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NONAUTONOMOUS SUPERPOSITION OPERATORS

IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION
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Abstract. The main goal of this paper is to give an answer to the main
problem of the theory of nonautonomous superposition operators acting in

the space of functions of bounded variation in the sense of Jordan. Namely,

we give necessary and sufficient conditions which guarantee that nonau-
tonomous superposition operators map that space into itself and are locally

bounded. Moreover, special attention is drawn to nonautonomous super-

position operators generated by locally bounded mappings as well as to
superposition operators generated by functions with separable variables.

1. Introduction

The notion of a function of bounded variation is one of the basic notions

of mathematical analysis. It was introduced by Camille Jordan (see [14]) in

connection with his investigation on Fourier series.

It might seem that the problem of characterization of acting conditions for

nonlinear superposition operators in the spaces of functions of bounded vari-

ation (1) has long been solved. It has been indeed, but only in the case of

autonomous superposition operators (see [15]); the problem of stating necessary
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(1) In this paper we will be interested only in bounded variation in the sense of Jordan,

and therefore we will refer to it simply as ‘bounded variation’.
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and sufficient conditions for the nonautonomous superposition operator to map

the space of functions of bounded variation into itself is still open.

In the monograph [4], on page 175 the authors write: “As already mentioned,

no general results on the acting, boundedness, or continuity of the superposition

operator F are known in the nonautonomous case f = f(t, u) (apart from trivial

sufficient conditions, of course).”

On page 174 of that monograph the authors quote and prove the following

result coming originally from Ljamin’s paper [19].

Theorem 1.1. Assume that the function f(t, · ) satisfies the Lipschitz con-

dition on R uniformly in t ∈ [0, 1], and that the function f( · , u) is of bounded

variation on the interval [0, 1] uniformly in u ∈ R. Then the nonautonomous

superposition operator F , generated by f , maps the space BV[0, 1] into itself and

is locally bounded, that is, it maps bounded sets into bounded ones.

(In the above theorem BV[0, 1] denotes the Banach space of all functions

x : [0, 1]→ R of bounded variation endowed with the norm ‖x‖BV = |x(0)|+
1∨
0
x;

for more details see Section 2.)

In the paper [6], Bugajewska formulated the conjecture that Theorem 1.1

might not be true. Let us also add that the proof of Ljamin’s theorem presented

in the survey article [3] is false. One can find the suitable examples confirming

its falsity in the review by Bugajewski for ZblMATH (Zbl 1255.47059). The con-

jecture from the paper [6] was confirmed by Maćkowiak (see [22]) who presented

the following counterexample to Theorem 1.1.

Example 1.2 ([22]). Let the function f : [0, 1]×R→ R be defined as follows:

f(t, u) =


0 ∀ n ∈ {2, 3, . . .} : t 6= cn or u /∈ In,

1

n

(
1− |u− cn|

wn

)
∃ n ∈ {2, 3, . . .} : t = cn and u ∈ In,

where cn = 1 − 1/n, wn = 1/(2n) and In = (cn − wn, cn + wn) for n = 2, 3, . . .

For an arbitrary t ∈ [0, 1], the function f(t, · ) satisfies the Lipschitz condition

(uniformly in the second variable) with a Lipschitz constant not greater than 2.

Moreover,
1∨
0
f( · , u) ≤ 22 for an arbitrary u ∈ R. However, considering the

functions x(t) = t and g(t) = f(t, x(t)) for t ∈ [0, 1], one can easily be convinced

that the nonautonomous superposition operator, generated by the function f ,

does not map the space BV[0, 1] into itself.

In the introduction to the recently published monograph [2, p. 6], the authors

stated three fundamental open problems of the theory of nonlinear superposition

operators in the space of functions of bounded variation. The first problem
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mentioned there concerns both necessary and sufficient conditions which would

imply that the nonautonomous superposition operator maps the space under

consideration into itself. Thus we can say, roughly speaking, that the theory

of nonautonomous superposition operators in the space of functions of bounded

variation is still in its initial point.

The main purpose of this article is to provide an answer to the problem

concerning acting conditions. Let us emphasize that the proof of sufficiency of

our conditions stated in the main result (see Theorem 3.8) is straightforward,

while the proof of their necessity is non-trivial and tricky (see also Theorem 4.4

for the case of nonlinear superposition operators generated by locally bounded

functions).

Let us also add that the third problem stated in the mentioned monograph

concerning local boundedness of a nonautonomous superposition operator was

solved in the paper [17].

Let us emphasize that the theory of nonlinear superposition operators in the

spaces of functions of bounded variation is closely connected with the theory of

solutions to nonlinear equations in these classes of functions (see e.g. [7], [8], [13]).

The study of so-called BV-solutions seems to be interesting for at least a few

reasons. First, let us draw attention to the fact that solutions to the Cauchy

problem for the equation of first order, defined on a compact interval in R, the

existence of which is guaranteed by the classical Peano theorem, are functions of

bounded variation (at least locally). This property is preserved, if one considers

solutions to this equation, the existence of which follows from the Carathéodory

theorem (see [10, Theorem 1.1]). Second, solutions to many equations which

describe concrete physical phenomena are functions of (local) bounded variation.

As examples, we could mention here equations describing the amplitude of forced

vibrations of a string, which appear in engineering (see [23]), or Volterra integral

equations modelling population dynamics under constant harvesting (see e.g. [5]).

Applications of functions of bounded variation in economics to describe dynamic

choices of hyperbolic consumers (see e.g. [12]) are also worth mentioning.

The motivation for the study of solutions to nonlinear integral equations in

the class of functions of bounded variation comes also from the theory of non-

absolute convergent integrals. Namely, it is well-known that if h : [0, 1] → R
is a function integrable in the Denjoy–Perron sense (or, equivalently, in the

Henstock–Kurzweil sense), then hϕ is also integrable in that sense whenever

ϕ : [0, 1]→ R is a function of bounded variation (see [9]).

Finally, let us mention that certain functions of bounded variation also pos-

sess essential applications, for example, in the geometric measure theory (see e.g.

[21], [1], [11]) or in image processing to recovering images (see e.g. [18]).
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The structure of this paper is as follows. In Section 2 we fix notation used in

this paper and we recall a few basic results concerning nonlinear superposition

operators acting in the space of functions of bounded variation. Section 3 con-

tains, among others, the main result of this paper, namely Theorem 3.8, which

gives necessary and sufficient conditions guaranteeing that the nonautonomous

superposition operator maps the space of functions of bounded variation into

itself and its local boundedness. In Section 4 we examine nonautonomous su-

perposition operators generated by locally bounded functions. A necessary and

sufficient acting condition for such superposition operators is stated in Theo-

rem 4.4. Finally, Section 5 contains exhaustive study of nonlinear superposition

operators which are generated by functions with separable variables.

