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SEMILINEAR INCLUSIONS WITH NONLOCAL CONDITIONS

WITHOUT COMPACTNESS IN NON-REFLEXIVE SPACES

Irene Benedetti — Martin Väth

Abstract. An existence result for an abstract nonlocal boundary value
problem x′ ∈ A(t)x(t) + F (t, x(t)), Lx ∈ B(x), is given, where A(t) deter-

mines a linear evolution operator, L is linear, and F and B are multivalued.

To avoid compactness conditions, the weak topology is employed. The re-
sult applies also in nonreflexive spaces under a hypothesis concerning the De

Blasi measure of noncompactness. Even in the case of initial value prob-

lems, the required condition is essentially milder than previously known
results.

1. Introduction

We consider a nonlocal semilinear differential inclusion in a Banach space E

(1.1)

x′(t) ∈ A(t)x(t) + F (t, x(t)) (a < t ≤ b),
Lx ∈ B(x)

where A(t) (t ∈ [a, b]) is a family of linear not necessarily bounded operators,

F : [a, b]×E ( E, B : C([a, b], E)( E, and L : C([a, b], E)→ E is bounded and

linear. (Here, f : A ( B denotes a multivalued map, that is, f(x) is a subset
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of B for every x ∈ A; we use the customary notation f(A) =
⋃
x∈A

f(x) for such

maps).

Although the above problem is very general, the results in this paper are

new even in the single-valued case and for initial value problems (Lx = x(a) and

B(x) being independent of x).

Multivalued equations in abstract spaces are motivated by the study of con-

trol problems for partial differential equations, by obstacle conditions (forcing

“impulses”), or by a process known only up to some degree of uncertainty.

Nonlocal problems, on the other hand, have been studied in several con-

texts since the pioneering work of Byszewsky [8]. For instance, the multipoint

boundary value problem

(1.2) Ly =

n∑
i=1

Liy(ti)

with Li being bounded linear operators in E and ti ∈ [a, b], allows measurements

at various points t = ti, rather than just at t = a, which is more suitable for

some problems in physics than the classical initial problem. Moreover in many

models of population dynamics, there is an integral condition

(1.3) Ly =

∫ b

a

L̃(t)y(t) dϕ(t).

The existence of solutions for these problems is frequently studied with topo-

logical techniques based on fixed point theorems for a suitable solution operator.

This requires strong compactness conditions, which are usually not satisfied in

an infinite dimensional framework, if the evolution operator associated to A( · )
fails to be compact.

The main aim of this paper is to obtain existence results in the lack of this

compactness. Several techniques have previously been employed for this situa-

tion. One technique is based on the concept of measure of noncompactness (to-

gether with a corresponding degree theory or fixed point theorems), see e.g. [4].

Another technique makes use of weak topologies; for instance, in reflexive spaces

the Ky Fan fixed point theorem has been used in the weak topology in [7]. Other

techniques involve compactly embedded Gel’fand triples with a Hilbert space and

Hartman-type conditions, see [5].

In this paper, we make use of a weak measure of noncompactness, thus

avoiding hypotheses of compactness both on the semigroup generated by the

linear part and on the nonlinear term F , as well as restrictions about compact

Gel’fand triples. In particular, in contrast to [4], this approach allows us to treat

a class of nonlinear maps F which are not necessarily compact-valued. Moreover,

unlike [7], we can handle also nonreflexive Banach spaces.
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In a normed space E, we use the notation Br(E) to denote the closed ball

in E centered at 0 with radius r. We use the De Blasi measure of noncompactness

introduced in [13] which for M ⊆ E is defined as

β(M) = inf {ε ∈ [0,∞] : M ⊆W +Bε(E) for some weakly compact W ⊆ E} .

As far as we know, all methods to find solutions of equations exploiting weak

measure of noncompactness presented in literature require either the equiconti-

nuity of the nonlinear term, or a uniform regularity with respect to a measure

of noncompactness of the type

(1.4) β(F ([a, b]×M)) ≤ β(M) (M ⊆ E),

see e.g. [1], [12], [18], [25]. Instead, we assume only a pointwise such condition,

i.e. we require the existence of a function ν ∈ L1([a, b], [0,∞)) such that

(1.5) β(F (t,M)) ≤ ν(t)β(M) (M ⊆ E).

(Actually, we will require only a weaker inequality involving countable sets; the

latter is important in nonseparable spaces, as we shall see later.) Classes of maps

satisfying (1.5) are described in the appendix and in the sections with examples.

This is not a trivial extension: While (1.4) trivially guarantees a “good”

behaviour of β under a certain integration operation, this is not obvious for (1.5).

We must make use of a deep result on the behaviour of β under integration, due

to Kunze and Schlüchtermann, which holds only for countable sets: Hence, we

must make a technical reduction to handle only countable sets.

We point out once more that our main result is a novelty even for the Cauchy

initial value problem: The example in Section 7 is such a Cauchy problem for

which our result applies, although an estimate of type (1.4) fails spectacularly.

Moreover, in this example one cannot easily replace β by e.g. the Hausdorff

measure of noncompactness, so that the well-known results for e.g. condensing

maps (with the strong topology) do not apply.

In Sections 3 and 4, we show also some fixed point theorems and contain-

ment/selection results for the weak topology which we employ in the proof and

the examples.

2. Main result

We assume the following hypotheses on the semilinear differential inclu-

sion (1.1):

(U) For each s ∈ [a, b] and each u ∈ E the linear initial value problem

x′(t) = A(t)x(t), x(s) = u, has a solution x(t) = U(t, s)u in some mild

sense (see Remark 2.3) such that U(t, s) (a ≤ s ≤ t ≤ b) are bounded

linear operators on E which are strongly continuous, that is, U( · , · )u is

continuous on {(t, s) : a ≤ s ≤ t ≤ b} for every u ∈ E. Note that by the
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uniform boundedness principle, there is D > 0 with ‖U(t, s)‖ ≤ D for

all a ≤ s ≤ t ≤ b.
(F1) F (t, u) is nonempty and convex for every (t, u) ∈ [a, b]×E, and for every

u ∈ E the multivalued map F ( · , u) : [a, b]( E has a (strongly Bochner)

measurable selection fu.

(F2) F (t, · ) : E ( E has a weakly sequentially closed graph for almost all

t ∈ [a, b].

(F3) For every n there exists ϕn ∈ L1([a, b], [0,∞)) with

sup {‖y‖ : y ∈ F (t, Bn(E))} ≤ ϕn(t)

for almost all t ∈ [a, b].

(F4) For every n there exists a function νn ∈ L1([a, b], [0,∞)) such that, for

almost all t ∈ [a, b],

β(C1) ≤ νn(t)β(C0)

for all countable C0 ⊆ Bn(E), C1 ⊆ F (t, C0) where β is the De Blasi

measure of weak noncompactness.

