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INFINITELY MANY SOLUTIONS

FOR QUASILINEAR SCHRÖDINGER EQUATIONS

UNDER BROKEN SYMMETRY SITUATION

Liang Zhang — Xianhua Tang — Yi Chen

Abstract. In this paper, we study the existence of infinitely many solu-

tions for the quasilinear Schrödinger equations{
−∆u−∆(|u|α)|u|α−2u = g(x, u) + h(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where α ≥ 2, g, h ∈ C(Ω×R,R). When g is of superlinear growth at infinity
in u and h is not odd in u, the existence of infinitely many solutions is

proved in spite of the lack of the symmetry of this problem, by using the

dual approach and Rabinowitz perturbation method. Our results generalize
some known results and are new even in the symmetric situation.

1. Introduction and main results

Consider the following quasilinear Schrödinger equation:

(1.1)

−∆u−∆(|u|α)|u|α−2u = g(x, u) + h(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where α ≥ 2, g, h ∈ C(Ω× R,R), and Ω ⊂ RN is a bounded smooth domain.
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In recent years, the quasilinear Schrödinger equation has been involved in

several models of mathematical physics (see [8], [9], [15]). Notice that equa-

tion (1.1) is the Euler–Lagrange equation associated with the energy functional

J : E → R given by

(1.2) J(u) =
1

2

∫
Ω

|∇u|2 dx+
1

2α

∫
Ω

|∇(|u|α)|2 dx

−
∫

Ω

G(x, u) dx−
∫

Ω

H(x, u) dx,

where E denotes the Hilbert space H1
0 (Ω) equipped with the inner product

(u, v) =

∫
Ω

∇u∇v dx, u, v ∈ E.

By direct computation, we have

(1.3)
1

2α

∫
Ω

|∇(|u|α)|2 dx =
α

2

∫
Ω

|u|2(α−1)|∇u|2 dx, u ∈ E.

In view of (1.2) and (1.3),

J(u) =
1

2

∫
Ω

|∇u|2 dx+
α

2

∫
Ω

|u|2(α−1)|∇u|2 dx−
∫

Ω

G(x, u) dx−
∫

Ω

H(x, u) dx,

for u ∈ E. By (1.4), the energy functional J could be naturally defined on

X =

{
u ∈ H1

0 (Ω)

∣∣∣∣ ∫
Ω

|u|2(α−1)|∇u|2 dx <∞
}
,

which is not a vector space. So there is no suitable space on which the energy

functional J is well-defined. In recent years several methods have been devel-

oped to overcome this difficulty, such as the constrained minimization (see [10]),

Nehari method (see [7], [11], [18]), change of variables (dual approach) (see [1],

[7], [23], [25], [26]), perturbation method (see [12], [13], [24]). Recently, Liu and

Zhao [14] considered the existence of infinitely many solutions for a more general

quasilinear equation
Dj

( N∑
i,j=1

aij(x, u)Diu

)
− 1

2

N∑
i,j=1

Dsaij(x, u)DiuDju+ |u|p−2u+ f = 0

for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

where Di := ∂
∂xi

, i = 1, . . . , N , Dsaij(x, s) = ∂
∂s aij(x, s). They treated the

case f 6= 0 as a perturbation from a symmetric equation. Under some suitable

conditions, they showed the existence of infinitely many solutions for this quasi-

linear equation. Similar questions under symmetry breaking situation have been

studied also for the problems of elliptic type, Hamiltonian systems and ordinary

differential equations (see [3]–[6], [16], [19]–[22]).
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But it should be noted that |u|p−2u is a special form of function, which

satisfies the classical condition (AR) due to Ambrosetti and Rabinowitz. The

condition (AR) is a convenient hypothesis since it achieves the mountain pass

geometry as well as fulfils the Palais–Smale condition, but this condition is far

too restrictive. There are many functions not satisfying (AR). For example, let

(1.4) g(x, t) = 2αθ(x)|t|2(α−1)t

[
ln(1 + |t|2α) +

|t|2α

1 + |t|2α

]
, (x, t) ∈ Ω× R,

where θ : Ω→ R is a bounded continuous function with infx∈Ω θ(x) > 0. To the

best of our knowledge, the question whether infinitely many solutions persist

for system (1.1) with functions not satisfying (AR) with broken symmetry is

unsettled. In this paper, we give a positive answer to this question. But this

question is different from the case discussed in [14], those methods cannot be

applied directly to obtain our results. Our main tools are based on the dual

approach and Rabinowitz perturbation method introduced in [16].