2. Preliminaries

Notation 2.1. The closed ball with center at x and radius r ∈ (0,+∞)

in a normed space X will be denoted by BX(x, r). For simplicity, instead of

BR(x, r) we will obviously write [x − r, x + r]. By BV[a, b] we will denote the

Banach space of all real-valued functions of bounded variation defined on [a, b],

endowed with the norm ‖x‖BV :=|x(a)|+
b∨
a
x; here the symbol

b∨
a
x denotes the

Jordan variation of the function x : [a, b]→ R, that is,

b∨
a

x = sup
π

n∑
i=1

|x(ti)− x(ti−1)|,

where the supremum is taken over all finite partitions π : a = t0 < t1 < . . . <

tn = b of the interval [a, b]. Moreover, the set of points of discontinuity of

a function f will be denoted by Df . If u is an arbitrary real number, then by xu
we will denote the constant function attaining only the value u, that is, xu(t) = u

for every t in the domain of xu.

The necessary and sufficient acting condition for the autonomous superposi-

tion operators are fully described by the following Josephy’s

Theorem 2.2 ([15], [4, Theorem 6.13]). Suppose that F is an autonomous

superposition operator generated by a function f : R → R. The superposition

operator F maps the space BV[0, 1] into itself if and only if the function f satisfies

a local Lipschitz condition, that is, for every r > 0 there exists a number Lr ≥ 0

such that |f(u)− f(w)| ≤ Lr|u− w|, whenever u,w ∈ [−r, r].

In this paper, by locally bounded mappings we will understand the mappings

defined as follows.
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Definition 2.3. Let X be a normed space. A mapping F : X → X is said

to be locally bounded if for each r > 0 there exists R > 0 such that

F (BX(0, r)) ⊂ BX(0, R).

For the case of nonautonomous superposition operators in the space of func-

tions of bounded variation, the sufficient acting conditions are given in the fol-

lowing

Theorem 2.4 ([6, Theorem 1]). Let the function f : [0, 1] × R → R satisfy

the following conditions:

(a) f satisfies a Lipschitz condition on R uniformly in t ∈ [0, 1];

(b) there exists a constant M > 0 such that for arbitrary real numbers

u0, . . . , un−1 and an arbitrary finite partition 0 = t0 < t1 < . . . < tn = 1

of [0, 1] the following inequality holds:

(2.1)

n∑
i=1

|f(ti, ui−1)− f(ti−1, ui−1)| ≤M.

Then the nonautonomous superposition operator F , generated by f , maps the

space BV[0, 1] into itself and is locally bounded.

The above quoted result gave us a clue what kind of conditions might be

necessary in the situation under consideration.

Remark 2.5. Clearly, the conclusions of Theorems 2.2 and 2.4 remain true,

if we replace the space BV[0, 1] with the space BV[a, b] for arbitrary a, b ∈ R
such that a < b.

3. Nonautonomous superposition operators — a general case

The first result of this section is a simple refinement of Theorem 2.4.

Theorem 3.1. Let the function f : [0, 1]× R→ R satisfy the following con-

ditions:

(a) f satisfies a local Lipschitz condition on R uniformly in t ∈ [0, 1];

(b) for every r > 0 there exists a constant Mr > 0 such that for every n ∈ N,

every partition 0 = t0 < . . . < tn = 1 of [0, 1] and every u0, . . . , un−1 ∈
[−r, r] the following implication holds:

(3.1)

n−1∑
i=1

|ui − ui−1| ≤ r ⇒
n∑
i=1

|f(ti, ui−1)− f(ti−1, ui−1)| ≤Mr.

Then the superposition operator F , generated by f , maps the space BV[0, 1] into

itself and is locally bounded.
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Proof. Given x ∈ BV[0, 1], let r > 0 be such that ‖x‖BV ≤ r. Moreover,

let Lr denote the (uniform) Lipschitz constant corresponding to the function

u 7→ f(t, u) and the interval [−r, r]. Then, since supt∈[0,1]|x(t)| ≤ ‖x‖BV, for an

arbitrary finite partition 0 = t0 < t1 < . . . < tn = 1 we have

n∑
i=1

|f(ti, x(ti))− f(ti−1, x(ti−1))|

≤
n∑
i=1

|f(ti, x(ti))− f(ti, x(ti−1))|+
n∑
i=1

|f(ti, x(ti−1))− f(ti−1, x(ti−1))|

≤Lr
n∑
i=1

|x(ti)− x(ti−1)|+
n∑
i=1

|f(ti, x(ti−1))− f(ti−1, x(ti−1))|.

Hence
1∨
0

F (x) ≤ Lr
1∨
0

x+Mr,

and therefore F (x) ∈ BV[0, 1]. Furthermore, we have

‖F (x)‖BV ≤ |f(0, x(0))|+ Lr

1∨
0

x+Mr ≤ |f(0, 0)|+ rLr +Mr,

which shows that F is locally bounded with R:=|f(0, 0)|+ rLr +Mr. �

The following example shows that the above result is an essential improve-

ment of Theorem 2.4.

Example 3.2. Let us consider the function f : [0, 1]×R→ R defined by the

following formula:

f(t, u) =


0 if t 6= 1/n and u ∈ R,
0 if t = 1/n and u < n− 1,

1 if t = 1/n and u ≥ n,
u− (n− 1) if t = 1/n and n− 1 ≤ u < n,

where n ∈ N. Let us observe that for any t ∈ [0, 1] the function u 7→ f(t, u)

satisfies a Lipschitz condition with the constant at most 1. Furthermore, f does

not satisfy condition (b) of Theorem 2.4. Indeed, for every positive integer n ≥ 2

let

u0:=0, u1:=n− 1, . . . , ui:=n− i, . . . , un−1:=1

and

t0:=0, t1 =
1

n
, . . . , ti:=

1

n− i+ 1
, . . . , tn:=1.
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Then

n∑
i=1

|f(ti, ui−1)− f(ti−1, ui−1)| =
∣∣∣∣f( 1

n
, 0

)
− f(0, 0)

∣∣∣∣
+

n∑
i=2

∣∣∣∣f( 1

n− i+ 1
, n− i+ 1

)
− f

(
1

n− i+ 2
, n− i+ 1

)∣∣∣∣ ≥ n− 1.

On the other hand, the function f satisfies condition (b) of Theorem 3.1, since

for an arbitrary positive number r > 0, in view of the fact that in each region

[0, 1]× [−r, r] the function f vanishes everywhere except at the set consisting of

a finite number of vertical line segments, it suffices to take Mr:=2[r] + 1, where

[r] denotes the integer part of the number r.

