CORRIGENDUM TO

"THE SPLITTING LEMMAS FOR NONSMOOTH

 FUNCTIONALS ON HILBERT SPACESII. THE CASE AT INFINITY" (TOPOL. METHODS NONLINEAR ANAL. 44 (2014), 277-335)

Guangeun Lu

Abstract. We show how to correct errors in $[1, \S 4]$ caused by the incorrect inequality [1, (4.2)].

Here we only point out main corrected points and refer readers to $[2, \S 4]$ for a completely rewritten version of $[1, \S 4]$. After removing the incorrect inequality $[1,(4.2)]$ some corrections to the arguments in $[1, \S 4]$ should be made.

- The original $\left(\mathrm{q}_{1}^{*}\right)$ and $\left(\mathrm{q}_{3}^{*}\right)$ should be replaced by the following slightly stronger ones:
(q_{1}^{*}) There exist constants $c_{1}>0, r \in(0,1)$ and a function $E \in L^{2}(\Omega)$ such that $|q(x, t)| \leq E(x)+c_{1}|t|^{r}$ for almost $x \in \Omega$ and for all $t \in \mathbb{R}$.
(q_{3}^{*}) For almost every $x \in \Omega$ the function $\mathbb{R} \ni t \mapsto q(x, t)$ is differentiable and $\Omega \times \mathbb{R} \ni(x, t) \mapsto q_{t}(x, t):=\frac{\partial q}{\partial t}(x, t)$ is a Carthéodory function. There exist $s \in(n / 2, \infty), \ell \in L^{s}(\Omega)$, and a bounded measurable $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $h(t) \rightarrow \hbar \in \mathbb{R}$ as $|t| \rightarrow \infty$ and $\left|q_{t}(x, t)\right| \leq \ell(x) h(t)$ for almost every $x \in \Omega$ and for all $t \in \mathbb{R}$.

[^0]By the latter, $s \in(n / 2, \infty)$, and so $s /(s-1)<n /(n-2)$ for $n>2$. Set

$$
\xi(s, n)= \begin{cases}\frac{s}{s-1}+\frac{n}{n-2} & \text { if } n>2 \tag{0.1}\\ \frac{3 s}{s-1} & \text { if } n=2\end{cases}
$$

and

$$
\eta(s, n)= \begin{cases}\frac{s}{2} \frac{2 s n-2 s-n}{s^{2}-s-n} & \text { if } n>2 \tag{0.2}\\ \frac{3 s}{s-1} & \text { if } n=2\end{cases}
$$

Note that $H=H_{0}^{1}(\Omega) \hookrightarrow L^{\xi(s, n)}(\Omega)$. Let $c(s, n, \Omega)>0$ be the best constant such that

$$
\begin{equation*}
\|u\|_{L^{\xi(s, n)}} \leq c(s, n, \Omega)\|\nabla u\|_{L^{2}}=c(s, n, \Omega)\|u\|_{H} \quad \text { for all } u \in H \tag{0.3}
\end{equation*}
$$

- Two lines above Proposition 4.2 of [1] should be changed into:

Since $\left|q_{t}(x, t)\right| \leq \ell(x) h(t)$ by $\left(\mathrm{q}_{3}^{*}\right), 1 / s+1 / \eta(s, n)+2 / \xi(s, n)=1, \eta(s, n)>1$, and $2 s /(s-1)<\xi(s, n)<2 n /(n-2)$ for $n>2$, using the generalized Hölder inequality and Sobolev embedding theorem, we deduce
for any $u, v, w \in H$. It follows that $B(u) \in L_{s}(H)$.