Theorem 1.1. Assume that g and h satisfy the following conditions:

(g1) g ∈ C(Ω×R,R) and there exists 2α < p < 2∗α if N ≥ 3 or 2α < p <∞
if N = 1, 2 such that

|g(x, t)| ≤ C0(1 + |t|p−1), (x, t) ∈ Ω× R;

(g2) there exists a positive constant r0 > 0 such that

G(x, t) ≥ 0, (x, t) ∈ Ω× R and |t| ≥ r0,

and

lim
|t|→∞

G(x, t)

|t|2α
=∞, a.e. x ∈ Ω;

where G(x, t) :=
∫ t

0
g(x, s) ds;

(g3) there exist constants C1 > 0 and κ > max{1, N/2} such that

|G(x, t)|κ ≤ C1|t|2ακG(x, t), (x, t) ∈ Ω× R, |t| ≥ r0,

where G(x, t) := (2α)−1tg(x, t)−G(x, t);

(g4) there exists a positive constant C2 > 0 such that

G(x, t) ≥ C2(|t|2α − 1), (x, t) ∈ Ω× R;

(g5) g(x, t) = −g(x,−t) for (x, t) ∈ Ω× R;

(h1) h ∈ C(Ω× R,R) and there exist constants C3 > 0 and 1 < σ < 2α such

that

|h(x, t)| ≤ C3(1 + |t|σ−1), (x, t) ∈ Ω× R;

(h2) the constants p, α and σ satisfy

2αN − p(N − 2)

N(p− 2α)
>

2α

2α− σ
.
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Then system (1.1) has an unbounded sequence of solutions.

Corollary 1.2. Assume that g and h satisfy (g1)–(g5), (h1) and the fol-

lowing assumption:

(h3) h(x, t) = −h(x,−t) for (x, t) ∈ Ω× R.

Then there exists an unbounded sequence of solutions for system (1.1).

The plan of this paper is as follows. In Section 2 we provide some preliminary

materials. We prove our main results by the use of the dual approach and

Rabinowitz perturbation method in Section 3. In the last section an example is

given to illustrate our results.

Notation. Throughout the paper, we denote by Cn various positive con-

stants, which may vary from line to line and are not essential to the proof.

2. Preliminaries

For any s ∈ [1, 2∗], Ls(Ω) is the usual Lebesgue space with the norm

‖u‖s :=

(∫
Ω

|u|s dx
)1/s

,

and H1
0 (Ω) is the usual Sobolev space with the norm

‖u‖ :=

(∫
Ω

|∇u|2 dx
)1/2

,

we denote the Hilbert space H1
0 (Ω) by E. It is well-known that E is continuously

embedded into Ls(Ω) for s ∈ [1, 2∗], i.e. there exist constants τs > 0 such that

‖u‖s ≤ τs‖u‖, u ∈ E, s ∈ [1, 2∗].

Moreover, E ↪→ Ls(Ω) is compact for s ∈ [1, 2∗).

It is obvious that the second order differential operator with the Dirich-

let boundary condition is a selfadjoint operator, and there exists a sequence of

eigenvalues (counted with multiplicity) λ1 < λ2 < . . .→∞, and the correspond-

ing system of normalized eigenfunctions {en : n ∈ N} forming an orthogonal

basis in E. Hereafter, let En := span{e1, . . . , en} and E⊥n be the orthogonal

complement of En in E.

Inspired by the transformation initially introduced in [9], the function f can

be defined by

f ′(t) =
1√

1 + α|f(t)|2(α−1)
for t ∈ [0,+∞),

f(−t) = −f(t) for t ∈ (−∞, 0].

Next we collect some useful properties of the function f : R→ R, which will

be used frequently in the sequel of the paper. Proofs can be found in [1].
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Lemma 2.1. The function f and its derivative have the following properties:

(f1) f is a uniquely defined C∞ function and it is invertible;

(f2) 0 < f ′(t) ≤ 1 and |f(t)| ≤ |t|, for all t ∈ R;

(f3) lim
t→0
|f(t)|/|t| = 1 and lim

t→∞
|f(t)|α/|t| =

√
α;

(f4) there exists a positive constant C0 such that

|f(t)|α−1f ′(t) ≤ C0, for all t ∈ R;

(f5) f ′′(t)f(t) = (α− 1)(f ′(t))2((f ′(t))2 − 1), for all t ∈ R.