Proposition 3.3. Suppose that the function f : [0, 1] × R → R satisfies as-

sumption (a) of Theorem 3.1. If the autonomous superposition operator F , gen-

erated by f , maps the space BV[0, 1] into itself and is locally bounded, then the

function f satisfies condition (b) of Theorem 3.1.

Proof. Given a number r > 0, let R > 0 be such that F (BBV(0, 2r)) ⊂
BBV(0, R). Moreover, let Lr denote the (uniform) Lipschitz constant corre-

sponding to the function u 7→ f(t, u) and the interval [−r, r]. Set Mr:=rLr +R

and consider an arbitrary finite partition 0 = t0 < t1 < . . . < tn = 1 of

[0, 1] and an arbitrary finite collection of real numbers u0, . . . , un−1 such that
n−1∑
i=1

|ui − ui−1| ≤ r. We infer that there exists a function x ∈ BV[0, 1] such that

x(ti) = ui for i = 0, . . . , n − 1 and
1∨
0
x ≤ r. Indeed, it suffices to consider the

function which is linear on each of the intervals [ti−1, ti] for i = 0, . . . , n − 1

and is parallel to the horizontal axis on the interval [tn−1, tn] (cf. the proof of

Theorem 3.8). Then we have

n∑
i=1

|f(ti, ui−1)− f(ti−1, ui−1)| =
n∑
i=1

|f(ti, x(ti−1))− f(ti−1, x(ti−1))|

≤
n∑
i=1

|f(ti, x(ti−1))− f(ti, x(ti))|+
n∑
i=1

|f(ti, x(ti))− f(ti−1, x(ti−1))|

≤Lr
n∑
i=1

|x(ti−1)− x(ti)|+
1∨
0

F (x) ≤ rLr +R = Mr.

This ends the proof. �

Example 3.4. Let F be the nonautonomous superposition operator gener-

ated by a function f : [0, 1]×R→ R. Let us emphasize that the fact that F maps

the space BV[0, 1] into itself does not have to imply that F is locally bounded.
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Indeed, let f : [0, 1]× R→ R be defined by the formula

f(t, u) =

0 if t 6= 0 or u ≤ 0,

u−1 otherwise.

Furthermore, for every n ∈ N, let

xn(t) =

n−1 if t = 0,

0 if t ∈ (0, 1].

Clearly, the superposition operator F , generated by the function f , maps BV[0, 1]

into itself. However, ‖F (xn)‖BV = 2n, while ‖xn‖BV = 2n−1 for n ∈ N.

Actually, the conclusion of the above remark follows from a more general

result, namely from the following

Proposition 3.5. Suppose that a function f : [0, 1] × R → R generates the

nonautonomous superposition operator F which maps the space BV[0, 1] into

itself. If the function f is not locally bounded, then also the operator F is not

locally bounded.

Proof. Since the function f is not locally bounded, there exist a constant

r > 0 and a sequence (tn, un)n∈N in [0, 1]× [−r, r] such that limn→∞|f(tn, un)| =
+∞. Clearly, without loss of generality, we may assume that the sequence

(tn)n∈N converges to a point t0 ∈ [0, 1]. For each n ∈ N define a function

xn : [0, 1]→ R by

xn(t) =

un if t = tn,

0 otherwise.

Notice that

‖xn‖BV = |xn(0)|+
1∨
0

xn ≤ 3r for every n ∈ N,

and therefore, in view of the assumption, F (xn) ∈ BV[0, 1] for every n ∈ N. On

the other hand, for sufficiently large n ∈ N, we have

|f(tn, un)| − |f(s, 0)| ≤ |f(tn, un)− f(s, 0)|

= |f(tn, xn(tn))− f(s, xn(s))| ≤
1∨
0

F (xn),

where s is an arbitrary (but fixed) point in [0, 1] distinct from t0. Hence

lim
n→∞

1∨
0

F (xn) = +∞, �

The fact that the nonautonomous superposition operator maps the space

BV[0, 1] into itself implies also the property stated as
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Proposition 3.6. If the nonautonomous superposition operator F , generated

by a function f : [0, 1]×R→ R, maps the space BV[0, 1] into itself, then for every

r > 0 the set Tr:=
{
t ∈ [0, 1] : sup

u∈[−r,r]
|f(t, u)| = +∞

}
is finite.

Proof. Let us assume that the superposition operator F maps the space

BV[0, 1] into itself and suppose that there exists r > 0 such that the set Tr is (at

least) denumerable (2). Thus, we can find a sequence (tn, un)n∈N in [0, 1]×[−r, r]
such that

(3.2) |f(tn+1, un+1)| ≥ |f(tn, un)|+ 1 for n ∈ N.

Let us observe that, without loss of generality, we may assume that:

(a) the sequences (tn)n∈N and (un)n∈N are monotone;

(b) tn → t0 and un → u0, as n→ +∞, for some t0 ∈ [0, 1] and u0 ∈ [−r, r];
(c) tn 6= tm, if n 6= m.

To prove the above claim note that, in view of the denumerability of the

set Tr, the sequence (tn)n∈N can be chosen in such a way that tn 6= tm, if

n 6= m. Furthermore, since (tn, un) ∈ [0, 1]×[−r, r] for every n ∈ N, the sequence

(tn, un)n∈N admits a convergent subsequence (tnk , unk)k∈N, that is, there exist

points t0 ∈ [0, 1] and u0 ∈ [−r, r] such that tnk → t0 and unk → u0 as k → +∞.

Besides, from (3.2) it follows that

|f(tm, um)| ≥ |f(tn, un)|+ 1 for m > n,

and thus to prove the claim, it now suffices to take any monotone subsequences

(tnkl )l∈N of (tnk)k∈N and (unkl )l∈N of (unk)k∈N, respectively.

Now, let x : [0, 1]→ R be a function given by the following formula:

x(t) =



un if t = tn for n ∈ N,
u0 if t = t0,

linear on (min{tn, tn+1},max{tn, tn+1}) for n ∈ N,
x
(

sup
n∈N

tn

)
if t ∈

(
sup
n∈N

tn, 1
]
,

x
(

inf
n∈N

tn

)
if t ∈

[
0, infn∈N tn

)
.

