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PERIODIC ORBITS FOR MULTIVALUED MAPS

WITH CONTINUOUS MARGINS OF INTERVALS

Jiehua Mai — Taixiang Sun

Abstract. Let I be a bounded connected subset of R containing more than

one point, and L(I) be the family of all nonempty connected subsets of I.
Each map from I to L(I) is called a multivalued map. A multivalued map

F : I → L(I) is called a multivalued map with continuous margins if both

the left endpoint and the right endpoint functions of F are continuous. We

show that the well-known Sharkovskĭı theorem for interval maps also holds
for every multivalued map with continuous margins F : I → L(I), that is,

if F has an n-periodic orbit and n � m (in the Sharkovskĭı ordering), then

F also has an m-periodic orbit.

1. Introduction

Let X be a set and N = {1, 2, . . .}. An infinite sequence (x1, x2, . . .) of

elements in X is said to be periodic if there is n ∈ N such that

(1.1) xi+n = xi for all i ∈ N.

In this case, we also write (x1, . . . , xn)◦ for (x1, x2, . . .), where we put the small

circle ◦ at the top-right corner of the finite sequence (x1, . . . , xn), which means

that we repeat this finite sequence infinitely many times. The least n such that

(1.1) holds is called the period of (x1, x2, . . .). Note that if we cannot clearly
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mention the period of the infinite sequence (x1, . . . , xn)◦, then it may be a proper

factor of n. A periodic sequence of period n is also called an n-periodic sequence.

Denote by 2X−{∅} the family of all nonempty subsets of X. Each map from

X to 2X−{∅} is called a multivalued map on X. An infinite sequence (x1, x2, . . .)

of elements in X is called an orbit of F : X → 2X − {∅} if xi+1 ∈ F (xi) for

all i ∈ N. The sequence (x1, x2, . . .) is called a periodic orbit of F if it is both

a periodic sequence and an orbit of F . If O = (x1, x2, . . .) = (x1, . . . , xn)◦ is an n-

periodic orbit of F , then, for any i ∈ N, the finite sequence (xi, xi+1, . . . , xi+n−1)

with length n is called a periodic segment of the orbit O. If F : X → 2X −{∅} is

a multivalued map and F contains only one element for each x ∈ X, then F is

a single-valued map from X to X. Note that if f : X → X is a single-valued map,

then any period segment of a periodic orbit of f contains no repeating element,

and if F : X → 2X − {∅} is a multivalued map, then a period segment of some

periodic orbit of F may contain repeating elements. This is a difference between

single-valued maps and multivalued maps. Since there may appear repeating

elements in a period segment when we study periodic orbits of multivalued maps,

it will meet some additional trouble.

Let I be a bounded connected subset of R containing more than one point,

that is, I is a closed interval, or an open interval, or a half-open interval. Denote

by I the closure of I in R and by L(I) the family of all nonempty connected

subsets of I. Each map from I to L(I) is called a connected-multivalued map

on I. Obviously, for any connected-multivalued map F : I → L(I), there exists

a unique pair of functions α : I → I and β : I → I, called the left endpoint func-

tion and the right endpoint function of F , respectively, satisfying the following

two conditions:

(i) α(x) ≤ β(x) for any x ∈ I;

(ii) (α(x), β(x)) ⊂ F (x) ⊂ [α(x), β(x)] for any x ∈ I.

If α(x) = β(x), then F (x) = [α(x), β(x)] = {α(x)}.
A connected-multivalued map F : I → L(I) is said to be a multivalued map

with continuous margins if both the left endpoint and the right endpoint func-

tions of F are continuous.

In 1964, Sharkovskĭı found the following order relation in N:

3 � 5 � 7 � . . . � 3 · 2 � 5 · 2 � 7 · 2 � . . . � 3 · 22 � 5 · 22 � 7 · 22 � . . .

. . . � 3 · 2k � 5 · 2k � 7 · 2k � . . . � 24 � 23 � 22 � 2 � 1,

and proved the following theorem.