- (b) of [1, Proposition 4.2] should be replaced by
(b) Under the assumption $\left(\mathrm{q}_{3}^{*}\right), J$ is C^{2} and $J^{\prime \prime}(u):=D(\nabla J)(u)=B(u)$ for all $u \in H$. Moreover, if $a=\lambda_{m}$ it holds with the constant $c(s, n, \Omega)$ in (0.4) that

$$
\begin{align*}
& \left|\int_{\Omega} q_{t}(x, u(x)) v(x) w(x) d x\right| \leq \int_{\Omega}|\ell(x)| \cdot|h(u(x))| \cdot|v(x)| \cdot|w(x)| d x \\
& \leq\|\ell\|_{L^{s}}\|v\|_{L^{\xi(s, n)}}\|w\|_{L^{\xi(s, n)}}\left(\int_{\Omega}|h(u(x))|^{\eta(s, n)} d x\right)^{1 / \eta(s, n)} \\
(0.4) \quad & \leq(c(s, n, \Omega))^{2}\|\ell\|_{L^{s}}\|v\|_{H}\|w\|_{H}\left(\int_{\Omega}|h(u(x))|^{\eta(s, n)} d x\right)^{1 / \eta(s, n)} \\
(0.5) \quad & \leq(c(s, n, \Omega))^{2}\|\ell\|_{L^{s}}\|v\|_{H}\|w\|_{H}|\Omega|^{1 / \eta(s, n)} \sup h \tag{0.4}
\end{align*}
$$

$$
\begin{align*}
\left\|g^{\prime \prime}(z+u)\right\|_{\mathcal{L}(H)} \leq & (c(s, n, \Omega))^{2}\|\ell\|_{L^{s}}\|h \circ(z+u)-\hbar\|_{L^{\eta(s, n)}} \tag{0.6}\\
& +(c(s, n, \Omega))^{2}|\Omega|^{1 / \eta(s, n)}\|\ell\|_{L^{s}} \hbar
\end{align*}
$$

$$
\text { for any } z \in H_{\infty}^{0}=\operatorname{Ker}(B(\infty)) \text { and } u \in H_{\infty}^{ \pm}:=\left(H_{\infty}^{0}\right)^{\perp}
$$

- The last two lines on $[1,325]$ (or the equalities $[1,(4.13)]$) should be removed. And [1, Claim 4.4] should be replaced by:

Claim 4.4. For given numbers $\rho>0$ and $\varepsilon>0$ there exists $R_{0}>0$ such that

$$
\|h(z+u)-\hbar\|_{L^{\eta(s, n)}}+\hbar|\Omega|^{1 / \eta(s, n)}<\varepsilon+\hbar|\Omega|^{1 / \eta(s, n)}
$$

for any $u \in \bar{B}_{H_{\infty}^{ \pm}}(\theta, \rho)$ and $z \in H_{\infty}^{0}$ with $\|z\|_{H} \geq R_{0}$. Here $\eta(s, n)$ is given by (0.2).

- (c) of [1, Proposition 4.6] should be replaced by
(c) If $a=\lambda_{m}$, then $C_{k}(J, \infty ; \mathbb{K})=0$ for all $k \notin\left[m^{-}-1, m^{+}\right]$provided that

$$
\begin{align*}
&(c(s, n, \Omega))^{2}|\Omega|^{1 / \eta(s, n)}\|\ell\|_{L^{s}} \hbar \tag{0.7}\\
&< \begin{cases}\frac{\lambda_{2}-\lambda_{1}}{\lambda_{2}} & \text { for } m=1, \\
\min \left\{\frac{\lambda_{m}-\lambda_{m^{-}-1}}{\lambda_{m^{-}-1}}, \frac{\lambda_{m^{+}+1}-\lambda_{2}}{\lambda_{m^{+}+1}}\right\} & \text { for } m>1\end{cases}
\end{align*}
$$

and

$$
\begin{equation*}
(c(s, n, \Omega))^{2}|\Omega|^{1 / \eta(s, n)}\|\ell\|_{L^{s}} \sup h<1 . \tag{0.8}
\end{equation*}
$$

- The main result in $[1, \S 4]$, Theorem 4.7 , should be restated as:

ThEOREM 4.7. Suppose that assumptions $\left(\mathrm{p}^{*}\right)$ and $\left(\mathrm{q}_{1}^{*}\right)-\left(\mathrm{q}_{3}^{*}\right)$ are satisfied.
(a) If a_{0} is not an eigenvalue of $-\triangle$ then (4.1) (of [1]) has at least one nontrivial solution provided that for some $m \in \mathbb{N}$, (0.7)-(0.8) hold and either $a_{0}<\lambda_{m}<a$ or $a<\lambda_{m}<a_{0}$.
(b) If $a_{0}=\lambda_{m}$ is an eigenvalue but (0.7)-(0.8) and $\left(\mathrm{q}_{4}^{+}\right)$hold in addition, then (4.1) (of [1]) has at least one nontrivial solution provided that either $a<a_{0}$ or $a_{0}<\lambda_{k}<a$ for some $k>m$ and (0.7)-(0.8) hold with $m=k$.
(c) If $a_{0}=\lambda_{m}$ is an eigenvalue but (0.7)-(0.8) and (q_{4}^{-}) hold in addition, then (4.1) (of [1]) has at least one nontrivial solution provided that either $a_{0}<a$ or $a<\lambda_{k}<a_{0}$ for some $k<m$ and (0.7) holds with $m=k$.

- Lemma 4.9 in [1] and its proof below [1, Lemma 4.8] should be replaced by:

Lemma 4.9. For $a=\lambda_{m}$, if either $\hbar=0$ or $\hbar>0$ and (0.7)-(0.8) are satisfied, then taking $\rho_{\nabla J}$ as any positive number ρ there exists $R_{1}>0$ such that the conditions of [1, Corollary 1.6] are satisfied.

Proof. It suffices to check that conditions (c)-(d) of [1, Corollary 1.6] are satisfied. Firstly, we claim that condition (c) holds. In fact, since $Q(\infty) v=$ $-a K v$ by $[1,(4.7)]$, we deduce from $[1,(4.5)]$ and (0.5) that

$$
\begin{aligned}
(B(u) v-Q(\infty) v, v)_{H} & =(v, v)_{H}-\int_{\Omega} q_{t}(x, u(x))(v(x))^{2} d x \\
& \geq(v, v)_{H}-(c(s, n, \Omega))^{2}|\Omega|^{1 / \eta(s, n)}\|\ell\|_{L^{s}}(\sup h) \cdot\|v\|_{H}^{2} \\
& \geq\left(1-(c(s, n, \Omega))^{2}|\Omega|^{1 / \eta(s, n)}\|\ell\|_{L^{s}} \sup h\right)\|v\|_{H}^{2}
\end{aligned}
$$

This and (0.8) lead to the desired conclusion.

Next, we prove condition (d) holds. By [1, (4.12)], $\|\nabla J(z)\|_{H}=o\left(\|z\|_{H}\right)$ as $z \in H_{\infty}^{0}$ and $\|z\|_{H} \rightarrow \infty$. Hence

$$
M(A)=M(\nabla J)=\lim _{R \rightarrow \infty} \sup \left\{\left\|\left(I-P_{\infty}^{0}\right) \nabla J(z)\right\|_{H}: z \in H_{\infty}^{0},\|z\|_{H} \geq R\right\}=0
$$

By [1, Lemma 4.8] and (0.7), we may take a small $\varepsilon>0$ such that

$$
(c(s, n, \Omega))^{2}\|\ell\|_{s}\left(\varepsilon+\hbar|\Omega|^{1 / \eta(s, n)}\right)<1 / C_{1}^{\infty} .
$$

