validated. In particular, the slow shadowing condition with q = +1 between

blocks around this slow manifold is validated with parameters listed in “Third

branch” in Table 1.

Parameters First branch Third branch

χ 0.8807339449541285 0.8786764705882354

h 0.003 0.003

H 0.0065 0.0066

da 0.75 0.75

db 0.7 0.75

ra 0.008 0.008

rb 0.0085 0.0078

mu 100 100

ms 100 100

computation time 0.566 sec. 0.467 sec.

Table 1. Validation parameters of slow shadowing in Computer Assisted

Result 6.3.

This validation result implies that we have already validated trajectories with

appropriately chosen initial data, say h-sets, which shadow slow manifolds with
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an arbitrary length for all ε ∈ (0, 5.0 × 10−5], as long as slow shadowing is

validated. Moreover, Jump has been also validated for any fast-exit face with an

appropriate height from the bottom for q = +1, and an appropriate width from

the top for q = −1. Remark that the range of our validating slow manifolds is not

the limit of our verifications. Validations of slow shadowing sequences are just

iterations of Step 2 and can be validated very fast, if we have fast solver of linear

algebra. Notice that slow shadowing sequences for ε ∈ (0, ε0] validate trajectories

which shadow slow manifolds without solving any differential equations for all

ε ∈ (0, ε0].

On the other hand, there is a trade-off for validating slow shadowing se-

quences. For example, if we increase the value of ε, say 6.0 × 10−5, the slow

shadowing condition (4.5) violates, since the slow speed becomes faster than ex-

pansion and contraction of h-sets in hyperbolic directions around slow manifolds.

Factors determining (4.5) are h,H, da, db, ra, rb as well as eigenvalues and size

of fast-saddle-type blocks. One expects that, the larger parameters, say h, ra, rb
are, the easier the validation of (4.5) will be. However, in such a case, the cover-

ing relation in Proposition 4.32 is often failed. In particular, assumption (SS5)

is violated. This is mainly because the distance between two centers (ui, vi, wi)

and (ui+1, vi+1, wi+1) becomes larger and hence the affine map Tx,12 moves h-

sets larger, if we increase h, ra, rb. This is also the case if we increase parameters

da and db.

It is also natural to think whether we can validate the whole branch of slow

manifolds by one block in order to avoid such a trade-off. We then verify how

large ε and a block N can be chosen so that the slow shadowing condition (4.5)

holds. The following result is a sample validated one.

Computer Assisted Result 6.4. Consider (6.1) with a = 0.3, γ = 10.0

and δ = 9.0. Then for all c ∈ [0.799, 0.801] and ε ∈ [0, 0.002], the branch of slow

manifolds near the nullcline {v = 0, f(u) = w} with {0.005 ≤ w ≤ 0.055} around

u = −0.07454149842 is validated by a fast-saddle-type block N satisfying cone

conditions with

h = H = 0.05, ra = rb = 0.0085.

Moreover, c−1(u− γw) < 0 and the slow shadowing condition (4.5) are satisfied

in N .

This result indicates that the normal hyperbolicity around the first branch

of nullcline is sufficiently strong comparing with slow dynamics with ε = 0.002.

Computer assisted results in Sections 6.7 and 6.8 imply, however, that one fast-

saddle-type block is not sufficient to validate the whole branch of slow manifolds

near homoclinic orbits, while the validation of fast-saddle-type blocks is violated
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with the present methodology if we set h = H larger than 0.05. These obser-

vations indicate that the slow shadowing is necessary to validate slow manifolds

with a wide range of w at the cost of the narrower range of ε.

6.3. Demonstration 2: m-cones. Next, we present a demonstration for

m-cones. When we want to construct a covering-exchange sequence, we need

to verify the covering relation F1
ε

ϕε(T0, · )
=⇒ Sε, where F1

ε is a fast-exit face of a

fast-saddle-type block and Sε is another block. In order to verify this covering

relation, we solve a differential equation with the initial data F1
ε . On the other

hand, we can replace F1
ε by a fast-exit face F2

ε of an extended cone, thanks to

discussions in Section 4.4. Here we solve (6.1) with two initial data, F1
ε and F2

ε ,

to see the following two points:

(1) accuracy of solution orbits, and

(2) verification of covering relations.

As an example, we set a = 0.01, γ = 0.0, δ = 5.0, c ∈ [0.495, 0.505] and

ε ∈ [0.0, 5.0× 10−6]. These are parameter values used in Section 6.4. In demon-

strating computations, we used the ODE solver in CAPD library based on

Lohner’s method discussed in [39]. The order of Taylor expansion is set p = 6 and

time step size is set ∆t = 0.0001. Computational result is shown in Figure 11.

First we compare the case when we use stable m-cones with the case when we

do not use stable m-cones. Figures 11 (a) and (b) show the same computational

results. The only difference is whether or not a stable m-cone is validated. In

this example, we validate the stable 29-cone with the length `s = 0.108232 of

a fast-saddle-type block around (0.956575, 0, 0.0392) ∈ R3 (see Figure 11 (a)).

We solved ODE with initial data

F2
ε ∩ {w ∈ [0.039249948844, 0.03926994850296]}

after dividing it into uniform 30 small pieces. Here F2
ε denotes the fast-exit face

of unstable 21-cone with the length `u = 0.0247787 of a fast-saddle-type block

around the origin in R3. In this example, we solved ODE in 174345 steps.

In general, validated fast-saddle-type blocks corresponding to Sε are very

small, as shown in Figure 11 (b) (colored pink). On the other hand, validated

trajectories are quite bigger than blocks. In our example, validated trajectories

are already bigger than the block, which implies that we can never validate

F1
ε

ϕε(T0, · )
=⇒ Sε in this setting. A direct settlement of this problem would be

a refinement of the initial data, which leads to huge computational costs in

many cases and is not realistic. Instead, we consider the problem with the help

of stable m-cones, which is shown in Figure 11 (a). In this case, the target block

corresponding to Sε becomes big enough to validate covering relations. Thanks

to Section 4.4, we can discuss validation of trajectories with extended cones,

which is much easier than verifications without cones.
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(a) (b)

(c) (d) (e)

Figure 11. Comparison of solution enclosures with and without m-cones.

Horizontal axis: u. Vertical axis: v. Each figure represents the projection
of trajectories and cones on the (u, v)-plane. (a) Validation of solution

orbits (green) with initial data F2
ε . Pink regions are the union of fast-

saddle-type blocks and extended cones. Computational step of ODEs is
174345. (b) The same computational result as (a). In this case the stable

m-cone is not validated. The tiny pink region around (u, v) = (0.956721, 0)

is the validated fast-saddle-type block. Readers see that enclosures of tra-
jectories are much bigger than the fast-saddle-type block. (c) Validation of

solution orbits (red) with initial data F1
ε (i.e. without unstable m-cones)

and the same time steps as (a). Validated trajectories do not arrive at the
target region Sε yet. (d) Validated trajectories with additional time step

computations to (c). More precisely, computation step of ODEs is 192510.

Enclosures become bigger and bigger. (e) Validated trajectories with ad-
ditional time step computations to (d). More precisely, computation step

of ODEs is 211575. Enclosures are already bigger than stable cones, which

implies that validation of covering relations cannot be realized.

Next, we compare the case when we use unstable m-cones with the case when

we do not use unstable m-cones. Computational result with unstable m-cone is

Figure 11 (a). Figures 11 (c)–(e) show enclosure of trajectories with the initial

data F1
ε , namely, a fast-exit face of a small fast-saddle-type block. If we do not

use unstable m-cones, we need to solve ODEs for longer time steps than in the

case when we use unstable m-cones (Figure 11 (c)). Such extra computations

cause larger enclosure of solutions and there is little hope to validate covering

relations, as indicated in Figures 11 (d), (e).

6.4. Periodic orbits. We go to validations of global orbits for (6.1). Our

first example is validation of periodic orbits. As a demonstration we set a = 0.01,
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γ = 0.0 and δ = 5.0 and c ≈ 0.5. All validations of covering-exchange sequences

with extended cones yield the following computer assisted result.

