PERIODIC ORBITS FOR MULTIVALUED MAPS WITH CONTINUOUS MARGINS OF INTERVALS

Jiehua Mai - Taixiang Sun

Abstract

Let I be a bounded connected subset of \mathbb{R} containing more than one point, and $\mathcal{L}(I)$ be the family of all nonempty connected subsets of I. Each map from I to $\mathcal{L}(I)$ is called a multivalued map. A multivalued map $F: I \rightarrow \mathcal{L}(I)$ is called a multivalued map with continuous margins if both the left endpoint and the right endpoint functions of F are continuous. We show that the well-known Sharkovskiĭ theorem for interval maps also holds for every multivalued map with continuous margins $F: I \rightarrow \mathcal{L}(I)$, that is, if F has an n-periodic orbit and $n \succ m$ (in the Sharkovskiĭ ordering), then F also has an m-periodic orbit.

1. Introduction

Let X be a set and $\mathbb{N}=\{1,2, \ldots\}$. An infinite sequence $\left(x_{1}, x_{2}, \ldots\right)$ of elements in X is said to be periodic if there is $n \in \mathbb{N}$ such that

$$
\begin{equation*}
x_{i+n}=x_{i} \quad \text { for all } i \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

In this case, we also write $\left(x_{1}, \ldots, x_{n}\right)^{\circ}$ for $\left(x_{1}, x_{2}, \ldots\right)$, where we put the small circle \circ at the top-right corner of the finite sequence $\left(x_{1}, \ldots, x_{n}\right)$, which means that we repeat this finite sequence infinitely many times. The least n such that (1.1) holds is called the period of $\left(x_{1}, x_{2}, \ldots\right)$. Note that if we cannot clearly

[^0]mention the period of the infinite sequence $\left(x_{1}, \ldots, x_{n}\right)^{\circ}$, then it may be a proper factor of n. A periodic sequence of period n is also called an n-periodic sequence.

Denote by $2^{X}-\{\emptyset\}$ the family of all nonempty subsets of X. Each map from X to $2^{X}-\{\emptyset\}$ is called a multivalued map on X. An infinite sequence $\left(x_{1}, x_{2}, \ldots\right)$ of elements in X is called an orbit of $F: X \rightarrow 2^{X}-\{\emptyset\}$ if $x_{i+1} \in F\left(x_{i}\right)$ for all $i \in \mathbb{N}$. The sequence $\left(x_{1}, x_{2}, \ldots\right)$ is called a periodic orbit of F if it is both a periodic sequence and an orbit of F. If $\mathcal{O}=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{n}\right)^{\circ}$ is an n periodic orbit of F, then, for any $i \in \mathbb{N}$, the finite sequence $\left(x_{i}, x_{i+1}, \ldots, x_{i+n-1}\right)$ with length n is called a periodic segment of the orbit \mathcal{O}. If $F: X \rightarrow 2^{X}-\{\emptyset\}$ is a multivalued map and F contains only one element for each $x \in X$, then F is a single-valued map from X to X. Note that if $f: X \rightarrow X$ is a single-valued map, then any period segment of a periodic orbit of f contains no repeating element, and if $F: X \rightarrow 2^{X}-\{\emptyset\}$ is a multivalued map, then a period segment of some periodic orbit of F may contain repeating elements. This is a difference between single-valued maps and multivalued maps. Since there may appear repeating elements in a period segment when we study periodic orbits of multivalued maps, it will meet some additional trouble.

Let I be a bounded connected subset of \mathbb{R} containing more than one point, that is, I is a closed interval, or an open interval, or a half-open interval. Denote by \bar{I} the closure of I in \mathbb{R} and by $\mathcal{L}(I)$ the family of all nonempty connected subsets of I. Each map from I to $\mathcal{L}(I)$ is called a connected-multivalued map on I. Obviously, for any connected-multivalued map $F: I \rightarrow \mathcal{L}(I)$, there exists a unique pair of functions $\alpha: I \rightarrow \bar{I}$ and $\beta: I \rightarrow \bar{I}$, called the left endpoint function and the right endpoint function of F, respectively, satisfying the following two conditions:
(i) $\alpha(x) \leq \beta(x)$ for any $x \in I$;
(ii) $(\alpha(x), \beta(x)) \subset F(x) \subset[\alpha(x), \beta(x)]$ for any $x \in I$.

If $\alpha(x)=\beta(x)$, then $F(x)=[\alpha(x), \beta(x)]=\{\alpha(x)\}$.
A connected-multivalued map $F: I \rightarrow \mathcal{L}(I)$ is said to be a multivalued map with continuous margins if both the left endpoint and the right endpoint functions of F are continuous.

In 1964, Sharkovskiĭ found the following order relation in \mathbb{N} :

$$
\begin{aligned}
& 3 \succ 5 \succ 7 \succ \ldots \succ 3 \cdot 2 \succ 5 \cdot 2 \succ 7 \cdot 2 \succ \ldots \succ 3 \cdot 2^{2} \succ 5 \cdot 2^{2} \succ 7 \cdot 2^{2} \succ \ldots \\
& \ldots \succ 3 \cdot 2^{k} \succ 5 \cdot 2^{k} \succ 7 \cdot 2^{k} \succ \ldots \succ 2^{4} \succ 2^{3} \succ 2^{2} \succ 2 \succ 1,
\end{aligned}
$$

and proved the following theorem.
Theorem 1.1 (Sharkovskiì's theorem, see [17]). Let J be a connected subset of \mathbb{R} and $f: J \rightarrow J$ be a single-valued continuous map. For any $m, n \in \mathbb{N}$ with $n \succ m$, if f has an n-periodic orbit, then f has an m-periodic orbit.