Therefore, after change of variables, we obtain the following functional:

(2.1) I(v) := J(f(v)) =
1

2

∫
Ω

|∇v|2 dx−
∫

Ω

G(x, f(v)) dx−
∫

Ω

H(x, f(v)) dx.

Moreover, for any v, w ∈ E,

(2.2) 〈I ′(v), w〉 = (v, w)−
∫

Ω

g(x, f(v))f ′(v)w dx−
∫

Ω

h(x, f(v))f ′(v)w dx.

By a standard argument which is similar to Lemma 2.6 and Remark 2.7 in [1], if

v ∈ E is a critical point of the functional I, then u = f(v) ∈ E and u is a weak

solution of (1.1).

In order to define a suitable modified functional, we prove the following

lemma.

Lemma 2.2. Under the hypotheses of Theorem 1.1, there exists a positive

constant A depending on α such that if v is a critical point of I,

(2.3)

∫
Ω

|f(v)|2α dx ≤ A(I2(v) + 1)1/2.

Proof. Since v is a critical point of I, by (f5), (g4), (h1), (2.1) and (2.2),

I(v)− 1

2α

〈
I ′(v),

f(v)

f ′(v)

〉
>

∫
Ω

G(x, f(v)) dx− C4

(∫
Ω

|f(v)|σ dx+ 1

)
(2.4)

> C5

∫
Ω

|f(v)|2α dx− C6.

Then (2.3) follows from (2.4) and the Young inequality. �

Next we introduce a cut-off function ζ ∈ C∞(R,R) such that

(2.5)


ζ(t) = 1 for t ∈ (−∞, 1],

0 ≤ ζ(t) ≤ 1 for t ∈ (1, 2),

ζ(t) = 0 for t ∈ [2,∞),

|ζ ′(t)| ≤ 2 for t ∈ R.

With the help of this cut-off function, define

(2.6) P (v) = 2A(I2(v) + 1)1/2, φ(v) = ζ

(
P−1(v)

∫
Ω

|f(v)|2α dx
)
.
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If v is a critical point of I, by (2.3), (2.5) and (2.6), φ(v) = 1. Set

(2.7) I(v) =
1

2
‖v‖2 −

∫
Ω

G(x, f(v)) dx− φ(v)

∫
Ω

H(x, f(v)) dx.

Since ζ is a smooth function, we have I ∈ C1(E,R) and

〈I ′(v), w〉 = (v, w)−
∫

Ω

g(x, f(v))f ′(v)w dx(2.8)

− φ(v)

∫
Ω

h(x, f(v))f ′(v)w dx− 〈φ′(v), w〉
∫

Ω

H(x, f(v)) dx,

for v, w ∈ E. It is obvious that I(v) = I(v) if v is a critical point of I.

Lemma 2.3. Assume all the hypotheses of Theorem 1.1 hold. Then:

(H1) there is a positive constant C7 such that

|I(v)− I(−v)| ≤ C7(|I(v)|σ/2α + 1), v ∈ E;

(H2) there exists a positive constant M1 such that if I(v) ≥M1 and I ′(v) = 0,

then I(v) = I(v) and I ′(v) = 0;

(H3) there exists a positive constant M2 ≥M1 such that for any c > M2, then

I satisfies the (C)c condition at c.

Proof. If v ∈ suppφ, by (2.5) and (2.6),

(2.9)

∫
Ω

|f(v)|2α dx ≤ 4A(I2(v) + 1)1/2 ≤ 4A(|I(v)|+ 1).

By (h1) and direct computation, we have

(2.10)

∣∣∣∣ ∫
Ω

H(x, f(v)) dx

∣∣∣∣ ≤ C8

(∫
Ω

|f(v)|2α dx+ 1

)σ/2α
.

It follows from (2.9) and (2.10) that

(2.11)

∣∣∣∣ ∫
Ω

H(x, f(v)) dx

∣∣∣∣ ≤ C9(|I(v)|σ/2α + 1).

In view of (2.1), (2.7) and (2.11),

(2.12) |I(v)| ≤ |I(v)|+
∣∣∣∣ ∫

Ω

H(x, f(v)) dx

∣∣∣∣ ≤ |I(v)|+ 2C9(|I(v)|σ/2α + 1).

In combination with (h1) and (2.12),

(2.13) |I(v)| ≤ C10(|I(v)|+ 1).