Computer Assisted Result 6.5. Consider (6.1) with a = 0.01, γ = 0.0

and δ = 5.0. Then for all c ∈ [0.495, 0.505] the following trajectories are vali-

dated.

(a) At ε = 0, there is a singular heteroclinic chain H0 consisting of

• heteroclinic orbits from p0 to q0, and from p1 to q1,

• branches M0, M1 of nullcline {v = 0, f(u) = w}. M0 contains p0
and q0. Similarly, M1 contains p1 and q1.

Equilibria p0, q0, p1 and q1 are validated by

|πu,v(p0)− (−0.177098234, 2.18166218× 10−6)| < 2.49103628× 10−2,

|πw(p0)− 0.0395| < 3.25× 10−3,

|πu,v(q1)− (0.956125336,−5.98704406× 10−6)| < 2.10571434× 10−2,

|πw(q1)− 0.03932| < 3.3× 10−3,

|πu,v(p1)− (0.850811351,−9.47162333× 10−6)| < 2.44899980× 10−2,

|πw(p1)− 0.10602| < 3.3× 10−3,

|πu,v(q0)− (−0.282970990, 1.85607735× 10−6)| < 2.12552591× 10−2,

|πw(q0)− 0.10675| < 3.25× 10−3.

(b) For all ε ∈ (0, 5.0× 10−6], there exists a periodic orbit Hε near H0.

Parameters for validations are listed in Table 2.

We omit computation times for slow shadowing and Jump, since they take

only a few seconds as stated in Section 6.2.

6.5. Heteroclinic cycles. The second example is a family of heteroclinic

cycles. Consider the cubic curve w = f(u). One can see that it is symmetric

with respect to the inflection point

(uinf , winf) :=

(
1 + a

3
,

(1 + a)(1− 2a)(2− a)

27

)
and we can choose (u3, w3) from the curve w = f(u) to be the point that is

symmetric to the origin (u,w) = (0, 0) with respect to the inflection point.

Deng [9] shows that γ0 := 9/(2− a)(1− 2a) and c0 := (1− 2a)/
√

2 with δ = 1.0

admit a heteroclinic loop of (0, 0) and (u3, w3) for sufficiently small ε. Symmetry

of the cubic curve w = f(u) with respect to (uinf , winf) implies that the vector

field (6.1) with (γ, c) = (γ0, c0) is symmetric under the following transformation:

ũ =
2(1 + a)

3
− u, ṽ = −v, w̃ =

2(1 + a)(1− 2a)(2− a)

27
− w.
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Parameters On M0 (q = −1) On M1 (q = +1)

χ 0.8922056384742952 0.8895212587880817

h 0.0025 0.0023

H 0.0065 0.0066

da 0.8 0.8

db 0.7 0.8

ra 0.008 0.008

rb 0.0085 0.008

mu 21 (around p0) 55 (around p1)

ms 28 (around q0) 29 (around q1)

`u 0.0247787 (around p0) 0.0186724 (around p1)

`s 0.113375 (around q0) 0.108232 (around q1)

N0,exit
ε

ϕε(T0, · )
=⇒ N1,0

ε N1,exit
ε

ϕε(T1, · )
=⇒ N0,0

ε

Ti 0.059 0.0266

(with ∆t = 1.0× 10−4) (with ∆t = 2.0× 10−5)

computation time 70 min. 6 sec. 78 min. 53 sec.

Table 2. Validation parameters of slow shadowing in Computer Assisted
Result 6.5.

It is thus sufficient to validate a heteroclinic orbit from the origin to (u3, 0, v3) if

we want to validate heteroclinic cycles. Here we validate heteroclinic cycles for

concrete ε and specific a and δ. All validations of covering-exchange sequence

with extended cones yield the following computer assisted result.

Computer Assisted Result 6.6. Consider (6.1) with a = 0.35, γ = γ0,

c = c0. Then, for δ = 1.0, the following trajectories are validated.

(a) At ε = 0, there is a singular heteroclinic chain H0 consisting of

• heteroclinic orbits from p0 to q1, and from p1 to q0,

• branches M0,M1 of nullcline {v = 0, f(u) = w}. M0 contains p0
and q0. Similarly, M1 contains p1 and q1.

Equilibria p0 and q1 are validated by

|πu,v(p0)− (2.51043396× 10−4,−1.69061417× 10−8)| < 1.27332504× 10−2,

|πw(p0)| < 1.5× 10−3,

|πu,v(q1)− (0.999695758,−1.92238884× 10−5)| < 1.93244763× 10−2,

|πw(q1)− 1.01177747× 10−15| < 2.5× 10−3.

The equilibrium p0 admits an attracting isolating block on Sε contained

in {(u, v, w) ∈ Sε∩{u ≤ 8.10058152×10−3} | w ∈ [−2.507×10−4, 2.732×
10−4]}. Note that p1 is symmetric to p0 with respect to the inflection
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Parameters On M0 (q = −1) On M1 (q = +1)

χ 0.9322799097065463 0.8866213151927438

h 0.0001 0.0001

H 0.003 0.005

da 0.8 0.8

db 0.7 0.8

ra 0.003 0.006

rb 0.0045 0.008

mu 14 (around p0) −
ms − 6 (around q1)

2 slu{diam(πa(N))− ra} 7.731100200015× 10−4 −
`u 0.0153705 (around p0) −
`s − 0.0649544 (around q1)

N0,exit
ε

ϕε(T0,·)
=⇒ N1,0

ε N1,exit
ε

ϕε(T1,·)
=⇒ N0,0

ε

Ti 0.045 −
(with ∆t = 1.0× 10−4)

computation time 36 min. 56 sec. −

Table 3. Validation parameters of slow shadowing and isolating blocks in
Computer Assisted Result 6.6.

point (uinf , 0, winf). Similarly, q0 is symmetric to q1 with respect to the

inflection point (uinf , 0, winf).

(b) For all ε ∈ (0, 5.0 × 10−6], there exists a heteroclinic cycle Hε near H0.

The cycle Hε consists of heteroclinic orbits from p0 to q1 and from p1
to q0.

Parameters for validations are listed in Table 3. Finally, assumptions of Lem-

ma 6.1 are validated with the attracting isolating block {w ∈ [−3.0×10−6, 3.0×
10−6]} on the slow manifold containing p0 and the stable 0.051-cone and the

unstable fiber 5.0× 10−5-cone conditions.

6.6. Heteroclinic orbits. The third example is a family of heteroclinic

orbits different from heteroclinic cycles.

In this example we apply the method in Section 4.5 to isolating blocks on

slow manifolds, which validates equilibria on slow manifolds.

Let (u, 0, w) 6≈ (0, 0, 0) be a point in R3 such that f(u) = w and that u = γw.

Assume that fu(u) 6= 0. Then there is a function u = h(w) which is unique

in a small neighbourhood of (u, 0, w) such that u = h(w), f(h(w)) = w and

f(h(w)) = w hold in such a neighbourhood. This is due to the Implicit Function

Theorem. Assuming that fu(u) 6= 0 holds for all u in a given neighbourhood of u,
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 12. Validation of covering-exchange sequences in Computer As-

sisted Result 6.5. Horizontal axis: u, vertical axis: v. Each figure represents
the projection of trajectories and cones on (u, v)-plane. Validations of:

(a1) ϕε(T0, (Cu
mu

)exit) ∩ {w ∈ [0.0365499948149, 0.0422098969893467]}.
(a2) ϕε(T0, (Cu

mu
)exit) ∩ {w ∈ [0.0365499948149, 0.0365699944692267]}.

(a3) ϕε(T0, (Cu
mu

)exit) ∩ {w ∈ [0.04218989733502, 0.0422098969893467]}.
(b1) ϕε(T1, (Cu

mu
)exit) ∩ {w ∈ [0.1037942789937, 0.10913580929979]}.

(b2) ϕε(T1, (Cu
mu

)exit) ∩ {w ∈ [0.1037942789937, 0.103814744627057]}.
(b3) ϕε(T1, (Cu

mu
)exit) ∩ {w ∈ [0.109115343666433, 0.10913580929979]}.