It can be shown that the function x is monotone and hence x ∈ BV[0, 1]. On

the other hand, for every positive integer n ≥ 2, we have

1∨
0

F (x) ≥
n−1∑
i=1

|F (x)(ti+1)− F (x)(ti)|

≥
n−1∑
i=1

(|f(ti+1, x(ti+1))| − |f(ti, x(ti))|) ≥ n− 1,

(2) Recall that a set is called denumerable if it is infinite and countable.
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which proves that F (x) /∈ BV[0, 1]. This contradicts our assumption. Therefore,

the set Tr is finite. �

The following result states, in particular, that thinking about necessary

acting conditions for the nonautonomous superposition operator in the space

BV[0, 1], one cannot say anything about the behaviour of the generator of that

operator with respect to the second variable.

Theorem 3.7. Let F be a nonautonomous superposition operator, generated

by a function f : [0, 1]×R→ R, which maps the space BV[0, 1] into itself. Then

for every u ∈ R the function t 7→ f(t, u) is of bounded variation. Furthermore,

in general, nothing can be said about the function u 7→ f(t, u), where t ∈ [0, 1] is

fixed.

Proof. For every u ∈ R, in view of the assumption, F (xu) ∈ BV[0, 1], that

is, the function t 7→ f(t, u) is of bounded variation.

To show the second claim, let us consider the function f : [0, 1]×R→ R given

by the formula f(t, u) = h(t)g(u), where g : R→ R is an arbitrary function and

h : [0, 1]→ R is defined by

h(t) =

0 if t ∈ (0, 1],

1 if t = 0.

Then the nonautonomous superposition operator F , generated by the function f ,

is given by

F (x)(t) =

0 if t ∈ (0, 1],

g(x(0)) if t = 0,

where x ∈ BV[0, 1], and hence it maps the space BV[0, 1] into itself. �

Now, we are going to prove the main result of this paper concerning necessary

and sufficient conditions for the inclusion F (BV[0, 1]) ⊂ BV[0, 1] and the local

boundedness of the nonautonomous superposition operator F .

Theorem 3.8. Suppose that f : [0, 1] × R → R is a given function. The

following conditions are equivalent :

(a) the nonautonomous superposition operator F , generated by f , maps the

space BV[0, 1] into itself and is locally bounded ;

(b) for every r > 0 there exists a constant Mr > 0 such that for every k ∈ N,

every finite partition 0 = t0 < . . . < tk = 1 of the interval [0, 1] and every

finite sequence u0, . . . , uk ∈ [−r, r] with
k∑
i=1

|ui − ui−1| ≤ r, the following

inequalities hold

k∑
i=1

|f(ti, ui)− f(ti−1, ui)| ≤Mr and

k∑
i=1

|f(ti−1, ui)− f(ti−1, ui−1)| ≤Mr.
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Proof. (b)⇒ (a). Let x ∈ BV[0, 1] be such that ‖x‖BV ≤ r. Moreover,

let Mr be a constant for which condition (b) is satisfied and let 0 = t0 < . . . <

tk = 1 be any finite partition of the interval [0, 1]. Then, in view of the triangle

inequality, we have

k∑
i=1

|f(ti, x(ti))− f(ti−1, x(ti−1))| ≤ 2Mr.

The above inequality and the fact that f is locally bounded (which is implied

by (b)) ensure that F is locally bounded.

(a)⇒ (b). Suppose now that the superposition operator F satisfies con-

dition (a) and that there exists r > 0 such that for every n ∈ N there ex-

ist a finite partition 0 = tn0 < . . . < tnkn = 1 of [0, 1] and a finite sequence

un0 , . . . , u
n
kn
∈ [−r, r] with

kn∑
i=1

|uni − uni−1| ≤ r such that

either

kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i )| > n(3.3)

or

kn∑
i=1

|f(tni−1, u
n
i )− f(tni−1, u

n
i−1)| > n.

For every n ∈ N define auxiliary functions ξn : [0, 1]→ R by

ξn(t) =


uni if t = tni for some i ∈ {0, 1, . . . , kn},

tni+1 − t
tni+1 − tni

uni +
t− tni

tni+1 − tni
uni+1 if t ∈ (tni , t

n
i+1),

for some i ∈ {0, . . . , kn − 1}.

Clearly,
1∨
0

ξn =

kn∑
i=1

|ξn(tni )− ξn(tni−1)| =
kn∑
i=1

|uni − uni−1| ≤ r,

and since the superposition operator F is locally bounded, there exists a constant

R > 0 (corresponding to 2r) such that supn∈N ‖F (ξn)‖BV ≤ R. In particular,

for every n ∈ N we have

kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i )|

≤
kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i−1)|+

kn∑
i=1

|f(tni−1, u
n
i−1)− f(tni−1, u

n
i )|

≤ sup
n∈N

1∨
0

F (ξn) +

kn∑
i=1

|f(tni−1, u
n
i−1)− f(tni−1, u

n
i )|,
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and similarly

kn∑
i=1

|f(tni−1, u
n
i )− f(tni−1, u

n
i−1)|

≤
kn∑
i=1

|f(tni−1, u
n
i )− f(tni , u

n
i )|+

kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i−1)|

≤
kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i )|+ sup

n∈N

1∨
0

F (ξn).

Therefore, both sums in (3.3) diverge to +∞ as n→ +∞, if at least one of them

diverges. So, we have that

(3.4) lim
n→∞

kn∑
i=1

|f(tni−1, u
n
i )− f(tni−1, u

n
i−1)| = +∞.

Fix n ∈ N. To each tni arbitrarily assign a point τni+1 ∈ (tni , t
n
i+1), i =

0, . . . , kn − 1. The finite sequence sni , where i = 0, . . . , 2kn, defined by

sn0 :=tn0 , sn1 :=τn1 , sn2 :=tn1 , sn3 :=τn2 , sn4 :=tn2 , . . . , s
n
2kn−1:=τnkn , sn2kn :=tnkn

is a partition of [0, 1]. Let us also define two functions:

xn(t) =



uni if t ∈ [sn2i−2, s
n
2i−1]

for some i ∈ {1, . . . , kn},
sn2i − t

sn2i − sn2i−1
uni +

t− sn2i−1
sn2i − sn2i−1

uni+1 if t ∈ [sn2i−1, s
n
2i]

for some i ∈ {1, . . . , kn − 1},
unkn if t ≥ sn2kn−1,

and

yn(t) =



sn2i−1 − t
sn2i−1 − sn2i−2

uni−1 +
t− sn2i−2

sn2i−1 − sn2i−2
uni if t ∈ [sn2i−2, s

n
2i−1]

for some i ∈ {1, . . . , kn},
uni if t ∈ [sn2i−1, s

n
2i]

for some i ∈ {1, . . . , kn}.