It follows from (2.11) and (2.13) that

(2.14)

∣∣∣∣ ∫
Ω

H(x, f(v)) dx

∣∣∣∣ ≤ C11(|I(v)|σ/2α + 1), v ∈ suppφ.

By a similar estimate, we also have

(2.15)

∣∣∣∣ ∫
Ω

H(x, f(−v)) dx

∣∣∣∣ ≤ C12(|I(v)|σ/2α + 1), −v ∈ suppφ.
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It follows from (g5), (2.7), (2.14) and (2.15) that (H1) holds.

To prove (H2), it suffices to show that v is a critical point of I with I(v) ≥M1,

then

(2.16) P−1(v)

∫
Ω

|f(v)|2α dx < 1.

Next we show that (2.16) holds. It follows from (2.8) that〈
I ′(v),

f(v)

f ′(v)

〉
= α‖v‖2 − (α− 1)

∫
Ω

(f ′(v))2|∇v|2 dx(2.17)

−
∫

Ω

g(x, f(v))f(v) dx− φ(v)

∫
Ω

h(x, f(v))f(v) dx

−
〈
φ′(v),

f(v)

f ′(v)

〉∫
Ω

H(x, f(v)) dx,

where

〈φ′(v), ω〉 = ζ ′(θ(v))P−2(v)

·
[
2αP (v)

∫
Ω

|f(v)|2(α−1)f(v)f ′(v)ω dx− (2A)2θ(v)I(v)〈I ′(v), ω〉
]
,

and

(2.18) θ(v) := P−1(v)

∫
Ω

|f(v)|2α dx.

If v /∈ suppφ, φ(v) = φ′(v) = 0, then (2.17) reduces to

(2.19)

〈
I ′(v),

f(v)

f ′(v)

〉
= α‖v‖2 − (α− 1)

∫
Ω

(f ′(v))2|∇v|2 dx

−
∫

Ω

g(x, f(v))f(v) dx.

Moreover, if v is a critical point of I, by (g3), (2.1), (2.8) and (2.19),

(2.20) I(v)− 1

2α

〈
I ′(v),

f(v)

f ′(v)

〉
>
α− 1

2α

∫
Ω

(f ′(v))2|∇v|2 dx

+

∫
Ω

G(x, f(v)) dx−
∫

Ω

H(x, f(v)) dx.

In view of (2.4) and (2.20), (2.16) holds. If v ∈ suppφ, we regroup terms in

(2.17) yielding〈
I ′(v),

f(v)

f ′(v)

〉
= (1 +K1(v))

[
α‖v‖2 − (α− 1)

∫
Ω

(f ′(v))2|∇v|2 dx
]

(2.21)

−K2(v)

∫
Ω

H(x, f(v)) dx− (1 +K1(v))

∫
Ω

g(x, f(v))f(v) dx

− (φ(v) +K1(v))

∫
Ω

h(x, f(v))f(v) dx,
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where

K1(v) := (2A)2ζ ′(θ(v))P−2(v)θ(v)I(v)

∫
Ω

H(x, f(v)) dx,(2.22)

K2(v) := 2αζ ′(θ(v))θ(v).(2.23)

Next we prove that

(2.24) K1(v)→ 0, as M1 →∞.

By (2.5), (2.6), (2.11) and (2.22),

(2.25) |K1(v)| ≤ 8C9(|I(v)|σ/2α + 1)|I(v)|−1.

In combination with (2.1) and (2.7),

(2.26) I(v) ≥ I(v)−
∣∣∣∣ ∫

Ω

H(x, f(v)) dx

∣∣∣∣.
In view of (2.11) and (2.26),

(2.27) I(v) + C9|I(v)|σ/2α ≥ I(v)− C9 ≥
M1

2
,

for M1 large enough. If I(v) ≤ 0, by (2.27) and the Young inequality,

(2.28)
(2α− σ)C9

2α/(2α−σ)

2α
+
σ|I(v)|

2α
≥ M1

2
+ |I(v)|.

But the above inequality is impossible if M1 is large enough, e.g. M1 ≥ (2α−σ)

·C9
2α/(2α−σ)/α. Therefore I(v) > 0. Hence it follows from (2.27) that

I(v) >
M1

4
or I(v) >

(
M1

2C9

)2α/σ

,

which implies that

(2.29) I(v)→ +∞, as M1 →∞,

which together with (2.25) shows that (2.24) holds. Moreover, it follows from

(2.5), (2.6) and (2.23) that |K2(v)| ≤ 8α, v ∈ E.

