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ISOLATED SETS, CATENARY LYAPUNOV FUNCTIONS

AND EXPANSIVE SYSTEMS

Alfonso Artigue

Abstract. It is a paper about models for isolated sets and the construction
of special hyperbolic Lyapunov functions. We prove that after a suitable

surgery every isolated set is the intersection of an attractor and a repeller.

We give linear models for attractors and repellers. With these tools we
construct hyperbolic Lyapunov functions and metrics around an isolated set

whose values along the orbits are catenary curves. Applications are given

to expansive flows and homeomorphisms, obtaining, among other things,
a hyperbolic metric on local cross sections for an arbitrary expansive flow

on a compact metric space.

1. Introduction

A hanging chain describes a curve that is called catenary. Galileo’s first

approximation to this curve was a parabola but, after the development of the

infinitesimal calculus, this curve was shown to be related with hyperbolic cosines

and it is not parabolic. As shown in [11] hyperbolic cosines also appear in the

expression of the catenary, even if gravity is not assumed to be constant but

associated with a varying potential −1/r, which is a more realistic model of

gravity.

In the present paper we consider dynamical systems and the purpose is to

construct Lyapunov functions whose values along the orbits have the harmony of

a hanging chain. They will be called catenary functions and as we will see they
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are hyperbolic Lyapunov functions. We will show that every isolated set admits

a catenary function defined on an isolating neighbourhood. The construction

of these functions is based on two results. First, in Theorem 2.16 we show

that after a cut and paste procedure every isolated set is the intersection of

an attractor with a repeller. Second, we prove in Theorem 3.4 that attractors

and repellers have linear models. Precise definitions and statements are given

in the corresponding sections. The applications to expansive systems, given in

Sections 5 and 6, are natural if an isolated set is found. As we will see, the

difficulty of this task depends on the form of expansivity that we consider and

if we are dealing with flows or homeomorphisms.

Let us give an example illustrating the main concepts of the paper. Consider

the following differential equations in the plane:

(1.1)

ẋ = x,

ẏ = −y.

This system determines a hyperbolic equilibrium point of saddle type at the

origin. Its solutions are given by φt(x, y) = (xet, ye−t). Consider the norm

L(x, y) = |x|+ |y|. We have that

L(φt(x, y)) = |x|et + |y|e−t and L̇(x, y) = −|x|+ |y|.

Consequently L̈ = L. As usual, the dots indicate time derivatives. When a

function satisfies L̈ = L we call it a catenary function for the flow φ. If d is the

distance induced by the norm L, we have that d̈ = d, and we call it a catenary

metric. In this example Λ = {(0, 0)} is an isolated set because there is a compact

neighbourhood N = [−1, 1] × [−1, 1] of Λ such that the whole orbit of a point

is contained in N if and only if the point is in Λ. In Theorem 4.2 we will show

that every isolated point admits a catenary metric and that every isolated set

admits a catenary pseudo-metric vanishing on pairs of points of the isolated set.

This result will be proved for partial flows on metric spaces. In Theorem 4.4 we

show that every isolated set admits a catenary function L.

The construction of Lyapunov functions is a classical tool for proving the

asymptotic stability of an equilibrium point of a differential equation. In [21],

Massera considered the converse problem in the setting of autonomous or peri-

odic differential equations in Rn. He showed that every asymptotically stable

singular point admits a positive and decreasing Lyapunov function of class C1.

From a topological viewpoint, i.e. Lyapunov functions of class C0, simpler con-

structions can be made even on metric spaces, see for example [3], [4], [7], [15],

[29]. In Section 3 we will show that every attractor admits a positive and de-

creasing Lyapunov function L satisfying L̇ = −L, which is a key step in the

construction of a catenary function for an isolated set. In Theorem 4.14 we

apply Massera’s theorem to construct a differentiable Lyapunov function L for
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an asymptotically stable equilibrium point of a differential equation in Rn satis-

fying L̇ = −aL for a suitable positive constant a.

In topological dynamics the role of hyperbolicity can be played by expan-

sivity. Recall that a homeomorphism f : X → X of a compact metric space is

expansive if there is δ > 0 such that dist(fn(x), fn(y)) < δ for all n ∈ Z implies

x = y. As noted by Utz in [26], expansivity is related with isolated sets as follows:

a homeomorphism is expansive if and only if the diagonal Λ = {(x, x) : x ∈ X} is

an isolated set for the homeomorphism (x, y) 7→ (f(x), f(y)) in X ×X. In [26],

the expression isolated set is not used, but in the proof of [26, Theorem 2.1]

the concept is clearly present. For the study of expansive systems Lewowicz

[19], [20] introduced Lyapunov functions, see also [25], [27], [23]. He proved that

expansiveness is equivalent to the existence of a function L : N ⊂ X ×X → R
defined on a neighbourhood N of the diagonal Λ and such that L and L̈ van-

ish on Λ and are positive in N \ Λ. In the discrete time case L̈ may be de-

fined as L̈(x) = L(f(x)) − 2L(x) + L(f−1(x)). We will show in Theorem 6.6

that this function L can be constructed in such a way that L̈ = L also holds.

Moreover, L can be evaluated at every small compact subset of X (not only at

pairs of points). In [12], Fathi constructed an adapted hyperbolic metric for an

arbitrary expansive homeomorphism of a compact metric space X. It is a met-

ric dist : X × X → R defining the topology of X for which there are δ > 0

and λ > 1 such that if dist(x, y) < δ then dist(f(x), f(y)) ≥ λ dist(x, y) or

dist(f−1(x), f−1(y)) ≥ λ dist(x, y). In Theorem 6.10 we prove that every expan-

sive homeomorphism admits a catenary local metric. This is a metric Dx defined

on a neighbourhood of each x ∈ X, varying continuously with x and satisfying

D̈x = Dx. In Section 6.5.3 we study sufficient conditions in order to obtain

a catenary metric, instead of a local metric, for an expansive homeomorphism.

For dynamical systems with continuous time we consider expansive flows as de-

fined in [6]. In Section 5 we state this definition in terms of isolated sets. It is

done using local cross sections. In Theorem 5.7 we prove that every expansive

flow admits a hyperbolic metric of catenary type defined on local cross sections.

Let us explain the meaning of the catenary condition. In the continuous-

time case L̈ = L implies that L(φt(x)) = aet + be−t for suitable constants

a, b ∈ R depending on x. As a consequence we obtain a function L̇2 − L2 that

is a constant of motion. In the discrete-time case, if for a fixed x we define

un = L(fn(x)) we have that un = L(fn(x)) = L̈(fn(x)) = un+1 − 2un + un−1

and un+1 − 3un + un−1 = 0. If λs < 1 and λu > 1 are the solutions of

(1.2) λ2 − 3λ+ 1 = 0

then un = aλns + bλnu . This shows that the catenary property gives us a nice

control of the hyperbolic behavior of the values that L takes along the orbits of

a discrete or continuous dynamical system.
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Let us now describe the contents of the paper while explaining other results

that we prove. In Section 2 we consider isolated sets for partial flows. Partial

flows appear naturally when the solutions of a differential equation are not de-

fined for all t ∈ R. For a partial flow we consider its enveloping flow as defined

in [1]. The enveloping flow is an abstract continuation of the trajectories that

are not defined for all t ∈ R. In general this enveloping is defined in a topolog-

ical space that may not be Hausdorff. This can be the case even if the original

partial flow is defined on a metric space. In Example 2.12 this phenomenon is

illustrated. Applying results from [1], we solve the problem of finding Hausdorff

enveloping spaces for isolated sets. We show in Theorem 2.13 that every isolated

set has a neighbourhood with metrizable enveloping space. This result allows us

to understand that in the study of an isolated set there is no loss of generality if

we assume that φ is a flow instead of a partial flow. This section also gives the

correct setting for the study of expansive flows in Section 5 where expansivity

is stated in terms of an isolated set of a partial flow that is not a flow. This is

the reason why we start the paper studying isolated sets for partial flows. But,

the main result of Section 2 is Theorem 2.16. There, a special compactification

of the enveloping flow is constructed that allows us to see the isolated set as

a Morse set [7], that is, the intersection of an attractor with a repeller. In this

construction two fixed points, an attractor and a repeller, are used to compact-

ify the space, obtaining something similar with a model of the physical universe

starting with a Big Bang and ending in a Big Crunch.

In Section 3 we consider attractors and repellers. We prove that every at-

tractor admits a Lyapunov function satisfying L̇ = −L. Also, a pseudo-metric

d satisfying ḋ = −d is constructed for an attractor. It is a metric if the at-

tractor is a singleton. These results are based on the linear models obtained

in Section 3.3. It is well-known that attractors admit positive and decreasing

Lyapunov functions. In Theorem 3.1 we give a new proof of this result that is

based on Whitney’s size functions.