Theorem 1.1 (Sharkovskĭı’s theorem, see [17]). Let J be a connected subset

of R and f : J → J be a single-valued continuous map. For any m,n ∈ N with

n � m, if f has an n-periodic orbit, then f has an m-periodic orbit.
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Note that the above Sharkovskĭı’s order is well-ordered. If n � m in this

order, then we also write m ≺ n.

In [1], Alseda and Llibre showed that Theorem 1.1 holds for triangular maps

on a rectangle. In [12], Minc and Transue showed that Sharkovskĭı’s theorem

also holds for continuous maps on hereditarily decomposable chainable continua.

In [5], Andres et al. also obtained a full analogy of Sharkovskĭı’s theorem for

lower-semicontinuous maps (i.e. for every closed subset V ⊂ R, the set {x ∈ R :

F (x) ⊂ V } is closed) with nonempty, connected and compact values.

Recently, there has been a lot of work on the dynamics of multivalued maps

(see [11], [13]–[16]). In [3], Andres et al. studied the periodic orbits of a class of

multivalued maps and obtained the following theorem.

Theorem 1.2. Let C(R) be the family of all nonempty compact connected

subsets of R and F : R → C(R) be upper-semicontinuous (i.e. for every open

V ⊂ R, the set {x ∈ R : F (x) ⊂ V } is open). If F has an n-periodic orbit for

some odd integer n, but F has no l-periodic orbit for any l � n, then for any

n � m, F has an m-periodic orbit, except m = 4.

Further, Andres and Pastor [9] (also see [10]) obtained the following theorem.

Theorem 1.3. Let F : R → C(R) be upper-semicontinuous. For any m,n ∈
N with n � m, if F has an n-periodic orbit, then F has an m-periodic orbit with

at most two exceptions.

For some other papers in the area, see also [2], [4], [6]–[8] and the references

therein. In this paper, we study connected-multivalued maps on the bounded

connected set I. Our main result is the following theorem.

Theorem 1.4. Let I be a bounded connected subset of R and F : I → L(I)

be a multivalued map with continuous margins. For any m,n ∈ N with n � m,

if F has an n-periodic orbit, then F has an m-periodic orbit.

Remark 1.5. In [2]–[10], the set of every value of upper-semicontinuous and

lower-semicontinuous maps is nonempty, it is a connected and compact set. But

for multivalued maps with continuous margins of intervals studied in this paper,

the set of every value need not be compact.

Remark 1.6. In [3], the authors constructed upper-semicontinuous maps

F : R → C(R) and G : R → C(R) such that F has a 3-periodic orbit but has no

2-periodic orbit and G has a 5-periodic orbit but has no 4-periodic orbit. While

for multivalued maps with continuous margins of intervals studied in this paper,

Sharkovskĭı’s theorem holds, without exception.
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Example 1.7. Define a connected-multivalued map F : [0, 1]→ L([0, 1]) by

F (x) =



[0, 0] if x = 0,

[0,
√

2x) if x ∈ (0,
√

2/2),

[0, 1] if x =
√

2/2,

[0, (2 +
√

2)(1− x)) if x ∈ (
√

2/2, 0),

[0, 0] if x = 1,

x ∈ [0, 1]. Then, according to our definition, F is a multivalued map with

continuous margins. But according to the definitions in [2]–[4], [6]–[10], F is

not upper-semicontinuous since the set {x ∈ [0, 1] : F (x) ⊂ [0, y)} = [0, y/
√

2] ∪
[1 − y/(2 +

√
2), 1] is closed for any y ∈ (0, 1]. What means that continuity of

margins does not necessarily implies upper-semicontinity of the multivalued map

with continuous margins under consideration.

2. Periodic orbits for multivalued maps

Let X be a set. Let F and G be maps from X to 2X − {∅}. Define the

composite map G ◦ F : X → 2X − {∅} by

(2.1) G ◦ F (x) =
⋃
{G(y) : y ∈ F (x)},

x ∈ X. Denote by F 0 the identity map on X, F 1 = F , and Fn+1 = F ◦ Fn for

each n ∈ N. For n ≥ 0, Fn is called the n-th iterate of F .

Remark 2.1. We see from the definition that for any n ≥ 2 and any x ∈ X,

Fn(x) = {y ∈ X : there exists {xi}ni=0 ⊂ X

such that x0 = x, xn = y, xi ∈ F (xi−1) for 1 ≤ i ≤ n}.

