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ON THE CHAOS GAME OF ITERATED FUNCTION SYSTEMS
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Abstract. Every quasi-attractor of an iterated function system (IFS) of

continuous functions on a first-countable Hausdorff topological space is ren-

derable by the probabilistic chaos game. By contrast, we prove that the
backward minimality is a necessary condition to get the deterministic chaos

game. As a consequence, we obtain that an IFS of homeomorphisms of the

circle is renderable by the deterministic chaos game if and only if it is for-
ward and backward minimal. This result provides examples of attractors

(a forward but no backward minimal IFS on the circle) that are not render-

able by the deterministic chaos game. We also prove that every well-fibred
quasi-attractor is renderable by the deterministic chaos game as well as

quasi-attractors of both, symmetric and non-expansive IFSs.

1. Introduction

Within fractal geometry, iterated function systems (IFSs) provide a method

for both generating and characterizing fractal images. An iterated function sys-

tem (IFS) can also be thought of as a finite collection of functions which can

be applied successively in any order. Attractors of this kind of systems are self-

similar compact sets which draw any iteration of any point in an open neigh-

bourhood of itself.

2010 Mathematics Subject Classification. Primary: 37C05, 37C20; Secondary: 37E10.
Key words and phrases. Iterated function system; well-fibred attractors; deterministic and

probabilistic chaos game; forward and backward minimality.
The first author was partially supported by the Ministerio de Ciencia e Innovación project

MTM2014-56953-P (Spain).

105



106 P.G. Barrientos — F.H. Ghane — D. Malicet — A. Sarizadeh

There are two methods for generating an attractor: a deterministic algo-

rithm, in which all the transformations are applied simultaneously, and a ran-

dom algorithm, in which the transformations are applied one at a time in random

order following the probability. A chaos game, popularized by Barnsley [3], is

a simple algorithm implementing the random method. There are two different

ways to run the chaos game that consists in taking a starting point and then

choosing randomly a transformation on each iteration accordingly to the assigned

probabilities. The latter starts by choosing a random order iteration and then

applying this orbital branch anywhere in the basin of attraction. The first way

of implementation is called the probabilistic chaos game [9], [7]. The second im-

plementation is called the deterministic chaos game (also called the disjunctive

chaos game) [27], [5], [12].

According to [7], every attractor of an IFS of continuous maps on a first-

countable Hausdorff topological space is renderable by the probabilistic chaos

game. By contract, we will see that this is not the case of the deterministic

chaos game. Namely, we will provide necessary and sufficient conditions to get

the deterministic chaos game. As an application we will obtain that an IFS

of homeomorphisms of the circle is renderable by the deterministic chaos game

if and only if it is forward and backward minimal which provides examples of

attractors that are not renderable by the deterministic chaos game.

1.1. Iterated function systems. Let X be a Hausdorff topological space.

We consider a finite set F = {f1, . . . , fk} of continuous functions from X to

itself. Associated with this set F we define the semigroup Γ = ΓF generated by

these functions, the Hutchinson operator F = FF on the hyperspace H (X) of

non-empty compact subsets of X

F : H (X)→H (X), F (A) =
k⋃
i=1

fi(A)

and the skew-product Φ = ΦF on the product space of Ω = {1, . . . , k}N and X

Φ: Ω×X → Ω×X, Φ(ω, x) = (σ(ω), fω1
(x)),

where ω = ω1ω2 . . . ∈ Ω and σ : Ω→ Ω is the lateral shift map. The action of the

semigroup Γ on X is called the iterated function system generated by f1, . . . , fk
(or, by the family F for short). Finally, given ω = ω1ω2 . . . ∈ Ω and x ∈ X,

fnω
def
= fωn

◦ . . . ◦ fω1
for every n ∈ N, and O+

ω (x) = {fnω (x) : n ∈ N}

are called, respectively, the orbital branch corresponding to ω (or the IFS-

iteration driven by the sequence ω) and the ω-fiberwise orbit of x. We introduce

now a number of different notions of invariant and minimal sets and next give

the definition of an attractor. In what follows A denotes a closed subset of X.
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1.2. Invariant and minimal sets. We say that A is a forward invariant

set if f(A) ⊂ A for all f ∈ Γ. We also say that A is a self-similar set if

A = f1(A) ∪ . . . ∪ fk(A).

Notice that a minimal set regarding to the inclusion of forward invariant non-

empty (closed) sets is always a self-similar set. We simply call it a forward

invariant minimal set. By extension, we say that an IFS is forward minimal if

the unique forward invariant non-empty closed set is the whole space. It is not

difficult to see that forward minimality is equivalent to density of any Γ-orbit.

That is, A is a forward invariant minimal set if and only if A coincides with the

closure of Γ-orbit

Γ(x)
def
= {g(x) : g ∈ Γ} for all x ∈ A.

Similarly, we will say that A is a forward minimal set if A is contained in the

closure of Γ(x) for all x ∈ A. Thus, forward minimal self-similar sets are forward

invariant minimal sets and viceversa.

Definition 1.1. We say that A is a quasi-attractor of the IFS generated by

F if it is a forward minimal self-similar compact set, i.e., if

A ∈H (X), F (A) = A and A = Γ(x) for all x ∈ A.

Finally, notice that, as a straightforward application of Zorn’s lemma, every

IFS on a compact space has a quasi-attractor.

1.3. Attractors. We introduce the notion of attractor following [7]–[10].

To accomplish this, we need to define first the pointwise basin of attraction.

Given a compact set K of X, the Ls-limit set (also called the ω-limit set or

topological upper limit set) of K for F is the set

LsFn(K)
def
=
⋂
m∈N

⋃
n≥m

Fn(K).

Observe that LsFn(S) is always closed. However it can be non-compact. Now,

let A be a compact set. The pointwise basin of Ls-attraction of A for F is defined

to be the set

B∗p(A)
def
= {x ∈ X : LsFn({x}) = A}.

Similarly, the pointwise basin of Vietoris-attraction for F is the set

Bp(A)
def
=
{
x ∈ X : lim

n→∞
Fn({x}) = A

}
.

The convergence here is with respect to the Vietoris topology, or equivalently, in

the metric space case, with respect to the Hausdorff metric [33, pp. 66–69]. It is

not difficult to show that Bp(A) ⊂ B∗p(A).
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A compact set A is a pointwise attractor if there is an open set U of X such

that A ⊂ U ⊂ Bp(A). A slightly stronger notion of an attractor is the following.

A is said to be a strict attractor if there is an open neighbourhood U of A such

that

lim
n→∞

Fn(K) = A in the Vietoris topology for all compact sets K ⊂ U .

We denote by B(A) the basin of the strict attractor. That is, the union of all

open neighbourhoods U of A such that the above convergence holds.

We remark that it is usual to include in the definition of attractor that

F (A) = A (cf. [10, Definition 2.2]). Under our mild assumptions on X, it is

unknown the continuity of the Hutchinson operator (see [6]) and thus it is not,

a priori, clear if A is a self-similar (F -invariant) set for the IFS. Nevertheless, the

following result proves that any attractor is a quasi-attractor and, in the case

of a strict attractor, attracts any compact set in the basin of attraction which,

a priori, is also not clear from the definition.

Theorem 1.2. Consider the IFS generated by F and a compact subset A.

(a) A is a quasi-attractor if and only if A ⊂ B∗p(A). Moreover, in this case,

A = LsFn(K) for all non-empty compact sets K ⊂ A.

(b) If A is a pointwise attractor, it is a quasi-attractor and Bp(A) = B∗p(A).

(c) If A is a strict attractor, it is a pointwise attractor, B(A) = Bp(A), and

for every non-empty compact set K ⊂ B(A)

lim
n→∞

Fn(K) = A in the Vietoris topology.

Another notion of an “attractor” of an IFS is the concept of a semi-attractor

introduced by Lasota and Myjak in [24]. Semi-attractors, sometimes called semi-

fractals, are the smallest (unique) forward invariant sets defined by means of the

Kuratowski topological limits. We refer to [25], [26] for a precise definition.

Thus, these sets are also forward invariant self-similar sets (in particular closed

sets) but in contract with strict/pointwise attractors or quasi-attractors, semi-

attractors can be non-compact.

Examples of pointwise attractors that are not strict attractors can be found

in [7]. Also, one can easily construct quasi-attractors of IFSs that are neither at-

tractors nor semi-attractors. A simple example is provided by the IFS generated

by a minimal map f (for instance a rotation of the circle with irrational rotation

number). The whole space A is the unique non-empty forward invariant closed

set but it is not the limit in the Hausdorff metric of Fn({x}) = {fn(x)} for any

x ∈ A. However, it always holds that B∗p(A) = A.
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1.4. Chaos game. Now, we focus our study to the chaos game of quasi-

attractors of the IFS generated by F on X. In particular, this covers the cases

of pointwise attractors, strict attractors, compact semi-attractors and minimal

IFSs on a compact topological space. First, we will give a rigorous definition of

the chaos game.