In Section 4 we construct catenary functions for isolated sets. We prove,

Proposition 4.8, that catenary functions are hyperbolic Lyapunov functions in

the sense of [29]. In Theorem 4.12 we solve the equation L̈ = aL in an isolating

neighbourhood, where a is a positive continuous function such that ȧ = 0. The

result is presented as a boundary value problem that gives a method to construct

more Lyapunov functions of catenary type. In Theorem 4.2 we show that isolated

points admit a catenary metric defined on an isolated neighbourhood. For an

arbitrary isolated set we obtain a pseudo-metric that vanishes on each pair of

points in the isolated set. In Section 4.5 we study the structure of a flow near

an isolated set. We show in Theorem 4.19 that the dynamics in an isolating

neighbourhood of an isolated set is semi-conjugate with a singular flow box.
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A first approximation to this concept is as follows. Let v be a smooth vector

field on a manifold M , take a non-equilibrium point p ∈ M and a flow box U

containing p. Let ρ : M → R be a non-negative smooth function vanishing only

at p. For the flow induced by the vector field ρv we have that U is a singular flow

box. The equilibrium point created in this way is known as a fake singularity.

A generalization of this construction is considered on metric spaces.

The applications to expansive flows mentioned above are given in Section 5.

In Section 6 we consider discrete dynamical systems. Via suspensions we extend

our results for isolated sets of homeomorphisms of metric spaces. More applica-

tions are given to expansive, cw-expansive homeomorphisms and other variations

are considered.

The author thanks José Vieitez for useful conversations on Lyapunov func-

tions and hyperbolic metrics of expansive homeomorphisms. In particular, for

pointing that a formula similar to (4.1) could be used in the construction of such

hyperbolic metric. The author thanks Damián Ferraro for introducing him to

the contents of [1] related with enveloping spaces of partial actions. Some of the

results of this paper are parts of the author’s thesis made under the supervision

of M.J. Pacifico and J. Vieitez.

2. An isolating universe

The purpose of this section is to prove that every isolated set can be seen

as the intersection of an attractor and a repeller in what we call an isolating

universe for the isolated set. Such an intersection is called a Morse set in [7].

Let us give an example that illustrates what we will do. Consider the equationsẋ = sin2 x+ y2,

ẏ = 0

in the cylinder X = (R/π) × R. We have an equilibrium point at (0, 0) and an

isolated set Λ = {(0, 0)}. Consider N = [−1, 1] × [−1, 1]. It is true that N is

an isolating neighbourhood of Λ but it is also true that every trajectory always

returns to N . It will simplify many arguments and constructions to remove

these recurrences. When we restrict the dynamics to N we obtain what is called

a partial flow. Since we are interested in the dynamics near the isolated set it

is natural to consider partial flows instead of flows. Let us continue with the

example. Once we have an isolating neighbourhood as the rectangle N we can

abstractly continue the trajectories. This is the step 2 in Figure 1. Now we

compactify the space by adding two points. After this procedure we will see Λ

as the intersection of an attractor set and a repeller set indicated with dotted

lines in the final step of Figure 1.
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reppeler
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Figure 1. Surgery for the construction of an isolating universe. Starting

with an isolated set, the first step is to find a suitable isolating neighbour-

hood, it can be an isolating block or a flow convex neighbourhood. We
obtain a partial flow. Next, extend the trajectories without introducing

recurrences, this is the enveloping flow. Finally add two singular points

that compactify the space.

2.1. Partial flows. We start introducing partial flows and its basic prop-

erties. Let (X,dist) be a metric space and consider an open set Γ ⊂ R×X.

Definition 2.1. A partial flow on X is a continuous function φ : Γ → X

such that:

(a) for all x ∈ X the set Γx = {t ∈ R : (t, x) ∈ Γ} is connected,

(b) 0 ∈ Γx and Γφt(x) = Γx − t for all (t, x) ∈ Γ,

(c) φ0(x) = x for all x ∈ X and φs(φt(x)) = φs+t(x) whenever s, t, s+t ∈ Γx.

If Γ = R×X we say that φ is a flow.

In the context of differential equations Γx is the maximal interval of the

solution through x.

2.1.1. Restricted flow. Let φ : Γ → X be a partial flow on the metric space

X. Consider an open set U ⊂ X and define for t ∈ R the interval J(t) = [0, t] if

t ≥ 0 and J(t) = [t, 0] for t < 0. Consider the open set

ΓU = {(t, x) ∈ R×X : φJ(t)(x) ⊂ U}

and define the partial flow ψ = φ|U : ΓU → X as ψt(x) = φt(x) if x ∈ U and

φJ(t)(x) ⊂ U . In this case we say that ψ is the restriction of φ on U .

Remark 2.2. In [7], there is a similar concept called a local flow. It is

essentially the restriction of a flow. As we said, for the study of expansive flows

in Section 5 we need to start the theory from a partial flow.
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2.1.2. Morphisms of partial flows. For i = 1, 2 let φi : Γi → Xi be two partial

flows. A semi-conjugacy is a continuous surjection h : X1 → X2 such that:

(a) Γ1
x = Γ2

h(x) for all x ∈ X1 and

(b) h(φ1
t (x)) = φ2

t (h(x)) for all x ∈ X1 and all t ∈ Γ1
x.

If in addition h is a homeomorphism then h is a conjugacy. For the partial flows

φ1, φ2 as before define

X+
i = {x ∈ Xi : R+ ⊂ Γix} and X−i = {x ∈ Xi : R− ⊂ Γix}

for i = 1, 2.

Proposition 2.3. If h : X1 → X2 is a semi-conjugacy then h(X+
1 ) = X+

2

and h(X−1 ) = X−2 .

Proof. If x ∈ X+
1 then R+ ⊂ Γ1

x. Therefore, Γ1
x = Γ2

h(x) because h is

a semi-conjugacy. Thus R+ ⊂ Γ2
h(x) and h(x) ∈ X+

2 . The rest of the proof is

similar. �

2.1.3. Extension of solutions. Let φ : Γ → X be a partial flow. As in the

theory of differential equations we can prove the following result.

Proposition 2.4. If Γx = (t1, t2) and t2 is finite then φsn(x) has no limit

point for all sn → t2. Similarly for sn → t1 if t1 is finite.

Proof. By contradiction, assume that there is sn ∈ Γx with sn → t and

φsn(x)→ y. Since φ is defined on an open set Γ we have that there are ε, τ > 0

such that if dist(z, y) < ε then (−τ, τ) ⊂ Γz. Since φsn(x) → y, we have that

R+ ⊂ Γx, this is a consequence of (b) in the definition of partial flow. This

is a contradiction because we assumed that t2 is finite. The case of t1 finite is

analogous. �

2.2. Isolated sets. Consider φ : Γ→X a partial flow on the metric space X.

A subset Λ ⊂ X is φ-invariant if given x ∈ Λ and t ∈ Γx then φt(x) ∈ Λ.

Remark 2.5. If Λ is φ-invariant and compact then Γx = R for all x ∈ Λ. It

follows by Proposition 2.4.

Definition 2.6. We say that Λ is an isolated set if there is a compact

neighbourhood N of Λ such that φΓx(x) ⊆ N implies x ∈ Λ. In this case N is

an isolating neighbourhood of Λ.

Remark 2.7. Every isolated set is compact and Γx = R for all x ∈ Λ.

Proposition 2.8. If N is an isolating neighbourhood, x ∈ N , Γx = (t1, t2)

and t1 is finite then there is t ∈ (t1, 0) such that φt(x) /∈ N . Analogously, if t2
is finite then there is t ∈ (0, t2) such that φt(x) /∈ N .

Proof. It follows by Proposition 2.4. �
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2.3. Isolated points. From our viewpoint, that is the construction of Lya-

punov functions on an isolating neighbourhood, the dynamics inside the isolated

set Λ is not important. Therefore, we will explain a standard procedure that

collapses this set to a point.

Definition 2.9. If {p} is an isolated set we say that p is an isolated point.

Given an isolated set Λ of a partial flow φ, consider an isolating neighbour-

hood N and the equivalence relation ∼ in N generated by x ∼ y if x, y ∈ Λ.

Define M = N/ ∼ with the quotient topology and π : N → M the projection.

Since Λ is invariant by φ, a partial flow ψ in M is defined by ψt(π(x)) = π(φt(x)).

Remark 2.10. The projection π is a semi-conjugacy between φ and ψ and

Λ is an isolated point of ψ.

2.4. Flow convexity. An open set U ⊂ X is φ-convex if φ[0,t](x) ⊂ clos(U)

with x, φt(x) ∈ U implies φ[0,t](x) ⊂ U . Given a set A ⊂ X and x ∈ A denote

by ccx(A) the connected component of A that contains the point x.

Proposition 2.11. If Λ is an isolated set and N is an isolating neighbour-

hood then there is a φ-convex open set U such that Λ ⊂ U ⊂ N .

Proof. As we explained in the previous section, we do not lose generality

assuming that Λ = {p}. Let r > 0 be such that clos(Br(p)) ⊂ N . For ρ ∈ (0, r)

define the set

Uρ = {x ∈ Br(p) : ccx(φR(x) ∩Br(p)) ∩Bρ(p) 6= ∅}.

By the continuity of φ, we have that Uρ is an open set for all ρ ∈ (0, r). Let

us prove that if ρ is sufficiently small then Uρ is φ-convex. By contradiction,

suppose that there are ρn → 0, an, bn ∈ Uρn , tn ≥ 0 such that bn = φtn(an) and

ln = φ[0,tn](an) ⊂ clos(Uρn) but ln is not contained in Uρn .