(L1) L : C([a, b], E) → E is a bounded linear operator and has the property

that for each n there is µn > 0 such that

(2.1) β({Lx : x ∈ C}) ≤ µn sup
t∈[a,b]

β(C(t))

for all countable C ⊆ Bn(C([a, b], E)), where we use the notation C(t) :=

{x(t) : x ∈ C}.
(L2) The operator J : E → E defined by Jx := L(U( · , a)x) is invertible.

(B) B : C([a, b], E) ( E has a weakly sequentially closed graph, B(x) is

nonempty and convex for every x ∈ C([a, b], E), B maps bounded sets

into weakly relatively compact sets, and we have the sublinear (for F

and B) growth condition

(2.2) D ‖J−1‖ lim sup
‖u‖→∞

sup {‖y‖ : y ∈ B(u)}
‖u‖

+ (D2 ‖L‖ ‖J−1‖+D) lim sup
n→∞

∫ T
0
ϕn(t) dt

n
< 1.

Definition 2.1. A function x : [a, b]→ E is a mild solution of problem (1.1)

if there is a function f ∈ L1([a, b], E) with f(t) ∈ F (t, x(t)) for almost all t ∈ [a, b]

and

(2.3)
x(t) = U(t, a)x(a) +

∫ t

a

U(t, s)f(s) ds (t ∈ [a, b]),

Lx ∈ B(x).
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Recall that E is weakly compactly generated if there is a weakly compact

set M ⊆ E with E =
⋃
λ>0

λM . For instance, every separable space is weakly

compactly generated. Also the space C(M,R) is weakly compactly generated, if

M is a weakly compact subset of a Banach space with the weak topology.

Now we can state the main result of the paper.

Theorem 2.2. Let E be weakly compactly generated. Under assumptions

(U), (F1)–(F4), (L1), (L2), and (B), problem (1.1) has at least one mild solution,

that is, there is some x ∈ C([a, b], E) satisfying (2.3).

Before proceeding with the proof of the theorem, let us first discuss the above

definitions and hypotheses.

Remark 2.3. The first equation in (2.3) implies that x is continuous, see

Proposition 5.1. This equation means that x is a mild solution of the nonhomo-

geneous problem

(2.4) x′(t) = A(t)x(t) + f(t),

that is, in the sense of the associated variation-of-constants formula. There

is a vast literature on results in which sense such mild solutions actually sat-

isfy (2.4) and in which sense it is needed for this that x(t) = U(t, s)u satisfies

the initial value problem mentioned in our hypothesis (U). We only point out

some important special cases. For the case that A(t) = A is a densely defined

generator of a linear C0-semigroup U0 in E and U(t, s) = U0(t−s), it was shown

in [3] that x satisfies the equation in (2.3) if and only if for each ` in the domain

of the adjoint operator A∗ the function `◦x is absolutely continuous and satisfies

(` ◦ x)′(t) = (A∗`)x(t) + (` ◦ f)(t)

for almost all t ∈ [a, b]. The more general case that the operators A(t) are

dependent of t, but that their domains D(A(t)) are independent of t and dense

in E, was perhaps first studied systematically in the classical monograph [22, II,

§ 3], but nowadays also more general cases are important, e.g. that all D(A(t))

contain a common dense subspace, or even less restrictive requirements. To

possibly treat such cases, we left the relation between U and A in hypothesis (U)

intentionally vague. We can do this, because we study only mild solutions, and

in their definition the operator A does not occur at all. In fact, our main result

holds for every strongly continuous family U of bounded linear operators on E,

as required in (U).

Remark 2.4. If Lx = x(a), then J is the identity operator and thus (L2)

holds. Moreover, if additionally B(C([a, b], E)) is bounded (e.g. if we consider

the initial condition x(a) = B with B independent of x), then Theorem 2.2 holds
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also if we drop (2.2) and instead replace (F3) by the linear growth condition

(2.5) sup {‖y‖ : y ∈ F (t, u)} ≤ ϕ(t)(1 + ‖u‖)

with some ϕ ∈ L1([a, b],R).

Remark 2.5. If Ω is a measure space, we call a measurable function g : Ω→E

a measurable selection of G : Ω( E if g(t) ∈ G(t) for almost all t ∈ Ω. We em-

phasize that the corresponding exceptional null set in (F1) is allowed to depend

on u.

In particular, if (F2) holds and F (t, u) ⊆ [a, b]× E is nonempty and convex

for every (t, u) ∈ [a, b] × E, and if F ( · , u) is Bochner measurable as a multi-

valued map in the sense of [33] for every u ∈ E then F ( · , u) has a measurable

selection, and so (F1) is satisfied: This is a variant of the classical Kuratowski–

Ryll–Nardzewski selection theorem. From the vast literature of further selection

theorems, we mention just the Aumann selection theorem for multimaps with

a Borel measurable graph (see e.g. [11]) and the recent paper [10] for the non-

separable case. Concerning measurable multivalued maps, we refer the reader

to [19].

Example 2.6. If A(t) ≡ A is the abstract form of the Laplace operator then

it generates a strongly continuous compact semigroup of contractions U0 such

that U0(b)x = x if and only if x = 0 (see e.g. [26] and [36]). According to

the Fredholm alternative, U0(b) − I is invertible, where I denotes the identity

operator. Hence, the associated periodic problem Lx := x(b) − x(a) satisfies

condition (L2).

We point out that the sublinear growth condition (2.2) in (F3) is weaker than

the global boundedness condition often assumed in literature in connection with

multivalued nonlocal boundary value problems.

Some notes on the apparently strange condition (2.1) are in order: If L

has the form (1.2), then (2.1) holds automatically, because β is algebraically

subadditive:

(2.6) β

( n∑
k=1

Mk

)
≤

n∑
k=1

β(Mk).

But actually also (1.3) satisfies condition (2.1) if E is weakly compactly generated

as we show now.

Indeed, for weakly compactly generated E, we can use the following result

which is a special case of [23] and which we will also use for the proof of Theo-

rem 2.2.

Theorem 2.7. Let E be a weakly compactly generated Banach space. Then

for every countable uniformly integrable family C of vector functions x : Ω→ E
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with Ω being a positive measure space, mes Ω < ∞, the function β(C( · )) is

measurable, and

β

({∫
Ω

x(s) ds : x ∈ C
})
≤
∫

Ω

β(C(s)) ds.

Corollary 2.8. Let E be a weakly compactly generated Banach space. Let

ϕ : [a, b] → R have bounded variation, and for t ∈ [a, b], let L̃(t) : E → E be

bounded and linear with L̃( · )u being Borel measurable for every u ∈ E and

‖L̃(t)‖ ≤ ψ(t) with some Borel measurable ψ : [a, b]→ [0,∞) satisfying

µ :=

∫ b

a

ψ(s) d(varϕ)(s) <∞.

Then the operator (1.3) is bounded from C([a, b], E) into E and satisfies (2.1).