For this $\varepsilon>0$ and a given number $\rho>0$, by Claim 4.4, there exists $R_{0}>0$ such that

$$
\|h(z+u)-\hbar\|_{L^{\eta(s, n)}}+\hbar|\Omega|^{1 / \eta(s, n)}<\varepsilon+\hbar|\Omega|^{1 / \eta(s, n)}
$$

for any $u \in \bar{B}_{H_{\infty}^{ \pm}}(\theta, \rho)$ and $z \in H_{\infty}^{0}$ with $\|z\|_{H} \geq R_{0}$. These and (0.6) lead to

$$
\begin{aligned}
& \left\|\left.\left(I-P_{\infty}^{0}\right)[B(z+u)-B(\infty)]\right|_{H_{\infty}^{ \pm}}\right\|_{\mathcal{L}\left(H_{\infty}^{ \pm}\right)} \leq\|B(z+u)-B(\infty)\|_{L(H)} \\
& \quad=\left\|g^{\prime \prime}(z+u)\right\|_{\mathcal{L}(H)} \leq(c(s, n, \Omega))^{2}\|\ell\|_{s}\left(\varepsilon+\hbar|\Omega|^{\frac{1}{\eta(s, n)}}\right)<\frac{1}{\kappa C_{1}^{\infty}}
\end{aligned}
$$

for any $u \in \bar{B}_{H_{\infty}^{ \pm}}(\theta, \rho)$ and $z \in H_{\infty}^{0}$ with $\|z\|_{H} \geq R_{0}$, and for some $\kappa>1$.
Finally, we provide the correct proof of [1, Proposition 4.2 (a)]. Other proofs should be corrected in a similar manner, see $[2, \S 4]$ for details.

- The proof of [1, Proposition $4.2(\mathrm{a})]$ should be changed as follows:

It suffices to prove that the functional g in $[1,(4.10)]$ is C^{1}. By $\left(\mathrm{q}_{1}^{*}\right)$,

$$
\left|q\left(x, t_{1}+t_{2}\right)\right| \leq E(x)+c_{1}\left(1+\left|t_{1}\right|+\left|t_{2}\right|\right)^{r} \leq E(x)+c_{1}+c_{1}\left|t_{1}\right|+c_{1}\left|t_{2}\right|
$$

for almost every $x \in \Omega$ and any $t_{1}, t_{2} \in \mathbb{R}$, and so

$$
\begin{align*}
|Q(x, u(x)+v(x))-Q(x, u(x))| & \leq \sup _{\tau \in[0,1]}|q(x, u(x)+\tau v(x))| \cdot|v(x)| \tag{0.9}\\
\leq & \left(E(x)+c_{1}+c_{1}|u(x)|+c_{1}|v(x)|\right) \cdot|v(x)|
\end{align*}
$$

for all $u, v \in H$,

$$
\begin{align*}
|g(u+v)-g(u)| & \leq \int_{\Omega}\left(E(x)+c_{1}+c_{1}|u(x)|+c_{1}|v(x)|\right) \cdot|v(x)| d x \tag{0.10}\\
& \leq\left(\|E\|_{L^{2}}+c_{1}|\Omega|^{1 / 2}+c_{1}\|u\|_{L^{2}}+c_{1}\|v\|_{L^{2}}\right)\|v\|_{L^{2}}
\end{align*}
$$

As $H \hookrightarrow L^{2}(\Omega), g$ is continuous. We also need to prove that g has a bounded linear Gâteaux derivative $D g(u)$ at every point $u \in H$ and that $H \ni u \mapsto$ $D g(u) \in H^{*}$ is continuous. For $u, v \in H=H_{0}^{1}(\Omega), \tau \in(-1,1) \backslash\{0\}$ and almost every $x \in \Omega$ we get

$$
\left|\frac{Q(x, u(x)+\tau v(x))-Q(x, u(x))}{\tau}\right| \leq\left(E(x)+c_{1}+c_{1}|u(x)|+c_{1}|v(x)|\right) \cdot|v(x)|
$$

by (0.9). From this and the Lebesgue dominated convergence theorem, we derive

$$
D g(u)[v]=\left.\frac{d}{d \tau}\right|_{\tau=0} g(u+\tau v)=-\int_{\Omega} q(x, u(x)) \cdot v(x) d x
$$