The following table explains how the functions xn and yn are constructed (for

the sake of simplicity, the upper indices n at t, τ, s and u are omitted):

values of t s0 s1 s2 s3 s4 s5 s6 . . . s2kn−3 s2kn−2 s2kn−1 s2kn

‘old values’ of t t0 τ1 t1 τ2 t2 τ3 t3 . . . τkn−1 tkn−1 τkn
tkn

values of xn(t) u1 u1 u2 u2 u3 u3 u4 . . . ukn−1 ukn
ukn

ukn

values of yn(t) u0 u1 u1 u2 u2 u3 u3 . . . ukn−1 ukn−1 ukn
ukn

and the functions xn and yn are linear on each interval [si, si+1].
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Observe that xn(0) = un1 , yn(0) = un0 , and furthermore

1∨
0

xn =

2kn∑
i=1

|xn(sni )− xn(sni−1)| =
kn∑
i=2

|uni − uni−1| ≤
1∨
0

ξn ≤ r

as well as

1∨
0

yn =

2kn∑
i=1

|yn(sni )− yn(sni−1)| =
kn∑
i=1

|uni − uni−1| ≤
1∨
0

ξn ≤ r.

Therefore, ‖xn‖BV ≤ 2r and ‖yn‖BV ≤ 2r for every n ∈ N. Hence, in view of the

local boundedness of the superposition operator F , we infer that ‖F (zn)‖BV ≤ R,

where zn ∈ {xn, yn}. However, on the other hand, for every n ∈ N we have

kn∑
i=1

|f(tni−1, u
n
i )− f(tni−1, u

n
i−1)|

≤
kn∑
i=1

|f(tni−1, u
n
i )− f(τni , u

n
i )|+

kn∑
i=1

|f(τni , u
n
i )− f(tni−1, u

n
i−1)|

=

kn∑
i=1

|f(tni−1, x
n(tni−1))− f(τni , x

n(τni ))|

+

kn∑
i=1

|f(τni , y
n(τni ))− f(tni−1, y

n(tni−1))|

=

kn∑
i=1

|f(sn2i−1, x
n(sn2i−1))− f(sn2i−2, x

n(sn2i−2))|

+

kn∑
i=1

|f(sn2i−1, y
n(sn2i−1))− f(sn2i−2, y

n(sn2i−2))|

≤
1∨
0

F (xn) +

1∨
0

F (yn) ≤ 2R,

which contradicts (3.4). This shows that the implication (a)⇒ (b) holds. �

Remark 3.9. Let us add that Theorem 3.1 and Proposition 3.3 can be

obtained as corollaries to Theorem 3.8.

4. The case of locally bounded functions

In this section, unless stated otherwise, we assume that f : [0, 1] × R → R
maps bounded sets into bounded sets and that F is the nonautonomous super-

position operator generated by f . For brevity, let lα(t):= max{0, t − α} and

rα(t):= min{1, t+ α} for t ∈ [0, 1] and α ∈ (0,+∞).

Reasoning similar to the proof of [24, Lemma 1] leads to the following
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Lemma 4.1. Let x : [0, 1] → R. Then F (x) /∈ BV[0, 1] if and only if there

exists t ∈ [0, 1] such that

(4.1)

rα(t)∨
lα(t)

F (x) = +∞ for every α > 0.

Proof. Let us note that it suffices to prove the implication ‘⇒’, and there-

fore suppose that (4.1) does not hold. Then, for any t ∈ [0, 1] there exists αt > 0

such that
rαt (t)∨
lαt (t)

F (x)=:Mt < +∞.

The family of sets
{

(t − αt, t + αt) : t ∈ [0, 1]
}

is an open cover of [0, 1], which

implies that for some points 0 ≤ t0 < t1 < . . . < tk ≤ 1 we have [0, 1] ⊂
(t0 − αt0 , t0 + αt0) ∪ . . . ∪ (tk − αtk , tk + αtk) and

1∨
0

F (x) ≤
k∑
i=0

rαti
(ti)∨

lαti
(ti)

F (x) ≤ kmax{Mt0 , . . . ,Mtk} < +∞. �

Now, we are going to apply Lemma 4.1 to the following technical result,

which is crucial for our further considerations.

Lemma 4.2. Suppose that there exists x ∈ BBV(0, r), where r > 0, such that

F (x) /∈ BV[0, 1] and let t ∈ [0, 1] satisfy condition (4.1). Then for every δ > 0

there exists u ∈ [−r, r] such that for every q ∈ N there exist positive integers

cq, dq and a finite collection of points l1/cq (t) ≤ tq0 < tq1 < . . . < tqdq ≤ r1/cq (t)

such that the following properties hold : x(tqi ) ∈ [u − δ, u + δ] for i = 0, . . . , dq,

cq → +∞ as q → +∞ and

(4.2) lim
q→∞

dq∑
i=1

|f(tqi , x(tqi ))− f(tqi−1, x(tqi−1))| = +∞.

Proof. Fix δ > 0 (without loss of generality we may assume that 6r/δ is

a positive integer greater than or equal to 2). Since t ∈ [0, 1] satisfies (4.1), for

each n ∈ N we can choose a number kn ∈ N and a finite partition l1/n(t) = τn0 <

. . . < τnkn = r1/n(t) of the interval [l1/n(t), r1/n(t)] such that

(4.3)

kn∑
i=1

|f(τni , x(τni ))− f(τni−1, x(τni−1))| ≥ n.

The function f is locally bounded, and therefore

(4.4) Mr:= sup
{
|f(τ, w)| : τ ∈ [0, 1] and w ∈ [−r, r]

}
< +∞,

which, in particular, shows that kn → +∞ as n→ +∞.
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Now, let us define

u0:=− r and uj+1:=uj +
δ

3
for j = 0, . . . , s− 1,

where s = 6r/δ. Then, the intervals [uj − δ/6, uj + δ/6], where j = 0, . . . , s,

cover the interval [−r, r]. Moreover,

[uj − δ/6, uj + δ/6]∩ [uj+1− δ/6, uj+1 + δ/6] = {uj + δ/6} for j = 0, . . . , s− 1,

and we have

|u− w| ≥ δ/3 for u ∈ [ui − δ/6, ui + δ/6], w ∈ [uj − δ/6, uj + δ/6]

and i, j with |i− j| > 1.

For every n ∈ N we have

{x(τni ) : i = 0, 1, . . . , kn} ⊂
s⋃
j=0

[uj − δ/6, uj + δ/6],

and then to each i ∈ {0, . . . , kn} we can assign a number jn(i) ∈ {0, . . . , s} by

jn(i):= min
{
j : x(τni ) ∈ [uj − δ/6, uj + δ/6]

}
.