Note that the above Sharkovskii1's order is well-ordered. If $n \succ m$ in this order, then we also write $m \prec n$.

In [1], Alseda and Llibre showed that Theorem 1.1 holds for triangular maps on a rectangle. In [12], Minc and Transue showed that Sharkovskiu's theorem also holds for continuous maps on hereditarily decomposable chainable continua. In [5], Andres et al. also obtained a full analogy of Sharkovskiù's theorem for lower-semicontinuous maps (i.e. for every closed subset $V \subset \mathbb{R}$, the set $\{x \in \mathbb{R}$: $F(x) \subset V\}$ is closed) with nonempty, connected and compact values.

Recently, there has been a lot of work on the dynamics of multivalued maps (see [11], [13]-[16]). In [3], Andres et al. studied the periodic orbits of a class of multivalued maps and obtained the following theorem.

Theorem 1.2. Let $\mathcal{C}(\mathbb{R})$ be the family of all nonempty compact connected subsets of \mathbb{R} and $F: \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R})$ be upper-semicontinuous (i.e. for every open $V \subset \mathbb{R}$, the set $\{x \in \mathbb{R}: F(x) \subset V\}$ is open). If F has an n-periodic orbit for some odd integer n, but F has no l-periodic orbit for any $l \succ n$, then for any $n \succ m$, F has an m-periodic orbit, except $m=4$.

Further, Andres and Pastor [9] (also see [10]) obtained the following theorem.
Theorem 1.3. Let $F: \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R})$ be upper-semicontinuous. For any $m, n \in$ \mathbb{N} with $n \succ m$, if F has an n-periodic orbit, then F has an m-periodic orbit with at most two exceptions.

For some other papers in the area, see also [2], [4], [6]-[8] and the references therein. In this paper, we study connected-multivalued maps on the bounded connected set I. Our main result is the following theorem.

Theorem 1.4. Let I be a bounded connected subset of \mathbb{R} and $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins. For any $m, n \in \mathbb{N}$ with $n \succ m$, if F has an n-periodic orbit, then F has an m-periodic orbit.

REmark 1.5. In [2]-[10], the set of every value of upper-semicontinuous and lower-semicontinuous maps is nonempty, it is a connected and compact set. But for multivalued maps with continuous margins of intervals studied in this paper, the set of every value need not be compact.

REmark 1.6. In [3], the authors constructed upper-semicontinuous maps $F: \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R})$ and $G: \mathbb{R} \rightarrow \mathcal{C}(\mathbb{R})$ such that F has a 3 -periodic orbit but has no 2 -periodic orbit and G has a 5 -periodic orbit but has no 4 -periodic orbit. While for multivalued maps with continuous margins of intervals studied in this paper, Sharkovskil's theorem holds, without exception.

Example 1.7. Define a connected-multivalued map $F:[0,1] \rightarrow \mathcal{L}([0,1])$ by

$$
F(x)= \begin{cases}{[0,0]} & \text { if } x=0 \\ {[0, \sqrt{2} x)} & \text { if } x \in(0, \sqrt{2} / 2) \\ {[0,1]} & \text { if } x=\sqrt{2} / 2 \\ {[0,(2+\sqrt{2})(1-x))} & \text { if } x \in(\sqrt{2} / 2,0) \\ {[0,0]} & \text { if } x=1\end{cases}
$$

$x \in[0,1]$. Then, according to our definition, F is a multivalued map with continuous margins. But according to the definitions in [2]-[4], [6]-[10], F is not upper-semicontinuous since the set $\{x \in[0,1]: F(x) \subset[0, y)\}=[0, y / \sqrt{2}] \cup$ $[1-y /(2+\sqrt{2}), 1]$ is closed for any $y \in(0,1]$. What means that continuity of margins does not necessarily implies upper-semicontinity of the multivalued map with continuous margins under consideration.

2. Periodic orbits for multivalued maps

Let X be a set. Let F and G be maps from X to $2^{X}-\{\emptyset\}$. Define the composite map $G \circ F: X \rightarrow 2^{X}-\{\emptyset\}$ by

$$
\begin{equation*}
G \circ F(x)=\bigcup\{G(y): y \in F(x)\} \tag{2.1}
\end{equation*}
$$

$x \in X$. Denote by F^{0} the identity map on $X, F^{1}=F$, and $F^{n+1}=F \circ F^{n}$ for each $n \in \mathbb{N}$. For $n \geq 0, F^{n}$ is called the n-th iterate of F.

Remark 2.1. We see from the definition that for any $n \geq 2$ and any $x \in X$,

$$
\begin{aligned}
& F^{n}(x)=\left\{y \in X: \text { there exists }\left\{x_{i}\right\}_{i=0}^{n} \subset X\right. \\
& \\
& \left.\quad \text { such that } x_{0}=x, x_{n}=y, x_{i} \in F\left(x_{i-1}\right) \text { for } 1 \leq i \leq n\right\} .
\end{aligned}
$$

Let $S=\left(x_{1}, x_{2}, \ldots\right)$ be an infinite sequence. For any $k, i \in \mathbb{N}$, the sequence

$$
\left(x_{i}, x_{k+i}, x_{2 k+i}, x_{3 k+i}, \ldots\right)
$$

is called the i-th k-subsequence of S. Obviously, if the sequence S is an orbit of $F: X \rightarrow 2^{X}-\{\emptyset\}$, then any k-subsequence of S is an orbit of F^{k}.