Let S = (x1, x2, . . .) be an infinite sequence. For any k, i ∈ N, the sequence

(xi, xk+i, x2k+i, x3k+i, . . .)

is called the i-th k-subsequence of S. Obviously, if the sequence S is an orbit of

F : X → 2X − {∅}, then any k-subsequence of S is an orbit of F k.

The following lemma is well-known, but we still give a simplified proof.

Lemma 2.2. Suppose that (x1, x2, . . .) is an infinite sequence. Let n,m ∈ N
and k = gcd(n,m) be the greatest common factor of n and m. If xi+n = xi and

xi+m = xi for all i ∈ N, then xi+k = xi for all i ∈ N.

Proof. As k = gcd(n,m), there exist p, q ∈ N such that pn−qm = k. Then

we have xi = xi+pn = xi+pn−qm = xi+k for any i ∈ N. �

Corollary 2.3. If (x1, x2, . . .) is a periodic sequence, which can be written

as (x1, . . . , xn)◦, then the period of this sequence is a factor of n.
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Definition 2.4. Two positive integers k and n are said to have the same

prime factor if for any prime number p, p is a factor of k if and only if p is a

factor of n.

The following lemma is trivial.

Lemma 2.5. Suppose that integers k and n have the same prime factor. Then:

(a) k = 1 if and only if n = 1.

(b) If k > 1, then there exist prime numbers p1, . . . , pm with m ≥ 1 and

positive integers λ1, . . . , λm, µ1, . . . , µm such that

k =

m∏
i=1

pλii and n =

m∏
i=1

pµii .

Lemma 2.6. Let k, n ∈ N. Then there exists a unique sequence (k1, k2, n1, n2)

of positive integers such that

(a) k = k1k2 and n = n1n2,

(b) k1 and n1 have the same prime factor,

(c) gcd(k2, n) = 1 and gcd(n2, k) = 1.

Proof. Let k2 = max{λ : λ is a factor of k and gcd(λ, n) = 1} and n2 =

max{µ : µ is a factor of n and gcd(µ, k) = 1}. Put k1 = k/k2 and n1 = n/n2.

Then the sequence (k1, k2, n1, n2) satisfies three conditions in Lemma 2.6. More-

over, it is easy to show that the sequence (k1, k2, n1, n2) satisfying these three

conditions is unique, so the process can be omitted. �

The main result in this section is the following lemma.

Lemma 2.7. Suppose that S = (x1, x2, . . .) = (x1, . . . , xnk)◦ is a periodic

sequence with n > 1 and k > 1, and Sk = (x1, xk+1, x2k+1, . . . , x(n−1)k+1)◦ is

a k-subsequence of S. Let (k1, k2, n1, n2) be the same as in Lemma 2.6. If the

period of Sk is n, then there is a factor λ of k2 such that the period of S is k1λn.

Proof. Let m be the period of the sequence S. According to Corollary 2.3,

m is a factor of kn. Then gcd(m, kn) = m. Write n3 = gcd(m,n2). Then

n1n3 is a factor of n = n1n2. As gcd(n2, kn1) = 1, we have m = gcd(m, kn) =

gcd(m, kn1n2) = gcd(m, kn1)·gcd(m,n2) = gcd(m, kn1)·n3. Hence m is a factor

of kn1n3, which implies

(2.2) xi+kn1n3 = xi for all i ∈ N.

On the other hand, if n1n3 < n, then xj+kn1n3
= xj does not hold for some

j ∈ {1, k + 1, 2k + 1, . . . , (n− 1)k + 1} since the period of the sequence Sk is n.

This will contradict to (2.2). Thus we must have n1n3 = n, which means that

n2 = n3 = gcd(m,n2). Hence we obtain:

Claim 1. m = n2r for some r ∈ N.
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Let k3 = gcd(m, k1n1). As gcd(k1n1, k2n2) = 1, we have

m = gcd(m, kn) = gcd(m, k1n1 · k2n2)

= gcd(m, k1n1) · gcd(m, k2n2) = k3 · gcd(m, k2n2).