Following [9], we consider any probability P on Ω with the following property:

there exists 0 < p ≤ 1/k so that ωn is selected randomly from {1, . . . , k} in such

a way that the probability of ωn = i is greater than or equal to p, regardless the

preceding outcomes, for all i ∈ {1, . . . , k} and n ∈ N. More formally, in terms of

the conditional probability,

(1.1) P(ωn = i | ωn−1, . . . , ω1) ≥ p.

Bernoulli measures on Ω are typical examples of these kinds of probabilities.

Definition 1.3. Let A be a quasi-attractor of the IFS generated by F . We

say that A is renderable by

(a) the probabilistic chaos game if for any x ∈ B∗p(A) there is Ω(x) ⊂ Ω with

P(Ω(x)) = 1 such that

A ⊂ O+
ω (x) for all ω ∈ Ω(x);

(b) the deterministic chaos game if there is Ω0 ⊂ Ω with P(Ω0) = 1 such

that

A ⊂ O+
ω (x) for all ω ∈ Ω0 and x ∈ B∗p(A).

If the IFS is forward minimal (consequently A is the whole space and B∗p(A) = A)

we simply say that the IFS is renderable by the probabilistic/deterministic chaos

game.

The sequences in Ω which have a dense orbit under the shift map σ : Ω→ Ω

are called disjunctive. That is, the sequence ω = ω1ω2 . . . ∈ Ω which contains

all finite words α = α1 . . . αn ∈ {1, . . . , k}n of length n, for all n ≥ 1. Notice

that the set consisting of all disjunctive sequences has P-probability one and its

complement is a σ-porous set with respect to the Baire metric in Ω [5]. The

following result shows that the existence of a sequence ω such that every point

in the basin of attraction has dense ω-fiberwise orbit on the self-similar set is

enough to guarantee that for any disjunctive sequence we can also draw the

quasi-attractor. This brings to light that actually the deterministic chaos game

does not depend on the probability P. This fact deradomizes the algorithm of

the chaos game since disjunctive sequences in Ω are a priori well determined

sequences. For this reason, the algorithm is called the deterministic chaos game

(or disjunctive chaos game).
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Theorem 1.4. Consider the IFS generated by F and let A be a compact set

of X and x ∈ B∗p(A). Then,

(a) A and Γ(x) are forward invariant compact sets of X and A ⊂ Γ(x). In

particular, for every n ∈ N and ω ∈ Ω

{fmω (x) : m ≥ n} is a compact set.

(b) A ⊂ O+
ω (x) if and only if

lim
n→∞

{fmω (x) : m ≥ n} = A in the Vietoris topology.

(c) If A is a quasi-attractor, the following are equivalent:

(c1) A is renderable by the deterministic chaos game;

(c2) there is ω ∈ Ω such that A ⊂ O+
ω (z) for all z ∈ B∗p(A);

(c3) A ⊂ O+
ω (z) for all z ∈ B∗p(A) and disjunctive sequences ω ∈ Ω.

1.4.1. Probabilistic chaos game. Initially, the method was developed for con-

tracting IFSs [3]. Later, it was generalized to attractors of IFSs of continuous

functions on proper metric spaces [9]. For minimal IFSs in the case of inde-

pendent identically distributed random product of continuous maps of a com-

pact metric space the method follows from the Breiman’s law of large num-

bers [17]. Recently in [7], Barnsley, Leśniak and Rypka proved probabilistic

chaos games yield pointwise attractors of continuous IFSs on a first-countable

Hausdorff topological space (in fact they only need to assume that the attractor

is first-countable). Moreover, their proof also works with minor modifications

for the general case of quasi-attractors (see Appendix A).

1.4.2. Deterministic chaos game. In the case of attractors of contractive IFSs

a very simple justification of the deterministic chaos game can be given along

the lines of [18, proof of Theorem 5.1.3]. In [11], the deterministic algorithm was

also established for attractors of weakly hyperbolic IFSs, i.e., for point-fibred

attractors (see the definition below), which are an extension of the attractors of

contractive IFSs. Later, in [5] the deterministic chaos was obtained for a more

general class of attractors, the so-called strongly-fibred attractors.

An attractor A is said to be strongly-fibred if for every open set U ⊂ X such

that U ∩A 6= ∅, there exists ω ∈ Ω so that

Aω
def
=

∞⋂
n=1

fω1 ◦ . . . ◦ fωn(A) ⊂ U.

Similarly, A is said to be point-fibred if Aω is a singleton for all ω ∈ Ω. The same

definitions can be given for quasi-attractors. We are going to introduce a sim-

ilar category that we will call well-fibred following the proposal of Kieninger’s

classification of IFS attractors [22, p. 97], [8].
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Definition 1.5. We say that a quasi-attractor A of the IFS is well-fibred if

for every compact set K in A so that K 6= A and for any open cover U of A,

there exist g ∈ Γ and U ∈ U such that g(K) ⊂ U . Equivalently, if there are

ω ∈ Ω and U ∈ U so that

Kω
def
=

∞⋂
n=1

fω1
◦ . . . ◦ fωn

(K) ⊂ U.

It is not difficult to see that, in the metric space case, a quasi-attractor A is

well-fibred if and only if for every compact set K in A so that K 6= A, there is

a sequence (gn)n ⊂ Γ such that the diameter diam gn(K) converges to zero as

n→∞. On the other hand, it is easy to show that strongly-fibred implies well-

fibred. In fact, we will prove that if fi(A) is not equal to A for some generator

fi then both notions, strongly-fibred and well-fibred, are equivalent. After this

observation, we can say that the following result generalizes [5].

Theorem 1.6. Every well-fibred quasi-attractor A of an IFS of continuous

maps of a Hausdorff topological space is renderable by the deterministic chaos

game. Moreover, if A is either strongly-fibred or the generators of the IFS re-

stricted to A are homeomorphisms, then

Ω×A = {Φn(ω, x) : n ∈ N} for all disjunctive ω ∈ Ω and x ∈ A.

As a consequence, we will prove that every forward and backward minimal

IFS of homeomorphisms F of a metric space so that the associated semigroup

has a map with exactly two fixed points, one attracting and one repelling, is

renderable by the deterministic chaos game (see Corollary 3.18). Backward min-

imality here means that the IFS generated by F−1 = {f−1 : f ∈ F} is forward

minimal.

New examples of attractors renderable by the deterministic chaos game which

are not necessarily well-fibred were given in [12], [27]. Namely, in [12] the de-

terministic chaos was established for any forward and backward minimal IFS of

homeomorphisms of the circle and for every IFS of a compact metric space that

contains a minimal map. In [27] the deterministic algorithm was shown to work

also for attractors of IFSs comprising maps which do not increase distances. In

fact, basically with the same proof (see Appendix A), the result of Leśniak also

holds for quasi-attractors of non-expansive IFSs, i.e., iterated function systems

generated by a finite family F of maps of a metric space X so that

d(f(x), f(y)) ≤ d(x, y) for all f ∈ F .

This class of systems includes equicontinuous IFSs (see [28, Lemma 3.2] and

[30, Proposition 8]) and weakly hyperbolic IFSs (see [4, Theorem 1] and [2,

Corollary 6.4]). However, a priori, there are no relations between quasi-attractors

of non-expansive IFSs and strongly-fibred or well-fibred attractors.
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In brief, it is known that the deterministic chaos algorithm holds in the

following cases:

(1) well-fibred quasi-attractors of IFSs on Hausdorff topological spaces,

(2) quasi-attractors of non-expansive IFSs on metric spaces,

(3) forward and backward minimal IFSs of homeomorphisms of the circle,

(4) IFSs on a compact metric space having a minimal map.

The following theorem adds a new class of systems to this list: the quasi-

attractors of symmetric IFSs. We say that an IFS generated by a family of

homeomorphisms F of X is symmetric if for each f ∈ F it holds that f−1 ∈ F .

Theorem 1.7. Every quasi-attractor of a symmetric IFS on a Hausdorff

topological space is renderable by the deterministic chaos game.

We will give examples of symmetric non-minimal IFSs with a quasi-attractor

which is not an attractor (Remark 3.5) and attractors of symmetric IFSs which

are not included in the above list (Example 3.20). Moreover, we will prove that

the phase space of a forward minimal symmetric IFS on a connected space is

a strict attractor (Proposition 3.8).