If ln ⊂ Br(p) then ln would be contained in Uρn . Since we know that this is

not the case there is sn ∈ (0, tn) such that cn = φsn(an) ∈ ∂Br(p). Since an, bn ∈
Uρn we know that ccan(φR(an)∩Br(p))∩Bρ(p) 6= ∅ and ccbn(φR(bn)∩Br(p))∩
Bρ(p) 6= ∅. Then, there must be un < 0 and vn > 0 such that φun(cn), φvn(cn) ∈
Bρn(p) with φ[un,vn](cn) ⊂ clos(Br(p)), un → −∞ and vn → +∞. If c is a limit

point of cn we have that φR(c) ⊂ Br(p) and c 6= p. This contradicts with

clos(Br(p)) being contained in an isolating neighbourhood of p and proves the

result. �

2.5. Enveloping flow. Given a partial flow ψ on a metric space U , consider

the metric space R× U and the flow ψ′ on R× U given by ψ′t(s, x) = (s+ t, x).

Define an equivalence relation by (r, x) ∼ (s, y) if y = ψr−s(x). The space

U e =
R× U
∼
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is the enveloping space and the induced flow ψe on U e is the enveloping flow

of ψ. This construction is similar to the suspension flow of a homeomorphism

and in [1] it is considered for arbitrary partial actions of topological groups.

In U e we consider the quotient topology. It can be the case that the envelop-

ing space is not Hausdorff even being that U is a metric space as is our case. Let

us give an example.

Example 2.12. Let U = {(x, y) ∈ R2 : x2 + y2 > 0} and consider the

differential equations ẋ = 1, ẏ = 0. In this case, the maximal interval of (x, y)

with y 6= 0 is I(x,y) = R. If y = 0 we have that I(x,0) = (−x,+∞) for x > 0 and

I(x,0) = (−∞, x) for x < 0. In the enveloping flow two half lines are added in

order to continue the positive trajectory of (−1, 0) and the negative trajectory of

(1, 0). Notice that ψe
2(−1, 0) and (1, 0) are different points in U e and they do not

have disjoint neighbourhoods. Consequently U e is not a Hausdorff topological

space.

Consider the set graph(ψ) = {(t, x, y) ∈ Γ × U : y = ψt(x)}. In [1], it

is shown that the enveloping space U e is Hausdorff if and only if graph(ψ) is

a closed subset of R× U × U . For the following result recall the restriction flow

defined in Section 2.1.1.

Theorem 2.13. If φ is a partial flow on X, U ⊂ X is a φ-convex open set

with compact closure and ψ = φ|U then the enveloping space of ψ is metrizable.

Proof. Let us start showing that graph(ψ) is closed. Take sequences tn →
t ∈ R, xn → x ∈ U and yn → y ∈ U such that ψtn(xn) = yn. In order to prove

that graph(ψ) is closed we will prove that (t, x, y) ∈ graph(ψ). Without loss of

generality assume that t > 0. The continuity of φ implies that φt(x) = y and

φ[0,t](x) ⊂ clos(U). Since x, y ∈ U and U is φ-convex we have that φ[0,t](x) ⊂ U .

Then y = ψt(x) and graph(ψ) is closed. Applying [1, Proposition 2.10] we have

that the enveloping space is Hausdorff. Since the closure of U is compact we have

that U and U e are locally compact. It is easy to see that U e has a countable base

because, given a countable base V1, V2, . . . of U , the sets ψe
q(Vi), with q rational,

form a countable base of U e. Notice that U has a countable base because it

is metric and has compact closure. Finally, applying [14, Corollary 2-59] we

conclude that U e is metrizable. �

2.6. Isolating universe. Given an isolated set Λ of a partial flow φ, con-

sider an isolating neighbourhood N .

Definition 2.14. A flow ψ on a compact metric space Y is an isolating

universe of Λ if:

(a) there is a homeomorphism h : N →M ⊂ Y conjugating φ|N with ψ|M ,

(b) there are two singular points α, ω ∈ Y such that α 6= ω, α, ω /∈M ,
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(c) for all x ∈ Y , x 6= α, the positive orbit of x converges to h(Λ) or converges

to ω,

(d) for all x ∈ Y , x 6= ω, the negative orbit of x converges to h(Λ) or

converges to α.

In this case we will identify M with N and Λ with h(Λ) and consider N as

a subset of Y . Define the sets

W s(Λ) =
{
x ∈ Y : lim

t→+∞
dist(ψt(x),Λ) = 0

}
, Λα = {α} ∪ Λ ∪W s(Λ),

W u(Λ) =
{
x ∈ Y : lim

t→−∞
dist(ψt(x),Λ) = 0

}
, Λω = {ω} ∪ Λ ∪W u(Λ).

Definition 2.15. An isolated set Λ is an attractor if there is an isolating

neighbourhood N such that if x ∈ N and x /∈ Λ then φt(x) /∈ N for some t < 0.

We say that Λ is a repeller if when reversing time it is an attractor.

The following result allows us to see Λ as the intersection of the attractor Λω
with the repeller Λα.

Theorem 2.16. Every isolated set admits an isolating universe Y such that

Λα is a repeller, Λω is an attractor and Λ = Λα ∩ Λω.

Proof. Let U be a φ-convex neighbourhood of Λ given by Proposition 2.11.

Consider ψe the enveloping flow on the enveloping space U e defined in Section 2.5.

We know by Theorem 2.13 that U e is a metrizable space. Define the set Z =

{α, ω} ∪ U e where α, ω /∈ U e are different points. Given x ∈ U e, define

I(x) = {t ∈ R : ψe
t ∈ U}.

A basis of neighbourhoods of ω is

Vn(ω) = {x ∈ U e : I(x) < −n} ∪ {ω}

and a basis of neighbourhoods of α is

Vn(α) = {x ∈ U e : I(x) > n} ∪ {α}

for n ≥ 1. This defines the topology of Z. Let N be a compact neighbourhood of

Λ contained in U . Define Y as the closure in Z of ψR(N). In order to prove that

Y is a compact space let {Ua}a∈A be an arbitrary open covering of Y . A finite

subcovering can be obtained as follows. Take Uα, Uω containing α and ω. There

is t > 0 such that ψ[−t,t](N) contains Y ′ = Y \ (Uα ∪ Uω). Since N is compact

we can take a finite covering of Y ′. This proves that Y is compact. It is easy to

see that Y is Hausdorff because the enveloping U e is metrizable. To show that

Y is metrizable it only rests to note that Y has a countable basis and apply [14,

Corollary 2-59]. Therefore, Y is a compact metric space.

The flow ψ can be extended to Y by putting singular points at α and ω,

obtaining a continuous flow. Given a point x ∈ N , there are two possible cases
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for its positive orbit: (1) ψR+(x) ⊂ N , which implies that ψt(x)→ Λ as t→ +∞,

and (2) ψR+(x) * N , in this case ψt(x) → ω. Analogously for a negative orbit.

This proves that Y is an isolating universe for Λ. In Figure 2 the construction

is illustrated.

ω

Vn(α) Vn(ω)

Big Crunch
Λ

Y

α

Big Bang

Figure 2. Isolating universe for an isolated set Λ.

We have that Λα is a repeller because Nα = Y \ Vn(ω) is an isolating neigh-

bourhood of Λα for all n ≥ 1 and for all x ∈ Nα \ Λα there is t > 0 such

that ψt(x) /∈ Nα. Similarly we can see that Λω is an attractor by considering

Nω = Y \ Vn(α). Finally, Λ = Λα ∩ Λω because W s(Λ) ∩W u(Λ) = Λ. �

This result implies that the construction of a Lyapunov function or a metric

around an isolated set is reduced to the case of attractors and repellers.

3. Attractors and repellers

In this section we construct linear models for attractors and we show that

every attractor admits a positive Lyapunov function L satisfying L̇ = −L. Since

L is positive we have that it is decreasing. Similar results are concluded for

repellers.

3.1. Size functions. Given a compact set N ⊂ X, denote by K(N) the set

of non-empty compact subsets of N . In the set K(N) we consider the Hausdorff

distance distH making (K(N),distH) a compact metric space, see for exam-

ple [16] for a proof. Recall that

distH(A,B) = inf {ε > 0 : A ⊂ Bε(B) and B ⊂ Bε(A)},

where Bε(C) =
⋃
x∈C

Bε(x) and Bε(x) is the ball of radius ε and centered at x.

A size function or a Whitney’s function is a continuous function µ : K(X)→ R
satisfying:

(1) µ(A) ≥ 0 with equality if and only if A is a singleton,

(2) if A ⊂ B and A 6= B then µ(A) < µ(B).

A set A is a singleton if it only contains one point. Let us recall how a size

function can be defined. A variation of the construction given in [28], adapted
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for compact metric spaces, is the following. Let q1, q2, q3, . . . be a sequence dense

in N . Define µi : K(N)→ R as

µi(A) = max
x∈A

dist(qi, x)−min
x∈A

dist(qi, x).