The following lemma is well-known, but we still give a simplified proof.
Lemma 2.2. Suppose that $\left(x_{1}, x_{2}, \ldots\right)$ is an infinite sequence. Let $n, m \in \mathbb{N}$ and $k=\operatorname{gcd}(n, m)$ be the greatest common factor of n and m. If $x_{i+n}=x_{i}$ and $x_{i+m}=x_{i}$ for all $i \in \mathbb{N}$, then $x_{i+k}=x_{i}$ for all $i \in \mathbb{N}$.

Proof. As $k=\operatorname{gcd}(n, m)$, there exist $p, q \in \mathbb{N}$ such that $p n-q m=k$. Then we have $x_{i}=x_{i+p n}=x_{i+p n-q m}=x_{i+k}$ for any $i \in \mathbb{N}$.

Corollary 2.3. If $\left(x_{1}, x_{2}, \ldots\right)$ is a periodic sequence, which can be written as $\left(x_{1}, \ldots, x_{n}\right)^{\circ}$, then the period of this sequence is a factor of n.

Definition 2.4. Two positive integers k and n are said to have the same prime factor if for any prime number p, p is a factor of k if and only if p is a factor of n.

The following lemma is trivial.
Lemma 2.5. Suppose that integers k and n have the same prime factor. Then:
(a) $k=1$ if and only if $n=1$.
(b) If $k>1$, then there exist prime numbers p_{1}, \ldots, p_{m} with $m \geq 1$ and positive integers $\lambda_{1}, \ldots, \lambda_{m}, \mu_{1}, \ldots, \mu_{m}$ such that

$$
k=\prod_{i=1}^{m} p_{i}^{\lambda_{i}} \quad \text { and } \quad n=\prod_{i=1}^{m} p_{i}^{\mu_{i}} .
$$

Lemma 2.6. Let $k, n \in \mathbb{N}$. Then there exists a unique sequence $\left(k_{1}, k_{2}, n_{1}, n_{2}\right)$ of positive integers such that
(a) $k=k_{1} k_{2}$ and $n=n_{1} n_{2}$,
(b) k_{1} and n_{1} have the same prime factor,
(c) $\operatorname{gcd}\left(k_{2}, n\right)=1$ and $\operatorname{gcd}\left(n_{2}, k\right)=1$.

Proof. Let $k_{2}=\max \{\lambda: \lambda$ is a factor of k and $\operatorname{gcd}(\lambda, n)=1\}$ and $n_{2}=$ $\max \{\mu: \mu$ is a factor of n and $\operatorname{gcd}(\mu, k)=1\}$. Put $k_{1}=k / k_{2}$ and $n_{1}=n / n_{2}$. Then the sequence ($k_{1}, k_{2}, n_{1}, n_{2}$) satisfies three conditions in Lemma 2.6. Moreover, it is easy to show that the sequence $\left(k_{1}, k_{2}, n_{1}, n_{2}\right)$ satisfying these three conditions is unique, so the process can be omitted.

The main result in this section is the following lemma.
Lemma 2.7. Suppose that $S=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{n k}\right)^{\circ}$ is a periodic sequence with $n>1$ and $k>1$, and $S_{k}=\left(x_{1}, x_{k+1}, x_{2 k+1}, \ldots, x_{(n-1) k+1}\right)^{\circ}$ is a k-subsequence of S. Let $\left(k_{1}, k_{2}, n_{1}, n_{2}\right)$ be the same as in Lemma 2.6. If the period of S_{k} is n, then there is a factor λ of k_{2} such that the period of S is $k_{1} \lambda n$.

Proof. Let m be the period of the sequence S. According to Corollary 2.3, m is a factor of $k n$. Then $\operatorname{gcd}(m, k n)=m$. Write $n_{3}=\operatorname{gcd}\left(m, n_{2}\right)$. Then $n_{1} n_{3}$ is a factor of $n=n_{1} n_{2}$. As $\operatorname{gcd}\left(n_{2}, k n_{1}\right)=1$, we have $m=\operatorname{gcd}(m, k n)=$ $\operatorname{gcd}\left(m, k n_{1} n_{2}\right)=\operatorname{gcd}\left(m, k n_{1}\right) \cdot \operatorname{gcd}\left(m, n_{2}\right)=\operatorname{gcd}\left(m, k n_{1}\right) \cdot n_{3}$. Hence m is a factor of $k n_{1} n_{3}$, which implies

$$
\begin{equation*}
x_{i+k n_{1} n_{3}}=x_{i} \quad \text { for all } i \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

On the other hand, if $n_{1} n_{3}<n$, then $x_{j+k n_{1} n_{3}}=x_{j}$ does not hold for some $j \in\{1, k+1,2 k+1, \ldots,(n-1) k+1\}$ since the period of the sequence S_{k} is n. This will contradict to (2.2). Thus we must have $n_{1} n_{3}=n$, which means that $n_{2}=n_{3}=\operatorname{gcd}\left(m, n_{2}\right)$. Hence we obtain:

Claim 1. $m=n_{2} r$ for some $r \in \mathbb{N}$.