1.4.3. Necessary condition to get a deterministic chaos game. The next re-

sult goes in the direction to provide necessary conditions to yield a deterministic

chaos game. First we need to introduce the notion of backward minimality. A set

A of X is said to be backward invariant for the IFS if

∅ 6= f−1(A) ⊂ A for all f ∈ Γ,

where f−1(A) denotes the preimage of A by the continuous map f . We say that

the IFS is backward minimal if the unique backward invariant non-empty closed

set is the whole space.

Theorem 1.8. Every forward minimal IFS generated by continuous maps

of a compact Hausdorff topological space that is renderable by the deterministic

chaos game must also be backward minimal.

As an application of the above result we can complete the main result in [12]

obtaining the following corollary:

Corollary 1.9. Let f1, . . . , fk be circle homeomorphisms. Then the follow-

ing statements are equivalent:

(a) the IFS generated by f1, . . . , fk is renderable by the deterministic chaos

game;

(b) there exists ω ∈ Ω such that O+
ω (x) = S1 for all x ∈ S1;

(c) the IFS generated by f1, . . . , fk is forward and backward minimal.
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This result allows us to construct a contra-example of the deterministic chaos

game for general IFSs. More specifically, any forward minimal but not backward

minimal IFS of homeomorphisms of the circle does not is renderable by the

deterministic chaos game. Observe that for ordinary dynamical systems on the

circle, the minimality of a map T is equivalent to that of T−1. However this fact

does not hold for IFSs with more than one generator:

Corollary 1.10. There exists an IFS of homeomorphisms of the circle that

is forward minimal but not backward minimal. Moreover, S1 is a strict attractor

of this IFS which, consequently, is not renderable by a deterministic chaos game.

We want to indicate that, as we will see, most of minimal IFSs of homeomor-

phisms of the circle have S1 as a strict attractor. Namely, we will prove that S1

is a strict attractor of a minimal IFS of homeomorphisms of the circle if there is

no common invariant measure for the generators (Proposition 3.10).

Organization of the paper. In Section 2 we study the basin of attraction

of pointwise/strict attractors and we prove Theorem 1.2 and the two first conclu-

sions of Theorem 1.4. We complete the proof of Theorem 1.4 in Section 3.1 where

we study a deterministic chaos game. In Section 3.2 we prove Theorem 1.8 and in

Section 3.3 we study a deterministic chaos game on the circle proving Corollar-

ies 1.9 and 1.10. The proofs of Theorems 1.6 and 1.7 are developed in Section 3.4

where we study sufficient conditions for the deterministic chaos game. Finally,

for completeness of the paper, we include an appendix where we extend the main

results of [7] and [27] for the general case of quasi-attractors.

Standing notation. In the sequel, X denotes a Hausdorff topological space.

We assume that we work with an IFS of continuous maps f1, . . . , fk on X and

we hold the above notations introduced in this section.

2. On the basin of attraction

We will study the basin of attraction of quasi-attractors. This allows us to

prove Theorem 1.2 and statements (a) and (b) of Theorem 1.4.

2.1. Topological preliminaries. We start giving a basic topological lem-

ma:

Lemma 2.1. Let A and B be two compact sets in X.

(a) If A ∩B = ∅ then there exist disjoint open neighbourhoods of A and B.

(b) If {U1, . . . , Us} is a finite open cover of A then there exist compact sets

A1, . . . , As in X so that

A = A1 ∪ . . . ∪As and Ai ⊂ Ui for i = 1, . . . , s.
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Proof. The first statement is a well-known equivalent definition of a Haus-

dorff topological space (see [31, Lemma 26.4 and Exercice 26.5]). Hence, we only

need to prove the second statement. First of all, notice that it suffices to prove

the result for an open cover of A with two sets. So, let {U1, U2} be an open cover

of A. Since X is Hausdorff, A is a closed subset of X. Let us consider compact

subsets K1 = A \ U2 ⊂ U1 and K2 = A \ U1 ⊂ U2. If A ⊂ K1 ∪K2 then we set

A1 = K1, A2 = K2 and it is done. Otherwise, A \ (K1 ∪ K2) is a non-empty

subset of A and it is easy to see that K1 ∩ K2 = ∅. Since X is Hausdorff and

K1 and K2 are compact disjoint subsets of X, by the first statement, there are

disjoint open subsets Vi of X so that Ki ⊂ Vi, for i = 1, 2. We may assume that

Vi ⊂ Ui. Now let us take A1 = A \V2 ⊂ U1 and A2 = A \V1 ⊂ U2. Then A1 and

A2 are compact subsets of X and A = A1 ∪A2 which concludes the proof. �

Let A and An, n ≥ 1, be compact subsets of X. Following [15], we define

the upper Kuratowski limit of (An)n as the set

LsAn
def
=
⋂
m≥1

⋃
n≥m

An.

Observe that LsAn is a closed set and LsAn ⊂ B that provide An ⊂ B, for n

sufficiently large, and B is a closed set. On the other hand, we recall that the

Vietoris topology in H (X) is generated by the basic sets of the form

O〈U1, . . . , Um〉 =

{
K ∈H (X) : K ⊂

m⋃
i=1

Ui, K ∩ Ui 6= ∅ for k = 1, . . . ,m

}
,

where U1, . . . , Um are open sets in X and m ∈ N. Hence, if An → A in the

Vietoris topology then An ∈ O〈U〉 for any n large enough and any open set U in

X such that A ⊂ U . In particular, An ⊂ U for all n sufficiently large. Moreover,

we have the following:

Lemma 2.2. An → A in the Vietoris topology if and only if for any pair of

open sets U and V , such that A ⊂ U and A ∩ V 6= ∅, there is n0 ∈ N so that⋃
n≥n0

An ⊂ U and V ∩An 6= ∅ for all n ≥ n0.

In particular,

(2.1) A = LsAn
def
=
⋂
m≥1

⋃
n≥m

An.

Proof. Assume that An → A in the Vietoris topology. Let U be any open

set such that A ⊂ U . By applying the above observation, there is n0 ∈ N
such that An ⊂ U for all n ≥ n0. Now we will see that for any open set V

with A ∩ V 6= ∅, it holds that An ∩ V 6= ∅ for all n sufficiently large. By the

compactness of A, we extract open sets U1, . . . , Us in X such that

A ∩ Ui 6= ∅ and A ⊂ V ∪ U1 ∪ . . . ∪ Us.
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Hence O〈V,U1, . . . , Us〉 is an open neighbourhood of A in H (X). Since An con-

verges to A then An ∈ O〈V,U1, . . . , Us〉 for all n large enough and in particular

An ∩ V 6= ∅ for all n large.

We will prove the converse. Let O〈U1, . . . , Um〉 be a basic open neighbour-

hood of A. Thus, U1, . . . , Um are open sets in X and

A ⊂ U1 ∪ . . . ∪ Um
def
= U and A ∩ Ui 6= ∅ for all i = 1, . . . ,m.

By assumption, there is n0 such that An ⊂ U for all n ≥ n0. Moreover, since

A∩Ui 6= ∅, we also get ni such that An ∩Ui 6= ∅ for all n ≥ ni and i = 1, . . . ,m.

Therefore

An ∈ O〈U1, . . . , Um〉 for all n ≥ N = max{ni : i = 0, . . . ,m}.

This implies that An → A in the Vietoris topology.

Finally we will prove (2.1). We have that A ⊂ LsAn since for every open

neighbourhood V of any point in A there is n0 ∈ N such that

An ∩ V 6= ∅ for all n ≥ n0.

The reverse inclusion is equivalent to proving that for every compact set K such

that K ∩ A = ∅, there exists n0 ∈ N so that An ∩ K = ∅ for all n ≥ n0. But

this is again a consequence of Lemma 2.1. Indeed, since K and A are compact

sets, we can find disjoint open sets U and V such that A ⊂ U and K ⊂ V . By

the above characterization of the Vietoris convergence, there is n0 ∈ N such that

An ⊂ U for all n ≥ n0. In particular An ∩K = ∅ for all n ≥ n0. �

2.2. Proof of Theorem 1.2 and statements (a) and (b) of Theo-

rem 1.4. We start proving statement (a) of Theorem 1.4.

Proposition 2.3. Let A be a compact subset of X. If x ∈ B∗p(A) then both,

A and Γ(x), are forward invariant compact sets such that

A = LsFn({x}) def
=
⋂
m≥1

⋃
n≥m

Fn({x}) and Γ(x) =
⋃
n≥1

Fn({x}) ∪A.

In particular, {fmω (x) : m ≥ n} is a compact set for all n ∈ N and ω ∈ Ω.

Proof. Set K
def
= Γ(x). Since x ∈ B∗p(A), by definition the above character-

ization of A, and consequently of K, follows.