For every n ∈ N either

(a) |jn(i) − jn(0)| < 2 for all i ∈ {0, . . . , kn}, which means that x(τni ) ∈
[uj

n(0) − δ/2, ujn(0) + δ/2] for all i ∈ {0, . . . , kn}, or

(b) there exists a δ-jump, i.e. there exists the first index i∗ ∈ {1, . . . , kn}
such that |jn(i∗)− jn(0)| ≥ 2, and then |x(τni∗)− x(τn0 )| > δ/3.

Taking i∗ in place of 0 and repeating the above reasoning, we get that either

there is a δ-jump for some i∗∗ > i∗ or not, and so on. Let us note that since

‖x‖BV ≤ r, the number of the consecutive δ-jumps ‘at the level’ n, which will be

denoted by mn, is at most 3r/δ (observe that the upper bound for the number

of δ-jumps does not depend on n). Indeed, if the function x has consecutive

δ-jumps between the points (3) τn0 , . . . , τ
n
mn , then

r ≥
mn−1∑
i=0

|x(τni )− x(τni+1)| ≥ 1

3
δmn.

This procedure leads to the following definition of the sets Inl , for l = 0, . . . ,mn:

Inl :=

{i ∈ N : inl + 1 ≤ i ≤ inl+1 − 1} if inl+1 < kn + 1,

{i ∈ N : inl + 1 ≤ i ≤ kn} if inl+1 = kn + 1,

where in0 :=0 and inl+1:= min({i ∈ {inl , . . . , kn} : |jn(inl )− jn(i)| ≥ 2} ∪ {kn + 1}).

(3) For the sake of simplicity, we assume here that the consecutive δ-jumps at the level n

appear between the first mn + 1 points of the partition.
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Let us note that (4)

kn∑
i=1

|f(τni , x(τni ))− f(τni−1, x(τni−1))| =
mn∑
l=0

∑
i∈Inl

|f(τni , x(τni ))− f(τni−1, x(τni−1))|

+

mn∑
l=1

|f(τninl , x(τninl ))− f(τninl −1, x(τninl −1))|,

and since
mn∑
l=1

|f(τninl , x(τninl ))− f(τninl −1, x(τninl −1))| ≤ 2mnMr ≤ sMr,

we infer that for n sufficiently large there exists ln ∈ {0, . . . ,mn} such that∑
i∈Inln

|f(τni , x(τni ))− f(τni−1, x(τni−1))| ≥ δ

δ + 3r
(n− sMr);

in particular, Inln is non-empty. Since mn ≤ 3r/δ for every n ∈ N, there exists

a strictly increasing sequence (nq)q∈N of positive integers divergent to +∞ and

a number l ∈ {0, . . . ,maxn∈Nmn} independent of n for which

(4.5) lim
q→∞

∑
i∈Inql

|f(τ
nq
i , x(τ

nq
i ))− f(τ

nq
i−1, x(τ

nq
i−1))| = +∞.

Similarly, there is j ∈ {0, . . . , s} for which x(τ
nq

i
nq
l

) ∈ [uj − δ/6, uj + δ/6] for

infinitely many q ∈ N. Therefore, passing to a subsequence if necessary, we may

assume that x(τ
nq

i
nq
l

) ∈ [uj − δ/6, uj + δ/6] for every q ∈ N. So, by the definition

of the set I
nq
l we obtain that |uj − x(τ

nq
i )| ≤ δ for i ∈ Inql and q ∈ N.

Finally, set

u:=uj , cq:=nq, dq:=|I
nq
l |, tqh:=τ

nq

i
nq
l +h

for h = 0, . . . , dq;

here |A| denotes the cardinality of the set A. Together with condition (4.5), this

proves our assertion. �

Lemma 4.3. Let the function x ∈ BBV(0, r), where r > 0, be such that

F (x) /∈ BV[0, 1] and let t ∈ [0, 1] satisfy condition (4.1). Then, there exists

u ∈ [−r, r] such that for every ε > 0 and every sequence (δn)n∈N of positive

numbers convergent to 0 there exist sequences of positive integers kn:=k(δn, ε)

and finite collections of points lε(t) ≤ tδn,ε0 < tδn,ε1 < . . . < tδn,εkn
≤ rε(t) for which

the following conditions hold : x(tδn,εi ) ∈ [u− δn, u+ δn], for i = 1, . . . , kn, and

lim
n→∞

kn∑
i=1

|f(tδn,εi , x(tδn,εi ))− f(tδn,εi−1 , x(tδn,εi−1 ))| = +∞.

(4) If Inl = ∅, then, by definition, the sum corresponding to the set Inl equals zero.
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Proof. Fix an arbitrary sequence (γn)n∈N of positive numbers convergent

to 0 and suppose un ∈ [−r, r] corresponds to γn according to Lemma 4.2 (with

δ = γn). If we denote an accumulation point of the sequence (un)n∈N by u, then

it is not difficult to show that the point u satisfies the assertion. �

Is is clear that if for a function x ∈ BBV(0, r), where r > 0, there exist points

t ∈ [0, 1] and u ∈ [−r, r] such that the claim of Lemma 4.3 is satisfied, then

F (x) /∈ BV[0, 1]. Therefore, we can state

Theorem 4.4. Let x ∈ BBV(0, r) for some r > 0. Then F (x) ∈ BV[0, 1]

if and only if for any t ∈ [0, 1] and u ∈ [−r, r] there exist ε > 0, δ > 0 and

M > 0 such that lε(t) ≤ t0 < t1 < . . . < tk ≤ rε(t) and x(ti) ∈ [u− δ, u+ δ] for

i ∈ {0, . . . , k}, k ∈ N, imply

(4.6)

k∑
i=1

|f(ti, x(ti))− f(ti−1, x(ti−1))| < M.

Before we restate Theorem 4.4 we need the following

Definition 4.5. (a) Let A ⊂ R be a non-empty set and let a, b ∈ R be such

that a < b. A finite sequence (ti, ui)
k
i=0 is called a flagged partition of [a, b]×A,

if a ≤ t0 < t1 < . . . < tk ≤ b and ui ∈ A for i = 0, . . . , k.

(b) If V 1 and V 2 are flagged partitions of [a, b]×A, then V 2 is called a con-

densation of V 1 (which we will denote by V 1 � V 2), if V 1 is a subsequence

of V 2.

(c) A sequence (V n)n∈N of flagged partitions of [a, b]×A is called a conden-

sation sequence of [a, b]×A, if V n � V n+1 for n ∈ N.

(d) A condensation sequence (V n)n∈N of [a, b]× A, where V n = (tni , u
n
i )kni=0,

is called proper, if sup
n

kn∑
i=1

|uni − uni−1| < +∞.