Let k4 =lcm(k1, k3) be the least common multiple of k1 and k3. Then m is

a factor of k4k2n2, and hence

(2.3) xi = xi+k4k2n2
for all i ∈ N.

On the other hand, if k3 is a proper factor of k1n1, then k1 > 1, n1 > 1, and

from the condition (b) of Lemma 2.6, we see that k4 is also a proper factor of

k1n1, which implies that k4k2n2 is a proper factor of nk = k1n1k2n2. Thus

there is a proper factor n4 of n such that k4k2n2 = kn4. However, xj+kn4
= xj

does not hold for some j ∈ {1, k + 1, 2k + 1, . . . , (n − 1)k + 1} since the period

of the sequence Sk is n. This will contradict to (2.3). Thus we must have

k3 = gcd(m, k1n1) = k1n1 and hence we obtain

Claim 2. m = k1n1r for some r ∈ N.

As gcd(k1n1, n2) = 1, by Claims 1 and 2, we see that m = k1n1n2r = k1nr for

some r ∈ N. Hence there exists a factor λ of k2 such that m = k1λn since m is

a factor of kn = k1k2n1n2. �

Conversely, we have

Lemma 2.8. Let k, n and (k1, k2, n1, n2) be the same as in Lemma 2.6. Then,

for any factor λ of k2, there exists a k1λn-periodic sequence S = (x1, x2, . . .) =

(x1, . . . , xkn)◦ such that the period of the k-subsequence Sk=(x1, xk+1, x2k+1, . . . ,

x(n−1)k+1, . . .) is n.

Proof. Let m = k1λn. Then m is a factor of kn. Take an m-periodic

sequence S = (x1, x2, . . .) = (x1, . . . , xm)◦ such that x1, . . . , xm are pairwise

different elements. Noting that xi+m = xi for all i ∈ N, we can also write

S = (x1, . . . , xkn)◦. For 0 ≤ i < j ≤ n − 1, we have (j − i)k2/n 6∈ N since

gcd(k2, n) = 1, which implies that (j − i)k/(k1λn) = (j − i)k2/(λn) 6∈ N, and

hence jk + 1 6≡ ik + 1 (mod k1λn). Thus x1, xk+1, x2k+1, . . . , x(n−1)k+1 are

pairwise different elements, and hence the period of Sk is n. �

Lemma 2.9. Suppose that S = (x1, x2, . . .) = (x1, . . . , xkn)◦ is a kn-periodic

sequence with k ≥ 2 and n ≥ 2. Let Si = (xi, xk+i, x2k+i, . . . , x(n−1)k+i)
◦, for

each i ∈ N, be the i-th k-subsequence of S. Then:

(a) There exists i ∈ {1, . . . , k} such that the period of Si is a factor of n

greater than 1.

(b) If there exist a prime number p and λ ∈ N such that n = pλ, then there

exists i ∈ {1, . . . , k} such that the period of Si is n.
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Proof. Since the length of the finite sequence (xi, xk+i, x2k+i, . . . , x(n−1)k+i)

is n, by Corollary 2.3, the period of Si must be a factor of n.

(a) is obvious, since, otherwise, if for each i ∈ {1, . . . , k}, the period of Si
is 1, then the period of S will be a factor of k, which contradicts the condition

of the lemma that period of S is kn.

(b) is also obvious, since, otherwise, if for each i ∈ {1, . . . , k}, the period of

Si is a proper factor of n = pλ, then the period of S will be a proper factor of

kn, which also contradicts the condition of the lemma. �

Remark 2.10. In Lemma 2.9, if n is not an integral power of some prime

number, then it is possible that the period of any k-subsequence of S is a proper

factor of n. For example, let k = 2, n = 6, and let x1, x2, y1, y2, y3 be pairwise

different elements. Then the period of any 2-subsequence of the 12-periodic

sequence S = (x1, y1, x2, y2, x1, y3, x2, y1, x1, y2, x2, y3)◦ is a proper factor of 6.

From Lemma 2.7 we get

Corollary 2.11. Suppose that X is a set and F : X → 2X − {∅} is a mul-

tivalued map. Let k, n and (k1, k2, n1, n2) be the same as in Lemma 2.6. If F k

has an n-periodic orbit, then F itself has a periodic orbit, of which the period is

a factor of kn and is an integral multiple of k1n.