Now we will show that K is compact. Let {Uα : α ∈ I} be an open cover

of K. Since A ⊂ K, by the compactness of A there exists a finite subset J1 of I

such that

A ⊂
⋃
α∈J1

Uα
def
= U.

Again, by the above characterization of the set A and since⋃
n≥m

Fn({x}) for m ≥ 1
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is a nested sequence, there is n0 ∈ N such that the union of Fn({x}) for n ≥ n0 is

contained in U . On the other hand, the set F ({x})∪ . . .∪Fn0−1({x}) is a finite

union of compact sets and thus, it is compact. Hence, there is a finite subset J2
of I such that

F ({x}) ∪ . . . ∪ Fn0−1({x}) ⊂
⋃
α∈J2

Uα.

Putting all together and setting J = J1 ∪ J2 we get

K = Γ(x) = A ∪ F ({x}) ∪ . . . ∪ Fn0−1({x}) ∪
⋃
n≥n0

Fn({x}) ⊂
⋃
α∈J

Uα

implying that K is compact.

Moreover, clearly F (K) ⊂ K. Thus we have obtained that K is a compact

Hausdorff topological space so that F (K) ⊂ K and A ⊂ K. Hence, we can

restrict the map F to the set of non-empty compact subsets of K.

According to [22, Proposition 1.5.3 (iv)], see also [6], the Hutchinson operator

F : K (K) → K (K) is continuous and from the above characterization of the

set A, it is easy to conclude that A is also a forward invariant compact set. This

completes the proof of the proposition. �

Now, we characterize the quasi-attractors (statements (a) and (b) of Theo-

rem 1.2).

Proposition 2.4. Let A be a compact subset of X. Then:

(a) Bp(A) ⊂ B∗p(A).

(b) A is a quasi-attractor if and only if A ⊂ B∗p(A). Moreover, in this case,

LsFn(K) = A for every non-empty compact set K ⊂ A

and Γ(x) ⊂ B∗p(A) for all x ∈ B∗p(A).

(c) If A is a pointwise attractor, it is a quasi-attractor and Bp(A) = B∗p(A).

Proof. The first statement follows from the characterization (2.1) of the

limit of Fn({x}) in the Vietoris topology given in Lemma 2.2.

Assume that A is a quasi-attractor and let x ∈ A. We want to prove that

A = LsFn({x}). Since Fn({x}) ⊂ A for all n ≥ 1 and A is a closed set then

LsFn({x}) ⊂ A. As in Proposition 2.3, LsFn({x}) is a forward invariant closed

set and thus, by the minimality of A, LsFn({x}) = A and x ∈ B∗p(A). Moreover,

the same argument also proves that LsFn(K) = A for every non-empty compact

set K ⊂ A. In fact, since Proposition 2.3 implies that

Γ(y) = Γ(y) ∪A for all y ∈ B∗p(A),

for all z ∈ Γ(y), it holds that if z ∈ A then LsFn({z}) = A and if z ∈ Γ(y) then

LsFn({z}) ⊂ LsFn({y}) = A, and from the above arguments LsFn({z}) = A.

Therefore the closure of Γ(y) is contained in B∗p(A) for all y ∈ B∗p(A).
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Suppose now that A ⊂ B∗p(A). Hence A = LsFn({x}) for all x ∈ A. In par-

ticular, A is a forward minimal set and by Proposition 2.3 it is also a forward in-

variant set. Thus A is a forward invariant minimal set, that is, a quasi-attractor.

Finally, we will proof the last statement. By the first statement, it suffices

to show that if A is a strict attractor then B∗p(A) ⊂ Bp(A). To accomplish this,

let us consider x ∈ B∗p(A) and open sets U, V such that A ⊂ U and A ∩ V 6= ∅.
As A is a pointwise attractor, there is an open neighbourhood W of A so that

F ({z}) → A in the Vietoris topology for all z ∈ W . Without loss of generality,

we can assume that U ⊂ W . Since A = LsFn({x}), there exists n1 ∈ N such

that Fn({x}) ⊂ U for all n ≥ n1. Then, for every z ∈ Fn1({x}) we have that

Fn({z}) converges to A in the Vietoris topology and thus, by Lemma 2.2, there

is n2 = n2(z) ∈ N so that

Fn({z}) ∩ V 6= ∅ for all n ≥ n2.

Taking n0 = max{n2(z) : z ∈ Fn1({x})} we get that Fn({x}) ∩ V 6= ∅ for all

n ≥ n0 and therefore, Lemma 2.2 implies that x ∈ Bp(A). �

We complete the proof of Theorem 1.2 by proving statement (c).

Proposition 2.5. If A is a strict attractor, then:

(a) Fn(K)→ A in the Vietoris topology for all compact sets K ⊂ B(A).

(b) A is a pointwise attractor and B(A) = Bp(A).

Proof. The first statement is a consequence of Lemma 2.1. Indeed, given

any compact set K in B(A), by compactness we can find open neighbourhoods

U1, . . . , Us of A such that K ⊂ U1 ∪ . . . ∪ Us and Fn(S) → A for any compact

set S in Ui, for all i = 1, . . . , s. By Lemma 2.1, there are compact sets Ki ⊂ Ui,
i = 1, . . . , s, such that K = K1 ∪ . . . ∪Ks. Then,

Fn(K) = Fn(K1) ∪ . . . ∪ Fn(Ks)

and thus Fn(K) converges to A in the Vietoris topology.

Let us pass to the second statement. Due to the first statement, B(A) ⊂
Bp(A). Thus, since B(A) is an open set containing A we get that A is a pointwise

attractor. To conclude, we will show that Bp(A) ⊂ B(A). Given x ∈ Bp(A), we

want to prove that x belongs to B(A).

Claim 2.6. If there exists a neighbourhood V of x such that Fn(K)→ A in

the Vietoris topology for all non-empty compact sets K ⊂ V then x ∈ B(A).

Proof. Since A is an attractor there exists a neighbourhood U0 of A such

that Fn(S) → A for all compact sets S in U0. Take U = U0 ∪ V . Clearly, U

is a neighbourhood of A and x ∈ U . On the other hand, by Lemma 2.1, any

compact set K in U can be written as the union of two compact sets K0 and

K1 contained in U0 and V , respectively. Now, since Fn(K) = Fn(K0)∪Fn(K1)
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it follows that Fn(K) converges to A for all non-empty compact sets K in the

neighbourhood U of A. This implies that x ∈ B(A). �

Now, we will get a neighbourhood V of x in the assumptions of the above

claim. Since Bp(A) is an open neighbourhood of A and x ∈ B(A), there is m ∈ N
such that Fm({x}) ⊂ B(A). Equivalently,

fωm ◦ . . . ◦ fω1(x) ∈ B(A) for all ωi ∈ {1, . . . , k}, for i = 1, . . . ,m.

By the continuity of the generators f1, . . . , fk of the IFS, we get an open set V

such that x ∈ V and

fωm ◦ . . . ◦ fω1(V ) ⊂ B(A) for all ωi ∈ {1, . . . , k}, for i = 1, . . . ,m.

In particular, for every compact set K in V it holds that Fm(K) ⊂ B(A) and

thus, by the first conclusion, Fn(K) converges to A. Finally, Claim 2.6 implies

that x ∈ B(A) as we wanted to show. �

To end this section we will prove statement (b) of Theorem 1.4.

Proposition 2.7. Consider ω ∈ Ω and x ∈ B∗p(A). Then the following

statements are equivalent:

(a) A ⊂ O+
ω (x).

(b) lim
n→∞

{fmω (x) : m ≥ n} = A in the Vietoris topology.

(c) A =
⋂
n≥1
{fmω (x) : m ≥ n}.

Proof. According to Proposition 2.3, An = {fmω (x) : m ≥ n} is a compact

set for all n ∈ N. Moreover, An+1 ⊂ An and hence, by Lemma 2.2, if An → A

in the Vietoris topology,

A =
⋂
n≥1

An ⊂ A1 = O+
ω (x).

This proves that (b) implies (a).

Reciprocally, let U and V be open sets such that A ⊂ U and V ∩ A 6= ∅.
Since x ∈ B∗p(A) then A = LsFn({x}) and thus there exists n0 ∈ N such that⋃

n≥n0

Fn({x}) ⊂ U.

In particular, the union of An for n ≥ n0 is contained in U . Moreover, since

A ⊂ O+
ω (x) we have An ∩ V 6= ∅ for all n large enough. Lemma 2.2 implies that

An → A in the Vietoris topology, completing the proof that (a) implies (b).