Theorem 4.6. The operator F maps BV[0, 1] into itself if and only if for any

t ∈ [0, 1] and u ∈ R there exist ε > 0 and δ > 0 such that for any proper conden-

sation sequence (V n)n∈N of [lε(t), rε(t)]× [u− δ, u+ δ], where V n = (tni , u
n
i )kni=0,

it holds

sup
n

kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i−1)| < +∞.

Proof. Suppose that there exists x ∈ BV[0, 1] such that F (x) /∈ BV[0, 1].

Then, the existence of a desired proper condensation sequence (V n)n∈N of

[lε(t), rε(t)] × [u − δ, u + δ] follows directly from Theorem 4.4 (one has to ap-

ply it denumerably many times with M = n).

Suppose now that the condition stated in Theorem 4.6 does not hold. Then,

there exist t ∈ [0, 1] and u ∈ R together with a proper condensation sequence
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(V n)n∈N of [0, 1]× [u− 1, u+ 1] of the form V n = (tni , u
n
i )kni=0 such that

(4.7) sup
n

kn∑
i=1

|f(tni , u
n
i )− f(tni−1, u

n
i−1)| = +∞

(here we put ε = δ = 1).

For a fixed n ∈ N let xn : [0, 1] → R be a function which is linear on each

interval [tni−1, t
n
i ] for i = 1, . . . , kn, and whose graph is spanned by the points

(tni , u
n
i ), i = 0, . . . , k, and is parallel to the x-axis on the intervals [0, tn0 ] and

[tnkn , 1]. Since, the sequence (V n)n∈N is proper, we infer that

sup
n∈N

1∨
0

xn = sup
n∈N

kn∑
i=1

|uni − uni−1| < +∞.

Thus, the sequence (xn)n∈N is bounded in BV[0, 1], and therefore, in view of

Helly’s extraction theorem, there is a subsequence (xnk)k∈N and a function

x ∈ BV[0, 1] such that x(t) = limk→∞ xnk(t) for every t ∈ [0, 1]. Let us note

that, due to the fact that (V n)n∈N is a condensation sequence, x(tni ) = uni for

every i ∈ {0, . . . , kn} and n ∈ N. This, in connection with (4.7), shows that

F (x) /∈ BV[0, 1]. �

5. Nonautonomous superposition operators

— a separable variables case

In this section we are going to study nonlinear superposition operators which

are generated by functions with separable variables, that is, functions of the form

(t, u) 7→ f(t)g(u), where f : [0, 1] → R and g : R → R. Although the results of

this section may be treated as corollaries to Theorem 3.8, we are going to present

them with proofs, which (due to the form of the considered generators) are based

on different techniques, and therefore can be significantly simplified.

The following simple result explains when a nonautonomous superposition

operator acting in a function space is generated by a function with separable

variables.

Theorem 5.1. Let X be a vector space over R satisfying the following con-

ditions:

(a) X is a vector subspace of the vector space all real-valued functions defined

on [0, 1] considered with the standard pointwise addition and multiplica-

tion by scalars;

(b) X contains all constant functions.

Moreover, assume that F is a nonautonomous superposition operator which maps

the vector space X into itself. The superposition operator F is generated by

a function of the form (t, u) 7→ f(t)g(u), where f : [0, 1] → R and g : R → R if

and only if there exists u0 ∈ R such that for every u ∈ R there is au ∈ R such
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that F (xu) = auF (xu0
). Furthermore, if F 6≡ 0, then the functions f and g

are uniquely determined up to constant factors α and β, respectively, such that

αβ = 1.

Proof. Clearly, if the operator F is generated by a function with separable

variables, then either g ≡ 0 and u0:=1 and au:=0 for every u ∈ R, or g(u0) 6= 0

for some u0 ∈ R, and then au:=g(u)/g(u0).

Now, we will prove the necessity part, that is, that the generator of the

operator F , say h : [0, 1] × R → R, can be represented in the form h(t, u) =

f(t)g(u) for some functions f : [0, 1]→ R and g : R→ R. From the assumptions

it follows that we have

h(t, u) = auh(t, u0) for every t ∈ [0, 1] and u ∈ R.

If h(t, u0) = 0 for any t ∈ [0, 1], then h ≡ 0, and it suffices to take f ≡ 0 and

g ≡ 0. So we may assume that h(t0, u0) 6= 0 for some t0 ∈ [0, 1]. Define functions

f and g by the following formulas:

f(t) = h(t, u0) and g(u) =
h(t0, u)

h(t0, u0)
.

Then h(t, u) = f(t)g(u) for t ∈ [0, 1] and u ∈ R.

Finally, suppose that the functions f1 : [0, 1] → R and g1 : R → R are such

that

f(t)g(u) = f1(t)g1(u) for all (t, u) ∈ [0, 1]× R.

Since F 6≡ 0, there exists a point (s, w) ∈ [0, 1] × R such that f(s)g(w) 6= 0.

Then, putting

α:=
g1(w)

g(w)
and β:=

f1(s)

f(s)
,

we have αβ = 1 as well as

f(t) = αf1(t) and g(u) = βg1(u) for t ∈ [0, 1] and u ∈ R.

This ends the proof. �

Clearly, if f ≡ 0, then from the fact that the superposition operator F ,

generated by the function (t, u) 7→ f(t)g(u), maps the space X into itself, nothing

can be inferred about properties of g. However, the more is known about the

behaviour of the function f at points of its continuity, the more can be proved

about g.

Now, let us pass on to the space BV[0, 1].

Theorem 5.2. Let f : [0, 1] → R and g : R → R be two functions satisfying

the following conditions:

(a) there exists u0 ∈ R such that g(u0) 6= 0;

(b) there exists a point t0 ∈ [0, 1] of continuity of f such that f(t0) 6= 0.
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Then the nonautonomous superposition operator F , generated by the function

(t, u) 7→ f(t)g(u), maps the space BV[0, 1] into itself if and only if :

(c) f ∈ BV[0, 1];

(d) g satisfies a local Lipschitz condition.

Proof. The sufficiency of conditions (c) and (d) is obvious, since BV[0, 1]

is an algebra (cf. also Theorem 2.2).

Now, we will prove the necessity part. In view of the assumptions, F (xu0) ∈
BV[0, 1], which implies that f ∈ BV[0, 1]. Indeed

f(t) =
1

g(u0)
f(t)g(u0) =

1

g(u0)
F (xu0)(t) for t ∈ [0, 1],

which proves our claim.

Furthermore, by assumption (b) there exist an interval [c, d] ⊂ [0, 1] with a

non-empty interior and a constant M > 0 such that |f(t)| ≥M for all t ∈ [c, d].