(a1) (a2) (a3)

Figure 13. Validation of covering-exchange sequences in Computer As-
sisted Result 6.6. Horizontal axis: u, vertical axis: v. Each figure represents
the projection of trajectories and cones on the (u, v)-plane. Validation of:
(a1) ϕε(T0, (Cu

mu
)exit) ∩ {w ∈ [−5.3303301324 × 10−4, 4.89431324599 ×

10−4]};
(a2) ϕε(T0,(Cu

mu
)exit) ∩ {w ∈ [−5.3303301324 × 10−4,−5.28187210691 ×

10−4]};
(a3) ϕε(T0, (Cu

mu )exit)∩{w ∈ [4.8458552205×10−4, 4.89431324599×10−4}.
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the above implicit function representation holds in the given neighbourhood. By

using the implicit function differential, the vector field g(u, v, w) = c−1(u− γw)

is rewritten as

g(u, v, w) =
1

c

(
1

fu(u)
− γ
)

(w − w) +
1

c

(
(u− u)− w − w

fu(u)

)
near (h(w), 0, w) ∈ R3. Remark that u = γw. This expression leads to an

effective estimate of vector fields on slow manifolds, as stated in Section 4.5.

All validations of slow shadowing sequences with extended cones and isolating

blocks on slow manifolds yield the following computer assisted result.

(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 14. Validation of covering-exchange sequences in Computer

Assisted Result 6.7. Horizontal axis: u, vertical axis: v. Each figure
represents the projection of trajectories and cones on the (u, v)-plane.

Validation of:

(a1) ϕε(T0, (Cu
mu )exit) ∩ {w ∈ [−7.34476926213333× 10−4,

0.00117805243070567]}.
(a2) ϕε(T0, (Cu

mu
)exit)∩{w ∈ [−7.34476926213333×10−4,−7.20912888221

×10−4]}.
(a3) ϕε(T0,(Cu

mu
)exit)∩{w∈ [0.00116448839213337,0.00117805243070567]}.

(b1) ϕε(T1, (Cu
mu

)exit) ∩ {w ∈ [0.059360930386376, 0.06423749049711]}.
(b2) ϕε(T1, (Cu

mu
)exit) ∩ {w ∈ [0.059360930386376, 0.05938299626923]}.

(b3) ϕε(T1, (Cu
mu )exit) ∩ {w ∈ [0.064215424614256, 0.06423749049711]}.

Computer Assisted Result 6.7. Consider (6.1) with a = 0.3, γ = 15.0,

δ = 5.0.

(a) For each c ∈ [0.628, 0.629], the following two kinds of trajectories are

validated:
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• At ε = 0, there is a singular heteroclinic chain H0 consisting of a

heteroclinic orbit from p0 = (0, 0, 0) to q1 and a branch M1 of the

nullcline {v = 0, f(u) = w} connecting q1 and p1 = (u1m1
, 0, w1

m1
).

Equilibria have the following estimates:

|πu,v(p0)− (8.00733430× 10−4, 2.18164458× 10−7)| < 2.77714227× 10−2,

|πw(p0)− 3.3× 10−4| < 2.75× 10−3,

|πu,v(q1)− (0.998891342,−1.20618902× 10−5)| < 2.11449578× 10−2,

|πw(q1) + 4.2× 10−4| < 3.0× 10−3,

|πu,v(p1)− (0.883967690, 3.06376214× 10−7)| < 2.63725073× 10−2,

|πw(p1)− 0.05938| < 3.0× 10−3.

• For all ε ∈ (0, 1.0× 10−5], there exists a heteroclinic orbit H1
ε from

p0 to p1 near H1
0 . The equilibrium p1 admits an attracting isolating

block on Sε contained in {(u, v, w) ∈ Sε ∩ {u ≥ 0.861927234} | w ∈
[5.8494× 10−2, 6.0056× 10−2]}.

Parameters for validations are listed in Table 4.

Parameters On M0 (q = −1) On M1 (q = +1)

χ 0.8949178448605274 0.8877665544332212

h 0.00023 0.00022

H 0.0055 0.006

da 0.8 0.75

db 0.8 0.8

ra 0.008 0.008

rb 0.0085 0.008

mu 50 (around p0) −
ms − 25.5 (around q1)

2 slu{diam(πa(N))− ra} 6.003396000012× 10−4 −
`u 0.0136582 (around p0) −
`s − 0.117888 (around q1)

N0,exit
ε

ϕε(T0, · )
=⇒ N1,0

ε N1,exit
ε

ϕε(T1, · )
=⇒ N0,0

ε

Ti 0.064 −
(with ∆t = 1.0× 10−4)

computation time 25 min. 25 sec. −

Table 4. Validation parameters of slow shadowing and isolating blocks in

Computer Assisted Result 6.7 with c ∈ [0.628, 0.629].
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Finally, assumptions of Lemma 6.1 are validated with the attracting

isolating block {w ∈ [−2.119830199999× 10−3, 2.779830199999× 10−3]}
on the slow manifold containing p0 and the stable 0.018-cone and the

unstable fiber-5.0× 105-cone conditions.

(b) For each c ∈ [0.551, 0.553], there exist the following two kinds of trajec-

tories:

• At ε = 0, there is a singular heteroclinic chain H2
0 consisting of

a heteroclinic orbit from p1 to q0 and a branch M0 of the null-

cline {v = 0, f(u) = w} connecting q0 and p0. Equilibria have the

following estimates:

|πu,v(p1)− (0.881572201, 1.13212050× 10−6)| < 2.63868472× 10−2,

|πw(p1)− 0.0602| < 4.0× 10−3,

|πu,v(q0)− (−0.125383244, 1.48465533× 10−5)| < 1.53394803× 10−2,

|πw(q0)− 0.0602| < 4.0× 10−3,

|πu,v(p0)− (−1.36886862× 10−3,−8.28111689× 10−8)| < 2.38267941× 10−2,

|πw(p0)| < 4.0× 10−3.

Parameters On M0 (q = −1) On M1 (q = +1)

χ 0.8484848484848486 0.8540145985401461

h 0.0001 0.0002

H 0.008 0.008

da 0.8 0.75

db 0.8 0.8

ra 0.0042 0.006

rb 0.0045 0.0068

mu − 20 (around p1)

ms 26.5 (around q0) −
2 slu{diam(πa(N))− ra)} − 5.900088000012× 10−4

`u − 0.0539878 (around p1)

`s 0.113106 (around q0) −

N0,exit
ε

ϕε(T0, · )
=⇒ N1,0

ε N1,exit
ε

ϕε(T1, · )
=⇒ N0,0

ε

Ti − 0.055

(with ∆t = 1.0× 10−4)

computation time − 26 min. 23 sec.

Table 5. Validation parameters of slow shadowing and isolating blocks in

Computer Assisted Result 6.7 with c ∈ [0.551, 0.553].
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• For all ε ∈ (0, 1.0× 10−5], there exists a heteroclinic orbit H2
ε from

p1 to p0 near H2
0 . The equilibrium p0 admits an attracting isolating

block on Sε contained in {(u, v, w) ∈ Sε∩{u ≤ 1.06035231×10−2} |
w ∈ [−1.040× 10−4, 1.264× 10−3]}.

Parameters for validations are listed in Table 5. Finally, assumptions

of Lemma 6.1 are validated with the attracting isolating block {w ∈
[5.7895004400× 10−2, 6.5304995600× 10−2]} on the slow manifold con-

taining p1 and the stable 0.17-cone and the unstable fiber-5.0×105-cone

conditions.

In this case we have to care about the existence of an equilibrium on the

slow manifold in S1
ε . Easy calculations yield that S1

ε possesses at most one

equilibrium.

6.7. Homoclinic orbits. The final example is a family of homoclinic orbits.

Set a = 0.3, γ = 10.0, δ = 9.0 and c ≈ 0.8. All validations of covering-exchange

sequences with extended cones yield the following computer assisted result.

Computer Assisted Result 6.8. Consider (6.1) with a = 0.3, γ = 10.0

and δ = 9.0. Then for all c ∈ [0.799, 0.801] the following trajectories are vali-

dated.

(a) At ε = 0, there is a singular heteroclinic chain H0 consisting of

• heteroclinic orbits from p0 to q1, and from p1 to q0,

• branches M0,M1 of the nullcline {v = 0, f(u) = w}. M0 contains

p0 and q0. Similarly, M1 contains q1 and p1.