Proof. Without loss of generality, we can assume that ϕ is monotone in-

creasing; then z(t) = L̃(t)y(t) is Borel measurable for every y ∈ C([a, b], E),

see e.g. [28, Theorem A.1.1], and thus measurable with respect to the positive

finite measure generated by ϕ. Hence, we have for every countable bounded

C ⊆ C([a, b], E) by Theorem 2.7 that

β(L(C)) ≤
∫ b

a

β({L̃(t)y(t) : y ∈ C}) dϕ(t) ≤
∫ b

a

ψ(t) sup
s∈[a,b]

β(C(s)) dϕ(t),

which implies (2.1) with µn = µ. �

We build the proof of the above Theorem 2.2 on some preliminary fixed point

theorems.

3. Fixed point theorems and condensing maps

Several fixed point theorems based on the De Blasi measure of noncompact-

ness are known, see e.g. [9]. However, we need a variant where this measure

occurs only indirectly in a countable form. To this end, we start with a rather

general fixed point theorem.

Theorem 3.1 (Fundamental, Ky Fan). Let K be a subset of a locally convex

Hausdorff space E. Let F : K ( E satisfy conv(F (K) ∪ {x0}) ⊆ K with some

x0 ∈ K. Then there is a smallest closed convex set M ⊆ K satisfying F (M) ⊆M
and x0 ∈M . This set is simultaneously the smallest M ⊆ K satisfying

(3.1) M = conv
(
F (M) ∪ {x0}

)
.

If this set M is relatively compact in the locally convex topology, F |M has a closed

graph in M ×M , and F (x) is nonempty and convex for every x ∈ M , then F

has a fixed point x ∈M ⊆ K, that is, x ∈ F (x).
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Proof. We call a closed convex set M0 ⊆ K fundamental (with respect to

x0,K, and F ), if x0 ∈ M0 and F (M0) ⊆ M0, Hence, M0 is fundamental if and

only if

Φ(M0) := conv(F (M0) ∪ {x0}) ⊆ convM0 = M0.

Our hypothesis implies that Φ(K) ⊆ K, and so Φ(Φ(K)) ⊆ Φ(K). Hence, there

is at least one fundamental set, namely Φ(K). Let M be the intersection of all

fundamental sets. Then M is closed and convex, and for every fundamental set

M0, we have F (M) ⊆ M0, hence F (M) ⊆ M . Thus M is fundamental, and

so F (Φ(M)) ⊆ F (M) ⊆ Φ(M). Hence, also Φ(M) is fundamental. Since M is

the smallest fundamental set, we obtain Φ(M) ⊇ M . Thus, M satisfies (3.1),

and M is the smallest set with this property. Since M is fundamental and, by

hypothesis, compact in the locally convex topology, and F : M (M has a closed

graph and thus is upper semicontinuous by [34, Corollary 2.124], the existence

of a fixed point follows from Ky Fan’s fixed point theorem [16]. �

The above method of proof is well-known and was used in slightly different

settings already in, e.g., [24], [31], [30], [34]. However, we cannot use the tech-

niques from [31], [30], [34] directly to reduce the setting to countable subsets,

which will be crucial for our approach.

Corollary 3.2 (Fundamental Sequential, Ky Fan). Let E be a Banach space

equipped with the weak topology. Then the hypothesis about the closed graph in

Theorem 3.1 can equivalently be replaced by the hypothesis that the graph is weakly

sequentially closed.

Proof. Since M ×M is weakly compact, the graph of F |M : M ( M is

weakly closed if and only if it is weakly compact. By the Eberlein–Šmulian

theorem, this holds if and only if the graph is weakly sequentially compact. This

is the case if and only if the graph is weakly sequentially closed, because M ×M
is sequentially weakly compact by the Eberlein–Šmulian theorem. �

For a short proof of the strong variant of the Eberlein–Šmulian theorem for

nonconvex sets which we used here, we refer to [38] and [35]. The latter contains

also directly the assertion that for weakly (sequentially) relatively compact sets

the weak closure and weak sequential closure coincide, so that we could even

shortcut our above argument.

Let us first formulate a consequence of the above theorem in terms of so-called

condensing maps.

Definition 3.3. A measure of noncompactness on a subset K of a locally

convex Hausdorff space E is a map γ from the subsets of K into some set R with

the property that γ(convM) = γ(M) for all M ⊆ K. If x0 ∈ M , we say that γ

is x0-stable if γ(M ∪ {x0}) = γ(M). If R is equipped with a partial order �, we

call γ monotone if M ⊆ N ⊆ K implies γ(M) � γ(N).
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Definition 3.4. Let D0 ⊆ K ⊆ E. A map F : D0 ( E is

(a) x0-condensing on D0 ⊆ K (with respect to K) if for each set M ⊆ K

for which conv(F (M ∩D0) ∪ {x0}) is noncompact and contained in M ,

there is an x0-stable monotone measure of noncompactness γ on M with

γ(F (M ∩D0)) 6� γ(M).

(b) x0-unpreserving on D0 ⊆ K (with respect to K) if for each set M ⊆ K

for which conv(F (M ∩D0) ∪ {x0}) = M is noncompact, there is an x0-

stable measure of noncompactness γ on M such that γ(F (M)) 6= γ(M).

Our definition generalizes the notion of condensing maps (see e.g. [2], [27]

and [34]) in three ways: First, the choice of γ can depend on M . Second, we

require the inequality only if we know that conv(F (M ∩ D0) ∪ {x0}) ⊆ M .

Third, for x0-unpreserving maps, it is fine for us also if γ(F (M)) 6� γ(M),

and moreover, we have to verify this only if we have additionally the converse

inclusion M ⊆ conv(F (M ∩D0) ∪ {x0}).
In particular, each x0-condensing map is trivially x0-unpreserving. Except

for the requirement of the inclusions conv(F (M ∩ D0) ∪ {x0}) ⊆ M or M ⊆
conv(F (M ∩ D0) ∪ {x0}) all these generalizations have already been observed

in [29] where, however, only a metrizable setting was considered. For this reason,

we cannot use the techniques developed there to restrict ourselves to countable

sets.

The notion of x0-condensing maps is indeed appropriate if one wants to

develop a degree theory (which we do not develop here and which would be

overkill for our application) while the notion of x0-unpreserving maps is the

“right” notion if one is only interested in fixed point theorems of self-maps of

closed convex sets K as we show now.

Remark 3.5. For the case that E is a Banach space, one can equip E either

with the weak topology or with the norm topology. By Hahn–Banach, convM

is the same for both topologies. For this reason, we do not have to distinguish

in the definition of a measure of noncompactness which of the two topologies

we consider: A measure of weak noncompactness is the same as a measure of

noncompactness.