If v is a critical point of I and M1 is large enough such that |K1(v)| < 1/2,

it follows from (2.1) and (2.21) that

(2.30) I(v)− 1

2α(1 +K1(v))

〈
I ′(v),

f(v)

f ′(v)

〉
>
α− 1

2α

∫
Ω

(f ′(v))2|∇v|2 dx

+

∫
Ω

G(x, f(v)) dx− 8α

∫
Ω

[
|h(x, f(v))f(v)|+ |H(x, f(v))|

]
dx.

In view of (h1), (2.4) and (2.30), we can replace A by a larger constant but

smaller than 2A in (2.3), then (2.16) holds.

To prove (H3), first we show that there exists M2 > M1 such that if {vn}n∈N
⊂ E is a sequence such that

(2.31) I(vn)→ c and ‖I ′(vn)‖(1 + ‖vn‖)→ 0,
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then (vn) is bounded. To prove the boundedness of {vn}, arguing by contra-

diction, suppose that ‖vn‖ → ∞. Let wn = vn/‖vn‖. Then ‖wn‖ = 1 and

‖vn‖s ≤ τs‖vn‖ = τs for 2 ≤ s < 2∗. Passing to a subsequence, we assume that

wn ⇀ w in E, then wn → w in Ls(Ω), 2 ≤ s < 2∗. For 0 ≤ a < b, let

(2.32) Ωn(a, b) = {x ∈ Ω : a ≤ |f(vn(x))| < b}.

In view of (g4), (h1), (2.7), (2.8) and (2.21), for n large enough

c+ 1 ≥ I(vn)− 1

2α(1 +K1(vn))

〈
I ′(vn),

f(vn)

f ′(vn)

〉
(2.33)

>
1

2

∫
Ωn(r0,∞)

G(x, f(vn)) dx− C13,

where C13 is a positive constant independent of n. By (f3) and (h1),

(2.34)

∫
Ω

|H(x, f(v))| dx ≤ C14(‖v‖σ/α + 1).

It follows from (2.7), (2.31) and (2.34) that

(2.35) lim sup
n→∞

∫
Ω

|G(x, f(vn))|
‖vn‖2

dx ≥ 1

2
.

If w = 0, then wn → 0 in Ls(Ω), 2 ≤ s < 2∗, wn → 0 almost everywhere on Ω.

Set κ′ = κ/(κ − 1). Since κ > max{1, N/2}, then 2κ′ ∈ (2, 2∗). It follows from

(g1) and (2.33) that∫
Ωn(r0,∞)

|G(x, f(vn)|
|vn|2

|wn|2 dx(2.36)

≤
[ ∫

Ωn(r0,∞)

(
|G(x, f(vn)|
f2α(vn)

)κ
dx

]1/κ[ ∫
Ωn(r0,∞)

|wn|2κ
′
dx

]1/κ′

≤ C15

[ ∫
Ωn(r0,∞)

G(x, f(vn)) dx

]1/κ(∫
Ωn(r0,∞)

|wn|2κ
′
dx

)1/κ′

≤ C15

(∫
Ω

|wn|2κ
′
dx

)1/κ′

→ 0.

Combining (g1) and (2.36), we have∫
Ω

|G(x, f(vn)|
‖vn‖2

dx =

∫
Ωn(0,r0)

|G(x, f(vn)|
‖vn‖2

dx

+

∫
Ωn(r0,∞)

|G(x, f(vn)|
|vn|2

|wn|2 dx→ 0,

which contradicts (2.35).

Set Π = {x ∈ Ω : w(x) 6= 0}. If w 6= 0, then meas(Π) > 0. Moreover,

(2.37) lim
n→∞

|vn(x)| =∞, a.e. x ∈ Π.
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It follows from (f3) and (2.32) that Π ⊂ Ωn(r0,∞) for large n ∈ N. By (g1),

(h1), (f3), (2.34), (2.37) and Fatou’s lemma,

0 = lim sup
n→∞

I(vn)

‖vn‖2
= lim sup

n→∞

[
1

2
−
∫

Ω

G(x, f(vn))

‖vn‖2
dx

]
= lim sup

n→∞

[
1

2
−
∫

Ωn(0,r0)

G(x, f(vn))

‖vn‖2
dx−

∫
Ωn(r0,∞)