Equilibria p0, q1, p1 and q0 are validated by

|πu,v(p0)− (−4.22605959× 10−3, 4.67157371× 10−7)| < 2.90338686× 10−2,

|πw(p0)− 1.94× 10−3| < 3.25× 10−3,

|πu,v(q1)− (0.996532931,−4.66925590× 10−6)| < 2.13488628× 10−2,

|πw(q1)− 2.02× 10−3| < 3.3× 10−3,

|πu,v(p1)− (0.870742129,−2.92737408× 10−6)| < 2.84335647× 10−2,

|πw(p1)− 0.06362| < 3.3× 10−3,

|πu,v(q0)− (−0.129665170, 3.70642116× 10−6)| < 2.20129903× 10−2,

|πw(q0)− 0.06335| < 3.25× 10−3.

(b) For all ε ∈ (0, 5.0 × 10−6], there exists a homoclinic orbit Hε of p0
near H0. The equilibrium p0 admits an attracting isolating block on Sε
contained in

{(u, v, w) ∈ Sε ∩ {u ≤ 2.10010357× 10−2} | w ∈ [−8.15× 10−5, 9.40× 10−5]}.

Parameters for validations are listed in Table 6.
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Parameters On M0 (q = −1) On M1 (q = +1)

χ 0.8812568505663135 0.8792535675082328

h 0.00023 0.00022

H 0.0065 0.0066

da 0.8 0.8

db 0.75 0.8

ra 0.008 0.008

rb 0.0085 0.0078

mu 50 (around p0) 52 (around p1)

ms 45 (around q0) 55 (around q1)

2 slu{diam(πa(N))− ra} 3.019812000006× 10−4 −
`u 0.0441793 (around p0) 0.0370798 (around p1)

`s 0.12217 (around q0) 0.0984568 (around q1)

N0,exit
ε

ϕε(T0, · )
=⇒ N1,0

ε N1,exit
ε

ϕε(T1, · )
=⇒ N0,0

ε

Ti 0.067 0.0288

(with ∆t = 1.0× 10−4) (with ∆t = 2.0× 10−5)

computation time 5 min. 57 sec. 44 min. 6 sec.

Table 6. Validation parameters of slow shadowing and isolating blocks in
Computer Assisted Result 6.8.

Finally, assumptions of Lemma 6.1 are validated with the attracting isolating

block {w ∈ [−1.15901 × 10−3, 5.03901 × 10−3]} on the slow manifold and the

stable 0.0085-cone and the unstable fiber-5.0× 105-cone conditions.

Remark 6.9. In this case we easily know that the only equilibrium of (6.1)

for ε > 0 is (u, v, w) = (0, 0, 0) and the dynamics around (0, 0, 0) can be easily

understood to show that (0, 0, 0) is attracting on the slow manifold in S0ε .

Note that appropriate arrangements of computational schemes can improve

the accuracy of validated trajectories and the validation range of parameters

including ε.

In many articles, the uniqueness of global orbits is also discussed. From the

geometrical viewpoint, typical arguments for the uniqueness require the transver-

sality of locally invariant manifolds. In our case, however, transversality in the

sense of differential manifolds is not mentioned. In other words, we cannot prove

the uniqueness of validated orbits in the current setting.

6.8. Continuation of homoclinic orbits. Finally, we verify the ε-conti-

nuation of homoclinic orbits validated in the previous subsection. It is very hard

to validate trajectories of (6.1)ε for all ε ∈ (0, ε0] with large ε0 at a time. In most

cases, covering relations in the fast dynamics fail. To overcome this difficulty,
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 15. Validation of covering-exchange sequences in Computer As-

sisted Result 6.8. Horizontal axis: u, vertical axis: v. Each figure represents
the projection of trajectories and cones on the (u, v)-plane. Validation of:

(a1) ϕε(T0, (Cu
mu

)exit) ∩ {w ∈ [−4.98044338856× 10−4,

0.00295819387292]}.
(a2) ϕε(T0, (Cu

mu
)exit) ∩ {w ∈ [−4.98044338856× 10−4,

−4.4138469604× 10−4]}.
(a3) ϕε(T0, (Cu

mu
)exit) ∩ {w ∈ [0.002901534230104, 0.00295819387292]}.

(b1) ϕε(T1, (Cu
mu

)exit) ∩ {w ∈ [0.06094493968776, 0.0668173357334667]}.
(b2) ϕε(T1, (Cu

mu )exit) ∩ {w ∈ [0.06094493968776, 0.0609654725410667]}.
(b3) ϕε(T1, (Cu

mu
)exit) ∩ {w ∈ [0.06679680288016, 0.0668173357334667]}.

we divide a closed interval [0, ε0] into sub-intervals

[0, ε10] ∪ [ε10, ε
2
0] ∪ . . . ∪ [εm−10 , εm0 ], εm0 = ε0

and validate trajectories within each sub-interval.

In our demonstrating example, we divide the interval [0, 5.0× 10−5] into

[0, 5.0× 10−6] ∪ [5.0× 10−6, 1.2× 10−5] ∪ [1.2× 10−5, 2.2× 10−5]

∪ [2.2× 10−5, 3.2× 10−5] ∪ [3.2× 10−5, 4.2× 10−5] ∪ [4.2× 10−5, 5.0× 10−5].

Validating homoclinic orbits for each sub-interval and summarizing them,

we obtain the following. Let p0, q0, p1 and q1 be points corresponding to those

stated in Computer Assisted Result 6.8.

Computer Assisted Result 6.10. Consider (6.1) with a = 0.3, γ = 10.0

and δ = 9.0. Then for all c ∈ [0.799, 0.801] and for all ε ∈ (0, 5.0× 10−5], there

exists a homoclinic orbit Hε of p0 near H0, where H0 is the singular homoclinic
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orbit for (6.1)0 obtained in Computer Assisted Result 6.8. Several numerical

data for validations of Hε are listed in Tables 7–10.

ε w0
m0

h H χ `u

[0.0, 5.0× 10−6] 0.00175 0.00023 0.0065 0.8812568505663135 0.04417933

[5.0× 10−6, 1.2× 10−5] 0.00175 0.00023 0.0065 0.8812568505663135 0.0441793

[1.2× 10−5, 2.2× 10−5] 0.00175 0.00023 0.0065 0.8813652126300421 0.0441725

[2.2× 10−5, 3.2× 10−5] 0.00175 0.00023 0.0065 0.8813652126300421 0.0441528

[3.2× 10−5, 4.2× 10−5] 0.00175 0.00023 0.0065 0.8813652126300421 0.0441429

[4.2× 10−5, 5.0× 10−5] 0.0019 0.00025 0.0065 0.8809523809523810 0.0441474

Table 7. Main information about blocks around p0 = (u0m0
, v0m0

, w0
m0

)

with |w0
m0
−w0

m0
| < h. The sharpness mu of unstable cones is an identical

value: mu = 50. The ratios da, db in (4.5) are set as identical values:

da = 0.8, db = 0.75. The space length parameters ra, rb of fast-saddle-type
blocks are set as identical values: ra = 0.008, rb = 0.0085.

ε w1
0 h H χ `s

[0.0, 5.0× 10−6] 0.0633 0.00023 0.0065 0.8812568505663135 0.12217

[5.0× 10−6, 1.2× 10−5] 0.0633 0.00023 0.0065 0.8812568505663135 0.12217

[1.2× 10−5, 2.2× 10−5] 0.0635 0.00023 0.0065 0.8813652126300421 0.122164

[2.2× 10−5, 3.2× 10−5] 0.0635 0.00023 0.0065 0.8813652126300421 0.122145

[3.2× 10−5, 4.2× 10−5] 0.0635 0.00023 0.0065 0.8813652126300421 0.122141

[4.2× 10−5, 5.0× 10−5] 0.0635 0.00025 0.0065 0.8809523809523810 0.122144

Table 8. Main information about blocks around q0 = (u10, v
1
0 , w

1
0) with

|w1
0 − w1

0| < h. The sharpness ms of stable cones is an identical value:

ms = 45. The ratios da, db in (4.5) are set as identical values: da = 0.8,

db = 0.75. The space length parameters ra, rb of fast-saddle-type blocks
are set as identical values: ra = 0.008, rb = 0.0085.