For the notion of x0-condensing/unpreserving maps, however, we have to

make precise which topology we consider: The corresponding notion of weakly

condensing/unpreserving maps is obviously less restrictive, and since the aim of

this paper is to relax the compactness requirements as far as possible, we will

deal only with the latter in this paper.
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Remark 3.6. By the Krejn–Šmuljan theorem [15, V.6.4], the set conv
(
F (M∩

D0)∪{x0}
)

is weakly compact if and only if F (M ∩D0) is weakly relatively com-

pact, and so we obtain in particular that F : D0 → K is weakly x0-unpreserving

(weakly x0-condensing) on K if the following holds:

Whenever M ⊆ K is such that F (M ∩D0) ⊆M and γ(F (M ∩D0)) = γ(M)

(or γ(F (M∩D0)) � γ(M), respectively) for every x0-stable (monotone) measure

of noncompactness γ on M , then at least one of the sets F (M ∩ D0) or M is

weakly relatively compact.

Theorem 3.7 (Sadovskĭı–Ky Fan). Let K be a subset of a locally convex

Hausdorff space E, F : K ( E satisfy conv(F (K) ∪ {x0}) ⊆ K with some

x0 ∈ K. Suppose that for each compact set M ⊆ K with F (M) ⊆ M the

restriction F |M has a closed graph in M×M , and F (x) is nonempty and convex

for every x ∈M . If F is x0-unpreserving on K, then F has a fixed point in K.

Proof. This is a trivial consequence of Theorem 3.1, for if M satisfies (3.1),

then M is compact. Indeed, if this would not be the case then M fails to be

relatively compact (since it is closed by (3.1)), and so the hypothesis implies that

there is an x0-stable measure of noncompactness satisfying

γ(M) 6= γ(F (M)) = γ
(
F (M) ∪ {x0}

)
= γ

(
conv(F (M) ∪ {x0})

)
= γ(M),

which is a contradiction. �

The same argument as in Corollary 3.2 implies that, when we speak about

the weak topology in a Banach space, we can replace equivalently the hypothesis

about a closed graph by a sequentially closed graph. We thus obtain:

Corollary 3.8 (Sequential Weak Sadovskĭı–Ky Fan). Let K be a subset

of a Banach space E, F : K ( E satisfy conv(F (K) ∪ {x0}) ⊆ K with some

x0 ∈ K. Suppose that for each weakly compact set M ⊆ K with F (M) ⊆M the

restriction F |M has a weakly sequentially closed graph in M ×M , and F (x) is

nonempty and convex for every x ∈ M . If F is weakly x0-unpreserving on K,

then F has a fixed point in K.

The term “sequential” in Corollaries 3.2 and 3.8 refers only to the closedness

hypothesis, but unfortunately not to the compactness hypothesis. In view of

Theorem 2.7, it is crucial for us to use a countable compactness assumption

only. In order to obtain a corresponding result, we follow an idea of [20] and

introduce the following definition:

Definition 3.9. Let E be a Banach space, N ∈ R, and M ⊆ C([a, b], E).

We use the notation M(t) = {x(t) : x ∈M} and define

βN (M) = sup
C ⊆M countable

sup
t∈[a,b]

β(C(t))e−Nt,
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where β denotes the De Blasi measure of noncompactness.

The crucial observation which eventually allows us the reduction to the count-

able case is the following.

Proposition 3.10. βN is a monotone measure of noncompactness on the

space C([a, b], E) (and x0-stable for every x0 ∈ C([a, b], E)). More general, an

analogous assertion holds if β is replaced in Definition 3.9 by some monotone

measure of noncompactness on E (which is u0-stable for every u0 ∈ E).

Proof. By Remark 3.5, it suffices to consider the norm topologies on the

spaces C([a, b], E) and E. Since β is monotone, trivially also βN is monotone.

Thus, we are to show that βN (convM) ≤ βN (M) for every set M ⊆ E. Let-

ting γ < βN (convM) be arbitrary, it suffices to show that βN (M) > γ. By

definition of βN , there is a countable C ⊆ convM and some t ∈ [a, b] such that

β(C(t))e−Nt > γ. Since we consider the norm topology, and C ⊆ convM is

countable and thus separable, we find by [34, Proposition 3.55] some countable

C0 ⊆ M such that C ⊆ convC0. It follows that C(t) ⊆ conv(C0(t)). Since β is

a measure of noncompactness, it follows that

γ < β(C(t))e−Nt < β(conv(C0(t)))e−Nt = β(C0(t))e−Nt ≤ βN (M),

and so we are done. �

4. Containment and selection results

Throughout this section, let Ω be a σ-finite measure space, and E be a Banach

space. We need some results concerning weak convergence in L1(Ω, E).

Lemma 4.1 (Containment Lemma). Let fn, f : Ω → E be measurable and

such that for each set I ⊆ Ω of finite measure the set {fn(t) : n ∈ N} is weakly

relatively compact for almost all t ∈ Ω. Suppose that for every linear bounded

functional ` on E and every subset Ω0 ⊆ Ω of positive measure there is a subset

I ⊆ Ω0 of positive measure such that `◦fn|I and `◦f |I are integrable and satisfy

lim
n→∞

∫
I

`(fn(t)) dt→
∫
I

`(f(t)) dt.

Then

(4.1) f(t) ∈
∞⋂
n=1

conv {fm(t) : m ≥ n} for almost all t ∈ Ω.

Proof. We can assume that
⋃
n
fn(Ω)∪f(Ω) is separable, see e.g. [32, Corol-

lary 1.1]. Hence, replacing E by the closed linear hull of this set, we can as-

sume without loss of generality that E is separable and thus Suslin. Note that

Mn(t) := conv {fm(t) : m ≥ n} are weakly compact by the Krejn–Šmuljan the-

orem [15, V.6.4]. Hence, assuming without loss of generality that E is a real
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Banach space, we obtain from [11, Proposition III.35]: If for every bounded

linear functional ` on E

(4.2) `(f(t)) ≤ sup
v∈Mn(t)

`(v) for almost all t ∈ Ω,

then also f(t) ∈ Mn(t) for almost all t ∈ Ω. Since the union of the exceptional

null sets for each n is a null set, we obtain: If we can show (4.2) for every n and

` then f(t) ∈
⋂
n
Mn(t) for almost all t ∈ Ω, which is (4.1). Thus, let n and ` be

fixed. Assume by contradiction that (4.2) fails. Note that both sides of (4.2) are

measurable, because

(4.3) s(t) := sup
v∈Mn(t)

`(v) = sup
v∈{fm(t):m≥n}

`(v) = sup
m≥n

`(fm(t)).

Hence, there is a set Ω1 ⊆ Ω of positive measure such that (4.2) fails for every

t ∈ Ω1. Since Ω1 is the union of the sets IN := {t ∈ Ω1 : `(f(t)) > s(t) + 1/N},
there is a natural number N > 0 such that Ω0 := IN has positive measure. Let

I ⊆ Ω0 be as in the hypothesis. Then we have for every m ≥ n in view of (4.3)

that ∫
I

`(f(t)) dt− mes I

N
≥
∫
I

s(t) ds ≥
∫
I

`(fm(t)) dt→
∫
I

`(f(t)) dt

as m→∞ which is a contradiction. �

Remark 4.2. The proof shows that we can relax the measurability of fn and

f in Lemma 4.1 to the hypothesis that each fn and f assume almost all of their

values in a separable subset of E.

