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ON STABILITY AND CONTROLLABILITY

FOR SEMIGROUP ACTIONS

Josiney A. Souza — Hélio V.M. Tozatti — Victor H.L. Rocha

Abstract. This paper deals with stability and controllability for semi-
group actions by using the topological method of admissible family of open

coverings. The main results state a relationship of stable sets and control

sets. The classical notion of controllability relates to the Poisson stability.
The concept of prolongational control set relates to the Lyapunov stability.

1. Introduction

The present paper studies stability and controllability for semigroup actions

on topological spaces. We introduce the notions of Poisson stable set, nonwan-

dering set, and Lagrange stable set, which extend respectively the concepts of

Poisson stable point, nonwandering point, and Lagrange stable motion. These

concepts of stability theory can be connected by means of limit sets. We also

present an aspect of controllability by prolongations that is related to the non-

wandering points. The so-called prolongational control set is the link between

Lyapunov stability and controllability.

The concept of stable set for dynamical systems on metric spaces was exten-

sively studied by Bhatia and Szegő [2] and [3]. Bhatia and Hajek [1] developed

a theory of stability for local semidynamical systems on topological spaces. Re-

cently, Braga Barros, Souza and Rocha [6] introduced a theory of Lyapunov
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stability of sets for semigroup actions on topological spaces, extending several

concepts and results of Lyapunov stable sets from [1]–[3]. On the other hand,

the notion of controllability was extended from the setting of control systems

to the setting of semigroup actions by San Martin [10]–[12]. Thus stability and

controllability are both currently concepts of semigroup actions on topological

spaces.

A questioning on the relationship of stability and controllability was incited

in the paper [17], where a connection between the notions of Poisson stability and

control set were stated, although the Poisson stability was named as the Poincaré

recurrence. This connection was established by means of control sets depending

on a family of subsets of the semigroup, which has stated an asymptotic aspect

of controllability related to the well-known concept of topological transitivity.

However, there is no study relating Lyapunov stability to controllability in the

literature. This is due to the fact that the aspects of Lyapunov stability are

totally different from the aspects of controllability. A Lyapunov stable set need

not be controllable, while a control set need not be Lyapunov stable. The basic

difference between these concepts is that the Lyapunov stability concerns the

dynamics in each neighbourhood of a set, while the controllability considers an

equivalence class by almost transitivity among the points inside the set. Our

intention in the present paper is to explain a situation in what these concepts

are connected.

Let (S,M) be a semigroup action on the topological space M . A set X⊂M
is controllable if X ⊂ cls(Sx) for every x ∈ X. On the other hand, if X ⊂ M

is equistable then D(x, S) ⊂ X for all x ∈ X, where D(x, S) is the forward pro-

longation of x, which implies cls(Sx) ⊂ X for every x ∈ X. Thus controllable

and equistable sets are technically distinct, although both concepts concern the

orbits through the points of the set. Then we introduce two objects which ap-

proximate controllability and stability: the weak prolongational control set and

the minimal equistable set. A set X ⊂M is minimal equistable if it is nonempty,

closed, equistable, and has no proper subset satisfying these properties. A sub-

set E ⊂ M is weak controllable by prolongations if each point y in E can be

reachable by prolongations from another point x in E. In other words, E is weak

controllable by prolongations if E ⊂ D(x, S) for every x ∈ E. The set E is called

a weak prolongational control set if it is weak controllable by prolongations and

is maximal satisfying this property. In general, if F is a family of subsets of the

semigroup S, then E is a weak prolongational F-control set if E ⊂ J(x,F) for ev-

ery x ∈ E, where J(x,F) is the forward F-prolongational limit set of x, and E is

maximal with this property. The notions of nonwandering point and dispersive-

ness are involved in this study. A point x ∈M is F-nonwandering if x ∈ J(x,F),

while the action is dispersive if J(x,F) = ∅ for every x ∈ M (see [19]). Thus
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each point in a weak prolongational F-control set is F-nonwandering and eve-

ry F-nonwandering point is contained in a weak prolongational F-control set.

Nevertheless, if the action is dispersive, then there is no weak prolongational

F-control set. If the action is equicontinuous then the weak prolongational F-

control sets form a partition for the set of all F-nonwandering points, since they

are equivalence classes to an order relation among the F-nonwandering points.

The main result in such a situation says that a compact minimal equistable set is

a weak prolongational F-control set that is maximal with respect to a dynamic

order among the weak prolongational F-control sets, and the converse holds if

the whole space is compact.

2. Semigroup actions

In this section, we give the standard notations of semigroup actions on topo-

logical spaces. We recall the definitions and properties of transitivity, limit sets,

and prolongational limit sets.

We start with some standard notations of semigroup actions. An action (or

a left action) of S on M is a mapping

µ : S ×M →M, (s, x) 7→ µ(s, x) = sx

satisfying s(ux) = (su)x for all x ∈ M and u, s ∈ S. In this case we say that S

acts on M . We denote by µs : M →M the map defined by µs(x) = µ(s, x). We

assume that µs is continuous for every s ∈ S. The action µ is called open if µs
is an open map for every s ∈ S. We will often indicate the action of S on M by

the triple (S,M, µ), or simply (S,X).