7. Conclusion

We have proposed a topological methodology for validating singularly per-

turbed periodic, homoclinic and heteroclinic orbits for fast-slow systems with its

applicability to concrete systems with computer assistance. The main features

of our proposing methodology are the following.

• Our central strategy consists of applications of well-known topological

tools, covering relations, cones and isolating blocks, with taking account

of the singular perturbation structure of normally hyperbolic invariant

manifolds. This is one of the points where our approach differs from

preceding works such as [1].
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ε w1
m1

h H χ `u

[0.0, 5.0× 10−6] 0.0636 0.00022 0.0066 0.8792535675082328 0.0370798

[5.0× 10−6, 1.2× 10−5] 0.0636 0.00022 0.0066 0.8792535675082328 0.0370798

[1.2× 10−5, 2.2× 10−5] 0.0636 0.00022 0.0066 0.8792535675082328 0.0370719

[2.2× 10−5, 3.2× 10−5] 0.0636 0.00022 0.0066 0.8792535675082328 0.0370534

[3.2× 10−5, 4.2× 10−5] 0.0636 0.00022 0.0066 0.8792535675082328 0.0370464

[4.2× 10−5, 5.0× 10−5] 0.0634 0.0003 0.0065 0.8786764705882354 0.0370888

Table 9. Main information about blocks around p1 = (u1m1
, v1m1

, w1
m1

)

with |w1
m1
−w1

m1
| < h. The sharpness mu of unstable cones is an identical

value: mu = 52. The ratios da, db in (4.5) are set as identical values:

da = 0.8, db = 0.8 for ε ∈ (0.0, 4.2 × 10−5], da = 0.75, db = 0.75 for

ε ∈ [4.2 × 10−5, 5.0 × 10−5]. The space length parameters ra, rb of fast-
saddle-type blocks are set as identical values: ra = 0.008, rb = 0.0078.

ε w0
0 h H χ `s

[0.0, 5.0× 10−6] 0.0019 0.00022 0.0066 0.8792535675082328 0.0984568

[5.0× 10−6, 1.2× 10−5] 0.0019 0.00022 0.0066 0.8792535675082328 0.0984568

[1.2× 10−5, 2.2× 10−5] 0.0019 0.00022 0.0066 0.8792535675082328 0.0984452

[2.2× 10−5, 3.2× 10−5] 0.0019 0.00022 0.0066 0.8792535675082328 0.098424

[3.2× 10−5, 4.2× 10−5] 0.0019 0.00022 0.0066 0.8792535675082328 0.0984201

[4.2× 10−5, 5.0× 10−5] 0.0018 0.0003 0.0065 0.8786764705882354 0.0984281

Table 10. Main information about blocks around q1 = (u00, v
0
0 , w

0
0) with

|w0
0−w0

0| < h. The sharpness ms of stable cones is an identical value: ms =

55. The ratios da, db in (4.5) are set as identical values: da = 0.8, db = 0.8
for ε ∈ (0.0, 4.2×10−5], da = 0.75, db = 0.75 for ε ∈ [4.2×10−5, 5.0×10−5].

The space length parameters ra, rb of fast-saddle-type blocks are set as

identical values: ra = 0.008, rb = 0.0078.

• All our procedures can be validated via rigorous numerics (e.g. interval

arithmetics). As a consequence, one can validate the continuation of

singular limit orbits for all ε ∈ (0, ε0] with a given ε0 > 0 with computer

assistance.

A main concept for realizing the above points simultaneously is the covering-

exchange; the singular perturbation’s version of covering relations. We have

proposed not only its primitive form but also its generalization; a collection

of local behavior named “slow shadowing”, “drop” and “jump”. The notion

of covering-exchange describes the behavior of trajectories in the full system

which shadow normally hyperbolic invariant manifolds as well as their stable

and unstable manifolds, even for sufficiently small ε. In particular, this notion

enables us to validate such trajectories without solving any differential equations
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ε N0,exit
ε

ϕε(T0, · )
=⇒ N1,0

ε N1,exit
ε

ϕε(T1, · )
=⇒ N0,0

ε

[0.0, 5.0× 10−6] 5 min. 57 sec. 44 min. 6 sec.

[5.0× 10−6, 1.2× 10−5] 6 min. 0 sec. 44 min. 9 sec.

[1.2× 10−5, 2.2× 10−5] 6 min. 8 sec. 44 min. 39 sec.

[2.2× 10−5, 3.2× 10−5] 5 min. 59 sec. 44 min. 49 sec.

[3.2× 10−5, 4, 2× 10−5] 5 min. 57 sec. 45 min. 23 sec.

[4.2× 10−5, 5.0× 10−5] 5 min. 58 sec. 46 min. 17 sec.

[0.0, 5.0× 10−5] (Total) 35 min. 59 sec. (Total) 269 min. 23 sec.

Table 11. Computation times of Drop in Computer Assisted Result 6.10.

It has taken about 13.4 hours for validating Drop in {ε ∈ [0, 5.0 × 10−5]}
in our computation environments. As for the slow shadowing and Jump, it
totally takes less than 30 seconds to validate.

in practical computations. Moreover, as mentioned above, it exceeds the limit

of the multiple timescale parameter range: “sufficiently small ε”, to ε with an

explicit range in practical applications with computer assistance.

Of course, further applications of topological tools such as covering relations

and the Conley index enable us to prove the existence of trajectories with com-

plicated behavior. We believe that all these ideas will overcome difficulties of

a broad class of singular perturbation problems.

We end this paper proposing further directions of our arguments.

7.1. Bridging validation results to “direct” approach. Our metho-

dology concentrates on validations of trajectories for ε ∈ (0, ε0] on the basis

of geometric singular perturbation theory. One of challenges concerning with

continuation of trajectories is the integration of singularly perturbed trajectories

with those by a direct approach; namely, validation of trajectories without taking

account of singular perturbation structure of systems for positive ε bounded away

from 0 (e.g. [1]). In our validation examples, under a specific choice of parameter

values, solution trajectories have been validated for ε ∈ (0, 5.0 × 10−5] in the

case of homoclinic orbits for the FitzHugh–Nagumo system (6.1). In the case

of (6.1), validations of each branch of slow manifolds are completed in less than

one second.

This parameter range is still far from validation ranges with direct ap-

proaches; ε = 0.01 in [1], for example. Validations of slow shadowing for further

range of ε are not easy, which is mainly because there is a trade-off between the

slow shadowing condition (4.5) and the covering relation in assumption (SS5),

as discussed in Section 6.2. Both conditions are essential for describing the slow

shadowing, and hence our task for overcoming this situation will be develop-

ment of an improved topological and numerical method, like multi-step methods
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in numerical initial value problems, keeping the essence of slow shadowing phe-

nomena. Obviously, if one can validate each global branch of normally hyperbolic

slow manifolds by one block, there is no problem in this direction as indicated

in Computer Assisted Result 6.4, in which case we can apply the primitive form

of covering-exchange in Section 4.1. We mention another work for validating

global trajectories with an explicit range of ε in Section 7.5, which indicates that

this direction makes sense for solving bridging problems. After improvements of

validations of slow shadowing or blocks containing slow manifolds with computer

assistance, there will be a possibility that validated trajectories can be further

continued in ε and, we hope, be connected to validated ones with direct approach

under appropriate choice of various parameters or solvers. Further works in this

direction from the viewpoint of topological and numerical analysis are the ones

of our future studies.

7.2. Uniqueness and stability of validated orbits. In our topological

statements (Theorems 5.1, 5.6, Corollaries 5.3, 5.4, 5.7 and 5.8), only the exis-

tence of desired orbits is stated. As for the uniqueness of such orbits, we have no

answers yet. More precisely, these theorems require only topological transversal-

ity in terms of covering relations, which is weaker than the transversality in terms

of differentiable manifolds. If we can verify even transversality in the sense of

differentiable manifolds, then the Exchange Lemma gives us the local uniqueness

of singularly perturbed orbits. Transversality is also essential for discussion of

stability of connecting orbits. Jones [18] discusses stability of homoclinic orbits

for (6.1) as the traveling wave solutions of FitzHugh–Nagumo PDE (6.2) from

geometric viewpoints. For this stability argument, some information about the

nature of transversality between two manifolds plays a central role.