The following formula defines a size function µ : K(N)→ R:

µ(A) =

∞∑
i=1

µi(A)

2i
,

as proved in [28].

3.2. A decreasing Lyapunov function. A decreasing Lyapunov function

for an isolated set Λ is a continuous function L : U → R defined in a neighbour-

hood of Λ such that L(Λ) = 0, and L̇ is negative in U \ Λ. We say that L is

positive if L(x) > 0 for all x ∈ U \ Λ. As usual we define

L̇(x) = lim
t→0

L(φt(x))− L(x)

t
.

Theorem 3.1. Every attractor admits a positive and decreasing Lyapunov

function.

Proof. By the remarks in Section 2.3 we do not lose generality if we assume

that the attractor Λ is a singleton Λ = {p}. Then there are δ0, δ > 0 such that if

dist(x, p) < δ then φt(x) ∈ Bδ0(p) for all t ≥ 0 and φt(x)→ p as t→∞. Define

U = Bδ(p) and L : U → R as

L(x) = µ({φt(x) : t ≥ 0} ∪ {p}),

where µ is a size function. Since φt(x)→ p we have that

(3.1) O(x) = {φt(x) : t ≥ 0} ∪ {p}

is a compact set for all x ∈ U . Notice that if t > 0 and x 6= p then O(φt(x)) ⊂
O(x) and the inclusion is proper. Therefore, L(φt(x)) < L(x) because µ is a size

function. Also notice that L(p) = 0 and L(x) > 0 if x 6= p. In order to prove

the continuity of L, we will prove the continuity of O : U → K(X), the function

defined by (3.1). Since µ is continuous we will conclude the continuity of L.

Let us prove the continuity of O at x ∈ U . Take ε > 0. By the asymptotic

stability of p, there are ρ, T > 0 such that if y ∈ Bρ(x) then φt(y) ∈ Bε/2(p) for

all t ≥ T . By the continuity of the flow, there is r > 0 such that if y ∈ Br(x)

then dist(φt(x), φt(y)) < ε for all t ∈ [0, T ]. Now it is easy to see that if y ∈
Bmin{ρ,r}(x) then distH(O(x), O(y)) < ε, proving the continuity of O at x and

consequently the continuity of L.

It can be the case that L̇ does not exist and a well-known procedure must

be applied. Define L1(x) =
∫ τ

0
L(φt(x))dt for a fixed τ > 0 small. In this way

L̇1 exists and L̇1(x) = L(φτ (x)) − L(x) < 0 for all x ∈ U \ Λ. This proves the

result. �
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3.3. Linear models. Consider the normed vector space H of real sequences

x : N→ R, denoted by xn = x(n), such that

(3.2) ‖x‖2 =

∞∑
i=1

x2
i

is convergent. Let ψ : R×H→ H be the flow given by

(3.3) ψt(x) = e−tx.

If A ⊂ H is a compact set define CA as the cone generated by A, that is,

CA = {rx : r ∈ [0, 1], x ∈ A}.

We say that ψ restricted to CA has a linear attractor at the origin 0H.

Remark 3.2. Let H1 = {x ∈ H : x1 = 1}. By [14, Theorem 2-46], we know

that every compact metric space is homeomorphic with a compact subset of H1.

Definition 3.3. A cross section for a flow φ on a metric space X is a set

Σ ⊂ X such that φ(−t,t)(Σ) is an open set for some t > 0 and φ : (−t, t)×Σ→ X

is a homeomorphism onto its image.

Theorem 3.4. For every attractor Λ of the flow φ on the metric space X

there is a neighbourhood N of Λ such that the restriction φ|N is semi-conjugate

with a linear attractor. If Λ = {p} we obtain a conjugacy.

Proof. Consider a decreasing Lyapunov function L : U → R from The-

orem 3.1, where U is an isolating neighbourhood of Λ with compact closure.

Denote m = min{L(x) : x ∈ ∂U} > 0. Let Σ = L−1(m/2). It is a compact set

and also a cross section because L̇ < 0. Take from Remark 3.2 a homeomorphism

i : Σ→ A ⊂ H1. Define

N = Λ ∪ {φt(x) : t ≥ 0, x ∈ Σ}

and h : N → CA by h(φt(x)) = e−ti(x) for x ∈ Σ and h(x) = 0H for x ∈ Λ. By

definitions, it is easy to see that h is a semi-conjugacy. See Figure 3. It only rests

to note that if Λ = {p} then h is injective and, consequently, a homeomorphism

and a conjugacy. �

3.4. Special Lyapunov functions and metrics. Recall that a pseudo-

metric on a set N is a non-negative function d: N ×N → R such that

(1) d(x, x) = 0 for all x ∈ N ,

(2) d(x, y) = d(y, x) for all x, y ∈ N and

(3) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ N .

It is not required that d(x, y) = 0 implies x = y.
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Figure 3. Linear model for an attractor.

Proposition 3.5. For every attractor Λ there is a continuous pseudo-metric

d: N ×N → R, with N a neighbourhood of Λ, such that ḋ = −d and d(x, y) = 0

if and only if x = y or x, y ∈ Λ. If in addition Λ is a singleton then d is a metric.

Proof. Consider a semi-conjugacy h : N → CA from Theorem 3.4 between

φ|N and the flow ψ of equation (3.3) restricted to a cone CA. Define d(x, y) =

‖h(x)− h(y)‖ where ‖ · ‖ is given in equation (3.2). It is easy to prove that d is

a pseudo-metric and d(x, y) = 0 if and only if x = y or x, y ∈ Λ. Obviously, if Λ

is a singleton then d is a metric. Finally notice that

d(φt(x), φt(y)) = ‖ψt(h(x))− ψt(h(y))‖ = e−t‖h(x)− h(y)‖ = e−t d(x, y).

Therefore, ḋ = −d. �

Let p be an asymptotically stable singular point, i.e. {p} is an attractor.

It is natural, if one looks for a decreasing Lyapunov function L around p, to

consider L(x) = dist(x, p). But one easily finds examples, even hyperbolic linear

systems in Rn, for which p can be asymptotically stable but dist(φt(x), p) is not

a decreasing function of t. From the previous result we obtain the following

corollary that says that this idea works if the distance is changed.

Corollary 3.6. If p is asymptotically stable then there is a topologically

equivalent metric d in a neighbourhood of p such that L(x) = d(x, p) is a de-

creasing Lyapunov function.

Proof. It is a direct consequence of Proposition 3.5. �

Proposition 3.7. Every attractor Λ admits a positive and decreasing Lya-

punov function L satisfying L̇ = −L.

Proof. Taking a linear model as in the proof of Proposition 3.5, we have

that L(x) = ‖h(x)‖ satisfies L̇ = −L. �

3.5. Repellers. If Λ is a repeller we obtain results that are similar with

those that we proved for attractors. Let us remark that a pseudo-metric d as
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in Proposition 3.5 will satisfy ḋ = d for a repeller Λ. Also, the Lyapunov function

L for a repeller, analogous to Proposition 3.7, satisfies L̇ = L.

4. Catenary functions

In this section we will construct catenary functions, metrics and pseudo-

metrics for an isolated set. In Section 4.4 we construct a differentiable catenary

function for an asymptotically stable equilibrium point of a differential equation

in Rn.

4.1. Catenary functions. Let Λ be an isolated set of the partial flow

φ : Γ→ X of the metric space X.

Definition 4.1. A catenary pseudo-metric for the isolated set Λ is a con-

tinuous pseudo-metric d: N ×N → R defined on an isolating neighbourhood N

such that:

(a) d̈ = d, and

(b) d(x, y) = 0 if and only if x = y or x, y ∈ Λ.

If d(x, y) = 0 implies x = y (i.e. Λ is a singleton) we say that d is a catenary

metric.

Theorem 4.2. Every isolated set admits a catenary pseudo-metric. If the

isolated set is a singleton then we obtain a catenary metric.

Proof. Let Λ be an isolated set with an isolating neighbourhood N . By

Theorem 2.16, we can assume that N ⊂ Y with Y an isolating universe for Λ and

Λ is the intersection of the attractor Λω and the repeller Λα. By Proposition 3.5,

we know that there is a continuous pseudo-metric dω on an isolating neighbour-

hood Nω of Λω satisfying ḋω = −dω and d(x, y) = 0 if and only if x = y or

x, y ∈ Λω. In addition we can assume that N ⊂ Nω. Analogously, by the re-

marks on Section 3.5, we have a pseudo-metric dα on an isolating neighbourhood

Nα satisfying ḋα = dα and d(x, y) = 0 if and only if x = y or x, y ∈ Λα. We

will suppose that N ⊂ Nα. We have that d = dα + dω is a continuous pseudo-

metric on Nα ∩ Nω. Since ḋα = dα and ḋω = −dω, we have that d̈ = d. If

d(x, y) = 0 then dα(x, y) = dω = 0. If x 6= y then x, y ∈ Λα and x, y ∈ Λω.