Let (S,M, µ) be a fixed semigroup action. For subsets X ⊂ M and A ⊂ S

we define the sets

AX =
⋃
s∈A

µs(X) = {y ∈M : there exist s ∈ A and x ∈ X with sx = y},

A∗X =
⋃
s∈A

µ−1
s (X) = {y ∈M : there exists ∈ A and x ∈ X with sy = xt}.

The sets Sx and S∗x are called respectively the orbit of x and the backward

orbit of x in M .

A set X ⊂M is called forward invariant or backward invariant if respectively

SX ⊂ X or S∗X ⊂ X; it is called invariant if it is forward and backward

invariant. The set X is said to be a forward minimal set if X is nonempty,

closed, forward invariant, and X has no proper subset with these properties. It

is easily seen that the set X is a forward minimal if and only if cls(Sx) = X, for

every x ∈ X. A point x ∈ M is said to be rest if {x} = Sx; weak transitive if

x ∈ cls(Sx); transitive if x ∈ Sx; almost periodic if cls(Sx) is a forward minimal

set containing x; and periodic if Sx is a forward minimal set containing x.
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Definition 2.1. Let F be a family of subsets of the semigroup S. The

ω-limit set of X ⊂M for the family F is defined by

ω(X,F) =
⋂
A∈F

cls(AX)

and the ω∗-limit set of X ⊂M for F by

ω∗(X,F) =
⋂
A∈F

cls(A∗X).

Note that the limit sets of (S,X) with respect to the family F are nonempty

if X is a compact forward invariant subspace of M and F is a filter basis on the

subsets of S (i.e. ∅ /∈ F and given A,B ∈ F there is C ∈ F with C ⊂ A ∩ B).

We might assume the following additional hypotheses on the family F .

Definition 2.2. The family F is said to satisfy:

(a) Hypothesis (H1) if for all s ∈ S and A ∈ F there exists B ∈ F such that

sB ⊂ A.

(b) Hypothesis (H2) if for all s ∈ S and A ∈ F there exists B ∈ F such that

Bs ⊂ A.

(c) Hypothesis (H3) if for all s ∈ S and A ∈ F there exists B ∈ F such that

B ⊂ As.

These hypotheses play an important role in the investigation of invariance

issues. For instance, hypothesis (H1) yields the limit set ω(X,F) is forward in-

variant; (H3) guarantees that ω∗(X,F) is forward invariant; and (H2) assures

that ω∗(X,F) is backward invariant whenever the action is open (see [5, Propo-

sitions 2.10, 2.12, 2.13]). Moreover, it is easily seen that ω(sx,F) ⊂ ω(x,F) for

all x ∈ M and s ∈ S if F satisfies hypothesis (H2), and ω(x,F) ⊂ ω(sx,F) for

all x ∈M and s ∈ S if F satisfies hypothesis (H3). We remark that hypotheses

(H1), (H2), and (H3) are satisfied in general cases, including the families which

define limit sets for flows, semiflows, and certain class of control systems (see [5]

and [13]).

Note that hypotheses (H1) and (H2) just extend the notion of ideals. Recall

that a nonempty subset I ⊆ S is a left ideal if it is closed and SI ⊆ I. Similarly,

one defines a right ideal and a two-sided ideal. If F is a family of left ideals of S,

then sA ⊂ A for all s ∈ S and A ∈ F . Hence, F satisfies (H1). If F is a family of

right ideals of S, then As ⊂ A for all s ∈ S and A ∈ F . Hence, F satisfies (H2).

The family considered in the following examples consists of left ideals.

Example 2.3. This example generalizes limit sets for flows and semiflows.

Let (S,M) be a semigroup action and consider the family of translates

F = {St : t ∈ S}.
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The elements of F are clearly left ideals of S. The direction for limit behavior

established by the family F relates to the well-known Green’s L-preorder of semi-

group theory. It is easily seen that the family F also satisfies hypothesis (H3).

Furthermore, if S is right reversible (St ∩ Ss 6= ∅ for all t, s ∈ S), then F is also

a filter basis on the subsets of S.

Example 2.4. Consider the following affine control system:

ẋ(t) = X0(x(t)) +

n∑
i=1

ui(t)Xi(x(t)),

u ∈ Upc = {u ∈ U , u piecewise constant}

on a connected d-dimensional manifold M , where U ⊂ Rn is the control range

and X0, . . . , Xn are vector fields in M . For each u ∈ U and x ∈ M we denote

by ϕ(t, x, u) the solution of the system at time t ∈ R, with ϕ(0, x, u) = x.