Another approach to prove the Containment Lemma 4.1 is by applying

Mazur’s convexity lemma. This approach was used in [6].

Lemma 4.3. Let Gn ⊆ E be a sequence of nonempty sets and K ⊆ E closed

and convex. Suppose that any subsequence of un ∈ Gn contains a subsequence

which converges weakly to some element of K. Then

(4.4)

∞⋂
n=1

conv

( ∞⋃
m=n

Gm

)
⊆ K.

Proof. Assume by contradiction that there is v ∈ E \K which belongs to

the set on the left-hand side of (4.4). Assuming without loss of generality that

E is a real Banach space, we find by the classical separation theorem a bounded

linear functional ` on E such that `(v) > `(u) for all u ∈ K. The choice of v

implies that

`(v) ≤ s := lim sup
m→∞

sup
u∈Gm

`(u).

Hence, there are mk →∞ and uk ∈ Gmk
with `(uk)→ s. By hypothesis, we can

assume that uk⇀u for some u ∈ K. Then `(uk)→ `(u) implies `(v) ≤ s = `(u),

a contradiction. �
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Theorem 4.4 (Containment Theorem). Let Gn, G : Ω( E be such that for

almost all t ∈ Ω the following holds: Every subsequence of un ∈ Gn(t) contains

a subsequence which converges weakly to some element of G(t). Let yn : Ω→ E

be uniformly integrable and such that yn(t) ∈ Gn(t) for almost all t ∈ Ω. Then

yn contains a subsequence which converges weakly in L1(Ω, E) to some y, and

moreover, each such limit y satisfies y(t) ∈ convG(t) for almost all t ∈ Ω.

Proof. The hypothesis implies in particular that {yn(t) : n ∈ N} is weakly

sequentially relatively compact and thus weakly relatively compact by the theo-

rem of Eberlein–Šmulian. The existence of a weakly convergent subsequence in

L1(Ω, E) thus follows from the Dunford–Pettis theorem for vector functions [14].

If ynk
⇀y, we have for almost all t ∈ Ω that

y(t) ∈
∞⋂
k=1

conv

( ∞⋃
j=k

Gnj
(t)

)
⊆ convG(t)

by Lemma 4.1 and Lemma 4.3, respectively. �

As a trivial application of the Containment Theorem 4.4, we formulate a se-

lection result for multivalued superposition operators generated by functions

which do not necessarily assume compact or separable (in the strong topology)

values and which need not be measurable in any strong sense. This result gen-

eralizes [6, Proposition 2.1].

We emphasize that the exceptional null set in hypothesis (b) of this result is

allowed to depend on u.

Proposition 4.5. Let M be a metric space, and F : Ω ×M ( E have the

following properties:

(a) For almost all t ∈ Ω the values F (t, u) are convex for every u ∈M .

(b) For every u ∈M the function F ( · , u) has a measurable selection.

(c) For almost all t ∈ Ω the function F (t, · ) has a sequentially closed graph

in M × E with the weak topology in E.

(d) For almost all t ∈ Ω and every convergent sequence un ∈ M the set⋃
n
F (t, un) is weakly compact.

(e) There is a measurable function ϕ : Ω→ [0,∞) with

sup
z∈F (t,M)

‖z‖ ≤ ϕ(t) for almost all t ∈ Ω.

Then, for every measurable x : Ω → M , there is a measurable y : Ω → E with

y(t) ∈ F (t, x(t)) for almost all t ∈ Ω.

Proof. Let Γ denote the family of all sets of finite measure on which the

function ϕ from (e) is bounded. Since Ω is σ-finite, every set of positive measure
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contains an element of Γ. It follows from the exhaustion theorem [32, Theo-

rem 1.5] that Γ contains a sequence I1 ⊆ I2 ⊆ . . . such that
⋃
n
In = Ω (up to

a null set). Trivially, it suffices to show the assertion for each In in place of Ω.

Since x is measurable, there is a sequence of simple functions xn such that

xn(t) → x(t) for almost all t ∈ In. By (b), there are measurable yn with

yn(t) ∈ F (t, xn(t)) for almost all t ∈ In. Note that |yn(t)| ≤ ϕ(t) and ϕ ∈
L1(In, [0,∞)). Hence, using (c) and (d) and the Eberlein–Šmulian theorem, we

find that xn satisfies the hypotheses of the Containment Theorem 4.4 on the

measure space In. Thus, a subsequence of yn converges weakly in L1(In, E) to

some y which satisfies y(t) ∈ convF (t, x(t)) = F (t, x(t)) for almost all t ∈ In.

The latter equality follows from (a) and (c), since convF (t, x(t)) = F (t, x(t)) is

in particular sequentially closed with respect to the norm topology for almost

all t ∈ Ω. �

5. Proof of the main result

We define an operator G by

(Gf)(t) :=

∫ t

a

U(t, s)f(s) ds (t ∈ [a, b]).

Proposition 5.1. If U satisfies the continuity properties of (U) then the

map G : L1([a, b], E)→ C([a, b], E) is linear and bounded with ‖G‖ ≤ D.

Proof. Only the continuity of Gf requires a proof. However, this follows

straightforwardly by observing that for all a ≤ τ − ε ≤ t ≤ τ ≤ b there holds

‖(Gf)(t)− (Gf)(τ)‖ ≤
∥∥∥∥∫ τ−ε

a

(U(t, s)− U(τ, s))f(s) ds

∥∥∥∥+ 2D

∫ τ

τ−ε
‖f(s)‖ ds,

applying Lebesgue’s dominated convergence theorem twice. �

Since J is invertible, we can rewrite (2.3) equivalently as the single equation

x(t) = U(t, a)J−1(b− L(Gf)) + (Gf)(t) for all t ∈ [a, b] with some b ∈ B(x).

We intend to rewrite this in terms of a multivalued map. To this end, we intro-

duce the superposition operator SF : C([a, b], E)( L1([a, b], E) by

SF (q) := {f ∈ L1([a, b], E) | f(t) ∈ F (t, q(t)) for almost all t ∈ [a, b]} .

Note that Proposition 4.5 implies under our hypotheses on F that this operator

SF assumes only nonempty values.
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We define T : C([a, b], E)( C([a, b], E) by

T (q) :=
⋃

b∈B(q)
f∈SF (q)

{
x ∈ C([a, b], E)

∣∣∣∣
x(t) = U(t, a)J−1(b− L(Gf)) +

∫ t

a

U(t, s)f(s) ds

}
.

Then the fixed points of T are exactly the mild solutions of (1.1).

Proof of Theorem 2.2. It suffices to show that T satisfies all hypotheses

of Theorem 3.7 (more precisely, of Corollary 3.8) in an appropriate set K ⊆
C([a, b], E). Note that, since F and B assume convex values, also T assumes

convex values.