Let $k_{3}=\operatorname{gcd}\left(m, k_{1} n_{1}\right) . \operatorname{As} \operatorname{gcd}\left(k_{1} n_{1}, k_{2} n_{2}\right)=1$, we have

$$
\begin{aligned}
m & =\operatorname{gcd}(m, k n)=\operatorname{gcd}\left(m, k_{1} n_{1} \cdot k_{2} n_{2}\right) \\
& =\operatorname{gcd}\left(m, k_{1} n_{1}\right) \cdot \operatorname{gcd}\left(m, k_{2} n_{2}\right)=k_{3} \cdot \operatorname{gcd}\left(m, k_{2} n_{2}\right) .
\end{aligned}
$$

Let $k_{4}=\operatorname{lcm}\left(k_{1}, k_{3}\right)$ be the least common multiple of k_{1} and k_{3}. Then m is a factor of $k_{4} k_{2} n_{2}$, and hence

$$
\begin{equation*}
x_{i}=x_{i+k_{4} k_{2} n_{2}} \quad \text { for all } i \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

On the other hand, if k_{3} is a proper factor of $k_{1} n_{1}$, then $k_{1}>1, n_{1}>1$, and from the condition (b) of Lemma 2.6, we see that k_{4} is also a proper factor of $k_{1} n_{1}$, which implies that $k_{4} k_{2} n_{2}$ is a proper factor of $n k=k_{1} n_{1} k_{2} n_{2}$. Thus there is a proper factor n_{4} of n such that $k_{4} k_{2} n_{2}=k n_{4}$. However, $x_{j+k n_{4}}=x_{j}$ does not hold for some $j \in\{1, k+1,2 k+1, \ldots,(n-1) k+1\}$ since the period of the sequence S_{k} is n. This will contradict to (2.3). Thus we must have $k_{3}=\operatorname{gcd}\left(m, k_{1} n_{1}\right)=k_{1} n_{1}$ and hence we obtain

Claim 2. $m=k_{1} n_{1} r$ for some $r \in \mathbb{N}$.
As $\operatorname{gcd}\left(k_{1} n_{1}, n_{2}\right)=1$, by Claims 1 and 2 , we see that $m=k_{1} n_{1} n_{2} r=k_{1} n r$ for some $r \in \mathbb{N}$. Hence there exists a factor λ of k_{2} such that $m=k_{1} \lambda n$ since m is a factor of $k n=k_{1} k_{2} n_{1} n_{2}$.

Conversely, we have
Lemma 2.8. Let k, n and $\left(k_{1}, k_{2}, n_{1}, n_{2}\right)$ be the same as in Lemma 2.6. Then, for any factor λ of k_{2}, there exists a $k_{1} \lambda n$-periodic sequence $S=\left(x_{1}, x_{2}, \ldots\right)=$ $\left(x_{1}, \ldots, x_{k n}\right)^{\circ}$ such that the period of the k-subsequence $S_{k}=\left(x_{1}, x_{k+1}, x_{2 k+1}, \ldots\right.$, $\left.x_{(n-1) k+1}, \ldots\right)$ is n.

Proof. Let $m=k_{1} \lambda n$. Then m is a factor of $k n$. Take an m-periodic sequence $S=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{m}\right)^{\circ}$ such that x_{1}, \ldots, x_{m} are pairwise different elements. Noting that $x_{i+m}=x_{i}$ for all $i \in \mathbb{N}$, we can also write $S=\left(x_{1}, \ldots, x_{k n}\right)^{\circ}$. For $0 \leq i<j \leq n-1$, we have $(j-i) k_{2} / n \notin \mathbb{N}$ since $\operatorname{gcd}\left(k_{2}, n\right)=1$, which implies that $(j-i) k /\left(k_{1} \lambda n\right)=(j-i) k_{2} /(\lambda n) \notin \mathbb{N}$, and hence $j k+1 \not \equiv i k+1\left(\bmod k_{1} \lambda n\right)$. Thus $x_{1}, x_{k+1}, x_{2 k+1}, \ldots, x_{(n-1) k+1}$ are pairwise different elements, and hence the period of S_{k} is n.

Lemma 2.9. Suppose that $S=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{k n}\right)^{\circ}$ is a kn-periodic sequence with $k \geq 2$ and $n \geq 2$. Let $S_{i}=\left(x_{i}, x_{k+i}, x_{2 k+i}, \ldots, x_{(n-1) k+i}\right)^{\circ}$, for each $i \in \mathbb{N}$, be the i-th k-subsequence of S. Then:
(a) There exists $i \in\{1, \ldots, k\}$ such that the period of S_{i} is a factor of n greater than 1.
(b) If there exist a prime number p and $\lambda \in \mathbb{N}$ such that $n=p^{\lambda}$, then there exists $i \in\{1, \ldots, k\}$ such that the period of S_{i} is n.