For each t ∈ R and u ∈ U , one has the diffeomorphism ϕut : M → M , where

ϕut (x) = ϕ(t, x, u) for all x ∈ X. For each x ∈ M and u = (u1, . . . , un) ∈ Rn,

we define the vector field Xu(x) = X0(x) +
n∑
i=1

uiXi(x). Then the control system

is determined by the corresponding set of vector fields F = {Xu : u ∈ U}. The

system semigroup is the semigroup

S =
{

etnYnetn−1Yn−1 . . . et1Y1 : Yj ∈ F, tj ≥ 0, n ∈ N
}
,

which corresponds to the solutions for the system with the piecewise constant

controls in Upc. For each t > 0, we define the subsemigroup S≥t of S as

S≥t =
{
ϕus : s ≥ t and u ∈ Upc

}
.

The family F = {S≥t : t > 0} is a time-dependent filter basis on the subsets

of S, since S≥t+s ⊂ S≥t ∩S≥s for all t, s > 0. As ϕusS≥t ∪S≥tϕus ⊂ S≥t+s ⊂ S≥t
for all t, s > 0 and u ∈ Upc, F is a family of two-sided ideals of S.

The concept of prolongational limit set depends on a fixed admissible family

of open coverings of M . If U and V are coverings of M , we write V ≤ U if V is

a refinement of U . We write V ≤ U/2 if for every V, V ′ ∈ V, with V ∩ V ′ 6= ∅,
there is U ∈ U such that V ∪V ′ ⊂ U . For an open covering U of M and a subset

X ⊂M , the U-neighbourhood of X is the set

B(X,U) =
⋃
{U ∈ U : X ∩ U 6= ∅}

=
{
y ∈M : there are x ∈ X and U ∈ U such that x, y ∈ U

}
.

The U-neighbourhood of X is also called star of X with respect to U . We use the

notation B({x},U) = B(x,U) for x ∈ M . The concept of U-neighbourhood for

topological spaces generalizes the concept of ε-neighbourhood for metric spaces.
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Definition 2.5. A family O of open coverings of M is said to be admissible

if it satisfies the following properties:

(a) For each U ∈ O, there is V ∈ O such that V ≤ U/2.

(b) If X ⊂ M is an open set and K is a compact set of M contained in X,

then there is an open covering U ∈ O such that B(K,U) ⊂ X.

(c) For any U ,V ∈ O, there is W ∈ O such that W ≤ U and W ≤ V.

The space M is called admissible if it has an admissible family of open coverings.

Note that an admissible family of open coverings is a direct set. Moreover,

if O is an admissible family of open coverings of M , the collection of all U-

neighbourhoods B(x,U), with x ∈ M and U ∈ O, is a basis for the topology

of M . In general, every uniformizable space is admissible (see [14]). Thus, metric

spaces, compact spaces, paracompact spaces, Tychonoff spaces, and topological

groups are admissible spaces. The following result will be used afterwards.

Proposition 2.6. Let O be an admissible family of open coverings of M .

Assume that (xV)V∈O and (yV)V∈O are two nets in M satisfying yV ∈ B(xV ,V),

for every V ∈ O. If xV → x, then yV → x.

Proof. Let U ∈ O be an open covering in O and take another open covering

W ∈ O such that W ≤ U/2. Since xV → x there is an open covering V0 ∈ O
such that xV ∈ B(x,W) whenever V ≤ V0. Now take an open covering V ′0 ∈ O
which refines both V0 and W. For an open covering V ∈ O which refines V ′0 one

has yV ∈ B(xV ,V) ⊂ B(xV ,W) and xV ∈ B(x,W). Thus there are open sets

W1,W2 ∈ W satisfying yV , xV ∈W1 and xV , x ∈W2. Choose an open set U ∈ U
such that W1 ∪W2 ⊂ U . Then we have yV , x ∈ U , which means yV ∈ B(x,U).

Therefore yV → x. �

From now on, and throughout the paper, there is a fixed filter basis F on

the subsets of S and an admissible family O of open coverings of M . The

following definitions of prolongation and prolongational limit set were introduced

in the setting of semigroup actions on metric spaces in [9] and in the setting of

semigroup actions on general topological spaces in [6].

Definition 2.7. Let x ∈ M and A ⊂ S. The first forward A-prolongation

and the first backward A-prolongation of x are defined respectively by

D(x,A) =
⋂
U∈O

cls(AB(x,U)) and D∗(x,A) =
⋂
U∈O

cls(A∗B(x,U)).

For a given subset X in M we define D(X,A) =
⋃
x∈X

D(x,A) and D∗(X,A) =⋃
x∈X

D∗(x,A). Note that D(x,A) and D∗(x,A) are closed in M , cl(Ax) ⊂

D(x,A), and cl(A∗x) ⊂ D∗(x,A). If K ⊂M is compact, then D(K,A) is closed



Stability and Controllability 7

([6, Proposition 2.9]). Moreover, D(x, S) is forward invariant and, in the case of

open action, D∗(x, S) is backward invariant.

Definition 2.8. The first forward F-prolongational limit set and the first

backward F-prolongational limit set of x ∈M are defined respectively by

J(x,F) =
⋂
A∈F

D(x,A) and J∗(x,F) =
⋂
A∈F

D∗(x,A).