One of the standard approaches to transversality of manifolds is to use Mel-

nikov integrals via solving variational equations. If we take rigorous numerics

into account, the C1-Lohner method [39] provides the variational information

of trajectories as well as solutions themselves and will give an answer to solve

transversality problems.

7.3. Covering-exchange for fast-slow systems with multi-dimensio-

nal slow variables. Our validation arguments can be applied only to fast-

slow systems with one-dimensional slow variable at present. It is natural to ask

whether our concept is applicable to fast-slow systems with multi-dimensional

slow variables. The key problem concerning this extension is how we should track

true trajectories near slow manifolds in terms of covering-exchange properties.

Systems with multi-dimensional slow variables can admit rich behavior even

on slow manifolds. Validation of slow manifolds by one fast-saddle-type block
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as well as concrete vector fields is thus more difficult than systems with one-

dimensional slow variables because of nonlinearity of manifolds. It is not thus

realistic to extend Theorems 5.1 and 5.6 to systems with multi-dimensional slow

variable directly from the viewpoint of practical computations.

By the way, existence theorems of trajectories with covering relations imply

that true trajectories shadow reference orbits. In the case of singular perturbation

problems, reference orbits correspond to singular orbits consisting of heteroclinic

orbits and trajectories on slow manifolds. The slow shadowing discussed in

Section 4.3 reflects the aspect of shadowing trajectories in fast-slow systems with

one-dimensional slow variable. This expectation will be valid even for systems

with multi-dimensional slow variables. Such an extended sequence will yield

the existence of true trajectories which shadow those on slow manifolds. Higher

dimensional extension of the slow shadowing condition or its analogue will give an

explicit criterion for validations with rigorous numerics in reasonable processes.

7.4. Extension of procedures for slow manifolds with non-hyperbo-

lic points. Our validation arguments are based on the assumption that limiting

critical manifolds are normally hyperbolic everywhere in consideration. Our

procedure in this paper can be never applied if there is a point which is non-

hyperbolic, like fold points, inside limiting critical manifolds. Nevertheless, there

are a lot of cases where interesting phenomena in singular perturbation problems

are involved by such non-hyperbolic points.

One of the famous examples is canard solution, which was discovered and

first analyzed by Benoit, Callot, Diener and Diener [2]. A canard solution is

a solution of a singular perturbed system which is contained in the intersection of

an attracting slow manifold and a repelling one. Canard solutions provide a rich

phenomenon such as canard explosion, namely, a transition from a small limit

cycle to a relaxation oscillation through a sequence of canard cycles [10]. Since

canard cycles involve fold points as jump points, our current implementations

can never validate canard cycles.

Krupa and Szmolyan [22] discuss the extension of geometric singular per-

turbation theory for slow manifolds including fold and canard points via the

technique of blow-up. Simultaneously, Liu [23] discusses the Exchange Lemma

in case that the critical manifold contains loss-of-stability turning points, the cor-

responding phenomenon is called the delay of stability loss. In [23], the Fenichel-

type coordinate which overcomes non-normal hyperbolicity is constructed by

the other type of invariant manifold theorem proved by Chow–Liu–Yi [6]. We

also mention sequential works by Schecter and Szmolyan [28]–[31], which discuss

the singularly perturbed Riemann–Dafermos solutions as the small perturbation

of composite waves consisting of constant waves, shock waves and rarefaction
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waves in systems of conservation laws. There, non-hyperbolic points called gain-

of-stability turning points naturally arise in invariant manifolds. They derive

the General Exchange Lemma for describing behavior of tracking manifolds near

such non-hyperbolic manifolds with the help of blow-ups.

We have to take such mathematical techniques into account, if we deal with

invariant manifolds which are not normally hyperbolic with computer assistance.

7.5. Remark on the work [8] and a direction to improvements of our

works. Another work for validating global trajectories for the fast-slow system

(1.1) with an explicit range of ε has appeared online just before the first version

of this paper has been released: the work by Czechowski and Zgliczyński [8].

Authors of [8] focus on the FitzHugh–Nagumo equation (6.1) with specific

parameters and provide a topological methodology for validating periodic orbits

for ε ∈ (0, ε0] with an explicit ε0 > 0. The central tools in [8] are isolating seg-

ments, which correspond to fast-saddle-type blocks in this paper, and covering

relations. Unlike our methodology, they do not refer to the normally hyperbolic

structure of slow manifolds, but only topological conditions around slow man-

ifolds; namely, transversality of vector fields in normally hyperbolic directions

and monotonicity in slow directions. The most remarkable result there will be

that, in their example, they validate each branch of slow manifolds by one isolat-

ing segment (i.e. fast-saddle-type block). As a consequence, for specific a and γ,

they validate a periodic orbit for ε ∈ (0, 0.0015], which will be big enough to

bridge a gap between singular perturbation approach and direct approach. In-

deed, they also show that the classical Newton–Moore method can be applied to

validate a locally unique periodic orbit at ε = 0.0015, which indicates that their

methodology solves the bridging problem mentioned in Section 7.1.

These results indicate the following observation; if we can validate each

branch of slow manifolds by one fast-saddle-type block, global trajectories will

be validated for ε ∈ (0, ε0] with ε0 large enough to bridge singular perturbation

approach and direct approach. This expectation also follows from Computer

Assisted Result 6.4.

In general, (normally hyperbolic) slow manifolds have nonlinear structure.

There is thus little hope to construct a fast-saddle-type block around the global

branch of slow manifolds for general systems, without taking account of nonlin-

earity in, at least, critical manifolds as well as their normal hyperbolicity. Our

results as well as [8] send us to the study of a systematic procedure of nonlinear,

smooth and global fast-saddle-type blocks (e.g., [12]) satisfying cone conditions

for an explicit range ε ∈ (0, ε0].
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Appendix A. Concrete terms for (6.1) according to Section 2.3.3

Here we show concrete forms of error terms and Jacobian matrices calcu-

lated from the vector field (6.1) for validating fast-saddle-type blocks, and cone

conditions with the predictor-corrector approach (Section 2.3.3).

A.1. Fast-saddle-type blocks. We list various terms in Section 2.3.3 in

the case of FitzHugh–Nagumo system for readers’ accessibility. Let (u, 0, w) be

a numerical zero of −f(u) + w, where f(u) = u(u− a)(1− u), a ∈ (0, 1/2).

Use the coordinates (ũ, ṽ, w̃) given by as follows:

(A.1) u = ũ+ (u+ fu(u)−1w̃), v = ṽ, w = w̃ + w,

where (u, 0, w) is a (numerical) root of {v = 0, cv − f(u) + w = 0} and fu(u) is

assumed to be invertible. The transformed vector field as the extended system

then is

ũ′ = u′ − fu(u)−1w̃′ = v − fu(u)−1εc−1(u− γw)

= ṽ − εc−1fu(u)−1(ũ+ (fu(u)−1 − γ)w̃ + u− γw),

ṽ′ = δ−1(cv − f(u) + w)

= δ−1{cṽ − f
(
ũ+ u+ fu(u)−1w̃

)
+ w̃ + w},

w̃′ = εc−1(ũ+ (fu(u)−1 − γ)w̃ + u− γw),

η′ = 0,

where we introduced an auxiliary variable η to be ε = ε0η, η ∈ [0, 1], with

constant ε0.

The fast component of the vector field is(
ũ′

ṽ′

)
=

(
ṽ − εc−1fu(u)−1(ũ+ (fu(u)−1 − γ)w̃ + u− γw)

δ−1
{
cṽ − f

(
ũ+ u+ fu(u)−1w̃

)
+ w̃ + w

} )
=

(
0 1

−δ−1fu(u) δ−1c

)(
ũ

ṽ

)
+

(
−εc−1fu(u)−1(ũ+ (fu(u)−1 − γ)w̃ + u− γw)

δ−1{−f(u) + f(u) + fu(u)ũ+ w̃}

)
.