Then x, y ∈ Λ. This proves that d is a catenary pseudo-metric for Λ defined in

Nα ∩Nω that contains the isolating neighbourhood N of Λ. If Λ is a singleton

then d is a metric and consequently a catenary metric. �

Definition 4.3. A catenary Lyapunov function or catenary function for

an isolated set Λ is a continuous function L : N → R, with N an isolating

neighbourhood of Λ, satisfying L(Λ) = 0, L(x) > 0 for all x ∈ N \ Λ and L̈ = L
for all x ∈ N .
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Theorem 4.4. Every isolated set admits a catenary function.

Proof. As in the proof of Theorem 4.2, we assume that Λ is embedded in

an isolating universe Y and Λ = Λα ∩ Λω. Since Λω is an attractor, by Propo-

sition 3.7, there is a positive and decreasing Lyapunov function Lω on a neigh-

bourhood Nω of Λω such that L̇ = −L. Also, by the remarks on Section 3.5,

since Λα is a repeller we have a positive and increasing Lyapunov function Lα
such that L̇α = Lα. Then we have that L = Lα + Lω is a catenary function

for Λ. �

Remark 4.5. Another construction for the proof of Theorem 4.4 is as follows.

Consider a catenary pseudo-metric d for Λ given by Theorem 4.2 and define

L(x) = d(x,Λ) = infy∈Λ d(x, y). Note that in this case infy∈Λ d(x, y) = d(x, z)

for all z ∈ Λ.

For the study of isolated sets, Conley [7] considered decreasing Lyapunov

functions vanishing on Λ. In general, such a function will not have a definite

sign. A special Lyapunov function of this type can be constructed as follows.

Corollary 4.6. Given an isolated set Λ, there is a continuous function

L1 : N → R, where N is an isolating neighbourhood of Λ, such that L1(Λ) = 0,

L̇1(x) < 0 for all x ∈ N \ Λ and L̈1 = L1 in N .

Proof. Consider a catenary function L given by Theorem 4.4. The result

follows by considering L1 = −L̇. �

4.2. Catenary functions are hyperbolic. In [29] isolated sets for smooth

vector fields on manifolds are considered. They study, among other things, the

relationship between isolating blocks and hyperbolic Lyapunov functions. The

following is our topological version of [29, Definition 1.5].

Definition 4.7. A hyperbolic Lyapunov function for an isolated set Λ is

a continuous function L : N → R, with N an isolating neighbourhood of Λ,

satisfying:

(a) L(Λ) = 0, L(x) > 0 for all x ∈ N \ Λ, and

(b) if L̇(x) = 0 and x ∈ N \ Λ then L̈(x) 6= 0.

Proposition 4.8. Every catenary function is a hyperbolic Lyapunov func-

tion.

Proof. Since a catenary function L is positive in N \Λ and L̈ = L we have

that L̈ is positive in N \ Λ. Then L is a hyperbolic Lyapunov function. �

4.3. More catenary functions. Let N be an isolating neighbourhood of

the isolated set Λ. Let L1 be a catenary function defined on N . Fix δ > 0 such

that the set B = {x ∈ N : L1(x) ≤ δ} is contained in the interior of N .
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Remark 4.9. A set like B is sometimes called an isolating block. Since

a precise definition of isolating block is a little involved and depends on the

author we will not use this terminology. See for example [7], [10] for more on

this subject.

The definitions that follow are standard. Consider the sets

Σs =
{
x ∈ ∂B : ∃ t < 0 with φ(t,0)(x) ∩ B = ∅

}
,

Σu =
{
x ∈ ∂B : ∃ t > 0 with φ(0,t)(x) ∩ B = ∅

}
.

Remark 4.10. With the previous notation we have that ∂B = Σs ∪ Σu.

This follows because L̈1 > 0 in ∂B. In fact, Σs = {x ∈ ∂B : L̇1(x) ≤ 0} and

Σu = {x ∈ ∂B : L̇1(x) ≥ 0}. Moreover, Σs \ Σu and Σu \ Σs are cross sections.

Define

W s = {x ∈ B : φR+(x) ⊂ B} and W u = {x ∈ B : φR−(x) ⊂ B}.

Denote by [−∞,+∞] the compactification with two points of R. Define the

functions T s, T u : B → [−∞,+∞] by

T s(x) = inf{t ≤ 0 : φ[t,0](x) ⊂ B} and T u(x) = sup{t ≥ 0 : φ[0,t](x) ⊂ B}.

It is easy to see that T s and T u are continuous. Define T : B → [0,+∞] by

T (x) = T u(x)− T s(x).

Since T s and T u are continuous we have that T is continuous. Notice that

T (x) = +∞ if and only if x ∈W s ∪W u. Introduce the notationπsx = φT s(x)(x) for x /∈W u,

πux = φTu(x)(x) for x /∈W s.

Remark 4.11. Take x ∈ B\ (W s∪W u). In this case πsx, πux ∈ ∂B. Assume

that L̈ = a2L on the orbit of x for a ∈ R and some function L defined on

B. Then, there are constants b, c ∈ R such that L(φt(x)) = beat + ce−at if

T s(x) ≤ t ≤ T u(x). If we know the values L(πsx) and L(πux) we can calculate

the values of b and c. This is what we did in order to obtain the expression of L
given at equation (4.1) in the next proof.

Theorem 4.12. Given a continuous function a : B \ Λ → R+ with ȧ = 0 <

inf a and a continuous function f : ∂B → R then there is a unique continuous

function L2 : B → R such that

(a) L2(Λ) = 0,

(b) L̈2(x) = a2(x)L2(x) for all x ∈ B,

(c) L2(x) = f(x) for all x ∈ ∂B.

If in addition f > 0 then L2(x) > 0 for all x ∈ B \ Λ.
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Proof. Without loss of generality assume that Λ = {p}. Take x in the

interior of B (where T (x) > 0) and define

(4.1) L2(x) =
f(πsx) sinh(a(x)T u(x))− f(πux) sinh(a(x)T s(x))

sinh(a(x)T (x))

if x /∈W s ∪W u. For x ∈W s, x 6= p, define

L2(x) = f(πsx)ea(x)T s(x)

and if x ∈W u, x 6= p, define

L2(x) = f(πux)e−a(x)Tu(x).

Finally, L2(p) = 0 and L2(x) = f(x) for all x ∈ ∂B. Given the differential

equation and the boundary condition, there is no other possible choice for L2. We

have to check that it works. Notice that T s(φt(x)) = T s(x)− t and T u(φt(x)) =

T u(x)− t. Then Ṫ s(x) = Ṫ u(x) = −1 and Ṫ (x) = 0 for all x ∈ B. Therefore L2

satisfies L̈2(x) = a2(x)L2(x) for all x ∈ B.

Let us prove the continuity of L2. We show the continuity at the point p.

Consider a sequence xn → p. First suppose that xn ∈W s. In this case L2(xn) =

f(πuxn)e−a(xn)Tu(xn). Since T u(xn) → +∞, f is bounded and inf a > 0 we

have that L2(xn) → 0 = L2(p). For xn ∈ W u a similar argument proves that

L2(xn) → 0. Consider xn /∈ W s ∪W u. In this case T u(xn), T (xn),−T s(xn) →
+∞. Therefore, we have the following equivalent expressions (where x de-

notes xn):

sinh(a(x)T u(x))

sinh(a(x)T (x))
=
ea(x)Tu(x) − e−a(x)Tu(x)

ea(x)T (x) − e−a(x)T (x)

∼ ea(x)Tu(x)

ea(x)[Tu(x)−T s(x)]
= ea(x)T s(x)

and ea(xn)T s(xn) → 0 because inf a > 0. Since f is bounded we have that

f(πsx) sinh(a(x)T u(x))

sinh(a(x)T (x))
→ 0.

In the same way we can prove that

f(πu(x))
sinh(a(x)T s(x))

sinh(a(x)T (x))
→ 0

if x → p. Then, L2(xn) → 0 if xn → p. This proves the continuity of L2 at p.

The proof of the continuity at other points is similar.

Now suppose that f is positive. We have to prove that L2(x) > 0 for all

x 6= p. We know that u(t) = L2(φt(x)) = Aea(x)t+Be−a(x)t and u(t0), u(t1) > 0

if φt0(x) ∈ Σs and φt1(x) ∈ Σu. We have to prove that u(t) > 0 if t0 < t < t1.

If A = 0 or B = 0 it is trivial. If A > 0 and B > 0 it is also trivial. If A and B
have different signs then u̇ has constant sign, therefore u(t) > 0 for all t ∈ [t0, t1].

This finishes the proof. �
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This result extends Theorem 4.4 by taking a = 1. We find it interesting

because it could be used to construct Lyapunov functions of catenary type that

in addition satisfy more properties as for example being a norm, if we are in

a vector space. For example, if we consider the differential equation ẋ = −2x

in Rn, it is easy to see that for every norm L : Rn → R it holds that L̈ = 4L.

4.4. Catenary functions for attractors. With the next proposition we

wish to remark that the Lyapunov functions obtained in Proposition 3.7 are the

catenary functions for an attractor. In Theorem 4.14 we construct a differentiable

Lyapunov function of catenary type for an asymptotically stable equilibrium

point in Rn of a C1 differential equation. The result is based on Massera’s

theorem for C1 Lyapunov functions.