For a given set X ⊂ M we define J(X,F) =
⋃
x∈X

J(x,F) and J∗(X,F) =⋃
x∈X

J∗(x,F). It is easily seen that J(x,F) and J∗(x,F) are closed sets. More-

over, J(x,F) is forward invariant if F satisfies hypothesis (H1), J∗(x,F) is for-

ward invariant if F satisfies hypothesis (H3), and J∗(x,F) is backward invariant

if F satisfies hypothesis (H2) and the action is open ([6, Proposition 2.10]).

Besides, one has y ∈ J(x,F) if and only if x ∈ J∗(y,F).

The following definition reproduces the notion of divergent net in the semi-

group S.

Definition 2.9. For a given net (tλ)λ∈Λ in S, the notation tλ →F ∞ means

that for each A ∈ F there is λ0 ∈ Λ such that tλ ∈ A for all λ ≥ λ0.

By considering the product direction on F × O, that is, (A,U) ≥ (B,V) if

and only if A ⊂ B and U ≤ V, we can easily see that

ω(X,F) =

{
x ∈M : there are nets (tλ)λ∈Λ in S and (xλ)λ∈Λ in X

such that tλ →F ∞ and tλxλ → x

}
,

for any subset X ⊂M , and

D(x,A) =

{
y ∈M : there are nets (tλ) in A and (xλ) in M such that

xλ → x and tλxλ → y

}
,

J(x,F) =

{
y ∈M : there are nets (tλ) in S and (xλ) in M such that

tλ →F ∞, xλ → x and tλxλ → y

}
,

for any point x ∈M .

We now define domains of attraction. They were introduced in [6] and [9],

and play an important role in the studies of stability for compact sets.

Definition 2.10. Let X ⊂ M . The domain of weak F-attraction of X is

the set

Aw(X,F) = {x ∈M : X ∩ ω(x,F) 6= ∅};
the domain of F-attraction of X is the set

A(X,F) = {x ∈M : ω(x,F) 6= ∅ and ω(x,F) ⊂ X};

the domain of weak uniform F-attraction of X is the set

Awu(X,F) = {x ∈M : J(x,F) ∩X 6= ∅};
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the domain of uniform F-attraction of X is the set

Au(X,F) = {x ∈M : J(x,F) 6= ∅ and J(x,F) ⊂ X}.

Any point x in Aw(X,F),A(X,F),Awu(X,F) , or Au(X,F) may respectively

be said to be weakly F-attracted, F-attracted, weakly uniformly F-attracted,

or uniformly F-attracted to X.

The following result characterizes the rest points by means of limit set and

domain of attraction.

Proposition 2.11. Assume that the family F satisfies hypothesis (H1). For

x ∈M , the following statements are equivalent:

(a) x is a rest point.

(b) ω(x,F) = {x}.
(c) x ∈ A(x,F).

Proof. The implications (a) ⇒ (b) ⇒ (c) ⇒ (b) are immediate from the

definitions. It remains to show that (b) implies (a). Indeed, since ω(x,F) is for-

ward invariant, then ω(x,F) = {x} implies Sx ⊂ {x}, and therefore Sx = {x}.�

3. Stability

We now deal with the stability theory for semigroup actions on topological

spaces. We recall some definitions and properties of Lyapunov stability for sets

and introduce the notions of Poisson and Lagrange stabilities for sets. We also

discuss their connections. Throughout, there is a fixed semigroup action (S,M),

a family F of subsets of S, and an admissible family O of open coverings of M .

3.1. Lyapunov stability. We start defining some concepts of Lyapunov

stability which are treated in this paper. We refer to [6] for definitions and

properties of Lyapunov stability for semigroup actions on topological spaces.

Definition 3.1. A given set X is said to be

(a) stable if for every x ∈ X and every open covering U ∈ O there exists

V ∈ O such that SB(x,V) ⊂ B(X,U);

(b) uniformly stable if for every open covering U ∈ O there exists V ∈ O
such that SB(X,V) ⊂ B(X,U);

(c) equistable if for each x /∈ X there exists U ∈ O such that x /∈ cls(SB(X,U)).

Note that a uniformly stable set is stable and a compact stable set is uni-

formly stable. Moreover, a closed uniformly stable set is equistable ([6, Theo-

rem 3.3]), while an equistable or closed stable set is forward invariant ([6, Propo-

sition 3.1]).

The next result presents a general property of equistable sets.
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Proposition 3.2. If X ⊂ M is an equistable set, then D(x, S) ⊂ X for

every x ∈ X.

Proof. Suppose that there is x ∈ X such that D(x, S) * X and take

y ∈ D(x, S) \ X. Then there are nets (tλ)λ∈Λ in S and (xλ)λ∈Λ in M such

that xλ → x and tλxλ → y, and there is an open covering U ∈ O satisfying

y /∈ cls(SB(X,U)). By the convergence of (xλ), there is λ0 ∈ Λ such that

xλ ∈ B(x,U) whenever λ ≥ λ0. Thus, we have tλxλ ∈ SB(x,U) whenever

λ ≥ λ0. It follows that y ∈ cls(SB(x,U)), which is a contradiction. �

In the case of compact set, we have the following theorem proved in [6,

Corollary 3.1, Proposition 3.3].