Denote (6.1) by X = F (X,Y, ε), Y = εG(X,Y, ε), where X = (u, v)T and

Y = w; namely,

F (X,Y, ε) =

(
v

δ−1(cv − f(u) + w)

)
, G(X,Y, ε) = c−1(u− γw).

The Jacobian matrices at (u, 0, w) are

FX |(u,0,w) =

(
0 1

−δ−1fu(u) δ−1c

)
, (FX |(u,0,w))

−1 =
δ

fu(u)

(
δ−1c −1

δ−1fu(u) 0

)
,

FY |(u,0,w) =

(
0

δ−1

)
, (F−1X ◦ FY )|(u,0,w) =

(
−1/fu(u)

0

)
.
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Around the numerical equilibrium (X,Y ) ≡ ((u, 0), w) = (u, 0, w), we introduce

the affine transformation T : (Z,W ) 7→ (X,Y ) of the predictor-corrector form by

(X,Y ) = T (Z,W ) := (PZ +X − (F−1X ◦ FY )|(u,0,w)W, W + Y ),

where P is the nonsingular matrix such that P−1FX |(u,0,w)P = Λ = diag(λ1, λ2).

Then, denoting Z = (z1, z2)T,(
z′1
z′2

)
=

(
λ1z1
λ2z2

)
+ P−1

(
0

−δ−1W

)
+ F̂ (X,Y, ε) + ε

(
−G(X,Y, ε)/fu(u)

0

)
=

(
λ1z1
λ2z2

)
+ P−1

((
0

−δ−1W

)
+ δ−1

(
0

−(f(u)− fu(u)(u− u)) +W

)
+ ε

(
−G(X,Y, ε)/fu(u)

0

))
=

(
λ1z1
λ2z2

)
+ P−1

(
−εG(X,Y, ε)/fu(u)

−δ−1(f(u)− fu(u)(u− u))

)
.

Note that the linear order term of W -variable in the error term is eliminated.

Let N ⊂ R3 be an h-set (in the (u, v, w)-coordinate) containing (u, 0, w).

Then the Mean Value Theorem implies that the higher order term f(u) −
fu(u)(u− u) is included in the enclosure{

f ′′(ũ)

2
(u− u)2

∣∣∣∣ u, ũ such that (u, v, w), (ũ, v, w) ∈ N
}
.

Thanks to the term (u − u)2, this set is in general very small if N is small.

In our example, f ′′(u) = −6u + 2(a + 1). Obviously, the first component

−εG(X,Y, ε)/fu(u) is very small if ε > 0 is sufficiently small. Note that the

denominator fu(u) is bounded away from 0 since we focus on validations of nor-

mally hyperbolic invariant manifolds. Finally, for a given compact set N and

ε0 > 0, we obtain enclosures of the error term

P−1
(

[−εc−1(u− γw)/fu(u) | (u, v, w) ∈ N, ε ∈ [0, ε0]]

[δ−1{3ũ− (a+ 1)}(u− u)2 | u, ũ such that (u, v, w), (ũ, v, w) ∈ N ]

)
⊂
(

[δ−1 , δ
+
1 ]

[δ−2 , δ
+
2 ]

)
,

which can be computed by interval arithmetics and, in principle, returns very

small enclosures for small N and ε0.

A.2. Jacobian matrices for cone conditions. The Jacobian matrix in

these coordinates at (ũ, ṽ, w̃, η) ignoring the differential of η′-term is

(A.2)(
−ε(cfu(u))−1 1 ε(cfu(u))

−1(−fu(u)−1+γ) −ε0(cfu(u))−1(ũ+(fu(u)
−1−γ)w̃+u−γw)

−δ−1fu(u) δ−1c (δfu(u))
−1{−fu(u)+fu(u)} 0

εc−1 0 εc−1(fu(u)
−1−γ) ε0c

−1(ũ+(fu(u)
−1−γ)w̃+u−γw)

)
,
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where the variable u in the second row corresponds to (A.1). We additionally

transform (ũ, ṽ) linearly to (z1, z2) by (ũ, ṽ) = P (z1, z2), where P is the nonsin-

gular matrix such that

P−1

(
0 1

−δ−1fu(u) δ−1c

)
P =

(
λ1 0

0 λ2

)
.

The Jacobian matrix (A.2) in the new coordinates (z1, z2, w̃) is then written as

(A.3)

λ1 0 0 0

0 λ2 0 0

0 0 0 0



+

(
F11 F12 ε(cfu(u))

−1(−fu(u)−1+γ) −ε0(cfu(u))−1(ũ+(fu(u)
−1−γ)w̃+u−γw)

F21 F22 (δfu(u))
−1{−fu(u)+fu(u)} 0

εc−1 0 εc−1(fu(u)
−1−γ) ε0c

−1(ũ+(fu(u)
−1−γ)w̃+u−γw)

)
,

(
F11 F12

F21 F22

)
= P−1

(
−ε(cfu(u))−1 0

δ−1(fu(u)− fu(u)) 0

)
P.

In order to verify cone conditions in a given h-set N containing (u, 0, w), we

compute corresponding maximal singular values in N . All such calculations are

done by interval arithmetics. As for calculations of the enclosure of fu(u)−fu(u)

in N , it is useful to use the mean value form

fu(u)− fu(u) ∈
{
−fuu(û)(u− u) | u, û such that (u, v, w), (û, v, w) ∈ N

}
=
{

(6û2 − 2(a+ 1))(u− u) | u, û such that (u, v, w), (û, v, w) ∈ N
}
.

We apply the matrix (A.3) as the Fréchet differential of the vector field

in (3.1) to validating cone conditions discussed in Section 3. The m-cone condi-

tions can be treated in the similar manner.

Appendix B. Invariant foliation validation for Wu(Sε)

In this section, we provide a sufficient condition such that the invariant

foliation of Wu(Sε) in a given fast-saddle-type block N is derived with com-

puter assistance. Let N be a fast-saddle-type block satisfying the stable m-cone

condition for some m > 0 in the coordinate (a, b, y, ε) given in Section 3, and

Wu(Sε) = {b = hu(a, y, ε)} be the validated unstable manifold of a slow man-

ifold branch Sε in N for ε ∈ (0, ε0] (Theorem 3.5). Let K̂ ⊂ Rl be a compact

set as that in the proof of Theorem 3.5, and N̂ be the compact set such that

πyN̂ = K̂ and that N̂ ∩ {y ∈ K} = N . We use the same notations in Section 3

in the following arguments.
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The whole considerations are reduced to vector fields on Wu(Sε). Vector

field on Wu(Sε) is

(B.1)


a′ = Aa+ F1(a, hu(a, y, η), y, η),

y′ = σηg(a, hu(a, y, η), y, η) + δρ(y)ny,

η′ = 0,

where ny is the unit outward normal vector for ∂K̂. Let zi = (ai, bi, yi, ηi) ∈ N ,

i = 1, 2, and ∆a = a1 − a2 and so on. Then we have

∆a′ =A∆a+ F1(a, hu(a1, y1, η1), y1, η1)− F1(a, hu(a2, y2, η2), y2, η2)

=A∆a+
∂F1

∂a
(z̃)∆a+

∂F1

∂b
(z̃)(hu(a1, y1, η1)

− hu(a2, y2, η2)) +
∂F1

∂y
(z̃)∆y +

∂F1

∂η
(z̃)∆η,

∆y′ =σ{η1g(a1, hu(a1, y1, η1), y1, η1)− η2g(a2, hu(a2, y2, η2), y2, η2)}

=

{
σg(a, hu(a1, y1, η1), y1, η1)∆η

+ ση2

(
∂g

∂a
(z̃)∆a+

∂g

∂b
(z̃)(hu(a1, y1, η1)− hu(a2, y2, η2))

+
∂g

∂y
(z̃)∆y +

∂g

∂η
(z̃)∆η

)}
,

∆η′ = 0,

for some z̃ ∈ N . The following definition plays a central role for constructing

invariant foliations.