Proposition 4.13. If Λ is an attractor then every catenary function of Λ

satisfies L̇ = −L. For a repeller we obtain L̇ = L.

Proof. Given a catenary function L for Λ we know, by definition, that

L̈ = L. Given a point x in an isolating neighbourhood of Λ, we know that

L(φt(x)) = aet + be−t for some a, b ∈ R depending on x. Since φt(x) is in the

isolating neighbourhood for all t ≥ 0, L vanishes on Λ and L is continuous we

have that a = 0. Therefore, L(φt(x)) = be−t and L̇ = −L. This finishes the

proof. �

Theorem 4.14. Consider in Rn the differential equation ẋ = f(x), f : Rn →
Rn a function of class C1, with an asymptotically stable equilibrium point p ∈ Rn.

Then, there is a differentiable positive Lyapunov function L : U → R, where U

is a neighbourhood of p, satisfying L̇ = −aL for some constant a > 0. Moreover,

L is C1 in U \ {p}.

Proof. From [21, Theorem 8] we know that there is a C1 Lyapunov function

V defined on a compact neighbourhood U ′ of p that is positive in U ′ \ {p},
V (p) = 0 and V̇ < 0 in U ′ \ {p}. Let m = minx∈∂U ′ V (x) and define Σ = {x ∈
U ′ : V (x) = m/2}. We know that Σ is a compact cross section. Moreover, since

V is C1 and V̇ 6= 0 at Σ we can apply the implicit function theorem to conclude

that Σ is a codimension-one submanifold of class C1. For a value of a that will

be determined, define L(φt(x)) = e−at for all x ∈ Σ and t ≥ 0 and L(p) = 0.

If U = clos(φR+(Σ)) we have that L is continuous in U . Moreover, L is C1 in

U \ {p} because Σ and φ are C1.

We will show that there is a value of a that makes L differentiable at p.

Consider the Euclidean norm ‖ · ‖ in Rn, assume that p is the origin and denote

φt(x0) as x(t). Since f is C1 there is k > 0 such that ‖f(x)‖ ≤ k‖x‖ for all

x ∈ U . Then ‖ẋ‖ ≤ k‖x‖ and

d

dt
‖x(t)‖2 ≥ −2‖x(t)‖‖ẋ(t)‖ ≥ −2k‖x(t)‖2.
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If u(t) = ‖x(t)‖2 then u̇/u ≥ −2k. Thus, integrating we obtain u(t) ≥ e−2kt and

(4.2) ‖x(t)‖ ≥ e−kt‖x0‖.

Take a = 2k and l > 0 such that

(4.3) ‖x0‖−2 ≤ l, for all x0 ∈ Σ.

Given x ∈ U \{p}, there are x0 ∈ Σ and t ≥ 0 such that x = φt(x0). Since x0 ∈ Σ

we have that L(x0) = 1 and L(x) = e−at = e−2kt = (e−kt)2 ≤ ‖x‖2/‖x0‖2. The

last inequality follows from (4.2). Using (4.3), we obtain L(x) ≤ l‖x‖2. Since

L ≥ 0, this implies that L is differentiable at the origin p and the proof ends. �

4.5. Fake singularities. The purpose of this section is to give a model,

a semi-conjugacy, for an arbitrary isolated set. We will consider a special type

of isolated point.

Definition 4.15. An isolated point p of a partial flow φ is a fake singularity

if there are xs and xu, different from p, such that:

(a) if x 6= p and lim
t→+∞

φt(x) = p then x = φt(xs) for some t ∈ R, and

(b) if x 6= p and lim
t→−∞

φt(x) = p then x = φt(xu) for some t ∈ R.

Let (Σ,dist) be a metric space with a point x0 ∈ Σ having a compact neigh-

bourhood. Define X = R × Σ and p = (0, x0) ∈ X. We say that a partial flow

on X has horizontal trajectories if every trajectory is contained in a set of the

form R× {x}. Consider the projection π1(s, x) = s.

Proposition 4.16. Consider a continuous function W : X → R such that

W (p) = 0, W (q) > 0 for all q 6= p and

(4.4)

∫ 0

−1

1

W (s, x0)
ds =

∫ 1

0

1

W (s, x0)
ds =∞.

Then there is a unique partial flow in X with horizontal trajectories, a fake

singularity at p and π̇1 = W .

Proof. Given (s, x) ∈ X let u be the solution of u̇(t) = W (u(t), x) such

that u(0) = s. Define a partial flow φ on X by φt(s, x) = (u(t), x). We have

a singular point at p. If we define xs = (−1, x0) and xu = (1, x0) we have that

p is a fake singularity; and if we take a compact neighbourhood U ⊂ Σ of x0

we have an isolating neighbourhood N = [−1, 1]× U . See Figure 4. Finally, we

have

π̇1(s, x) =
d

dt
π1(φt(s, x))|t=0 =

d

dt
π1(u(t), x)

∣∣∣∣
t=0

=
d

dt
(u(t))

∣∣∣∣
t=0

= u̇ = W (s, x).

This finishes the proof. �

Remark 4.17. A function W satisfying the assumptions of the proposition

is for example W (s, x) = |s|+ dist(x, x0), where dist is the metric of Σ.
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The partial flow given by Proposition 4.16, or a conjugate one, will be called

a (W,Σ)-fake singularity.

Proposition 4.18. Every fake singularity is a (W,Σ)-fake singularity.

Proof. Consider a catenary function L : N → R from Theorem 4.4, where

N is an isolating neighbourhood of the fake singularity p. For δ > 0 small define

B = {x ∈ N : L(x) ≤ δ}. Define Σ = {x ∈ B : L̇(x) = 0} with p ∈ Σ. Define

π : B → Σ as

π(x) =

φt(x) if φt(x) ∈ Σ and φ[0,t](x) ∈ N,
p otherwise.

Define h : B → R × Σ by h(x) = (L̇(x), π(x)). Denote by ψ the partial flow

in h(B) induced φ and h. It only rests to note that π̇1 = L̈ = L (time derivative

with respect to ψ). Then ψ is a (L,Σ)-fake singularity and h is a conjugacy

with φ. �

A product neighbourhood N as in Figure 4 is a singular flow box. Therefore,

the previous result implies that every fake singularity is contained in a singular

flow box.

p

Σ

U

N
X

Figure 4. Singular flow box N around the fake singularity p.

Theorem 4.19. Every isolated set Λ for a flow φ has an isolating neighbour-

hood N such that φ|N is semi-conjugate with a singular flow box around a fake

singularity.

Proof. Let L : B → R be a catenary function. Define the sets

W s = {x ∈ B : φR+(x) ⊂ U} and W u = {x ∈ B : φR−(x) ⊂ U}.

Define an equivalence relation ∼ on N generated by: x ∼ y if x, y ∈ W s ∪W u

and L̇(x) = L̇(y). In the quotient, Λ is a fake singularity and the projection is

a semi-conjugacy. �
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Figure 5 illustrates this result for a hyperbolic equilibrium point of saddle

type in R2.

Figure 5. Left: a hyperbolic singular point. Right: its associated fake

singularity by Theorem 4.19.

5. Expansive flows

The purpose of this section is to construct catenary functions and metrics

for expansive flows on compact metric spaces. The first problem is to find an

isolated set associated with the expansivity of a flow. Let φ : R × X → X be

a continuous flow on a compact metric space (X,dist).

Remark 5.1. In the case of expansive homeomorphisms we have that the

diagonal is an isolated, but for flows this is not the case. The diagonal {(x, x) :

x ∈ X} is an isolated for the flow ψt(x, y) = (φt(x), φt(y)) if and only if X is

a finite set. It is true, essentially, because ψt(x, φs(x)) is close to the diagonal

for all t ∈ R if s is small.

According to [6], we say that φ is an expansive flow if for all ε > 0 there

is δ > 0 such that if dist(φh(t)(x), φt(y)) < δ for all t ∈ R with h : R → R
a continuous function, h(0) = 0, then there is s ∈ (−ε, ε) such that y = φs(x).

In order to find an isolated set, allowing us to apply our previous results, we will

consider local cross sections.

5.1. Local cross sections. We start stating expansivity using cross sec-

tions. In [28], a local cross section is defined for each point. Since we need

a family of such cross sections we sketch Whitney’s construction.

Assume that the flow is regular, that is, it has no singular points. In this

case it is easy to prove that for a flow φ on a compact metric space X there are

three positive parameters δ, τ, a ∈ R such that if dist(x, y) ≤ δ then

dist(x, φτ (y))− dist(y, x) ≥ a > 0.
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For x, y ∈ X define

θx(y) =

∫ τ

0

dist(x, φt(y)) dt.

We have that

θ̇x(y) = lim
t→0

[θx(φt(y))− θx(y)]t−1 = dist(x, φτ (y))− dist(x, y).

Therefore, if dist(x, y) ≤ δ then θ̇x(y) ≥ a > 0. This implies that there is

ε0 > 0 such that the set Hε(x) = {y ∈ X : dist(x, y) ≤ ε, θx(y) = θx(x)} for all

ε ∈ (0, ε0) is a local cross section for each x ∈ X.