Theorem 3.3. Let K ⊂M be compact.

(a) If D(K,S) = K, then K is equistable. Conversely, if K is equistable and

every point in K is weak transitive, then D(K,S) = K.

(b) If K is stable and every point in K is weak transitive, then D(K,S) = K.

Conversely, if D(K,S) = K, M is locally compact, every point in K is

weak transitive, and every orbit of S has connected closure, then K is

stable.

Remark 3.4. The studies of Lyapunov stability for points reduce to the rest

points. In fact, suppose that x ∈ M is equistable. For all s ∈ S and U ∈ O we

have sx ∈ cls(SB(x,U). As {x} is equistable, it means that sx ∈ {x}, that is,

sx = x.

3.2. Poisson stability. We now introduce the concept of Poisson stable

set that is connected with recursiveness.

Definition 3.5. A given set X ⊂M is said to be forward F-recursive with

respect to the nonempty subset Z ⊂ M if for every A ∈ F , AZ ∩ X 6= ∅; the

set X is said to be backward F-recursive with respect to the set Z if for every

A ∈ F , A∗Z ∩X 6= ∅.

Definition 3.6. A given set X is said to be

(a) weakly forward F-Poisson stable if every neighbourhood of X is forward

F-recursive with respect to X,

(b) weakly backward F-Poisson stable if every neighbourhood of X is back-

ward F-recursive with respect to the set X,

(c) weakly F-Poisson stable if X is weakly forward and weakly backward

F-Poisson stable,

(d) forward F-Poisson stable if every open set U with X ∩U 6= ∅ is forward

F-recursive with respect to X,
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(e) backward F-Poisson stable if every open set U with X ∩ U 6= ∅ is back-

ward F-recursive with respect to X,

(f) F-Poisson stable if X is forward and backward F-Poisson stable.

Note that a forward F-Poisson stable set is weakly forward F-Poisson stable,

and a backward F-Poisson stable set is weakly backward F-Poisson stable. In

particular, an F-Poisson stable set is weakly F-Poisson stable.

The following theorem provides an alternative definition of weak Poisson

stability for compact sets.

Theorem 3.7. Let X ⊂M be a nonempty set.

(1) If ω(X,F) ∩X 6= ∅ then X is weakly forward F-Poisson stable.

(a) If X is compact, then X is weakly forward F-Poisson stable if and only

if ω(X,F) ∩X 6= ∅.
(b) If ω∗(X,F) ∩X 6= ∅ then X is weakly backward F-Poisson stable.

(c) If X is compact, then X is weakly backward F-Poisson stable if and only

if ω∗(X,F) ∩X 6= ∅.

Proof. Suppose that ω(X,F) ∩ X 6= ∅ and take x ∈ ω(X,F) ∩ X. Then

B(x,U)∩AX 6= ∅ for all U ∈ O and A ∈ F . As B(x,U) ⊂ B(X,U), it follows that

every neighbourhood of X is forward F-recursive with respect to X. Thus, X is

weakly forward F-Poisson stable, and item (a) is proved. Now, suppose that X

is compact and weakly forward F-Poisson stable. Take an open neighbourhood

V of X. Then V ∩AX 6= ∅ for every A ∈ F . Since X is compact, there is x ∈ X
such that x ∈ cls(AX) for all A ∈ F . Hence, ω(X,F) ∩X 6= ∅, and item (b) is

proved. Items (c) and (d) are proved analogously to (a) and (b). �

We now describe the principal aspect of the Poisson stability as follows.

Theorem 3.8. For a given nonempty set X, the following statements are

equivalent:

(a) X is forward F-Poisson stable.

(b) For each point x ∈ X and U ∈ O, B(x,U) is forward F-recursive with

respect to X.

(c) X ⊂ ω(X,F).

Proof. First, we show that (a) implies (b). Suppose that X is forward

F-Poisson stable, x ∈ X, and U ∈ O. Since B(x,U) is an open set such that

B(x,U) ∩X 6= ∅, it follows that B(x,U) is forward F-recursive with respect to

X. Now, we show that (b) implies (c). Suppose that, for each x ∈ X and U ∈ O,

B(x,U) is forward F-recursive with respect to X. Let x ∈ X and U ∈ O. Then

B(x,U) ∩ AX 6= ∅ for all A ∈ F . Hence, x ∈ cls(AX) for all A ∈ F , that

is, x ∈ ω(X,F). Thus, X ⊂ ω(X,F). Finally, we prove that (c) implies (a).
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Suppose that X ⊂ ω(X,F). If U ⊂M is an open set such that X ∩U 6= ∅, then

ω(X,F) ∩ U 6= ∅. It follows that AX ∩ U 6= ∅ for all A ∈ F , and therefore U is

forward F-recursive with respect to X. �

A similar theorem for backward Poisson stable sets is proved in the same

way.