First, we show that the multioperator T has a weakly sequentially closed

graph. Let qn, xn ∈ C([a, b], E) satisfy xn ∈ T (qn) for all n and qn⇀q, xn⇀x

in C([a, b], E); we are to prove that x ∈ T (q).

By the definition of the operator T , there exist sequences fn ∈ SF (qn) and

yn ∈ B(qn), such that

xn(t) = U(t, a)J−1(yn − L(Gfn)) + (Gfn)(t).

Since qn⇀q in C([a, b], E), we obtain that the sequence qn is uniformly bounded,

and qn(t)⇀q(t) for every t ∈ [a, b]. In view of (F2)–(F4), we can use the

Containment Theorem 4.4 with un = qn and yn = fn and thus find, passing to

a subsequence if necessary, that fn⇀f in L1([a, b], E) and f ∈ SF (q). Since G

and L are bounded linear operators, we obtain L(Gfn)⇀L(Gf).

Since B is weakly compact, we can assume by the Eberlein–Šmulian theorem

that yn⇀y is weakly convergent. Since qn⇀q and B is weakly sequentially

closed, we have y ∈ B(q). Since J−1 and U(t, s) are linear and bounded, we

obtain

xn(t)⇀x̃(t) := U(t, a)J−1(y − L(Gf)) +

∫ t

a

U(t, s)f(s) ds

for every t ∈ [a, b]. Since xn⇀x in C([a, b], E) implies that xn(t) → x(t) for

every t ∈ [a, b], we obtain that x = x̃ ∈ T (q). Hence, we have proved that T has

a weakly sequentially closed graph.

For every x ∈ T (q), we find f ∈ SF (q) and b ∈ B(q) with

‖x(t)‖ ≤ D ‖J−1‖ (‖b‖+ ‖LGf‖) + ‖Gf(t)‖ .

Thus, we obtain for ‖q‖ ≤ n by (F3) the estimate

‖x(t)‖ ≤ D ‖J−1‖ sup
b∈B(q)

‖b‖+ (D2 ‖J−1‖ ‖L‖+D)

∫ b

a

ϕn(t) dt.
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Since B sends bounded sets into bounded sets, we thus obtain from (2.2) for

sufficiently large n that ‖x‖ ≤ n if ‖q‖ ≤ n. Hence, T maps the nonempty

bounded closed convex set K = Bn(C([a, b], E)) into itself if n is sufficiently

large.

It remains to show that T : K ( K is weakly x0-unpreserving for every

x0 in K. To this end, we make use of Remark 3.6. We will show that it

actually suffices to consider the corresponding measure of noncompactness βN
with sufficiently small N < 0. Indeed, we obtain for every M ⊆ K satisfying

βN (M) = β(T (M)) by (2.6) that

βN (M) = βN ({U( · , a)J−1(B(q)− LGf) +Gf : q ∈M, f ∈ SF (q)})

≤ βN (U( · , a)J−1(B(M)))

+ sup
C1 ⊆ SF (M) countable

sup
t∈[a,b]

eNtβ({U(t, a)J−1L(Gf) +Gf : f ∈ C1})

The first summand vanishes by (B). To estimate the second summand, we

apply (2.6) and (2.1) to obtain that

sup
t∈[a,b]

β({U(t, a)J−1L(Gf) +Gf(t) : f ∈ C1})

≤ (D ‖J−1‖µn + 1) sup
t∈[a,b]

β(GC1(t)).

Applying Theorem 2.7 and (F4), we obtain further

β(GC1(t)) ≤
∫ t

a

β({U(t, s)f(s) : f ∈ C1}) ds ≤
∫ t

a

Dνn(s)β(C1(s)) ds

≤ D
∫ t

a

νn(s)e−NseNsβ(C1(s)) ds ≤ D
∫ t

a

νn(s)e−Ns ds βN (C1).

Using the shortcut Dn = (D2 ‖J−1‖µn + D), we thus obtain by combining the

above formulas that

βN (M) ≤ Dn sup
t∈[a,b]

∫ t

a

eN(t−s)νn(s) ds βN (M).

Using the substitution σ = t − s and splitting the integral, one finds that, for

N < 0 small enough, the factor in front of βN (M) in this formula becomes

strictly less than 1, and so we obtain βN (M) = 0 for this N . By definition of

βN (M), we obtain for every t ∈ [a, b] that M(t) is sequentially compact, and thus

also SF (M)(t) is sequentially compact by (F4). Using again the Dunford–Pettis

theorem, we obtain that SF (M) is weakly sequentially compact in L1([a, b], E).

Hence, for any sequence fm ∈ SF (M), we find a convergent subsequence in

L1([a, b], E), without loss of generality fm⇀f . Since G is linear and bounded,
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we obtain that

Gfm(t) =

∫ t

a

U(t, s)fm(s) ds⇀Gf(t) =

∫ t

a

U(t, s)f(s) ds

for every t ∈ [a, b]. Since Gf ∈ C([a, b], E) and since Gfm is uniformly bounded,

we obtain that Gfm⇀Gf in C([a, b], E), see e.g. [21]. By condition (B), the

set B(M) is weakly relatively (sequentially) compact, and so T (M) is weakly

relatively (sequentially) compact by the Eberlein–Šmulian theorem. �

Proof of Remark 2.4. Under the hypotheses of Remark 2.4, we cannot

use the set K = Bn(C([a, b], E)), since in general T does not map K into itself.

Instead, we use the nonempty closed bounded convex set

K := {x ∈ C([a, b], E) : ‖x(t)‖ eNt ≤ n}

with sufficiently large n and sufficiently small N < 0. Indeed, if B is bounded

by γ > 0 then any x ∈ T (K) satisfies the estimate

‖x(t)‖ ≤ Dγ + nDe−Nt
∫ t

0

eN(t−s)ϕ(s) ds.

Choosing N < 0, the last integral can be chosen as small as we want, by the same

argument as in the proof given above. The rest of the proof remains unchanged.�

6. Application to a population growth model

In this section, we apply the result to show that for a certain class of age-

population models subject to sublinear growth conditions there exists a periodic

solution. The model which we consider has the form

(6.1)

∂u(a, s)

∂a
+
∂u(a, s)

∂s
= f(a, s, u(a, s)),

u(0, s) =

∫ T

0

u(α, s) dϕ(α),

where u(a, s) denotes the population density of age a at a time s. Here, f

describes the rate of the decaying, arriving and leaving individuals, while dϕ

describes the birth rate.

We shall assume that only a ∈ [0, T ] has to be considered. We will assume

that f is T -periodic in s, and we will show that there is actually a T -periodic

continuous solution with respect to s, that is, we work in the space

E = {v ∈ C(R,R) : v is T -periodic} .

Our hypotheses are the following:

(f1) f : [0, T ]× R→ R is continuous with f(a, s+ T, x) = f(a, s, x).

(f2) We have the sublinear condition

lim
n→∞

sup {|y| /n : y ∈ f([0, T ]2 × [−n, n])} = 0.
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(f3) f satisfies a local Lipschitz condition with respect to the last argument.