That is, g is Gâteaux differentiable. Clearly, $D g(u) \in H^{*}$ since we have as above

$$
|D g(u)[v]|=\left|\int_{\Omega} q(x, u(x)) \cdot v(x) d x\right| \leq\left(\|E\|_{L^{2}}+c_{1}|\Omega|^{1 / 2}+c_{1}\|u\|_{L^{2}}\right)\|v\|_{L^{2}}
$$

Let $u_{1}, u_{2}, v \in H$. By $\left(\mathrm{q}_{3}^{*}\right)$, the functions $\mathbb{R} \ni t \mapsto q(x, t)$ and $\mathbb{R} \ni t \mapsto q_{t}(x, t)$ are continuous for almost every $x \in \Omega$. The calculus fundamental theorem and (0.5) lead to

$$
\begin{aligned}
& \left|\int_{\Omega}\left[q\left(x, u_{2}(x)\right)-q\left(x, u_{1}(x)\right)\right] \cdot v(x) d x\right| \\
& \quad=\left|\int_{0}^{1}\left[\int_{\Omega} q_{t}\left(x, u_{1}(x)+\tau\left(u_{2}(x)-u_{1}(x)\right)\right)\left(u_{2}(x)-u_{1}(x)\right) \cdot v(x) d x\right] d \tau\right| \\
& \quad \leq \int_{0}^{1}\left[\int_{\Omega}\left|q_{t}\left(x, u_{1}(x)+\tau\left(u_{2}(x)-u_{1}(x)\right)\right)\right| \cdot\left|u_{2}(x)-u_{1}(x)\right| \cdot|v(x)| d x\right] d \tau \\
& \quad \leq(c(n, s, \Omega))^{2}\|\ell\|_{L^{s}}|\Omega|^{1 / \eta(s, n)}(\sup h) \cdot\left\|u_{2}-u_{1}\right\|_{H}\|v\|_{H}
\end{aligned}
$$

and hence

$$
\left\|D g\left(u_{1}\right)-D g\left(u_{2}\right)\right\|_{H^{*}} \leq(c(n, s, \Omega))^{2}\|\ell\|_{L^{s}}|\Omega|^{1 / \eta(s, n)}(\sup h) \cdot\left\|u_{2}-u_{1}\right\|_{H}
$$

It follows that J is $C^{1,1}$.
The expression of ∇J is clear. It remains to prove [1, (4.10)]. Since $|Q(x, t)| \leq$ $|t| E(x)+c_{1}|t|^{r+1}$ by $\left(\mathrm{q}_{1}^{*}\right), r \in(0,1)$ and $H \hookrightarrow L^{r+1}$, for some constant $C_{r}>0$ we have

$$
\begin{aligned}
|g(u)| & \leq \int_{\Omega}|Q(x, u(x))| d x \leq \int_{\Omega}\left(E(x)|u(x)|+c_{1}|u(x)|^{r+1}\right) d x \\
& \leq\|E\|_{L^{2}}\|u\|_{L^{2}}+c_{1}\|u\|_{L^{r+1}}^{r+1} \leq C_{r}\left(\|E\|_{L^{2}}\|u\|_{H}+c_{1}\|u\|_{H}^{r+1}\right)
\end{aligned}
$$

for all $u \in H$.

References

[1] G. Lu, The splitting lemmas for nonsmooth functionals on Hilbert spaces II. The case at infinity, Topol. Methods Nonlinear Anal. 44 (2014), no.2, 277-335.
[2] \qquad The splitting lemmas for nonsmooth functionals on Hilbert spaces II. The case at infinity, arXiv:1211.2128v2, 25 Jan 2015.

Guangeun Lu
School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems Ministry of Education
Beijing 100875, P.R. CHINA
E-mail address: gclu@bnu.edu.cn
TMNA : Volume $48-2016-\mathrm{N}^{\mathrm{O}} 1$

[^0]: 2010 Mathematics Subject Classification. Primary: 58E05, 49J52, 49J45.
 Key words and phrases. Nonsmooth functional; splitting lemma at infinity; elliptic boundary value problems.

 Partially supported by the NNSF 10971014 and 11271044 of China.