Theorem 3.9. For a given nonempty set X, the following statements are

equivalent:

(a) X is backward F-Poisson stable.

(b) For each point x ∈ X and U ∈ O, B(x,U) is backward F-recursive with

respect to X.

(c) X ⊂ ω∗(X,F).

In particular, the set X is F-Poisson stable if and only if X ⊂ ω(X,F) ∩
ω∗(X,F). If the family F satisfies hypothesis (H1) and X is forward F-Poisson

stable, then cls(SX) = ω(X,F). If the family F satisfies both hypotheses (H1)

and (H2), and X is F-Poisson stable, then cls(SX) = ω(X,F) = ω∗(X,F).

Another consequence from Theorems 3.8 and 3.9 is that there is no difference

between Poisson stability and weak Poisson stability for points. We also have

the following corollaries from Theorems 3.8 and 3.9.

Corollary 3.10. Let X ⊂M be a nonempty set.

(a) If every point in X is forward F-Poisson stable, then X is forward F-

Poisson stable.

(b) If every point in X is backward F-Poisson stable, then X is backward

F-Poisson stable.

(c) If every point in X is F-Poisson stable, then X is F-Poisson stable.

Corollary 3.11. For x ∈ X, the following statements are equivalent:

(a) x is forward F-Poisson stable.

(b) x ∈ ω(x,F).

(c) x ∈ Aw(x).

Analogously, x is backward F-Poisson stable if and only if x ∈ ω∗(x,F),

and x is F-Poisson stable if and only if x ∈ ω(x,F) ∩ ω∗(x,F). Contrast to

Corollary 3.11 with Proposition 2.11.

If F satisfies hypothesis (H1), then x is forward F-Poisson stable if and only

if x is {S}-Poisson stable and cls(Sx) = ω(x,F) = cls(Ax), for every A ∈ F .

Moreover, if F also satisfies hypothesis (H3), then the set of all forward F-Poisson

stable points is forward invariant (see [17]).

The next result relates invariance and Poisson stability.

Proposition 3.12. Let X ⊂M be a compact set.
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(a) If X is forward invariant, then X is weakly forward F-Poisson stable.

(b) If X is backward invariant, then X is weakly backward F-Poisson stable.

(c) If X is invariant, then X is F-Poisson stable.

Proof. For item (a), suppose that X is forward invariant. Then, for every

A ∈ F , we have cls(AX) ⊂ X. As F is a filter basis and X is compact, it follows

that ω(X,F) 6= ∅ and ω(X,F) ⊂ X. By Theorem 3.7, X is weakly forward

F-Poisson stable. Similarly, we prove item (b). For item (c), suppose that X

is invariant. Then AX = A∗X = X for all A ∈ F . Hence, X = ω(X,F) =

ω∗(X,F). By Theorem 3.8, X is F-Poisson stable. �

If X is a closed Lyapunov stable set or an equistable set, then it is forward

invariant. Then we have the following consequence from Proposition 3.12.

Corollary 3.13. If X is a compact Lyapunov stable or equistable set, then

it is weakly forward F-Poisson stable.

Let PF denote the set of all forward F-Poisson stable points

PF = {x ∈M : x ∈ ω(x,F)}.

The closure of PF in M is called the F-Birkhoff center (or the set of central

motions) of (S,M). If M is a separable metric space admitting a probabil-

ity measure µ on the Borel sets of M that is invariant under S, the Poincaré

recurrence theorem says that µ-almost every point in M is forward F-Poisson

stable (see [17, Theorem 3.1]). In particular, if µ is a Radon measure such that

µ(U) > 0 for any nonempty open set U ⊂ X, then PF is dense in M , that is,

the F-Birkhoff center of (S,M) coincides with M .

We can define an equivalence relation in PF as follows:

for x, y ∈ PF , let x ∼F y ⇔ x ∈ ω(y,F) and y ∈ ω(x,F).

If F satisfies hypothesis (H1), then this relation in PF is an equivalence

relation (see [17, p. 359]), and the equivalence classes of ∼F coincide with the

sets P ⊂M which satisfy the following properties:

(a) P ⊂ ω(x,F), for all x ∈ P ,

(b) P is maximal with property (a).

Note that ω(x,F) = ω(y,F) for any points x, y ∈ P , that is, P ⊂ P , where

P = ω(x,F) for all x ∈ P . In [17], each equivalence class of ∼F was called

a maximal F-transitive set. By Theorem 3.8, the equivalence classes of the

relation “∼F” are F-Poisson stable sets.

3.3. Nonwandering sets. We now define the concept of nonwandering set

that is also connected with recursiveness and relates to the Poisson stability.