G(x, f(vn))

|vn|2
|wn|2 dx

]
≤ lim sup

n→∞

[
1

2
+ C0(r0 + rp0)meas(Ω)‖vn‖−2 −

∫
Ωn(r0,∞)

G(x, f(vn))

|vn|2
|wn|2 dx

]
≤ 1

2
− lim inf

n→∞

∫
Ωn(r0,∞)

G(x, f(vn))

f2α(vn)
· f

2α(vn)

|vn|2
|wn|2 dx

=
1

2
− lim inf

n→∞

∫
Ω

G(x, f(vn))

f2α(vn)
· f

2α(vn)

|vn|2
|wn|2[χΩn(r0,∞)(x)] dx

≤ 1

2
−
∫

Ω

lim inf
n→∞

G(x, f(vn))

f2α(vn)
· f

2α(vn)

|vn|2
|wn|2[χΩn(r0,∞)(x)] dx = −∞,

which is a contradiction. Thus {vn} is bounded in E.

Since E is a reflexive space, passing to a subsequence, also denoted by {vn},
it can be assumed that vn ⇀ v0, n → ∞. By (f3) in Lemma 2.1, there exists

a positive constant M3 such that

(2.38) |f(t)| ≤ C16|t|1/α, |t| ≥M3.

For any v, w ∈ E, by (f2), (f4), (2.38) and the Hölder inequality,∫
Ω

|f(v)|p−1f ′(v)|w| dx(2.39)

=

∫
Ω0

|f(v)|p−1f ′(v)|w| dx+

∫
Ω\Ω0

|f(v)|p−1f ′(v)|w| dx

≤ C0C16

∫
Ω0

|v|(p−α)/α|w| dx+

∫
Ω\Ω0

|v|p−1|w| dx

≤ C0C16‖v‖(p−α)/α
p/α ‖w‖p/α +Mp−1

3 ‖w‖1,

where Ω0 := {x ∈ Ω : |v(x)| ≥M3}. By (2.8), we have

〈I ′(vn), vn − v0〉 = (vn, vn − v0)−
∫

Ω

g(x, f(vn))f ′(vn)(vn − v0) dx

− 〈φ′(vn), vn − v0〉
∫

Ω

H(x, f(vn)) dx

− φ(vn)

∫
Ω

h(x, f(vn))f ′(vn)(vn − v0) dx,
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where

(2.40) 〈φ′(vn), vn − v0〉
∫

Ω

H(x, f(vn)) dx

= 2αζ ′(θ(vn))P−1(vn)

∫
Ω

|f(vn)|2(α−1)f(vn)f ′(vn)(vn − v0) dx

·
∫

Ω

H(x, f(vn)) dx−K1(vn)〈I ′(vn), vn − v0〉.

If vn 6∈ suppφ, φ(vn) = φ′(vn) = 0. Then

〈I ′(vn), vn − v0〉 = (vn, vn − v0)−
∫

Ω

g(x, f(vn))f ′(vn)(vn − v0) dx.

Otherwise, vn ∈ suppφ, in combination with (2.6) and (2.11), we have

(2.41)

∣∣∣∣P−1(vn)

∫
Ω

H(x, f(vn)) dx

∣∣∣∣ ≤ (2A)−1C9(|I(vn)|σ/2α + 1)|I(vn)|−1.

When M2 is large enough, in view of (2.24), (2.29) and (2.41),

(2.42)

∣∣∣∣P−1(vn)

∫
Ω

H(x, f(vn)) dx

∣∣∣∣ ≤ 1

16
, |K1(vn)| ≤ 1

16
.

It follows from (g1), (h1) and (2.39) that

(2.43)

∫
Ω

|f(vn)|2α−1f ′(vn)(vn − v0) dx→ 0,

and ∫
Ω

g(x, f(vn))f ′(vn)(vn − v0) dx → 0,(2.44) ∫
Ω

h(x, f(vn))f ′(vn)(vn − v0) dx → 0.(2.45)

In combination with (2.31), (2.40), (2.42)–(2.45), vn → v0, n→∞. �

Lemma 2.4. Under assumptions (g1), (g3) and (h1), for any finite dimen-

sional subspace Ẽ ⊂ E,

I(v)→ −∞, ‖v‖ → ∞, v ∈ Ẽ.