Definition B.1. Let N be a fast-saddle-type block satisfying the stable

m-cone condition for some m > 0. Let σ1,a, σ1,b, σ1,y,η, σslow,a, σslow,b and

σslow,y,η be the upper bounds of maximal singular values of the following matrices

in N × [0, 1]:

σ1,a :

(
∂F1

∂a
(z)

)
, σ1,b :

(
∂F1

∂b
(z)

)
, σ1,y,η :

(
∂F1

∂y
(z)

∂F1

∂η
(z)

)
,

σslow,a :

(
∂g

∂a
(z)

)
, σslow,b :

(
∂g

∂a
(z)

)
, σslow,y,η :

(
η
∂g

∂y
(z) g(z)+η

∂g

∂η
(z)

)
,

with z = (a, b, y, η) ∈ N × [0, 1]. Fix L > 0. We shall call that N satisfies the

unstable fiber-L-cone condition, or simply the unstable fiber-cone condition, if

(B.2) λA > β ≡ σ1,a +m(1 + L−2)1/2σ1,b + L−1σ1,y,η

+ σ(Lσslow,a +m(L2 + 1)1/2σslow,b + σslow,y,η).

Now we have the following theorem.
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Theorem B.2. Let N be a fast-saddle-type block satisfying the cone condi-

tion, the stable m-cone condition with assumptions in Theorem 3.5 (a) and the

unstable fiber-L-cone condition. Taking K̂ smaller, if necessary, assume that the

same conditions hold in N̂ . Then, for each z ∈ Sε(⊂ N), there exists a Lip-

schitzian function y = hzf,u(a) such that

Wu(z) = {(a, hu(a, hzf,u(a), ε), hzf,u(a), ε)} ⊂ N̂

is defined locally. The Lipschitz constant of hzf,u has an upper bound slu :=

m(1 + L−2)1/2 for any z.

Since y is not a parameter for (B.1) with η > 0, then the unstable fiber

Wu(z) is not always defined globally in N . A sufficient condition which Wu(z)

is defined globally in a given block is discussed in Sections 4.6 and 6.1.

Proof. The existence of unstable fibers are proved by the same arguments

as that of Wu(Sε) in N̂ , replacing N̂ by the cone

Cf,uL (z) ≡ {z}+ {(a, ζ) | |a− πa(z)| ≥ L|ζ − πζ(z)|}, ζ = (y, η)

for z ∈ Sε. Let

Mf,u
L (t) := −〈∆a(t),∆a(t)〉+ L2 (〈∆y(t),∆y(t)〉+ 〈∆η(t),∆η(t)〉) .

Consider the time differential of Mf,u
L in the reverse time direction τ = −t.

Then we have

1

2

d

dτ
Mf,u
L = − 1

2

d

dt
Mf,u
L = −L2(〈∆y,∆y′〉+ 〈∆η,∆η′〉) + 〈∆a,∆a′〉

= 〈∆a,A∆a〉+

〈
∆a,

∂F1

∂a
(z̃)∆a+

∂F1

∂b
(z̃)(h1 − h2)

+
∂F1

∂y
(z̃)∆y +

∂F2

∂η
(z̃)∆η

〉
− σL2

〈
∆y, η

∂g

∂a
(z̃)∆a+ η

∂g

∂b
(z̃)(h1 − h2)

+ η
∂g

∂y
(z̃)∆y +

(
g1 + η

∂g

∂η
(z̃)

)
∆η

〉
,

where g1 = g(a1, hu(a1, y1, η1), y1, η1) and hi = hu(ai, yi, ηi), i = 1, 2. We

further have

1

2

d

dτ
Mf,u
L ≥ (λA − σ1,a)|∆a|2 − σ1,b|∆a||h1 − h2| − σ1,y,η|∆a||∆y ∆η|

− σL2{ησslow,a|∆a|+ ησslow,b|h1 − h2|+ σslow,y,η|∆y ∆η|}|∆y|,

where |∆y ∆η| = (|∆y|2 + |∆η|2)1/2, etc. Now let z1, z2 ∈ Wu(Sε). Then the

Lipschitzian function hu has the following estimate, which follows from the stable

m-cone condition:

|h1 − h2| ≤ m|∆a ∆y ∆η|.
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Moreover, if z2 ∈Wu(Sε) ∩ Csm(z1)c ∩ {Mf,u
L = 0}, we further have

|h1 − h2| ≤ m|∆a ∆y ∆η| ≤ m(L2 + 1)1/2|∆y ∆η|.

Hence we have

(B.3)
1

2

d

dτ
Mf,u
L ≥ L2 {λA − β} |∆y ∆η|2,

where β is given in (B.2). The differential is thus positive if λA > β, unless

∆y = ∆η = 0. Summarizing the above argument we have

Lemma B.3. Let N be a fast-saddle-type block satisfying the stable m-cone

conditions such that the slow manifold Sε as well as Wu(Sε) = {b = hu(a, y, ε)}
is validated within N for ε ∈ (0, ε0]. Let Mf,u

L (t) := −|a1(t)−a2(t)|2+L2|ζ1(t)−
ζ2(t)|2, where (ai, ζi) ≡ (ai, yi, ηi) ∈Wu(Sε), i = 1, 2, with some L > 0. Assume

that the unstable fiber-L-cone condition is satisfied in N . Then dMf,u
L /dτ > 0

on {Mf,u
L = 0} unless (y1, ε1) = (y2, ε2), where τ = −t.

Go back to the proof of the theorem. Lemma B.3 indicates that the conic

part {|a| = L|ζ − ζ̂|} of the boundary ∂Cf,uL (z1) with z1 ∈ Sε is the entrance in

the t time direction. Then the existence argument in the proof of Theorem 3.5

with time-reversal flow yields the existence of a point z2 ∈ Sâ ≡ {(a, y, η) ∈
Cf,uL (z1) | a = â} ∩Wu(Sε) such that ϕε(t, z2) ∈ Cf,uL (ϕε(t, z1)) for all t ≤ 0,

as long as πySâ ⊂ int K̂ holds. Since such a point can be chosen for any â, this

argument gives a component ζ = (y, η) for each â. The y-component of ζ gives

a function y = hzf,u(a).

The rest is the well-definedness and Lipschitz continuity of hzf,u. The in-

equality (B.3) also yields

(B.4)
1

2

d

dτ
|∆y ∆η|2 ≥ {λA − β} |∆y ∆η|2.

If, for fixed ε, both points (a, y1) and (a, y2) are on the graph {y = hzf,u(a)},
these points satisfy Mf,u

L (τ) > 0 and stay in N for all τ ∈ [0,∞), equivalently,

t ∈ (−∞, 0]. The inequality (B.4) with the unstable fiber-L-cone condition

in N indicates that the difference |∆y ∆η| diverges as τ → ∞, equivalently

t → −∞. However, it contradicts the fact that N is compact, which shows the

well-definedness of y = hzf,u(a) and its Lipschitz continuity.

For fixed ε, the slope of unstable fiber, namely the Lipschitz constant of hzf,u
is estimated as follows. Let (ai, bi, yi, ε), i = 1, 2, be points on Wu(z). Note that

we have to pay attention to the variance of b-component. First we have

|b1 − b2| = |hu(a1, y1, ε)− hu(a2, y2, ε)| ≤ m(|a1 − a2|2 + |y1 − y2|2)1/2.

Second we have

|y1 − y2| = |hf,u(a1)− hf,u(a2)| ≤ L−1|a1 − a2|.
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Summarizing these estimates, we have

(|b1 − b2|2 + |y1 − y2|2)1/2 ≤ m(1 + L−2)1/2|a1 − a2|,

namely, the slope of unstable fiber in Wu(Sε) has the upper bound m(1 +

L−2)1/2 ≡ slu. �

Remark B.4. If we formally set m = 0 in (B.2), the unstable fiber-cone

condition turns out to be independent of differentials of vector fields in the

b-component. In Jones’s lecture note [19], whole arguments concerning with in-

variant foliations are developed after straightening Wu(Sε) and W s(Sε); namely

{b = 0} and {a = 0}, respectively. In our arguments, on the other hand, the

locally invariant manifold Wu(Sε) is kept bended. Instead, we estimate the

strength of bend by m, which enables us to validate invariant foliations without

any helps of nonlinear straightening transformations.
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