Definition 3.14. A given set X is said to be
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(a) weakly F-nonwandering if every neighbourhood U of X is forward F-

recursive with respect to itself, that is, AU ∩ U 6= ∅ for all A ∈ F ,

(b) forward F-nonwandering if every open set V with X ∩V 6= ∅ is forward

F-recursive with respect to any neighbourhood U of X,

(c) backward F-nonwandering if every open set V with X ∩ V 6= ∅ is back-

ward F-recursive with respect to any neighbourhood U of X,

(d) F-nonwandering if it is forward and backward F-nonwandering.

Note that a given set X is weakly F-nonwandering if and only if for every

neighbourhood U of X and A ∈ F , A∗U ∩ U 6= ∅. This fact explains why

we define neither weakly forward F-nonwandering set nor weakly backward F-

nonwandering set. Note also that a forward or backward F-nonwandering set is

weakly F-nonwandering.

We can describe the nonwandering sets by means of prolongational limit sets.

We need the following property of prolongational limit sets.

Proposition 3.15. For X ⊂M , J(X,F) ∩X 6= ∅ if and only if J∗(X,F) ∩
X 6= ∅.

Proof. Suppose that J(X,F) ∩ X 6= ∅ and take x ∈ J(X,F) ∩ X. Then

there is y ∈ X such that x ∈ J(y,F). Hence, y ∈ J∗(x,F), and therefore

y ∈ J∗(X,F) ∩X. The converse is proved in the same way. �

Theorem 3.16. Let X ⊂M be a nonempty set. If J(X,F) ∩X 6= ∅ then X

is weakly F-nonwandering. The converse holds if X is compact.

Proof. Suppose that J(X,F) ∩ X 6= ∅ and take x ∈ J(X,F) ∩ X. Then

there is y ∈ X such that x ∈ J(y,F). Take an open neighbourhood U of X and

A ∈ F . There are nets (tλ) in S and (xλ) in M such that tλ →F ∞, xλ → y and

tλxλ → x. As x, y ∈ U , there is λ0 such that xλ, tλxλ ∈ U and tλ ∈ A for all

λ ≥ λ0. Hence, AU ∩U 6= ∅, and therefore X is F-nonwandering. Now, suppose

that X is a compact weakly F-nonwandering set. For U ∈ O and A ∈ F , we

have B(X,U)∩AB(X,U) 6= ∅. Hence, there are x(A,U) ∈ B(X,U) and s(A,V) ∈ A
such that s(A,V)x(A,V) ∈ B(X,U). Since X is compact, we may assume that the

net (x(A,U)) converges to x ∈ X and the net (s(A,V)x(A,V)) converges to y ∈ X.

As s(A,V) →F ∞, it follows that y ∈ J(x,F). Hence, y ∈ J(X,F) ∩X. �

It is easily seen that a set X is forward F-nonwandering if for all x ∈ X and

U ∈ O, B(x,U) is forward F-recursive with respect to any neighbourhood of X;

X is backward F-nonwandering if for all x ∈ X and U ∈ O, B(x,U) is backward

F-recursive with respect to any neighbourhood of X. The following theorem

presents the main aspect of the nonwandering sets.

Theorem 3.17. Let X ⊂M be a nonempty set.
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(a) If X ⊂ J(X,F), then X is forward F-nonwandering. The converse holds

if X is compact.

(b) If X ⊂ J∗(X,F), then X is backward F-nonwandering. The converse

holds if X is compact.

Proof. Suppose that X ⊂ J(X,F), U is a neighbourhood of X, and V is an

open set such that X ∩V 6= ∅. Take x ∈ X ∩V and y ∈ X such that x ∈ J(y,F).

Then V ∩AB(y,U) 6= ∅ for all A ∈ F and U ∈ O. As y ∈ U , there is U such that

B(y,U) ⊂ U . Hence, V ∩AU 6= ∅, and therefore X is forward F-nonwandering.

Now, suppose that X is a compact forward F-nonwandering set. Let x ∈ X,

A ∈ F , and U ∈ O. Then AB(X,U) ∩ B(x,U) 6= ∅. Take x(A,U) ∈ B(X,U)

and s(A,V) ∈ A such that s(A,U)x(A,U) ∈ B(x,U). Then s(A,V) →F ∞ and

s(A,U)x(A,U) → x. Moreover, x(A,U) ∈ B(y(A,U),U), with y(A,U) ∈ X.

Since X is compact, we may assume that the net (y(A,U)) converges to y ∈ X.

Then the net (x(A,U)) also converges to y. In fact, for V ∈ O, take V ′ ∈ O such

that V ′ ≤ V/2 and take (A0,U0) such that y(A,U) ∈ B(y,V ′) for all (A,U) ≥
(A0,U0). Choose W ∈ O such that W ≤ V ′ and W ≤ U0.

For (A,U) ≥ (A0,W), we have y(A,U) ∈ B(y,V ′) and x(A,U) ∈ B(y(A,U),U).