Proof. Arguing indirectly, assume that for some sequence {vn} ⊂ Ẽ with

‖vn‖ → ∞, there is M > 0 such that I(vn) ≥ −M for all n ∈ N. Set wn =

vn/‖vn‖, then ‖wn‖ = 1. Passing to a subsequence, we can assume that wn ⇀ w

in E. Since Ẽ is a finite dimensional space, then wn → w ∈ Ẽ and ‖w‖ = 1.

Hence, we can conclude a contradiction by a similar fashion as in Lemma 2.3.�
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3. Construction of minimax sequences and proof of Theorem 1.1

By Lemma 2.4, there exists a strictly increasing sequence of numbers Rn such

that I(v) ≤ 0 for v ∈ En \ BRn , where BRn denotes the open ball of radius Rn
centred at 0 in E, and BRn denotes the closure of BRn in E. Next we introduce

some continuous maps in E. Set

(3.1) Γn =
{
ζ ∈ C(Dn, E) : ζ is odd and ζ = id on ∂BRn ∩ En

}
,

where Dn := BRn ∩ En, and

(3.2) Λn :=
{
γ ∈ C(Un, E) : γ|Dn ∈ Γn and γ = id

for v ∈ Qn := (∂BRn+1
∩ En+1) ∪ ((BRn+1

\BRn) ∩ En)
}
,

where

(3.3) Un :=
{
v = ten+1 + ω : t ∈ [0, Rn+1], ω ∈ BRn+1

∩ En, ‖v‖ ≤ Rn+1

}
.

With the help of these continuous maps, we define two sequences of minimax

values

(3.4) bn = inf
ζ∈Γn

max
v∈Dn

I(ζ(v)), cn = inf
γ∈Λn

max
v∈Un

I(γ(v)).

It is obvious that cn ≥ bn. For the sake of getting the lower bound of the

above minimax values, we give an intersection property which has been proved

by Rabinowitz in Lemma 1.44 of [16].

Lemma 3.1. ζ(Dn) ∩ ∂Bρ ∩ E⊥n−1 6= ∅ for any n ∈ N, ρ < Rn and ζ ∈ Γn.

Next we give the lower bounds for bn.

Lemma 3.2. There are a positive constant C17 and n0 ∈ N such that

(3.5) bn ≥ C17n
2αN−p(N−2)/(N(p−2α)), n ≥ n0.

Proof. By Lemma 3.1, for any ζ ∈ Γn and ρ < Rn, there exists vn ∈
ζ(Dn) ∩ ∂Bρ ∩ E⊥n−1, then

(3.6) max
v∈Dn

I(ζ(v)) ≥ I(vn) ≥ inf
v∈∂Bρ∩E⊥n−1

I(v).

In view of (g1), (g3) and (f3) in Lemma 2.1, we have∫
Ω

|G(x, f(v))| dx ≤ C18(‖v‖p/αp/α + 1), v ∈ E,(3.7) ∫
Ω

|H(x, f(v))| dx ≤ C19(‖v‖σ/ασ/α + 1), v ∈ E.(3.8)

In view of (2.7), (3.7) and (3.8),

(3.9) I(v) ≥ 1

4
‖v‖2 − C20(‖v‖p/αp/α + 1).
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By the Gagliardo–Nirenberg inequality, we have

(3.10) ‖v‖p/α ≤ τ‖v‖s‖v‖1−s2 ,

where τ is a positive constant and s = (2p)−1N(p− 2α). If v ∈ E⊥n−1,

(3.11) ‖v‖22 ≤ λ−1
n ‖v‖2.

By (3.9), (3.10) and (3.11), if v ∈ ∂Bρ ∩ E⊥n−1,

(3.12) I(v) ≥ ρ2

(
1

2
− C20λ

(s−1)p/(2α)
n ρ(p−2α)/α

)
− C20.

In view of (3.12), choose ρn = (4C20)α/(2α−p)λ
(1−s)p/(2(p−2α))
n , then

(3.13) I(v) ≥ 1

4
ρ2
n − C20.

It follows from (3.4), (3.6) and (3.13) that (3.5) holds. �

By (H1) in Lemma 2.3 and a similar fashion as in the proof of Proposition

10.46 in [17], we have

Lemma 3.3. If cn = bn for all n ≥ n0, where n0 is a positive integer, there

exists a positive constant C21 such that

(3.14) bn ≤ C21n
2α/(2α−σ).

In view of (h2), (3.5) and (3.14), it is impossible that cn = bn for all large n.

Next we can construct critical values of I as follows.

