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CORRIGENDUM TO
“THE SPLITTING LEMMAS FOR NONSMOOTH
FUNCTIONALS ON HILBERT SPACES
II. THE CASE AT INFINITY”
(TOPOL. METHODS NONLINEAR ANAL. 44 (2014), 277-335)

GUANGCUN Lu

ABSTRACT. We show how to correct errors in [1, § 4] caused by the incorrect
inequality [1, (4.2)].

Here we only point out main corrected points and refer readers to [2, §4] for
a completely rewritten version of [1, §4]. After removing the incorrect inequality
[1, (4.2)] some corrections to the arguments in [1, § 4] should be made.

e The original (q}) and (q}) should be replaced by the following slightly
stronger ones:

(q}) There exist constants ¢; > 0, 7 € (0,1) and a function E € L*(Q) such
that |g(z,t)| < E(x) + c1|t|” for almost = € Q and for all ¢ € R.

(a3) For almost every x € Q the function R 3 ¢ — ¢(x,t) is differentiable and
QxR >3 (x,t) = ¢(z,t) = %%(x,t) is a Carthéodory function. There
exist s € (n/2,00), £ € L*(Q), and a bounded measurable h: R — R
such that h(t) — h € R as [t| — oo and |q:(z,t)| < £(x)h(t) for almost
every x € Q and for all t € R.
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By the latter, s € (n/2,00), and so s/(s — 1) < n/(n —2) for n > 2. Set

Si1+nﬁ2 ifn > 2,
(0.1) &(s;n) =9 5

S .

1 if n =2,
and

2sn — 25 —

gﬁg—i—ﬁ ifn > 2,
(0.2) CADER S

ifn=2.

s—1
Note that H = H}(Q) — LEE=™(Q). Let c(s,n,9) > 0 be the best constant
such that

(0.3) lullpecsm < c(s,n,Q)||Vullzz = c(s,n, Q)||ul|g for all u € H.

e Two lines above Proposition 4.2 of [1] should be changed into:

Since |qi(z,t)| < L(x)h(t) by (d45), 1/s+1/n(s,n)+2/(s,n) =1, n(s,n) > 1,
and 2s5/(s — 1) < £(s,n) < 2n/(n — 2) for n > 2, using the generalized Holder
inequality and Sobolev embedding theorem, we deduce

’/qt(x,U(x))v(:r)w(x) da S/ [€(@)] - [P(u(@))] - [o(@)] - [w(@)| de
Q Q

1/n(s,n)
< 6l [0l om0 o ( [ tateppen dx)

1/n(s,n)
il [ Ity az)

(0.5) < (e(s,n, Q)2 1) pellolarllw] |27 sup h
for any u,v,w € H. It follows that B(u) € Ls(H).

e (b) of [1, Proposition 4.2] should be replaced by
(b) Under the assumption (q3), J is C? and J”(u) := D(V.J)(u) = B(u)
for all w € H. Moreover, if a = A, it holds with the constant ¢(s, n, Q)
in (0.4) that
(0.6) lg" (z +wll ey < (c(s,n, Q)P Le b o (2 + 1) = Al| oo
+ (c(s,m, Q)17 €] ok

for any z € HY = Ker(B(c0)) and u € HE := (H2)*.

(0.4) < (c(s,m,9))2||¢]

Ls

e The last two lines on [1, 325] (or the equalities [1, (4.13)]) should be re-
moved. And [1, Claim 4.4] should be replaced by:

CLAM 4.4. For given numbers p > 0 and € > 0 there exists Ry > 0 such
that
[h(z 4 ) — Al poceny + B|QY7EM < o 4 pjQ|L/ (s