Finally, by Lemma 2.2, we have that (b) implies (c) and one can easily see

that (c) implies (a), concluding the proof of the proposition. �
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3. Deterministic chaos game

3.1. Equivalence. We will conclude the proof of Theorem 1.4 proving state-

ment (c).

Proposition 3.1. Let A be a quasi-attractor. Then the following statements

are equivalent:

(a) There exists ω ∈ Ω such that A ⊂ O+
ω (x) for all x ∈ B∗p(A).

(b) A ⊂ O+
ω (x) for all disjunctive sequences ω ∈ Ω and x ∈ B∗p(A).

(c) There is Ω0 ⊂ Ω with P(Ω0) = 1 such that

A ⊂ O+
ω (x) for all ω ∈ Ω0 and x ∈ B∗p(A).

Proof. It suffices to show that (a) implies (b). Let x be a point in B∗p(A).

According to Proposition 2.3,

K
def
= Γ(x) ⊂ B∗p(A)

and it is a forward invariant compact set.

The following claim will be useful to prove the density of disjunctive fiberwise

orbits, i.e., of fiberwise orbits driven by disjunctive sequences:

Claim 3.2. Let Z be a forward invariant set such that A ⊂ Z. If for any

non-empty open set I ⊂ X with A ∩ I 6= ∅ there is fis ◦ . . . ◦ fi1 ∈ Γ such that

for each z ∈ Z there is t ∈ {1, . . . , s} so that fit ◦ . . . ◦ fi1(z) ∈ I,

then A ⊂ O+
ω (x) for all disjunctive sequences ω ∈ Ω and x ∈ Z.

Proof. Consider any open set I such that A∩I 6= ∅, x ∈ Z and a disjunctive

sequence ω ∈ Ω. Using the fact that ω is a disjunctive sequence and that Z is

a forward invariant set we can choose m ≥ 1 such that

[σm(ω)]j = ij for j = 1, . . . , s and z = fmω (x) ∈ Z.

Hence, by assumption, there exists such t = t(z) that f
m+t(z)
ω (x) ∈ I which

proves the density on A of the ω-fiberwise orbit of x. �

Notice that F (K) ⊂ K and hence we can take Z = K in the above claim.

Let I be an open set so that I ∩A 6= ∅. By assumption, since Z ⊂ Bp(A), there

exists a sequence ω ∈ Ω such that for each point z ∈ Z the ω-fiberwise orbit of

z is dense in A. In particular, there is n = n(z) ∈ N such that

{fmω (z) : m ≤ n} ∩ I 6= ∅.

By continuity of generators f1, . . . , fk of the IFS, there exists an open neighbour-

hood Vz of z such that

{fmω (y) : m ≤ n} ∩ I 6= ∅ for all y ∈ Vz.
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Then, the compactness of Z implies that we can extract open sets V1, . . . , Vr and

positive integers n1, . . . , nr such that Z ⊂ V1 ∪ . . . ∪ Vr and

{fmω (z) : m ≤ ni} ∩ I 6= ∅ for all z ∈ Vi and i = 1, . . . , r.

Hence the assumptions of Claim 3.2 hold for fωs
◦ . . . ◦ fω1

∈ Γ where s =

max{ni : i = 1, . . . , r}. Therefore, since the initial point x ∈ B∗p(A) belongs

to Z, we conclude that any disjunctive fiberwise orbit of x is dense in A, what

completes the proof. �

3.2. Necessary condition.

Proof of Theorem 1.8. Clearly if there is a minimal orbital branch, i.e.,

ω = ω1ω2 . . . ∈ Ω such that O+
ω (x) is dense for all x, then the IFS is forward

minimal.

We will assume that it is not backward minimal. Then, there exists a non-

empty closed set K ⊂ X such that ∅ 6= f−1(K) ⊂ K 6= X for all f ∈ Γ.

Consider

K−n =

n⋂
i=1

f−1ω1
◦ . . . ◦ f−1ωi

(K) = f−1ω1
◦ . . . ◦ f−1ωn

(K) and K−ω =

∞⋂
n=1

K−n .

It is a nested sequence of closed sets. By assumption of theorem, the space

X, where the IFS is defined, is a compact Hausdorff topological space. As

a consequence, K−ω is not empty and then for every x ∈ K−ω we have that

O+
ω (x) ⊂ K. Since K is not equal to X it follows that there exists a point x ∈ X

so that the ω-fiberwise orbit of x is not dense. But this is a contradiction and

we are done. �

As we notified in the introduction, an IFS is forward minimal if and only if

every point has a dense Γ-orbit. To complete the section we want to point out

the following straightforward equivalent definition of backward minimality.

Lemma 3.3. Consider an IFS of surjective continuous maps of a topological

space X. Then the IFS is backward minimal if and only if

X = Γ−1(x) for all x ∈ X,

where Γ−1(x)
def
= {y ∈ X : there exists g ∈ Γ such that g(y) = x}.

3.3. Minimal IFSs of homeomorphisms of the circle. As a conse-

quence of Theorem 1.8, we will obtain that the deterministic chaos game is

totally characterized for forward minimal IFSs of homeomorphisms of the circle.

Moreover, this characterization allows us to construct attractors of IFSs that are

not renderable by a deterministic chaos game (counterexamples).
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3.3.1. Characterization. In [12, Theorem A] it was proved that every forward

and backward minimal IFS of preserving-orientation homeomorphisms of the

circle is renderable by the deterministic chaos game. However, the assumption of

preserving-orientation can be removed from this statement as we explain below.

The main tool in the proof of [12, Theorem A] was Antonov’s Theorem [1]

(see [12, Theorem 2.1]), stated for preserving-orientation homeomorphisms of the

circle. A key lemma for the proof was [12, Lemma 2.2]. The proof of this lemma,

by means of Antonov’s result, is the only point where the preserving-orientation

assumption was used. This lemma can be improved removing the preserving-

orientation assumption by two different ways. The first is by observing in the

original proof of Antonov that in fact this assumption is not necessary (as one can

easily see from the argument described in [21, proof of Theorem 2]). Another way

is to use the recent generalization of Antonov’s result [29, Theorem D] instead

of the key lemma.

Proof of Corollary 1.9. From the above, every forward and backward

minimal IFS of homeomorphisms of the circle is renderable by the deterministic

chaos game. That is, (c) implies (a). On the other hand, the fact that (a) im-

plies (c) follows from Theorem 1.8. Finally, to complete the proof of the corollary

it suffices to note that according to Theorem 1.4, (a) and (b) are equivalent. �

3.3.2. Counterexample. We will prove now Corollary 1.10. As we mentioned

in the introduction, for ordinary dynamical systems the minimality of a map T is

equivalent to that of T−1. Nevertheless this is not the case for dynamical systems

with several maps, as Kleptsyn and Nalskii pointed at [23, p. 271]. However, they

omitted to include examples of forward but not backward minimal IFSs. Hence,

to provide a complete proof of Corollary 1.10 we will show that indeed such IFSs

of homeomorphisms of S1 can be constructed.

(A) Forward but not backward minimal IFSs on the circle. Consider

a group G of homeomorphisms of the circle. Then, there can occur only one of

the following three options [32], [20]:

(1) there is a finite G-orbit,

(2) every G-orbit is dense on the circle, or

(3) there is a unique G-invariant minimal Cantor set.

By a G-orbit we understand the action of G at a point x ∈ S1. That is the set

of points G(x) = {g(x) : g ∈ G}. If G(x) has finitely many different elements

then it is called a finite orbit, while if its closure is S1 it is called a dense orbit.

The Cantor set K in (3) is usually called the exceptional minimal set. This set

is G-invariant and minimal, that is,

g(K) = K for all g ∈ G and K = G(x) for all x ∈ K.
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Notice that these properties are the same as to say that K is minimal regarding

to the inclusion of G-invariant closed sets. The following proposition is stated

in [32, Exercise 2.1.5]. For completeness, we include the proof.

Proposition 3.4. There exists a finitely generated group G of homeomor-

phisms of S1 admitting an exceptional minimal set K such that the G-orbit of

every point of S1 \K is dense in S1.