Now, let ξ : [c, d] → R be an arbitrary function of bounded variation and let

x : [0, 1]→ R be its BV-extension, that is, we set

x(t) =


ξ(c) if t ∈ [0, c],

ξ(t) if t ∈ [c, d],

ξ(d) if t ∈ [d, 1].

Then F (x) ∈ BV[0, 1] and

g(ξ(t)) =
1

f(t)
· f(t)g(ξ(t)) =

1

f(t)
· F (x)(t) for t ∈ [c, d],

which, in view of [16, Theorem 6.1.11, p. 120], proves that the function g gen-

erates an autonomous superposition operator that maps the space BV[c, d] into

itself. Therefore, by Theorem 2.2, the function g satisfies a local Lipschitz con-

dition. �

Remark 5.3. Let us observe that conditions (c) and (d) of Theorem 5.2

guarantee that the superposition operator F generated by the function (t, u) 7→
f(t)g(u) is locally bounded. Therefore, in that case, similarly to the autonomous

case, the fact that the superposition operator F maps the Banach space BV[0, 1]

into itself implies its local boundedness.

Now, let us consider the case when the function f vanishes at each point of

continuity.

Theorem 5.4. Let f : [0, 1]→ R and g : R→ R be two functions, and assume

that

(a) f(t) = 0 at every point t ∈ [0, 1] of continuity of f .

The nonautonomous superposition operator F , generated by the function (t, u) 7→
f(t)g(u), maps the space BV[0, 1] into itself and is locally bounded, whenever
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(b) f ∈ BV[0, 1];

(c) g is locally bounded.

Proof. First, let us observe that the set Df of points of discontinuity of f

is at most denumerable and∑
t∈Df
|f(t)| ≤

1∨
0

f < +∞.

Then, for any x ∈ BV[0, 1], we have

F (x)(t) =

f(t)g(x(t)) if t ∈ Df ,

0 if t /∈ Df ,

and hence
1∨
0

F (x) ≤ 2M
∑
t∈Df
|f(t)|,

where the constant M > 0 is such that |g(u)| ≤ M for u ∈ [−‖x‖BV , ‖x‖BV].

This proves that the superposition operator maps the Banach space BV[0, 1] into

itself. The local boundedness of the superposition operator F follows immedi-

ately from the above estimate. �

Remark 5.5. If f ∈ BV[0, 1], then assumption (a) of Theorem 5.4 implies

that f(t) 6= 0 if and only if t ∈ Df .

Indeed, if f(t) 6= 0, then clearly t ∈ Df . Now, let us suppose that f(t) = 0

and let (tn)n∈N be an arbitrary sequence in [0, 1] which is convergent to t and

such that tn 6= t for all n ∈ N. If tn /∈ Df for every n ∈ N, then clearly

f(tn)→ f(t) as n→ +∞. On the other hand, if tn ∈ Df for every n ∈ N, then

since f ∈ BV[0, 1], we have ∑
t∈Df
|f(t)| ≤

1∨
0

f < +∞,

and hence |f(tn)| → 0 as n → +∞, which shows that f(tn) → f(t) and proves

that t /∈ Df .

Let us observe that if we drop the assumption that f is of bounded variation,

then the claim that assumption (a) of Theorem 5.4 implies that f(t) 6= 0 if and

only if t ∈ Df , is no longer true. The function h : [0, 1]→ R defined by

h(t) =

1 if t = 1/n for n ∈ N,
0 if t 6= 1/n for n ∈ N

is not continuous at 0, but h(0) = 0.

From Proposition 3.5, Theorem 3.7 and Theorem 5.4 (cf. also the proof of

Theorem 5.2) we get the following
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Corollary 5.6. Let f : [0, 1]→ R and g : R→ R be two functions satisfying

the following conditions:

(a) there exist t0 ∈ [0, 1] and u0 ∈ R such that f(t0) 6= 0 and g(u0) 6= 0;

(b) f(t) = 0 at every point t ∈ [0, 1] of continuity of f .

Then the nonautonomous superposition operator F generated by the function

(t, u) 7→ f(t)g(u) maps the space BV[0, 1] into itself and is locally bounded if and

only if

(c) f ∈ BV[0, 1];

(d) g is locally bounded.

Now, we will show that the converse of the claim of Theorem 5.4 is true

under certain additional condition concerning the cardinality of the set Df of

points of discontinuity of f .

Theorem 5.7. Let f : [0, 1] → R and g : R → R be two functions satisfying

the following conditions:

(a) there exists u0 ∈ R such that g(u0) 6= 0;

(b) the set Df is denumerable and f(t) = 0 at every point t ∈ [0, 1] of

continuity of f .

Then the nonautonomous superposition operator F , generated by the function

(t, u) 7→ f(t)g(u), maps the space BV[0, 1] into itself if and only if

(c) f ∈ BV[0, 1];

(d) g is locally bounded.

Proof. The sufficiency of conditions (c) and (d) follows from Theorem 5.4.

Therefore, we will pass onto the necessity part.

If f /∈ BV[0, 1], then obviously the function F (xu0
) is not of bounded varia-

tion, which ends the first part of the proof.

Now, in view of Proposition 3.6, for a given r > 0 the set

Tr =
{
t ∈ [0, 1] : sup

u∈[−r,r]
|f(t)g(u)| = +∞

}
is finite. Since the set Df is denumerable, we infer that there exists t0 ∈ Df \Tr,
and henceNr:= sup

u∈[−r,r]
|f(t0)g(u)| < +∞. Moreover, f(t0) 6= 0 (see Remark 5.5),

and thus sup
u∈[−r,r]

|g(u)| ≤ Nr/|f(t0)|, which proves the local boundedness of the

function g. �
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[4] J. Appell and P.P. Zabrĕıko, Nonlinear Superposition Operators, Cambridge University

Press, 1990.

[5] F. Brauer, Constant rate harvesting of populations governed by Volterra integral equa-

tions, J. Math. Anal. Appl., 56 (1976), 18–27.

[6] D. Bugajewska, On the superposition operator in the space of functions of bounded

variation, revisited, Math. Comput. Modelling 52 (2010), 791–796.

[7] D. Bugajewski, On BV-solutions of some nonlinear integral equations, Integral Equations

Operator Theory 46 (2003), 387–398.

[8] C. Castaing and M.D.P. Monteiro Marques, BV periodic solutions of an evolution

problem associated with continuous moving convex sets, Set-Valued Anal. 3 (1995), 381–

399.
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[22] P. Maćkowiak, A counterexample to Ljamin’s theorem, Proc. Amer. Math. Soc., 142

(2014), 1773–1776.
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