Proof. Since the length of the finite sequence ($x_{i}, x_{k+i}, x_{2 k+i}, \ldots, x_{(n-1) k+i}$) is n, by Corollary 2.3 , the period of S_{i} must be a factor of n.
(a) is obvious, since, otherwise, if for each $i \in\{1, \ldots, k\}$, the period of S_{i} is 1 , then the period of S will be a factor of k, which contradicts the condition of the lemma that period of S is $k n$.
(b) is also obvious, since, otherwise, if for each $i \in\{1, \ldots, k\}$, the period of S_{i} is a proper factor of $n=p^{\lambda}$, then the period of S will be a proper factor of $k n$, which also contradicts the condition of the lemma.

REmark 2.10. In Lemma 2.9, if n is not an integral power of some prime number, then it is possible that the period of any k-subsequence of S is a proper factor of n. For example, let $k=2, n=6$, and let $x_{1}, x_{2}, y_{1}, y_{2}, y_{3}$ be pairwise different elements. Then the period of any 2 -subsequence of the 12 -periodic sequence $S=\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{1}, y_{3}, x_{2}, y_{1}, x_{1}, y_{2}, x_{2}, y_{3}\right)^{\circ}$ is a proper factor of 6 .

From Lemma 2.7 we get
Corollary 2.11. Suppose that X is a set and $F: X \rightarrow 2^{X}-\{\emptyset\}$ is a multivalued map. Let k, n and $\left(k_{1}, k_{2}, n_{1}, n_{2}\right)$ be the same as in Lemma 2.6. If F^{k} has an n-periodic orbit, then F itself has a periodic orbit, of which the period is a factor of $k n$ and is an integral multiple of $k_{1} n$.

Proof. Let $O_{k}=\left(x_{1}, x_{k+1}, x_{2 k+1}, \ldots, x_{(n-1) k+1}\right)^{\circ}$ be an n-periodic orbit of F^{k}. By Remark 2.1, O_{k} can be extended to be a periodic orbit

$$
O=\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{2 k}, x_{2 k+1}, \ldots, x_{(n-1) k+1}, \ldots, x_{n k}\right)^{\circ}
$$

of F. By Lemma 2.7, the period of O is $k_{1} \lambda n$ for some factor λ of k_{2}.
From Lemma 2.9 we get the following corollary at once.
Corollary 2.12. Let $F: X \rightarrow 2^{X}-\{\emptyset\}$ be a multivalued map. Suppose that F has a kn-periodic orbit $O=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{k n}\right)^{\circ}$ with $k \geq 2$ and $n \geq 2$. Then:
(a) The k-th iterate F^{k} has a periodic orbit, whose period is a factor of n greater than 1.
(b) If there exist a prime number p and $\lambda \in \mathbb{N}$ such that $n=p^{\lambda}$, then F^{k} has an n-periodic orbit.

3. Multivalued maps with continuous margins of intervals

Let I be a bounded connected subset of \mathbb{R}. Recall that each map $F: I \rightarrow \mathcal{L}(I)$ is called a connected-multivalued map on I, and F is a multivalued map with continuous margins if both the left endpoint $\alpha: I \rightarrow \bar{I}$ and the right endpoint functions $\beta: I \rightarrow \bar{I}$ of F are continuous.

Lemma 3.1. Let $F: I \rightarrow \mathcal{L}(I)$ and $G: I \rightarrow \mathcal{L}(I)$ be multivalued maps with continuous margins. Then the composite function $G \circ F$ also is a multivalued map with continuous margins from I to $\mathcal{L}(I)$.

Proof. Let α_{1}, β_{1} and α_{2}, β_{2} be the left endpoint and right endpoint functions of F and G, respectively. Define $\alpha_{3}: I \rightarrow \bar{I}$ and $\beta_{3}: I \rightarrow \bar{I}$ by

$$
\alpha_{3}(x)=\inf \left\{\alpha_{2}(y): y \in F(x)\right\} \quad \text { and } \quad \beta_{3}(x)=\sup \left\{\beta_{2}(y): y \in F(x)\right\}
$$

$x \in I$. For any $u, v \in \mathbb{R}$, denote by $\langle u, v\rangle$ the smallest connected subset containing u and v in \mathbb{R}. Then we have

$$
\left(\alpha_{3}(x), \beta_{3}(x)\right) \subset G \circ F(x) \subset\left[\alpha_{3}(x), \beta_{3}(x)\right]
$$

since $F(x)$ is connected and α_{2} is continuous. It is easy to see that for any $x, w \in I,\left|\alpha_{3}(w)-\alpha_{3}(x)\right| \leq \max \left\{S_{1}, S_{2}\right\}$, where

$$
\begin{aligned}
& S_{1}=\sup \left\{\alpha_{2}(u)-\alpha_{2}(v):\{u, v\} \subset\left\langle\alpha_{1}(x), \alpha_{1}(w)\right\rangle \cap I\right\}, \\
& S_{2}=\sup \left\{\alpha_{2}(u)-\alpha_{2}(v):\{u, v\} \subset\left\langle\beta_{1}(x), \beta_{1}(w)\right\rangle \cap I\right\} .
\end{aligned}
$$

Noting that α_{1}, β_{1} and α_{2} are continuous, we derive that $\alpha_{3}(w) \rightarrow \alpha_{3}(x)$ as $w \rightarrow x$. Thus α_{3} is continuous. In a similar fashion, we can show that β_{3} is also continuous. Hence $G \circ F$ is a multivalued map with continuous margins from I to $\mathcal{L}(I)$.