Proof. Let f be a homeomorphism of the circle with a minimal exceptional

set K and such that there is only one class of gaps, which means that for all

gaps I, J , there exists n in Z such that fn(I) = J . For instance, the classic

Denjoy map. Let I0 be a gap of K. Let u : I0 → R be a homeomorphism, f̃1
and f̃2 be respectively the translations x 7→ x+ 1 and x 7→ x+

√
2 on R, and let

us define two homeomorphisms f1 and f2 of S1 by fi = u−1f̃iu on I0, fi = id

on S1 \ I0. We claim that the group G generated by f, f1 and f2 satisfies the

required properties. Obviously, K is also the minimal exceptional set of G since

fi|K = id. On the other hand, the subgroup H generated by f1 and f2 leaves

the gap I0 invariant and acts minimally on it since the group generated by f̃1
and f̃2 acts minimally on R. Hence, let x be in S1 \ K and I be an interval

of the circle. Since there is only one class of gaps one can find m and n in Z
such that fm(x) ∈ I0 and fn(I) ∩ I0 6= ∅. Next, by minimality of the action of

H on I0, one can find h in H such that h(fm(x)) ∈ fn(I). Thus, the element

g = f−nhfm of G sends x into I. Since I is arbitrary by G, the orbit of x by G

is dense. �

We say that a subset F of a group G is a symmetric generating system of

G if G is generated by F as a semigroup. Moreover, we require that if f ∈ F

then also f−1 ∈ F . Hence, we can see the action of the group as a symmetric

IFS generated by F .

Remark 3.5. Let F be the finite symmetric generating system of the group

G given in Proposition 3.4. From the above observation, it follows that the

exceptional minimal set K is the unique quasi-attractor of the symmetric IFS

generated by F and B∗p(K) = K. This provides an example of a quasi-attractor

of a non-minimal IFS which cannot be a pointwise attractor.

We will use the following:

Lemma 3.6. Let G and K be as in Proposition 3.4. Then the closed subsets

of S1 which are invariant by G are ∅,K and S1.

Proof. Let B be a closed subset of S1 invariant by G. If B 6= ∅, then

K ⊂ B by minimality of K, and if B 6= K, it means that B contains a point

x in S1 \K, and by invariance, B contains the orbit of x by G which is dense,

hence B = S1. �
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On the other hand, any two Cantor sets are homeomorphic. In fact, if KI

and KJ are two Cantor sets in intervals I and J , respectively, there exists a

homeomorphism g : I → J so that g(KI) = KJ (see for instance [16]). Hence

given any Cantor set K in S1, one can find a homeomorphisms h of S1 so that

h(K) is strictly contained in K (or h(K) strictly contains K).

Proposition 3.7. Let G and K be as in Proposition 3.4 and f1, . . . , fn be

a symmetric system of generators of G. Consider any homeomorphism h of S1

such that h(K) strictly contains K. Then the IFS generated by f1, . . . , fn, h is

forward minimal but not backward minimal.

Proof. Let K1
def
= h(K). By assumption, K ( K1. We claim that the IFS

generated by f1, . . . , fn, h is forward minimal but not backward minimal.

(a) The IFS is not backward minimal: since K is invariant by the group G,

f−1i (K) = K for i = 1, . . . , n.

We also have h−1(K) ⊂ h−1(K1) = K. Thus, K is forward invariant by

f−11 , . . . , f−1n , h−1 and so the IFS is not backward minimal.

(b) The IFS is forward minimal: let B ⊂ S1 be a forward invariant by

f1, . . . , fn, h closed set. In particular, B is invariant by G, hence B ∈ {∅,K, S1}
by Lemma 3.6. Moreover, B 6= K since K is not invariant by h (otherwise

K1 = h(K) = h(B) ⊂ B = K but K1 strictly contains K). So, B ∈ {∅, S1},
which means that the IFS is forward minimal. �

(B) Strict attractors. To complete the proof of Corollary 1.10 we need

to show that S1 is a strict attractor of the IFS generated by f1, . . . , fn, h in

Proposition 3.7. We infer this from the next result.

We say that the IFS generated by a family F of continuous maps of X is

quasi-symmetric if there is f ∈ F so that its inverse map f−1 ∈ F .

Proposition 3.8. Consider a minimal quasi-symmetric IFS on a compact

connected Hausdorff space X. Then X is a strict attractor of this IFS.

We shall need the following lemma (c.f. [29, Lemma 4.15]). Again, for com-

pleteness, we include the proof.

Lemma 3.9. Consider the minimal IFS generated by a family F of continu-

ous maps of a connected Hausdorff topological space X. Then the IFS generated

by F 2 = {f ◦ g : f, g ∈ F} is also minimal.

Proof. Throughout the proof, we extend the Hutchinson operator F = FF

to the hyperspace of non-empty closed sets. We want to prove that if B is

a non-empty closed subset of X so that F 2(B) ⊂ B then B = X. Notice that

B′
def
= B ∪ F (B) and B′′

def
= B ∩ F (B)
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are both forward invariant sets, i.e., F (B′) ⊂ B′ and F (B′′) ⊂ B′′. By the

minimality of the IFS generated by F it follows that B′ = X. Hence, since X is

a connected space and both B and F (B) are closed we get that B′′ 6= ∅. Thus,

again by the minimality we have that B′′ = X and therefore B = X. �

Proof of Proposition 3.8. Let K be a compact set of X. We want to

show that Fn(K) → X in the Vietoris topology. The first observation is that,

since the IFS is quasi-symmetric, then K ⊂ F 2(K). So,

(F 2)n(K) ⊂ (F 2)n+1(K) for all n ≥ 1.

By Lemma 3.9, the IFS generated by F 2 is also minimal, and thus for every open

set V of X there is n0 ∈ N such that (F 2)n0(K)∩V 6= ∅. So, by the monotonicity

of this sequence, (F 2)n(K)∩V 6= ∅ for all n ≥ n0. Thus, according to Lemma 2.2,

we have that (F 2)n(K)→ X in the Vietoris topology. Due to the continuity of

the Hutchinson operator F and since X is a self-similar set, we also have that

F 2n+1(K)→ X. Thus, we conclude that Fn(K)→ X. �

Let us remark that in the case of homeomorphisms of the circle we have a

stronger result:

Proposition 3.10. Let f1, . . . , fk be homeomorphisms of S1 without a com-

mon invariant probability measure, and such that the IFS generated by them is

minimal. Then S1 is a strict attractor for this IFS.

Proof. Let x in S1, and let µn be the law of fnω (x) = fωn
◦ . . . ◦ fω1

(x),

where ω1, . . . , ωn are chosen independently and uniformly on {1, . . . , k}. By [29,

Corollary 2.6], the sequence (µn)n∈N converges weakly as n→∞ to the unique

stationary probability measure µ of the system, i.e., to the self-similar measure

µ =
1

k
((f1)∗µ+ . . .+ (fk)∗µ).

Moreover, this measure µ has total support because its topological support is

invariant by f1, . . . , fk. Consequently, for any interval I of the circle, µ(I) > 0

and so µn(I) > 0 for n large enough. Since we clearly have that supp(µn) ⊂
Fn({x}), we deduce that Fn({x}) ∩ I 6= ∅ for all n sufficiently large, and hence

we conclude by Lemma 2.2 that S1 is an attractor. �

3.4. Sufficient conditions. In what follows, A denotes a quasi-attractor.

3.4.1. Well-fibred attractors. We start studying the relation between strong-

ly-fibred and well-fibred quasi-attractors.

Proposition 3.11. If A is strongly-fibred then it is well-fibred. Moreover,

if in addition A is a strict attractor then for every compact set K in B(A) and

every open set U so that A ∩ U 6= ∅ there exists g ⊂ Γ such that g(K) ⊂ U .
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Proof. Consider a compact set K in A and let U be any open set such that

A ∩ U 6= ∅. Since A is strongly-fibred, we get ω ∈ Ω such that

Aω =

∞⋂
n=1

fω1
◦ . . . ◦ fωn

(A) ⊂ U.

Notice that since fi(A) ⊂ A for i = 1, . . . , k then fω1 ◦ . . . ◦ fωn(A) is a nested

sequence of compact sets and thus, for n large enough, fω1 ◦ . . . ◦ fωn(A) ⊂ U .

In particular, taking h = fω1 ◦ . . .◦fωn ∈ Γ we have that h(K) ⊂ U . This proves

that A is well-fibred.

We will assume now that A is a strict attractor and consider K in B(A).

As above we have that h(A) ⊂ U . We claim that there exists a neighbourhood

V of A such that h(V ) ⊂ U . Indeed, it suffices to note that h is a continuous

map and hence h−1(U) is an open set containing the compact set A. Since A is

a strict attractor, Fn(K)→ A in the Vietoris topology and in particular, there

is f ∈ Γ such that f(K) ⊂ V . Thus, taking g = h ◦ f ∈ Γ, it follows that

g(K) ⊂ h(V ) ⊂ U . �

Remark 3.12. If A is strongly fibred we have proved that one can contract

any compact set in A. In particular we can contract A and this implies that

there exists some generator fi such that fi(A) 6= A.

Now, we give an example of an IFS defined on S1 whose unique strict attrac-

tor is the whole space (that is the IFS is minimal) and it is well-fibred but not

strongly-fibred. This example shows that these two properties are not equivalent.