Remark 5.2. We can consider the function Hε : X → K(X) for ε fixed. In

this way we have that Hε is semi-continuous, that is, if yn ∈ Hε(xn) with xn → x

and yn → y then y ∈ Hε(x).

Remark 5.3. We can state expansivity as follows. A flow φ is expansive

if and only if there is ε > 0 such that if for some continuous h : R → R and

x, y ∈ X we have that φh(t)(y) ∈ Hε(φt(x)) for all t ∈ R then x = φh(0)(y).

Define Nε = {(x, y) : y ∈ Hε(x)}. In Nε we define a partial flow ψ by

(5.1) ψt(x, y) = (φt(x), φh(t)(y))

if h : [0, t] → R is a continuous function such that h(0) = 0 and φh(s)(y) ∈
Hε(φs(x)) for all s ∈ [0, t]. Notice that this function h is unique if it exists. If

φ is expansive then the trajectories of ψ are not defined for all t ∈ R. In fact,

ψt(x, y) is defined for all t ∈ R if and only if y = x, assuming expansivity. This

is another equivalent way to state the expansivity of φ. In other words:

Remark 5.4. The flow φ is expansive if and only if Λ = {(x, x) : x ∈ X} is

an isolated set for the partial flow ψ on Nε.

Having found our isolated set associated to an expansive flow, we are ready

to apply our previous results.

5.2. Catenary functions for expansive flows. Given a flow φ on the

compact metric space X, we consider the partial flow ψ defined in (5.1). In this

section the dots, indicating time derivatives, are related with ψ.

Theorem 5.5. If φ is an expansive flow without singular points on a com-

pact metric space X then there is a continuous function L : Nε → R such that

L(x, y) ≥ 0 with equality if and only if x = y and L̈ = L.

Proof. It is a direct consequence of Theorem 4.4 and Remark 5.4. �

Definition 5.6. A sectional metric is a continuous function

D : {(x, y, z) ∈ X3 : y, z ∈ Hε(x)} → R,
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that will be denoted as Dx(y, z) = D(x, y, z), such that Dx : Hε(x)×Hε(x)→ R
is a metric for each x ∈ X.

Theorem 5.7. Every expansive flow without singularities on a compact met-

ric space X admits a sectional metric D satisfying D̈x = Dx for all x ∈ X.

Proof. We know that the diagonal Λ is an isolated set for ψ. Then, there

is a catenary pseudo-metric d: Nε ×Nε → R given by Theorem 4.2. Define

Dx(y, z) = d((x, y), (x, z)).

Since d̈ = d we have that D̈x = Dx for all x ∈ X.

We know that d((x1, y1), (x2, y2)) = 0 if and only if (x1, y1) = (x2, y2) or

(x1, y1), (x2, y2)∈Λ (recall Definition 4.1). Then, Dx(y, z)=0 implies y=z. We

have that Dx(y, z) = Dx(z, y), Dx(y, y) = 0 and Dx(y, z) ≥ 0 by the correspond-

ing properties of d. Let us prove the triangular inequality:

Dx(a, b) +Dx(b, c)=d((x, a), (x, b)) + d((x, b), (x, c))≥d((x, a), (x, c))=Dx(a, c).

Finally, the continuity of D follows by the continuity of d. �

6. Discrete dynamical systems

In this section we extend our results to the dynamics of homeomorphisms.

Applications to expansive and cw-expansive homeomorphisms are given.

6.1. Isolated sets for homeomorphisms. Let f : X → X be a homeo-

morphism of a metric space (X,dist). An f invariant set Λ is isolated if there

is a compact neighbourhood N of Λ such that fn(x) ∈ N for all n ∈ Z implies

that x ∈ Λ.

6.2. Suspension flow. Fix ν > 0. Consider X ′ = R×X/ ∼ where (s, x) ∼
(t, y) if and only if ν(t − s) ∈ Z and y = fν(t−s)(x). Denote by π(s, x) the

equivalence class of (s, x). Let φ : R ×X ′ → X ′ be the suspension flow defined

by φtπ(s, x) = π(s+ t, x).

Proposition 6.1. The set Λ′ = π(R×Λ) is isolated for φ if Λ is an isolated

set for f .

Proof. If N is an isolating neighbourhood of Λ define N ′ = π([−3ν/4,

3ν/4]×N). Assume that N is compact. Since π is continuous, we have that N ′

is compact. Let us show that N ′ isolates Λ′. Suppose that φtπ(s, x) ∈ N ′ for all

t ∈ R. This means that π(s+ t, x) ∈ N ′ for all t ∈ R. Define tn = n− s for each

n ∈ Z. Then (n, x) is equivalent with some (un, yn) ∈ [−3ν/4, 3ν/4] × N for

each n ∈ Z. Since n ∈ Z and n − un ∈ Z we have that un ∈ Z ∩ [−3ν/4, 3ν/4].

Thus un = 0 for all n ∈ Z and yn = fn(x) ∈ Λ. This implies that x ∈ Nf and

π(s, x) ∈ Λ′. It only rests to note that N ′ is a neighbourhood of Λ′. �
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6.3. Catenary functions. Given L : N → R, define

L̈(x) = [L(f(x))− L(x)]− [L(x)− L(f−1(x))] = L(f(x))− 2L(x) + L(f−1(x))

if f(x), x, f−1(x) ∈ N .

Definition 6.2 (Discrete catenary). A catenary function for an isolated set

Λ is a continuous function L : N → R such that L̈(x) = L(x), L vanishes on Λ

and is positive in N \ Λ.

Theorem 6.3. Every isolated set of a homeomorphism admits a catenary

function.

Proof. Let λ = (3 +
√

5)/2, T = log λ and ν = T−1. Recall that ν is

the parameter used to define the suspension flow. By Theorem 4.4, we have a

catenary function L′ : N ′ → R for the suspension flow. For x ∈ N define L(x) =

L′(π(0, x)). Since L̈′ = L′, we have that for each x ∈ N , L′(φt(π(0, x))) = Aet+

Be−t for suitable constants A,B ∈ R depending on x. Notice that π(0, fn(x)) =

φnT (π(0, x)) for all n ∈ Z. Then

L̈(x) = L(f(x))− 2L(x) + L(f−1(x))

= L′(π(0, f(x)))− 2L′(π(0, x)) + L′(π(0, f−1(x)))

= L′(φT (π(0, x)))− 2L′(π(0, x)) + L′(φ−T (π(0, x)))

= [AeT +Be−T ]− 2[A+B] + [Ae−T +BeT ]

= (A+B)(eT − 2 + e−T ) = (A+B)(λ− 2 + λ−1)

= A+B = L′(π(0, x)) = L(x).

It only rests to note that L is positive in N \ Λ, L(Λ) = 0 and L is continuous

by construction. �

6.4. Catenary metric for an isolated set of a homeomorphism.

Definition 6.4. A catenary pseudo-metric for an isolated set Λ is a pseudo-

metric d: N ×N → R, with N an isolating neighbourhood of Λ, such that d̈ = d

and d(x, y) = 0 if and only if x = y or x, y ∈ Λ.

Theorem 6.5. Every isolated set admits a catenary pseudo-metric.

Proof. It follows with the techniques of the proof of Theorem 6.3, consid-

ering the suspension, and applying Theorem 4.2. �

6.5. Expansive homeomorphisms. A homeomorphism f : X → X of

a compact metric space (X,dist) is expansive if there is δ > 0 such that if

dist(fn(x), fn(y)) ≤ δ for all n ∈ Z then x = y. In this section we will prove

that every expansive homeomorphism admits a Lyapunov function of catenary

type defined for small compact subsets of X. We also construct a catenary local
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metric for an arbitrary expansive homeomorphism of a compact metric space.

Assuming that this catenary local metric is locally minimizing, we obtain a cate-

nary metric for the expansive homeomorphism.

6.5.1. Catenary Lyapunov functions for expansive homeomorphisms. Define

Kδ(X) = {A ∈ K(X) : diam(A) ≤ δ}.

Theorem 6.6. For every expansive homeomorphism f : X → X of a compact

metric space there are δ > 0 and a continuous function L : Kδ(X)→ R such that:

(a) L(A) ≥ 0 for all A ∈ Kδ(X), with equality if and only if A is a singleton,

(b) L̈ = L.

Proof. If we define Y = K(X) and g : Y → Y as g(A) = {f(x) : x ∈ A}
we have that f is expansive if and only if Λ = {{x} : x ∈ X} is an isolated set

of g. Take L a catenary function from Theorem 6.3 defined in a neighbourhood

Kδ(X) of Λ for δ > 0 small. �

Define X2
δ = {(x, y) ∈ X ×X : dist(x, y) ≤ δ}. The following result extends

the one obtained by Lewowicz in [20].

Corollary 6.7. For every expansive homeomorphism f : X → X of a

compact metric space there are δ > 0 and a non-negative continuous function

L : X2
δ → R such that

(a) L(x, y) = 0 if and only if x = y,

(b) L̈(x, y) > 0 if x 6= y.

Proof. Restrict the catenary function of Theorem 6.6 to pairs of points. �

6.5.2. Catenary local metrics for an expansive homeomorphism. Define

X3
δ = {(x, y, z) ∈ X ×X ×X : y, z ∈ Bδ(x)}.