(ϕ) ϕ is a function of bounded variation such that the Riemann–Stieltjes

integral satisfies

(6.2)

∫ T

0

dϕ(α) 6= 1.

In order to apply Theorem 2.2 (with t = a on the interval [0, T ], B(v) = {0},
and Lv(t) = v(0)−

∫ T
0
v(α) dϕ(α)), we put D(A) = E∩C1([0, T ]), and Av = −v′.

Then A is the generator of the C0-semigroup U0(a)v(s) = v(s − a) on E, see

e.g. [37, Problem 3.4], and so the problem is governed by the evolution operator

U(a, ξ) = U0(a−ξ). Condition (6.2) means exactly that J from (L2) is invertible.

We define F (a, v)(s) = f(a, s, v(s)). Then F : [0, T ] × E → E is continuous,

and so (F1) is trivial. Moreover, since weak convergence in E means pointwise

convergence and uniform boundedness, hypothesis (F2) is a consequence of (f1).

Condition (f2) implies that the left-hand side of (2.2) vanishes. Condition (f3)

implies that, on every set of the form [0, T ]2 × [−n, n] the function f satisfies

a global Lipschitz with some constant νn with respect to the last argument.

Hence, F (a, · ) satisfies a Lipschitz condition on Bn(E) with constant νn, and

so condition (F4) follows from Proposition A.1 (e)(i) of the appendix.

In view of the local Lipschitz assumption, one could have probably also used

the Hausdorff measure of noncompactness or even more elementary means to

obtain the existence of a periodic solutions of (6.1). Therefore, we provide an

example in the next section where this appears not to be possible.

7. An example in L1

We consider the problem

(7.1)
∂u(t, x)

∂t
+
∂u(t, x)

∂x
∈
[
f1

(
t, x,

∫ ∞
0

k1(t, ξ)u(t, ξ) dξ
)
,

f2

(
t, x,

∫ ∞
0

k2(t, ξ)u(t, ξ) dξ

)]
+ S(t)u(t, · )(x),

with (t, x) ∈ [a, b]× [0,∞), subject to the Cauchy condition

(7.2) u(t, 0) = 0 and u(a, x) = B(x)

in the state space E = L1([0,∞),R). Our hypotheses are the following:

(B) B ∈ E = L1([0,∞),R).

(k) ki(t, · ) ∈ L∞([0,∞),R) for almost all t ∈ [a, b] and i = 1, 2.

(S1) S(t) : E → E is bounded and linear for every t ∈ [a, b], S( · )y is measur-

able for every y ∈ E, and ‖S( · )‖ ∈ L1([a, b],R).
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(f1) f1, f2 : [a, b] × [0,∞) × R → R are such that for each y ∈ E there is a

measurable z : [a, b] × [0,∞) → R such that for almost all t ∈ [a, b] the

inequalities

f1

(
t, x,

∫ ∞
0

k1(t, ξ)y(ξ) dξ

)
≤ z(t, x) ≤ f2

(
t, x,

∫ ∞
0

k2(t, ξ)y(ξ) dξ

)
hold for almost all x ∈ [0,∞).

(f2) For almost all t ∈ [a, b] there holds for almost all x ∈ [0,∞) that

f1(t, x, · ) is lower semicontinuous and f2(t, x, · ) is upper semicontin-

uous, that is

f1(t, x, u) ≤ lim inf
v→u

f1(t, x, v), f2(t, x, u) ≥ lim sup
v→u

f2(t, x, v)

for every u ∈ R.

(f3) There exists ϕ ∈ L1([a, b], [0,∞)) such that for almost all t ∈ [a, b] and

each r > 0 there is ψt,r ∈ L1([0,∞), [0,∞)) with

sup
|s|≤‖ki(t, · )‖r

|fi(t, x, s)| ≤ ψt,r(x)

for almost all x ∈ [0,∞) and i = 1, 2 such that∫ ∞
0

ψt,r(x) dx ≤ ϕ(t)(1 + r) for i = 1, 2.

It is somewhat surprising that we do not have to assume any measurability

of fi( · , · , s) except for the rather mild assumption (f1).

Remark 7.1. From [28, Theorem 4.4.2], we obtain that if z : [a, b]× [0,∞)→
R is measurable with z(t, · ) ∈ E for almost all t ∈ E then t 7→ z(t, · ) is

measurable as a function from [a, b] into E. Moreover, modifying z(t, · ) on

appropriate null sets if necessary, we have also the converse.

Remark 7.2. The measurability of ‖S( · )‖ is automatic, because E is sepa-

rable: There exists a dense xn ∈ B1(E), and so ‖S( · )‖ is the supremum of the

countable family of measurable functions ‖S( · )xn‖.

In order to apply Theorem 2.2 (more precisely, Remark 2.4) to (7.1), we note

that Ay = −y′ with domain D(A) = {y ∈W 1,1([0,∞)) : y(0) = 0} generates

in E a C0-semigroup U0 of translations, see e.g. [17, p. 420]. Our evolution is

thus governed by the evolution operator U(t, s) = U0(t− s).
For y ∈ E, we define F (t, y) as the set of all functions of the form f = g+S(t)y

with g ∈ E satisfying

(7.3) g(x) ∈
[
f1

(
t, x,

∫ ∞
0

k1(t, ξ)y(ξ) dξ

)
, f2

(
t, x,

∫ ∞
0

k2(t, ξ)y(ξ) dξ

)]
for almost all x ∈ [0,∞). With this definition of F , we can rewrite (7.1), (7.2)

in the abstract form (1.1) (with Lx = x(0), and with B(x) denoting the single

element consisting of the above function B).
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We verify now that all hypotheses of Theorem 2.2/Remark 2.4 are satisfied.

The linear growth estimate (2.5) is immediate from our growth assumptions,

and (F1) follows in view of Remark 7.1 from (f1). The only hypotheses which

are not so obvious are (F2) and (F4).

To prove (F2), let yn⇀y and fn⇀f in E satisfy fn ∈ F (t, yn). We claim

that f ∈ F (t, y) whenever t ∈ [a, b] is such that f1(t, x, · ) is lower semicontinuous

and f2(t, x, · ) is upper semicontinuous for almost all x ∈ [0,∞). Indeed, noting

that gn := fn − S(t)yn⇀g := f − S(t)y ∈ E, this means that we have to

prove (7.3). Since

fn(x) ∈
[
f1

(
t, x,

∫ ∞
0

k1(t, ξ)yn(ξ) dξ

)
, f2

(
t, x,

∫ ∞
0

k2(t, ξ)yn(ξ) dξ

)]
,

this follows by the Containment Theorem 4.4, because

`i(z) =

∫ ∞
0

ki(t, ξ)z(ξ) dξ

are bounded linear functionals on E and thus satisfy `i(yn)→ `i(y) for i = 1, 2.