Definition 3.2. Let $F: X \rightarrow 2^{X}-\{\emptyset\}$ be a multivalued map, and $f: X \rightarrow X$ be a single-valued map. We say that F contains f or f is contained by F if $f(x) \in F(x)$ for any $x \in X$. If f is contained by F, then we write $f \dot{\in} F$.

The following is one of the key lemmas in this paper.
Lemma 3.3. Let $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins and $n \in \mathbb{N}$. Then for any pairwise different points x_{1}, \ldots, x_{n} in I and any given $y_{i} \in F\left(x_{i}\right), 1 \leq i \leq n$, there exists a continuous map $f: I \rightarrow I$ such that $f \dot{\in} F$ and $f\left(x_{i}\right)=y_{i}$ for every $1 \leq i \leq n$.

Proof. Let α and β be the left endpoint and right endpoint functions of F, respectively. For any $i \in\{1, \ldots, n\}$, obviously, there is a real number $t_{i} \in[0,1]$ such that $y_{i}=t_{i} \alpha\left(x_{i}\right)+\left(1-t_{i}\right) \beta\left(x_{i}\right)$. Take a continuous function $t: I \rightarrow[0,1]$ such that

$$
\begin{array}{ll}
t\left(x_{i}\right)=t_{i} & \text { for } i \in\{1, \ldots, n\} \\
t(x) \in(0,1) & \text { for any } x \in I-\left\{x_{1}, \ldots, x_{n}\right\} . \tag{3.2}
\end{array}
$$

Define $f: I \rightarrow I$ by

$$
\begin{equation*}
f(x)=t(x) \cdot \alpha(x)+(1-t(x)) \cdot \beta(x) \quad \text { for any } x \in I \tag{3.3}
\end{equation*}
$$

Then f is continuous. By (3.1) and (3.3), we have $f\left(x_{i}\right)=y_{i}$ for $i \in\{1, \ldots, n\}$. By (3.2) and (3.3), we get

$$
f(x) \in(\alpha(x), \beta(x)) \subset F(x) \quad \text { for any } x \in I-\left\{x_{1}, \ldots, x_{n}\right\}
$$

Thus $f \dot{\in} F$.
From Lemma 3.3 we obtain the following corollary at once.
Corollary 3.4. Let $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins, and $O=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, \ldots, x_{n}\right)^{\circ}$ be an n-periodic orbit of F, where $n \in \mathbb{N}$. If x_{1}, \ldots, x_{n} are pairwise different, then F contains a continuous map $f: I \rightarrow I$ such that $O=\left(x_{1}, \ldots, x_{n}\right)^{\circ}$ is also an n-periodic orbit of f, and hence, for any $m \in \mathbb{N}$ with $n \succ m, f$ and F have an m-periodic orbit.

If $\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}\right)^{\circ}$ is a 2-periodic sequence, then we must have $x_{1} \neq$ x_{2}. Therefore, from Corollary 3.4 we get

Corollary 3.5. If a multivalued map with continuous margins $F: I \rightarrow \mathcal{L}(I)$ has a 2-periodic orbit, then F has a 1-periodic orbit.

Corollary 3.6. Let $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins. If F has a 3-periodic orbit $\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}\right)^{\circ}$, then F has an m-periodic orbit for any $m \in \mathbb{N}$.

Proof. By Corollary 3.4, we can consider only the case that $x_{i}=x_{j}$ for some $1 \leq i<j \leq 3$, that is, there exists $k \in\{1,2,3\}$ such that $x_{k}=x_{k+1} \neq$ x_{k+2}. From this we see that F has a 1-periodic orbit $\left(x_{k}\right)^{\circ}$, a 2-periodic orbit $\left(x_{k}, x_{k+2}\right)^{\circ}$, and an m-periodic orbit $\left(x_{k}, x_{k+2}, y_{1}, \ldots, y_{m-2}\right)^{\circ}$ for any $m \geq 3$, where $y_{1}=\ldots=y_{m-2}=x_{k}$.

Corollary 3.7. Let $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins. If F has a 4-periodic orbit $\left(x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{\circ}$, then F has a 2-periodic orbit.

Proof. By Corollary 3.4, we can consider only the case that $x_{i}=x_{j}$ for some $1 \leq i<j \leq 5$ with $i \leq 4$ and $j \leq i+2$. If $j=i+1$, then F has a 3 -periodic orbit $\left(x_{j+1}, x_{j+2}, x_{j+3}\right)^{\circ}$, and hence has a 2-periodic orbit. If $j=i+2$, then at least one of the two orbits $\left(x_{i}, x_{i+1}\right)^{\circ}$ and $\left(x_{j}, x_{j+1}\right)^{\circ}$ is a 2-periodic orbit.

Lemma 3.8. Let $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins. If F has a 2^{λ}-periodic orbit, then F has a $2^{\lambda-1}$-periodic orbit.

Proof. It follows from Corollaries 3.5 and 3.7 that Lemma 3.8 holds for the case that $\lambda \in\{1,2\}$. In what follows we can assume that $\lambda \geq 3$. By (b) of Corollary 2.12, we see that $F^{2^{\lambda-2}}$ has a 4-periodic orbit. This combining with Corollary 3.7 implies that $F^{2^{\lambda-2}}$ has a 2-periodic orbit. Using Corollary 2.11
in the case that $k=k_{1}=2^{\lambda-2}$ and $n=2$, we see that F has a $2^{\lambda-1}$-periodic orbit.