See also Corollary 3.18 at the end of this subsection.

Example 3.13. Consider the IFS generated by two diffeomorphisms g1, g2,

where g1 is the rotation with irrational rotation number and g2 is an orientation

preserving diffeomorphism with a unique fixed point p such that Dg2(p) = 1 and

the α-limit and ω-limit sets of each point q ∈ S1 are equal to {p}. Clearly, the

IFS acts minimally on S1 and has no common invariant measure thus A = S1 is

an attractor. Since g1 and g2 map S1 onto itself, it follows that for each ω ∈ Ω,

the fiber Aω = S1. This implies that S1 is not strongly-fibred, but it is still

well-fibred. Indeed, let K be any compact set so that K 6= S1. Then, there is

an open arc J of S1 which is not dense in S1 such that K ⊂ J . If J contains

the fixed point p, there is an integer n such that gn1 (J) does not contain p. So,

without loss of generality, we may assume that p 6∈ J . Now, it is easy to see that

gk2 (J) tends to p as k →∞. This implies that A = S1 is well-fibred. �

The above example is based on the fact that A satisfies that fi(A) = A for

all i = 1, . . . , k. The above and the next propositions show that if fi(A) is not

equal to A for some generator fi then both properties are equivalent.
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Proposition 3.14. If A is well-fibred and fi(A) 6= A for some i ∈ {1, . . . , k}
then A is strongly-fibred.

Proof. First of all note that it suffices to prove that for any open set U

with U ∩A 6= ∅, there is h ∈ Γ so that h(A) ⊂ U . To this end, notice that since

A is a quasi-attractor then the action of Γ restricted to A is minimal. Then,

there exist h1, . . . , hm ∈ Γ so that A ⊂ h−11 (U) ∪ . . . ∪ h−1m (U). On the other

hand, by assumption, there is i ∈ {1, . . . , k} such that fi(A) 6= A. Hence fi(A) is

a compact set strictly contained in A and since A is well-fibred there exist g ∈ Γ

and j ∈ {1, . . . ,m} such that g(fi(A)) ⊂ h−1j (U). Thus, taking h = hj◦g◦fi ∈ Γ,

it follows that h(A) ⊂ U , concluding the proof. �

In order to proof Theorem 1.6, we need a lemma (compare with Claim 3.2).

Here we understand fit ◦ . . . ◦ fi1 for t = 0 as the identity map.

Lemma 3.15. If for any non-empty open set I ⊂ X with A ∩ I 6= ∅, there

exist a neighbourhood Z of A and fis ◦ . . . ◦ fi1 ∈ Γ such that

for each z ∈ Z there is t ∈ {0, . . . , s} so that fit ◦ . . . ◦ fi1(z) ∈ I

then A ⊂ O+
ω (x) for all disjunctive sequences ω ∈ Ω and x ∈ B∗p(A).

Proof. Consider x ∈ B∗p(A), as disjunctive sequence ω ∈ Ω and any open

set I such that A ∩ I 6= ∅. As Z is a neighbourhood of A and LsFn({x}) = A,

we can choose m ≥ 1 such that

[σm(ω)]j = ij for j = 1, . . . , s and z = fmω (x) ∈ Z.

Hence, by assumption, there exists t = t(z) such that fm+t
ω (x) ∈ I which proves

the density on A of the ω-fiberwise orbit of x. �

The following result proves the first part in Theorem 1.6.

Proposition 3.16. If A is a well-fibred quasi-attractor then it is renderable

by the deterministic chaos game.

Proof. In order to apply Lemma 3.15, we consider any non-empty open

set I with IA
def
= A ∩ I 6= ∅. Hence, K = A \ IA is a compact set so that

K 6= A. Since A is a quasi-attractor, the action of Γ restricted to A is minimal

and thus, there exist h1, . . . , hm ∈ Γ such that A ⊂ h−11 (I) ∪ . . . ∪ h−1m (I). On

the other hand, since A is well-fibred, there exist i ∈ {1, . . . ,m} and g ∈ Γ such

that g(K) ⊂ h−1i (I). Take h = hi ◦ g. By continuity of the generators we can

find an open set U with K ⊂ U such that h(U) ⊂ I. Take, Z = U ∪ I and

fis ◦ . . . ◦ fi1 = h ∈ Γ. Clearly, Z is open with A = K ∪ IA ⊂ U ∪ I = Z and

for every z ∈ Z, there is t ∈ {0, s} such that fit ◦ . . . ◦ fi1(z) ∈ I. Lemma 3.15

implies that A is renderable by the deterministic chaos game. �
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Now, we conclude the proof of Theorem 1.6.

Proposition 3.17. Consider a well-fibred forward minimal IFS generated by

continuous maps of a compact Hausdorff topological space A. Assume the IFS is

either strongly-fibred or invertible (its generators are homeomorphisms). Then

Ω×A = {Φn(ω, x) : n ∈ N} for all disjunctive sequences ω and x ∈ A.

Proof. Let ω ∈ Ω be a disjunctive sequence and consider x ∈ A. We want

to show that (ω, x) has a dense orbit in Ω × A under the skew-product Φ. In

order to prove this, let C+
α × I be a basic open set of Ω × A. That is, C+

α is

a cylinder in Ω around a finite word α = α1 . . . α` and I is an open set in A.

In fact, we can assume that I is not equal to the whole space. It suffices to

prove that there exists an iteration by Φ of (ω, x) that belongs to C+
α × I. To

do this, similarly as in the previous proposition, we use the forward minimality

of Γ on A to find maps h1, . . . , hm ∈ Γ such that A = h−11 (I)∪ . . .∪ h−1m (I). Set

f = fα`
◦ . . . ◦ fα1

∈ Γ.

Assume first that the IFS is strongly-fibred. Then there exists a generator fi
such that K = fi(A) 6= A. By Proposition 3.11, the IFS is well-fibred and thus

we can find g ∈ Γ such that g(K) ⊂ h−1` (I) for some ` ∈ {1, . . . ,m}. Hence,

h(K) ⊂ I where h = h` ◦ g. Let f ◦ h ◦ fi = fis ◦ . . . ◦ fi1 . Since ω ∈ Ω is

a disjunctive sequence, we can choose m ≥ 1 such that

(3.1) [σm(ω)]j = ij for j = 1, . . . , s.

Set z = fmω (x). Then, h ◦ fi(z) ∈ I. Moreover,

Φm+t(ω, x) = Φt(σm(ω), z) = (σm+t(ω), h ◦ fi(z)) ∈ C+
α × I,

where t = 1 + |h| with |h| the length of h with respect to F = {f1, . . . , fk}.
Now, assume that the well-fibred forward minimal IFS is also invertible.

Hence f is a homeomorphism of A and thus ∅ 6= f(I) 6= A is an open set. Let

K = A\f(I). Notice that K is a non-empty compact set different from A and by

means of the “contractibility” of the IFS we get g ∈ Γ so that h(K) ⊂ I where

h = h` ◦g for some ` ∈ {1, . . . ,m}. Let f ◦h◦f = fis ◦ . . .◦fi1 . Similar as above,

since ω is a disjunctive sequence we choose m ≥ 1 satisfying (3.1) and denote

z = fmω (x). If z ∈ I, Φm(ω, x) = (σm(ω), z) ∈ C+
α × I. Otherwise, f(z) ∈ K and

then h ◦ f(z) ∈ I and thus

Φm+t(ω, x) = Φt(σm(ω), z) = (σm+t(ω), h ◦ f(z)) ∈ C+
α × I,

where t = |f |+ |h| with |f | and |h| the lengths of f and h respectively. �

We end this subsection presenting a broad family of IFSs with a well-fibred

quasi-attractor which are not strongly-fibred. Notice that this family contains

the IFS from Example 3.13.
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Corollary 3.18. Consider a forward and backward minimal IFS of home-

omorphisms of a metric space X and assume that there is a map h in the semi-

group Γ generated by these maps with exactly two fixed points, one attracting

and one repelling. Then X is a well-fibred quasi-attractor and consequently is

renderable by the deterministic chaos game.

Proof. The forward minimality implies that X is a quasi-attractor. Con-

sider now any compact set K ⊂ X such that K 6= X. By the backward mini-

mality there exist T1, . . . , Ts ∈ Γ such that

X =

s⋃
i=1

Ti(X \K).

Let p and q be, respectively, the attracting and the repelling fixed points of h.

Then there is i ∈ {1, . . . , s} so that q ∈ Ti(X \ K). Therefore, q 6∈ Ti(K) and

then the diameter of hn ◦ Ti(U) converges to zero. This shows that the action is

well-fibred and completes the proof. �

3.4.2. Quasi-attractors of symmetric IFSs. We will proof Theorem 1.7. This

theorem extends [19, Theorem 3.3] for compact Hausdorff topological spaces.