To prove (F4), let M ⊆ E be bounded, and let Mt ⊆ E denote the family

consisting of all g ∈ E for which there is some y ∈ M with (7.3). Then Mt is

dominated by some integrable function and thus is uniformly integrable. By the

Dunford–Pettis theorem, it follows that Mt is weakly relatively compact, hence

β(Mt) = 0. Since F (t,M) ⊆Mt+S(t)M and S(t)M ⊆ F (t,M)−Mt, we obtain

from (2.6) that

(7.4) β(F (t,M)) = β(S(t)M) ≤ ‖S(t)‖β(M),

where we used Proposition A.1 for the last inequality.

Remark 7.3. Even in case M = {y} the set Mt fails to be relatively compact

in E, in general. Hence, F (t, y) is not relatively compact, in general, and thus one

cannot prove an analogous estimate to (1.5) when β is replaced by the Hausdorff

measure of noncompactness. In particular, none of the well-known existence

results employing the Hausdorff or Kuratowski measure of noncompactness does

apply directly.

Remark 7.4. The first equality in (7.4) implies that the operator F (t, · )
is weakly compact if and only if S(t) is weakly compact. In particular, if we

would have only considered weakly compact maps in our main theorem instead

of dealing with the De Blasi measure of noncompactness, the most natural choices

for S(t) (like multiplication operators) would have been excluded.

Remark 7.5. If the function ‖S( · )‖ is unbounded then also the set F ([a, b]×
B1(E)) is unbounded. It follows that (1.4) fails spectacularly, because the left-

hand is not even finite. Thus, our relaxation of (1.4) to (1.5) (actually even

to (F4)) is not only a theoretical improvement. In fact, if we would have
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required (1.4) in our main theorem, we could not even have used it in case

‖S(t)‖ = 1/
√
t− a for t > a to obtain a local solution in some interval [a, a+ ε].

Appendix A. The condition (1.5)

Let E1 and E2 be Banach spaces, and F : BR(E1)( E2. In this section, we

discuss sufficient conditions for the estimate

β(F (M)) ≤ νβ(M) for all M ⊆ Br(E1),

where 0 ≤ r ≤ R ≤ ∞. If such an estimate holds, we denote the smallest number

ν ≥ 0 with this property by [F ]r; otherwise, we put [F ]r =∞.

Recall that if β is replaced by the Kuratowski measure of noncompactness

(or in case r ≤ R/2 by the Hausdorff measure of noncompactness), then one has

an estimate of such a type if F is single-valued and a compact perturbation of a

Lipschitz map. We show now that one obtains a similar result also for multival-

ued maps. In contrast to the Kuratowski/Hausdorff measure of noncompactness,

it suffices for β that the values F (u) are weakly relatively compact.

Recall that the Hausdorff distance of two nonempty sets M1,M2 ⊆ Ei is

defined by

dH(M1,M2) := max

{
sup
u∈M1

dist(u,M2), sup
v∈M2

dist(v,M1)

}
.

We call F |M weakly sequentially upper semicontinuous in the uniform sense at

u ∈M ⊆ E1 if for every sequence un ∈M with un⇀u ∈M and every sequence

vn ∈ F (un) there is a sequence wn ∈ F (u) with vn − wn⇀ 0.

Proposition A.1.

(a) If F (Br(E1)) is weakly relatively compact then [F ]r = 0.

(b) [F +G]r ≤ [F ]r + [G]r.

(c) [F ∪G]r = max {[F ]r, [G]r}.
(d) [λF ]r = |λ| [F ]r for every λ ∈ R (put 0 · ∞ := 0).

(e) Assume that F (u) is nonempty and weakly relatively compact for every

u ∈ Br(E1), and that at least one of the following holds:

(i) F |Br(E1) is weakly sequentially upper semicontinuous in the uniform

sense at every point of Br(E1).

(ii) F sends weakly compact subsets of Br(E1) into weakly relatively

compact sets.

If F satisfies the Lipschitz type condition

dH(F (u), F (v)) ≤ ν ‖u− v‖ for all u, v ∈ Br(E1)

then [F ]r/2 ≤ ν.

In particular, if F = F1 + F2 with F1 as in (a) and F2 as in (e), then [F ]r ≤ ν

for every r ∈ (0, R/2).
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Proof. Assertion (a) follows from the fact that β(M) = 0 if M is weakly

relatively compact. Assertions (b)–(d) follow from β(M1+M2) ≤ β(M1)+β(M2),

β(M1 ∪M2) = max {β(M1), β(M2)}, and β(λM) = |λ|β(M), respectively.

For the proof of the last assertion, we first show that in both cases F (W ) is

weakly relatively compact if W ⊆ Br(E1) is weakly compact. Indeed, let vn ∈
F (W ), say vn ∈ F (un). Passing to a subsequence if necessary, we can assume by

the Eberlein–Šmulian theorem that un⇀u, and so there is a sequence wn ∈ F (u)

with vn −wn⇀ 0. Since F (u) is weakly relatively compact, we can assume that

wn⇀w, and so vn⇀v. Hence, F (W ) is weakly sequentially relatively compact

and thus relatively compact by the Eberlein–Šmulian theorem.

Now let M ⊆ Br/2(E). Then β(M) ≤ r/2. Let ε ∈ (β(M), r/2] be arbitrary;

in case β(M) = r/2 put ε := r/2. Then there is some weakly compact W ⊆ E1

such that M ⊆ W + Bε(E1). In view of ε ≤ r/2 and M ⊆ Br/2(E1), this is

still true when we replace W by W ∩ Br(E). Hence, it is no loss of generality

to assume that W ⊆ Br(E). Since W0 = F (W ) is weakly relatively compact, its

weak closure W1 is weakly compact. The Lipschitz type condition implies that

F (M) ⊆W0 +Bνε(E2) ⊆W1 +Bνε(E2), and so β(F (M)) ≤ νε. �
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[12] M. Cichoń, On bounded weak solutions of a nonlinear differential equation in Banach

spaces, Funct. Approx. Comment. Math. 21 (1992), 27–35.



Semilinear Inclusions with Nonlocal Conditions 635

[13] F.S. De Blasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci.

Math. Roumanie (N.S.) 21 (1977), 259–262.

[14] J. Diestel, W.M. Ruess and W. Schachermayer, Weak compactness in L1(µ,X), Proc.

Amer. Math. Soc. 118 (1993), 447–453.

[15] N. Dunford and J.T. Schwartz, Linear Operators I, Int. Publ., New York, 3rd edition,

1966.

[16] K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces,

Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126.

[17] I. Gohberg, S. Goldberg and M.A. Kaashoek, Classes of Linear Operators, Vol. I,
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(1967), 116–118.

Manuscript received June 22, 2015

accepted September 21, 2015

Irene Benedetti

Dipartimento di Matematica e Informatica
University of Perugia

via Vanvitelli 1

I-06123 Perugia, ITALY

E-mail address: irene.benedetti@dmi.unipg.it

Martin Väth
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