Proof. Let Ok = (x1, xk+1, x2k+1, . . . , x(n−1)k+1)◦ be an n-periodic orbit of

F k. By Remark 2.1, Ok can be extended to be a periodic orbit

O = (x1, . . . , xk, xk+1, . . . , x2k, x2k+1, . . . , x(n−1)k+1, . . . , xnk)◦

of F . By Lemma 2.7, the period of O is k1λn for some factor λ of k2. �

From Lemma 2.9 we get the following corollary at once.

Corollary 2.12. Let F : X → 2X − {∅} be a multivalued map. Suppose

that F has a kn-periodic orbit O = (x1, x2, . . .) = (x1, . . . , xkn)◦ with k ≥ 2 and

n ≥ 2. Then:

(a) The k-th iterate F k has a periodic orbit, whose period is a factor of n

greater than 1.

(b) If there exist a prime number p and λ ∈ N such that n = pλ, then F k

has an n-periodic orbit.

3. Multivalued maps with continuous margins of intervals

Let I be a bounded connected subset of R. Recall that each map F : I → L(I)

is called a connected-multivalued map on I, and F is a multivalued map with

continuous margins if both the left endpoint α : I → I and the right endpoint

functions β : I → I of F are continuous.
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Lemma 3.1. Let F : I → L(I) and G : I → L(I) be multivalued maps with

continuous margins. Then the composite function G ◦ F also is a multivalued

map with continuous margins from I to L(I).

Proof. Let α1, β1 and α2, β2 be the left endpoint and right endpoint func-

tions of F and G, respectively. Define α3 : I → I and β3 : I → I by

α3(x) = inf{α2(y) : y ∈ F (x)} and β3(x) = sup{β2(y) : y ∈ F (x)},

x ∈ I. For any u, v ∈ R, denote by 〈u, v〉 the smallest connected subset containing

u and v in R. Then we have

(α3(x), β3(x)) ⊂ G ◦ F (x) ⊂ [α3(x), β3(x)]

since F (x) is connected and α2 is continuous. It is easy to see that for any

x,w ∈ I, |α3(w)− α3(x)| ≤ max{S1, S2}, where

S1 = sup{α2(u)− α2(v) : {u, v} ⊂ 〈α1(x), α1(w)〉 ∩ I
}
,

S2 = sup{α2(u)− α2(v) : {u, v} ⊂ 〈β1(x), β1(w)〉 ∩ I}.

Noting that α1, β1 and α2 are continuous, we derive that α3(w) → α3(x) as

w → x. Thus α3 is continuous. In a similar fashion, we can show that β3 is also

continuous. Hence G ◦ F is a multivalued map with continuous margins from I

to L(I). �

Definition 3.2. Let F : X→2X−{∅} be a multivalued map, and f : X→X

be a single-valued map. We say that F contains f or f is contained by F if

f(x) ∈ F (x) for any x ∈ X. If f is contained by F , then we write f ∈̇F .

The following is one of the key lemmas in this paper.

Lemma 3.3. Let F : I → L(I) be a multivalued map with continuous margins

and n ∈ N. Then for any pairwise different points x1, . . . , xn in I and any given

yi ∈ F (xi), 1 ≤ i ≤ n, there exists a continuous map f : I → I such that f ∈̇F
and f(xi) = yi for every 1 ≤ i ≤ n.

Proof. Let α and β be the left endpoint and right endpoint functions of F ,

respectively. For any i ∈ {1, . . . , n}, obviously, there is a real number ti ∈ [0, 1]

such that yi = tiα(xi) + (1 − ti)β(xi). Take a continuous function t : I → [0, 1]

such that

t(xi) = ti for i ∈ {1, . . . , n},(3.1)

t(x) ∈ (0, 1) for any x ∈ I − {x1, . . . , xn}.(3.2)

Define f : I → I by

(3.3) f(x) = t(x) · α(x) + (1− t(x)) · β(x) for any x ∈ I.
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Then f is continuous. By (3.1) and (3.3), we have f(xi) = yi for i ∈ {1, . . . , n}.
By (3.2) and (3.3), we get

f(x) ∈ (α(x), β(x)) ⊂ F (x) for any x ∈ I − {x1, . . . , xn}.