Proposition 3.19. If A is a quasi-attractor of a symmetric IFS on a Haus-

dorff topological space then it is renderable by the deterministic chaos game.

Proof. We will use Lemma 3.15. To accomplish this, let I be an open set

so that A∩ I 6= ∅. By the minimality of the action of Γ restricted to A, there are

h1, . . . , hm ∈ Γ so that A ⊂ h−11 (I) ∪ . . . ∪ h−1m (I). Set Z be the union of these

open sets. Since the IFS has a symmetric system of generators F = {f1, . . . , fk},
we can write

fis ◦ . . . ◦ fi1 = h−1m ◦ hm ◦ . . . ◦ h−12 ◦ h2 ◦ h
−1
1 ◦ h1.

Hence,

Z ⊂
t⋃

j=1

f−1i1 ◦ . . . ◦ f
−1
ij

(I).

This implies that for each z ∈ Z, there is t ∈ {1, . . . , s} so that fit◦. . .◦fi1(z) ∈ I.

Thus, by Lemma 3.15, A is renderable by the deterministic chaos game. �

To end this subsection, we give an example of a quasi-attractor of a symmetric

IFS on the torus T2 which is neither well-fibred nor a quasi-attractor of a non-

expansive IFS nor has a minimal map.

Example 3.20. Let f : T2 → T2 be a generalized north-south pole diffeomor-

phism on the torus T2. By this we mean that the non-wandering set of f , Ω(f),

consists of one fixed source, q, one fixed sink, p, and saddle type periodic orbits.

Let S be the set of all saddle type periodic points of f . For simplicity we assume
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that S consists of two saddle points so thatW = W s(S)∪Wu(S)∪{p, q} consists

of four circles: two disjoint circles following the meridian direction and two dis-

joint circles following the parallel directions. For every x ∈ T2 \W it holds that

fn(x)→ p and f−n(x)→ q as n→∞. On the other hand, consider the transla-

tion Rλ : T2 → T2, Rλ(x, y) = (x+λ1, y+λ2), where λ = (λ1, λ2) is an irrational

vector, i.e. λi ∈ R \ Q for i = 1, 2. Since the IFS generated by f, f−1, Rλ, R
−1
λ

on T2 has minimal elements, according to [12, Proposition 1], it is renderable by

the deterministic chaos game. Moreover, it is not difficult to see that this IFS is

C1-robustly minimal, i.e. the minimality persists under small C1-perturbations

on the generators (indeed, one can easily construct a “blending region” around

the attracting fixed point and then apply [13, Theorem 6.3]). Thus, there is

a rational vector α close to λ so that the IFS generated by f, f−1, Rα, R
−1
α acts

minimally on T2. By Theorem 1.7, this IFS is renderable by the deterministic

chaos game. Clearly, it does not contain any minimal element and it is not

a non-expansive IFS. Also, it is not well-fibred (indeed, it suffices to consider

a compact neighbourhood of a circle that contains p and the unstable manifold

of one saddle).

Appendix A

Here we extend the results due to Bransley, Leśniak and Rypka (see [7], [27])

on the probabilistic and the deterministic chaos game for attractors of IFSs to

the general case of quasi-attractors. The proofs basically follow the same ideas

of [7], [27] with some minor modifications and improvements.

On Bransley, Leśniak and Rypka probabilistic chaos game for quasi-

attractors.

Theorem A.1. Every first-countable quasi-attractor of an IFS of continuous

maps of a Hausdorff topological space is renderable by the probabilistic chaos

game.

Proof. Let x0 be a point of B∗p(A) and let U be an open subset of A. We

want to prove that the event

E = E(x0, U)
def
= {ω ∈ Ω : O+

ω (x0) ∩ U 6= ∅}

has probability 1. Since A is a minimal forward invariant set, for any x in A

we can find a finite sequence i1, . . . , im such that fim ◦ . . . ◦ fi1(x) belongs to U .

Then, by using the compactness of A and the continuity of the generators, we

can actually find an integer m0 and functions i1, . . . , im0
from a neighbourhood

V of A into {1, . . . k} such that for every x ∈ A, there is m ≤ m0 such that

fim(x) ◦ . . . ◦ fi1(x)(x) ∈ U . Since LsFn({x0}) ⊂ A then xn = fnω (x0) ∈ V for

all n large enough. Then En = {ω ∈ Ω : ωn+m0
= im0

(xn), . . . , ωn+1 = i1(xn)}
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is obviously contained in E, and since the random variable xn depends only on

ω1, . . . , ωn, we obtain from (1.1) that

P(E |ω1, . . . , ωn) ≥ P(En | ω1, . . . , ωn) ≥ pm0
def
= δ0.

In particular, for every set C in the σ-algebra generated by ω1, . . . , ωn, we have

the inequality P(E ∩ C) ≥ δ0 P(C), and since n is arbitrary, this inequality

actually holds for any Borel set C of Ω. Choosing C = Ω \ E, we deduce that

P(Ω \ E) = 0 concluding that E has full probability.

Finally, we will prove that with probability 1, O+
ω (x0) is dense in A. First

notice that any quasi-attractor is a separable set. Hence, let us choose (zi)i∈N
a sequence dense in A and for each i, (Ui,j)j∈N a basis of neighbourhoods of zi.

Let

Ω(x0) =
⋂
i∈N

⋂
j∈N

E(x0, Ui,j).

From the above, Ω(x0) has full probability. Given any open set U of X so that

U ∩A 6= ∅. Then we can find Ui,j so that Ui,j ⊂ U . Then, for every ω ∈ Ω(x0),

the set O+
ω (x0) intersects Ui,j and in particular U . Thus O+

ω (x0) is dense in A.�

On Leśniak deterministic chaos game for quasi-attractor of non-

expansive IFS.

Theorem A.2. Every quasi-attractor of a non-expansive IFS on a metric

space is renderable by the deterministic chaos game.

Proof. We will use Lemma 3.15. To accomplish this, let I be an open set so

that A∩I 6= ∅. We can suppose that I = B2ε(y0) is an open ball of radius 2ε > 0

and centered at y0 ∈ A. By the compactness of A, we can find y1, . . . , ym ∈ A
such that A ⊂ Bε(y0) ∪ Bε(y1) ∪ . . . ∪ Bε(ym)

def
= Z. As the action of Γ on A

is minimal, we can find h1 ∈ Γ such that h1(y1) ∈ Bε(y0). Recursively, suppose

hi−1 is constructed, we can find hi ∈ Γ such that hi ◦ . . . ◦ h1(yi) ∈ Bε(y0). On

the other hand, for each z ∈ Z, there is i ∈ {0, . . . ,m} such that d(z, yi) ≤ ε.

Since the IFS is non-expansive,

d(hi ◦ . . . ◦ h1(z), hi ◦ . . . ◦ h1(yi)) ≤ d(z, yi) ≤ ε.

Since d(hi ◦ . . . ◦ h1(yi), y0) ≤ ε, it follows that d(hi ◦ . . . ◦ h1(z), y0) ≤ 2ε. That

is, hi ◦ . . . ◦ h1(z) ∈ I for some i ∈ {0, . . . ,m} where we recall that hi ◦ . . . ◦ h1
for i = 0 denotes the identity map. Hence writing

fis ◦ . . . ◦ fi1 = hm ◦ . . . ◦ h1 where fij ∈ F

we have obtained that there is t ∈ {0, . . . , s} so that fit ◦ . . . ◦ fi1(z) ∈ I. Thus,

by Lemma 3.2, A is renderable by the deterministic chaos game. �
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[27] K. Leśniak, Random iteration for nonexpansive iterated function systems: derandomised

algorithm, Internat. J. Appl. Nonlinear Sci. 1 (2014), no. 4, 360–363.

[28] , Random iteration for infinite nonexpansive iterated function systems, Chaos 25

(2015).

[29] D. Malicet, Random walks on Homeo(S1), arXiv 2015.

[30] R. Miculescu and A. Mihail J. Math. Anal. Appl. 422 (2015), 265–271.

[31] J.R. Munkres, Topology, Pretince Hall, Incorporated, 2nd Edition, 2000.

[32] A. Navas, Groups ofCcircle Diffeomorphisms, University of Chicago Press, 2011.

[33] S.M. Srivastava, A Course on Borel Sets, Graduate Texts in Mathematics, 1998.

Manuscript received July 16, 2015

accepted October 29, 2015

Pablo G. Barrientos

Instituto de Matemática e Estat́ıstica
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