Definition 6.8. A local metric in X is a continuous function D : X3
δ → R,

that will be denoted as D(x, y, z) = Dx(y, z), satisfying:

(a) for each x ∈ X, Dx : Bδ(x)×Bδ(x)→ R is a metric,

(b) Dx(x, y) = Dy(x, y) if dist(x, y) ≤ δ.

Definition 6.9. A local metric D is catenary if D̈x = Dx for all x ∈ X.

Theorem 6.10. Every expansive homeomorphism of a compact metric space

admits a catenary local metric.

Proof. Define F2(X) = {{x, y} : x, y ∈ X}. Expansivity is equivalent

with the space of singletons Λ = {{x} : x ∈ X} being an isolated set of the

homeomorphism g : F2(X) → F2(X) given by g({x, y}) = {f(x), f(y)}. By

Theorem 6.5, there is a catenary pseudo-metric d: N×N → R where N ⊂ F2(X)
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is an isolating neighbourhood of Λ. Take δ > 0 such that if dist(x, y) ≤ δ then

{x, y} ∈ N and define Dx(y, z) = d({x, y}, {x, z}) if y, z ∈ Bδ(x).

Let us prove that Dx is a metric in Bδ(x). It is easy to see that Dx(y, z) ≥ 0,

Dx(y, z) = Dx(z, y) and Dx(y, y) = 0 for all y, z ∈ Bδ(x). Suppose that

Dx(y, z) = 0. Then d({x, y}, {x, z}) = 0. Since d is a pseudo-metric for Λ

we have that y = z. Let us show the triangular inequality:

Dx(y, z) +Dx(z, u) = d({x, y}, {x, z}) + d({x, z}, {x, u})

≥ d({x, y}, {x, u}) = Dx(y, u).

We also have that Dx(x, y) = d({x, x}, {x, y}) = d({y, y}, {x, y}) = Dy(x, y).

The continuity ofD follows by the continuity of d. Finally, the catenary condition

of D follows by the corresponding property of d. �

6.5.3. Catenary metrics. Here we consider the problem of constructing cate-

nary metrics instead of pseudo-metrics.

Definition 6.11. A local metric D is locally minimizing if there is δ > 0

such that if dist(x, y) < δ then Dx(x, y) ≤ Dz(x, y) for all z ∈ Bδ(x) ∩Bδ(y).

Example 6.12. Let M be a compact manifold with a Riemannian metric.

Denote by ‖·‖ the induced norm, consider the exponential map expx : TxM →M

and define T rxM = {v ∈ TM : ‖v‖ ≤ r}. Take r such that expx : T rxM → M is

a homeomorphism onto its image. We can define a local metric by

Dx(y, z) = ‖ exp−1
x (y)− exp−1

x (z)‖.

Moreover, it is locally minimizing.

Returning to our metric space X, given x, y ∈ X, define

Cδn(x, y) =
{
a ∈ Xn : a1 = x, an = y, dist(ai, ai+1) ≤ δ for all i = 1, . . . , n− 1

}
,

where a1, . . . , an are the coordinates of a, i.e. a = (a1, . . . , an).

Remark 6.13. Notice that for some x, y it could be the case that Cδn(x, y) = ∅
for all n ≥ 2. Also note that the relation x ∼δ y if there is n ≥ 2 such that

Cδn(x, y) 6= ∅, is an equivalence relation on X. This relation makes a partition

of X that allows us to separate the study into these equivalence classes. For

simplicity, we will assume that X is connected and consequently for all x, y and

for all δ > 0 there is n ≥ 2 such that Cδn(x, y) 6= ∅.

Definition 6.14. A metric ρ in X is a catenary metric if it is a metric

defining the topology of X and there is δ > 0 such that ρ̈(x, y) = ρ(x, y) whenever

dist(x, y) ≤ δ.

We do not know if every expansive homeomorphism of a compact metric space

admits a catenary metric. The following is a partial result in this direction.
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Theorem 6.15. If D is a catenary and locally minimizing local metric on X

then

ρ(x, y) = inf
n≥2

inf
a∈Cδn(x,y)

n−1∑
i=1

Dai(ai, ai+1)

is a catenary metric.

Proof. It is easy to prove the triangular inequality for ρ, note that ρ(x, x) =

0 and ρ(x, y) = ρ(y, x) ≥ 0 for all x, y ∈ X. Take δ > 0 such that if dist(x, y) < δ

then Dx(x, y) ≤ Dz(x, y) for all z ∈ Bδ(x) ∩ Bδ(y). This implies that ρ(x, y) =

Dx(x, y) if dist(x, y) < δ. Then, x 6= y implies that ρ(x, y) 6= 0. Also, ρ defines

the topology of X. The catenary condition of ρ follows by the corresponding

property of D. �

Example 6.16 (Shift map). Let X = 2Z be the space of sequences . . . , x−1,

x0, x1, x2, . . . such that xn ∈ {0, 1} for each n ∈ Z. Consider the distance

d(x, y) =
∑
n∈Z

|xn − yn|
λ|n|

,

where λ > 1, x, y ∈ X. Define f : X → X, the shift map, by (f(x))n = xn+1. It

is easy to see that this metric satisfies d̈(x, y) = ad(x, y) where a = λ+ λ−1 − 2

and x, y are close enough. For λ = (3 +
√

5)/2 we have that d is a catenary

metric.

Example 6.17 (Pseudo-Anosov diffeomorphisms). Let X be a compact sur-

face without boundary. It is known [20], [13] that every expansive homeomor-

phism f : X → X is conjugate with a pseudo-Anosov diffeomorphism. By defini-

tion, pseudo-Anosov diffeomorphisms have two transverse and invariant singular

foliations Fs, Fu with transverse measures µs, µu. There is a parameter λ > 1

such that the unstable measure is expanded λ by the diffeomorphism and the

stable measure is contracted by λ by f . These measures define naturally a metric

d on X satisfying d̈(x, y) = ad(x, y) where a = λ + λ−1 − 2 and x, y are close

enough.

6.6. Cw-expansive homeomorphisms. Let (X,dist) be a compact met-

ric space. Recall that a continuum is a compact connected set. Denote by

C(X) = {A ∈ K(X) : A is continuum},

the space of subcontinua of X, and for δ ≥ 0 define

Cδ(X) = {A ∈ C(X) : diam(A) ≤ δ}.

Following [17], we say that a homeomorphism f : X → X is cw-expansive if there

is δ > 0 such that if fn(A) ∈ Cδ(X) for all n ∈ Z then A ∈ C0(X). We have

a result similar to Theorem 6.6. We have to replace K(X) with C(X) in the

domain of the function L.
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Theorem 6.18. For every cw-expansive homeomorphism f : X → X of

a compact metric space there are δ > 0 and a continuous function L : Cδ(X)→ R
such that:

(a) L(A) ≥ 0 for all A ∈ Cδ(X), with equality if and only if A is a singleton,

(b) L̈ = L.

Proof. The proof is similar to the proof of Theorem 6.6. �

6.7. Other forms of expansivity. In addition to cw-expansivity there are

many other variations of the concept introduced by Utz. Let us mention some of

them and indicate if an isolated set can be found in order to apply our results.

Given N > 0, a homeomorphism f : X → X is N -expansive [22] if there is δ > 0

such that if diam(fn(A)) < δ for all n ∈ Z and some subset A ⊂ X then A

has at most N points. Notice that 1-expansivity is expansivity. It is natural

to consider the space Fn(X) = {A ∈ K(X) : |A| ≤ n} where |A| denotes the

cardinality of A. Note that Fn are invariant compact subsets of K(X). Define

Y = (FN (X) \ FN−1(X)) ∪ F1(X). It is invariant by f . We have that N -

expansivity is equivalent with: there is an open set U ⊂ Y such that F1(X) ⊂ U
and if fn(A) ∈ U for all n ∈ Z then A ∈ F1(X). It looks like the definition of

isolated set but such an open set U cannot have compact closure unless X is

a finite set. Therefore, we are not able to apply our result to N -expansivity.

We consider a definition given in [2]. For δ ≥ 0, a set A ⊂ X is δ-separated if

for all x 6= y, x, y ∈ A, it holds that dist(x, y) > δ. The δ-cardinality of a set A is

|A|δ = sup
{
|B| : B ⊂ A and B is δ-separated

}
.

Given integer numbers m > n ≥ 1, we say that f : X → X is (m,n)-expansive if

there is δ > 0 such that if |A| = m then there is k ∈ Z such that |fk(A)|δ > n.

For the special case m = n− 1 we have that (n− 1, n)-expansivity is equivalent

with the set Fn−1(X) being isolated in Fn(X). For m < n − 1 the situation is

similar to N -expansivity explained above.

We were not able to find a connection between isolated sets and point-wise

expansivity [24] or h-expansivity [5].
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Departamento de Matemática y Estad́ısitca del Litoral

Universidad de la República
Gral. Rivera 1350

Salto, URUGUAY

E-mail address: artigue@unorte.edu.uy

TMNA : Volume 49 – 2017 – No 1