Thus f ∈̇F . �

From Lemma 3.3 we obtain the following corollary at once.

Corollary 3.4. Let F : I → L(I) be a multivalued map with continuous

margins, and O = (x1, x2, . . .) = (x1, . . . , xn)◦ be an n-periodic orbit of F , where

n ∈ N. If x1, . . . , xn are pairwise different, then F contains a continuous map

f : I → I such that O = (x1, . . . , xn)◦ is also an n-periodic orbit of f , and hence,

for any m ∈ N with n � m, f and F have an m-periodic orbit.

If (x1, x2, . . .) = (x1, x2)◦ is a 2-periodic sequence, then we must have x1 6=
x2. Therefore, from Corollary 3.4 we get

Corollary 3.5. If a multivalued map with continuous margins F : I → L(I)

has a 2-periodic orbit, then F has a 1-periodic orbit.

Corollary 3.6. Let F : I → L(I) be a multivalued map with continuous

margins. If F has a 3-periodic orbit (x1, x2, . . .) = (x1, x2, x3)◦, then F has an

m-periodic orbit for any m ∈ N.

Proof. By Corollary 3.4, we can consider only the case that xi = xj for

some 1 ≤ i < j ≤ 3, that is, there exists k ∈ {1, 2, 3} such that xk = xk+1 6=
xk+2. From this we see that F has a 1-periodic orbit (xk)◦, a 2-periodic orbit

(xk, xk+2)◦, and an m-periodic orbit (xk, xk+2, y1, . . . , ym−2)◦ for any m ≥ 3,

where y1 = . . . = ym−2 = xk. �

Corollary 3.7. Let F : I → L(I) be a multivalued map with continuous

margins. If F has a 4-periodic orbit (x1, x2, . . .) = (x1, x2, x3, x4)◦, then F has

a 2-periodic orbit.

Proof. By Corollary 3.4, we can consider only the case that xi = xj for

some 1 ≤ i < j ≤ 5 with i ≤ 4 and j ≤ i+2. If j = i+1, then F has a 3-periodic

orbit (xj+1, xj+2, xj+3)◦, and hence has a 2-periodic orbit. If j = i+ 2, then at

least one of the two orbits (xi, xi+1)◦ and (xj , xj+1)◦ is a 2-periodic orbit. �

Lemma 3.8. Let F : I → L(I) be a multivalued map with continuous margins.

If F has a 2λ-periodic orbit, then F has a 2λ−1-periodic orbit.

Proof. It follows from Corollaries 3.5 and 3.7 that Lemma 3.8 holds for

the case that λ ∈ {1, 2}. In what follows we can assume that λ ≥ 3. By (b) of

Corollary 2.12, we see that F 2λ−2

has a 4-periodic orbit. This combining with

Corollary 3.7 implies that F 2λ−2

has a 2-periodic orbit. Using Corollary 2.11
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in the case that k = k1 = 2λ−2 and n = 2, we see that F has a 2λ−1-periodic

orbit. �

Now we give the main result of this paper and its proof.

Theorem 3.9. Let I be a bounded connected subset of R and F : I → L(I)

be a multivalued map with continuous margins. For any m,n ∈ N with n � m,

if F has an n-periodic orbit, then F has an m-periodic orbit.

Proof. If x1, . . . , xn are pairwise different points, then by Corollary 3.4, we

see that Theorem 3.9 holds. We can add the following hypothesis:

(H1) There exist 1 ≤ i < j ≤ i + n − 2 such that xi = xj 6= xj+1 and j − i
is the least, that is, if there exist 1 ≤ i′ < j′ ≤ i′ + n − 2 such that

xi′ = xj′ 6= xj′+1, then j′ − i′ ≥ j − i. Further, we may assume that

xj+1 > xj .