Now we give the main result of this paper and its proof.
Theorem 3.9. Let I be a bounded connected subset of \mathbb{R} and $F: I \rightarrow \mathcal{L}(I)$ be a multivalued map with continuous margins. For any $m, n \in \mathbb{N}$ with $n \succ m$, if F has an n-periodic orbit, then F has an m-periodic orbit.

Proof. If x_{1}, \ldots, x_{n} are pairwise different points, then by Corollary 3.4, we see that Theorem 3.9 holds. We can add the following hypothesis:
$\left(\mathrm{H}_{1}\right)$ There exist $1 \leq i<j \leq i+n-2$ such that $x_{i}=x_{j} \neq x_{j+1}$ and $j-i$ is the least, that is, if there exist $1 \leq i^{\prime}<j^{\prime} \leq i^{\prime}+n-2$ such that $x_{i^{\prime}}=x_{j^{\prime}} \neq x_{j^{\prime}+1}$, then $j^{\prime}-i^{\prime} \geq j-i$. Further, we may assume that $x_{j+1}>x_{j}$.
By Lemmas 3.6 and 3.8, we can add the following hypothesis:
$\left(\mathrm{H}_{2}\right)$ For any $\lambda \in \mathbb{N}, 3 \succ n \succ 2^{\lambda}$, and it has been proved that, for any $n_{0} \in \mathbb{N}$ with $3 \succeq n_{0} \succ n$ and for any multivalued map with continuous margins $G: I \rightarrow \mathcal{L}(I)$, if G has an n_{0}-periodic orbit, then for any $m \in \mathbb{N}$ with $n_{0} \succ m, G$ has an m-periodic orbit.

There are three cases to be considered.
Case 1. $n>3$ is odd and $j-i \geq 2$.
In this case, by $\left(\mathrm{H}_{1}\right), O_{1} \equiv\left(x_{i}, \ldots, x_{j-1}\right)^{\circ}$ and $O_{2} \equiv\left(x_{j}, \ldots, x_{i+n-1}\right)^{\circ}$ are also periodic orbits of F, whose periods are greater than 1 and are factors of $j-i$ and $i+n-j$, respectively. Hence, since one of the integers $j-i$ and $i+n-j$ is odd, F has an n_{0}-periodic orbit for some odd n_{0} with $3 \succeq n_{0} \succ n$. Therefore, by $\left(\mathrm{H}_{2}\right)$, for any $m \in \mathbb{N}$ with $n \succ m, F$ has an m-periodic orbit.

Case 2. $n>3$ is odd and $j-i=1$.
There are two subcases.
Subcase 2.1. There is $k \in\{3, \ldots, n-1\}$ such that $x_{i+k}=x_{i}$. In this subcase, $O_{1} \equiv\left(x_{i}, \ldots, x_{i+k-1}\right)^{\circ}$ and $O_{2} \equiv\left(x_{i+1}, \ldots, x_{i+k-1}\right)^{\circ}$ are periodic orbits of F, whose periods are greater than 1 and are factors of k and $k-1$, respectively. Since one of the integers k and $k-1$ is odd, similar to Case 1 , for any $m \in \mathbb{N}$ with $n \succ m, F$ has an m-periodic orbit.

Subcase 2.2. $x_{i+\lambda} \neq x_{i}$ for any $\lambda \in\{2, \ldots, n-1\}$. In this subcase, there is $k \in\{2, \ldots, n-1\}$ such that $x_{i+k+1} \leq x_{i}$ and $x_{i+\lambda}>x_{i}$ for $\lambda \in\{2, \ldots, k\}$. Let $Z_{0}=\left\{\lambda: \lambda \in\{2, \ldots, k\}\right.$ and $\left.x_{i+\lambda} \geq x_{i+k}\right\}$. Then $k \in Z_{0}$. Let $q=\min Z_{0}$. If $q>2$, then $x_{i}<x_{i+q-1}<x_{i+k} \leq x_{i+q}$. By Lemma 3.3, F contains a continuous map $f: I \rightarrow I$ such that $f\left(x_{i}\right)=x_{i}, f\left(x_{i+q-1}\right)=x_{i+q} \geq x_{i+k}$ and $f\left(x_{i+k}\right)=$ $x_{i+k-1} \leq x_{1}$. Thus f is turbulent since $f\left(\left[x_{i}, x_{i+q-1}\right]\right) \cap f\left(\left[x_{i+q-1}, x_{k}\right]\right) \supset\left[x_{i}, x_{k}\right]$.

It is well-known that a turbulent interval map, f (and hence F), has an m periodic orbit for any $m \in \mathbb{N}$.

If $q=2$, then $x_{i+k} \in\left(x_{i}, x_{i+2}\right] \subset F\left(x_{i}\right)$. By Lemma 3.3, F contains a continuous map $f: I \rightarrow I$ such that $f\left(x_{i}\right)=x_{i+2} \geq x_{i+k}>x_{i}$ and $f\left(x_{i+k}\right)=x_{i+k+1} \leq$ x_{i}, which implies that there is a point $y \in\left(x_{i}, x_{i+k}\right]$ such that $f(y)=x_{i}$, and hence F has a 3 -periodic orbit $\left(x_{i}, x_{i}, y\right)^{\circ}$. By Lemma $3.6, F$ has an m-periodic orbit for any $m \in \mathbb{N}$.