Lemma 3.4. Suppose cn > bn ≥ M2 for any n large enough. For any δ ∈
(0, cn − bn), define

(3.15) Λn(δ) = {γ ∈ Λn : I(γ(v)) ≤ bn + δ for v ∈ Dn}

and

(3.16) cn(δ) = inf
γ∈Λn(δ)

max
v∈Un

I(γ(v)).

Then cn(δ) is a critical value of I.

Proof. First the definition of Λn(δ) implies that this set is nonempty. By

(3.2) and (3.15),

(3.17) Λn(δ) ⊂ Λn, cn ≤ cn(δ).

By (H3) in Lemma 2.3, the Deformation Theorem also holds (see [2]). Suppose

cn(δ) is not a critical value of I, choose ε := (cn−bn−δ)/2, there exists ε ∈ (0, ε)

and η ∈ C([0, 1]× E,E) such that

η(1, v) = v, I(v) 6∈ [cn(δ)− ε, cn(δ) + ε],(3.18)

η(1, Icn(δ)+ε) ⊂ Icn(δ)−ε.(3.19)
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By (3.16), there exists γ ∈ Λn(δ) such that

(3.20) max
v∈Un

I(γ(v)) < cn(δ) + ε.

Define

(3.21) γ( · ) = η(1, γ( · )).

Next we prove γ ∈ Λn(δ). It is obvious that γ ∈ C(Un, E). By (3.15) and (3.17),

I(γ(v)) ≤ bn + δ < cn − ε ≤ cn(δ)− ε, v ∈ Dn,

which implies that

(3.22) I(γ(v)) < cn(δ)− ε, v ∈ Dn.

In combination with (3.18), (3.21) and (3.22),

γ(v) = η(1, γ(v)) = γ(v), v ∈ Dn,

which yields that

(3.23) γ|Dn ∈ Γn and I(γ(v)) = I(γ(v)) ≤ bn + δ, v ∈ Dn.

In view of γ ∈ Λn(δ) and the definitions of Rn and Rn+1,

(3.24) γ(v) = v and I(γ(v)) ≤ 0, v ∈ Qn.

Since bn ≥ M2 > 0 and cn(δ) ≥ cn > bn, then cn(δ) > ε. It follows from (3.18)

and (3.24) that

(3.25) γ(v) = η(1, γ(v)) = γ(v) = v, v ∈ Qn.

In view of (3.23) and (3.25), γ ∈ Λn(δ). Moreover, by (3.19)–(3.21),

max
v∈Un

I(γ(v)) = max
v∈Un

I(η(1, γ(v))) ≤ cn(δ)− ε,

which is a contradiction to (3.16). �

Proof of Theorem 1.1. Since it is impossible that cn = bn for all large n,

then we can choose a subsequence {nk} ⊂ N such that cnk > bnk . In view of

Lemma 3.2, cnk > bnk > M2, when nk is large enough. It follows from (H2) in

Lemmas 2.3, 3.2 and 3.4 that I has an unbounded sequence of critical values

which yields infinitely many solutions for system (1.1). �

Proof of Corollary 1.2. First, it follows from (g5), (h3) and (2.1) that

I is an even functional. Arguing as in (H3) in Lemma 2.3, we can prove that

the functional I satisfies the (C)c condition. Moreover, by a similar fashion as

in the proof of Lemma 3.1, there exists a strictly increasing sequence of numbers

R′n such that I(v) ≤ 0 for v ∈ En \BR′n . Define

Γ′n =
{
h ∈ C(D′n, E) : h is odd and h = id on ∂BR′n ∩ En

}
,
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where D′n := BR′n ∩ En and b′n := inf
h∈Γ′n

max
v∈D′n

I(h(v)). Arguing as in Lemma 3.2,

we have b′n →∞, as n→∞. Then there exists n0 ∈ N such that b′n > 0, n ≥ n0.

If n ≥ n0, by a standard argument and the Deformation Theorem, we can also

prove b′n are unbounded critical values of I. �

4. Example

In this section, we give one example to illustrate our result.

Example 4.1. In system (1.1), let Ω be a bounded smooth domain in R4

and α = 3. Let g is given by (1.5) and h(x, t) = t2. Thus all conditions of

Theorem 1.1 are satisfied with N = 4, κ = 3, σ = 7/2, p = 13/2. By Theorem

1.1, system (1.1) has an unbounded sequence of infinitely many solutions. But

the results in [14] cannot be applied to this example.
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