By Lemmas 3.6 and 3.8, we can add the following hypothesis:

(H2) For any λ ∈ N, 3 � n � 2λ, and it has been proved that, for any n0 ∈ N
with 3 � n0 � n and for any multivalued map with continuous margins

G : I → L(I), if G has an n0-periodic orbit, then for any m ∈ N with

n0 � m, G has an m-periodic orbit.

There are three cases to be considered.

Case 1. n > 3 is odd and j − i ≥ 2.

In this case, by (H1), O1 ≡ (xi, . . . , xj−1)◦ and O2 ≡ (xj , . . . , xi+n−1)◦ are

also periodic orbits of F , whose periods are greater than 1 and are factors of j−i
and i + n − j, respectively. Hence, since one of the integers j − i and i + n − j
is odd, F has an n0-periodic orbit for some odd n0 with 3 � n0 � n. Therefore,

by (H2), for any m ∈ N with n � m, F has an m-periodic orbit.

Case 2. n > 3 is odd and j − i = 1.

There are two subcases.

Subcase 2.1. There is k ∈ {3, . . . , n−1} such that xi+k = xi. In this subcase,

O1 ≡ (xi, . . . , xi+k−1)◦ and O2 ≡ (xi+1, . . . , xi+k−1)◦ are periodic orbits of F ,

whose periods are greater than 1 and are factors of k and k − 1, respectively.

Since one of the integers k and k − 1 is odd, similar to Case 1, for any m ∈ N
with n � m, F has an m-periodic orbit.

Subcase 2.2. xi+λ 6= xi for any λ ∈ {2, . . . , n − 1}. In this subcase, there is

k ∈ {2, . . . , n− 1} such that xi+k+1 ≤ xi and xi+λ > xi for λ ∈ {2, . . . , k}. Let

Z0 = {λ : λ ∈ {2, . . . , k} and xi+λ ≥ xi+k}. Then k ∈ Z0. Let q = minZ0. If

q > 2, then xi < xi+q−1 < xi+k ≤ xi+q. By Lemma 3.3, F contains a continuous

map f : I → I such that f(xi) = xi, f(xi+q−1) = xi+q ≥ xi+k and f(xi+k) =

xi+k−1 ≤ x1. Thus f is turbulent since f([xi, xi+q−1])∩f([xi+q−1, xk]) ⊃ [xi, xk].
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It is well-known that a turbulent interval map, f (and hence F ), has an m-

periodic orbit for any m ∈ N.

If q = 2, then xi+k ∈ (xi, xi+2] ⊂ F (xi). By Lemma 3.3, F contains a contin-

uous map f : I → I such that f(xi) = xi+2 ≥ xi+k > xi and f(xi+k) = xi+k+1 ≤
xi, which implies that there is a point y ∈ (xi, xi+k] such that f(y) = xi, and

hence F has a 3-periodic orbit (xi, xi, y)◦. By Lemma 3.6, F has an m-periodic

orbit for any m ∈ N.

Case 3. n = 2λ(2µ+ 1) for some λ, µ ∈ N.

In this case, from (a) of Corollary 2.12 we see that F 2λ has a periodic orbit

which period is a factor of 2µ+1 greater than 1. By Lemma 3.8, we may assume

that n � m � 2λ.

If n � m � 3 · 2λ+1, then there is µ0 ∈ N such that m = 2λ(2µ + 2µ0 + 1).

By hypothesis (H2), F 2λ has a (2µ+ 2µ0 + 1)-periodic orbit. By Corollary 2.11,

there is a factor k2 of 2λ such that F has a k2(2µ+ 2µ0 + 1)-periodic orbit Om.

If k2 = 2λ, Om itself is an m-periodic orbit of F . If k2 is a proper factor of 2λ,

then 3 � k2(2µ+ 2µ0 + 1) � n, and from (H2) we see that F has an m-periodic

orbit.

If 3 · 2λ+1 � m � 2λ, then there is m0 ∈ N such that m = 2λ · 2m0. By

hypothesis (H2), F 2λ has a 2m0-periodic orbit. Using Corollary 2.11 to the case

that k = k1 = 2λ, we see that F has an m-periodic orbit. �
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[6] , Sharkovskĭı’s theorem, differential inclusions, and beyond, Topol. Methods Non-

linear Anal. 33 (2009), 149–168.
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