Case 3. $n=2^{\lambda}(2 \mu+1)$ for some $\lambda, \mu \in \mathbb{N}$.
In this case, from (a) of Corollary 2.12 we see that $F^{2^{\lambda}}$ has a periodic orbit which period is a factor of $2 \mu+1$ greater than 1 . By Lemma 3.8, we may assume that $n \succ m \succ 2^{\lambda}$.

If $n \succ m \succ 3 \cdot 2^{\lambda+1}$, then there is $\mu_{0} \in \mathbb{N}$ such that $m=2^{\lambda}\left(2 \mu+2 \mu_{0}+1\right)$. By hypothesis $\left(\mathrm{H}_{2}\right), F^{2^{\lambda}}$ has a $\left(2 \mu+2 \mu_{0}+1\right)$-periodic orbit. By Corollary 2.11, there is a factor k_{2} of 2^{λ} such that F has a $k_{2}\left(2 \mu+2 \mu_{0}+1\right)$-periodic orbit O_{m}. If $k_{2}=2^{\lambda}, O_{m}$ itself is an m-periodic orbit of F. If k_{2} is a proper factor of 2^{λ}, then $3 \succeq k_{2}\left(2 \mu+2 \mu_{0}+1\right) \succ n$, and from $\left(\mathrm{H}_{2}\right)$ we see that F has an m-periodic orbit.

If $3 \cdot 2^{\lambda+1} \succeq m \succ 2^{\lambda}$, then there is $m_{0} \in \mathbb{N}$ such that $m=2^{\lambda} \cdot 2 m_{0}$. By hypothesis $\left(\mathrm{H}_{2}\right), F^{2^{\lambda}}$ has a $2 m_{0}$-periodic orbit. Using Corollary 2.11 to the case that $k=k_{1}=2^{\lambda}$, we see that F has an m-periodic orbit.

References

[1] L. Alseda and J. Llibre, Periods for triangular maps, Bull. Austral. Math. Soc. 47 (1993), 41-53.
[2] J. Andres, Period two implies chaos for a class of multivalued maps: A naive approach, Comput. Math. Appl. 64 (2012), 2160-2165.
[3] J. Andres, J. Fišer and L. Jüttner, On a multivalued version of the Sharkovskǐ̆ theorem and its application to differential inclusions, Set-Valued Anal. 10 (2002), 1-14.
[4] J. Andres, T. Fürst and K. Pastor, Period two implies all periods for a class of ODEs: a multivalued map approach, Proc. Amer. Math. Soc. 135 (2007), 3187-3191.
[5] , Full analogy of Sharkovskii's theorem for lower semicontinuous maps, J. Math. Anal. Appl. 340 (2008), 1132-1144.
[6] __ Sharkovskiǔ's theorem, differential inclusions, and beyond, Topol. Methods Nonlinear Anal. 33 (2009), 149-168.
[7] J. Andres, L. Jüttner and K. Pastor, On a multivalued version of the Sharkovskǐ theorem and its application to differential inclusions II, Set-Valued Anal. 13 (2005), 4768.
[8] J. Andres and K. Pastor, On a multivalued version of the Sharkovskii theorem and its application to differential inclusions III, Topol. Methods Nonliear. Anal. 22 (2003), 369-386.
[9] , A version of Sharkovskiı's theorem for differential equations, Proc. Amer. Math. Soc. 133 (2004), 449-453
[10] J. Andres, K. Pasto and P. Šnyrychová, A multivalued version of Sharkovskiǔ's theorem holds with at most two exceptions, J. Fixed Point Theory Appl. 2 (2007), 153-170.
[11] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis and V.V. Obukhovskĭ̆, Topological methods in the fixed point theory of multi-valued maps, Russian Math. Surveys 35 (1980), 65-143.
[12] P. Minc and W.R.R. Transue, Sharkovskiǔ's Theorem for hereditarily decomposable chainable continua, Trans. Amer. Math. Soc. 315 (1989), 173-188.
[13] D. Repovs and P.V. Semenov, Continuous selections of multivalued mappings, mathematics and its applications, Kluwer Academic Publishers, 1998.
[14] _, Continuous selections of multivalued mappings, recent progress in general topology (II), North-Holland, 2002.
[15] J.J. Sanchez-Gabites and J.M.R. Sanjurjo, Multivalued maps, selections and dynamical systems, Topol. Appl. 155 (2008), 874-882.
[16] J.M.R. Sanjurjo, Selections of multivalued maps and shape domination, Math. Proc. Cambridge Philos. Soc. 107 (1990), 493-499.
[17] A.N. Sharkovskĭ̆, Coexistence of cycles of a continuous map of a line into itself, Ukrai. Math. J. 16 (1964), 61-71. (Russian)

Jiehua Mai
College of Information and Statistics
Guangxi University of Finance and Economics
Nanning, Guangxi 530003, P.R. CHINA
E-mail address: jhmai@stu.edu.cn

Taixiang Sun
College of Information and Statistics
Guangxi University of Finance and Economics
Nanning 530003, P.R. CHINA
E-mail address: stxhql@gxu.edu.cn

[^0]: 2010 Mathematics Subject Classification. 54C60, 54C05, 37E05, 37C27.
 Key words and phrases. Multivalued map; interval map; periodic orbit; period; Sharkovskiî's order.

 This project is supported by NNSF of China (11261005, 11461003).