Then there are V ′ ∈ V ′ and U ∈ U such that y(A,U), y ∈ V ′ and y(A,U), x(A,U) ∈
U . As U ≤ W ≤ V ′, V ′ ≤ V/2, and y(A,U) ∈ V ′ ∩ U , there is V ∈ V such that

V ′ ∪ U ⊂ V . Hence, x(A,U), y ∈ V , that is, x(A,U) ∈ B(y,V). Thus, x(A,U) → y.

Finally, we have s(A,V) →F ∞, x(A,U) → y, and s(A,U)x(A,U) → x, hence

x ∈ J(y,F). Therefore, X ⊂ J(X,F), and item (a) is proved. Analogously, we

prove item (b). �

In particular, for X compact, X is F-nonwandering if and only if X ⊂
J(X,F) ∩ J∗(X,F).

For points, there is no difference among the four items of Definition 3.14.

The following results on nonwandering points are immediate consequences from

Theorem 3.17.

Corollary 3.18. For x ∈ X, the following statements are equivalent:

(a) x is F-nonwandering.

(b) x ∈ J(x,F).

(c) For every neighbourhood U of x and A ∈ F , A∗U ∩ U 6= ∅.
(d) x ∈ J∗(x,F).

Corollary 3.19. Let X ⊂ M be a nonempty set. If every point in X is

F-nonwandering, then X is F-nonwandering.

In general, we have the following relations between Poisson stable sets and

nonwandering sets:



Stability and Controllability 15

(1) A weakly forward (or backward) F-Poisson stable set is weakly F-non-

wandering.

(2) A forward F-Poisson stable set is forward F-nonwandering.

(3) A backward F-Poisson stable set is backward F-nonwandering.

(4) An F-Poisson stable set is F-nonwandering.

For open sets, there is no difference between Poisson stable sets and nonwan-

dering sets.

3.4. Lagrange stability. We finally define the notion of Lagrange stability

for semigroup actions and present its connection with the Poisson stability.

Definition 3.20. A given set X ⊂M is said to be

(a) forward Lagrange stable if cls(SX) is compact,

(b) backward Lagrange stable if cls(S∗X) is compact,

(c) Lagrange stable if cls(S∗SX) is compact.

Proposition 3.21. If X ⊂M is Lagrange stable, then cls(SX) ⊂ A(cls(SX)).

Proof. Let x ∈ cls(SX). Since cls(SX) is forward invariant, then cls(Ax) ⊂
cls(SX) for all A ∈ F . As F is a filter basis and cls(SX) is compact, it follows

that ω(x,F) 6= ∅ and ω(x,F) ⊂ cls(SX). Hence, x ∈ A(cls(SX)). �

The following result relates the Lagrange stability to the Poisson stability.

Proposition 3.22. If X ⊂ M is forward Lagrange stable, then cls(SX) is

a weakly forward F-Poisson stable set.

Proof. Since cls(SX) is invariant and compact, the proof follows by Propo-

sition 3.12. �

Besides, if X ⊂ M is forward Lagrange stable, then there exists a forward

minimal set N ⊂ cls(SX). If the family F satisfies hypothesis (H1), it follows

that N = ω(x,F) for all x ∈ N , and therefore every point in N is forward

F-Poisson stable.

4. Controllability

In this section we introduce a relative control theory terminology. We refer

to [4], [7], [10], and [12] for the control theory. Throughout, there is a fixed

semigroup action (S,M, µ) and a filter basis F on the subsets of S.

Definition 4.1. A nonempty set D ⊂ M is said to be a weak F-control

set if

(a) D ⊂ ω(x,F) for all x ∈ D,

(b) D is maximal satisfying property (a).
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The set D is called an F-control set if it is a weak F-control set with interior

points.

This notion of controllability depending on a family of subsets of the semi-

group introduces an asymptotic aspect to the control theory. Moreover, Defi-

nition 4.1 generalizes the original concept of control set. In fact, the notion of

control set as stated in [10] coincides with the notion of {S}-control set, and the

concept of weak control set as defined in [17] coincides with the concept of weak

{S}-control set.

In general, a semigroup acting on a topological space is not transitive. Then

the concept of control set was introduced with the intention of defining regions

of the space where the transitivity occurs. Similarly, the F-control sets define

regions of the space where the asymptotic transitivity occurs. This property

is related to the well-known concept of topological transitivity in dynamical

systems and semigroup actions (see [16]).

Note that every weak F-control set is an F-Poisson stable set. Moreover,

if F satisfies hypothesis (H1), then the weak F-control sets coincide with the

equivalence classes of the equivalence relation “∼F” in the set PF of all forward

F-Poisson stable points. Thus, weak F-control sets are F-Poisson stable. This

is the relationship between the notions of Poisson stability and controllability.

Nevertheless, the controllability is totally different from the Lyapunov stability.

Let us see an elementary example that confirms this statement.

 

Figure 1. The unit circle is a weak control set that is Lyapunov unstable.
For time-reversal, the unit disk is Lyapunov stable but not controllable.

Example 4.2. Consider the dynamical system on M = R2 whose phase

portrait is as in Figure 1. The origin 0 is a rest point and the unit circle S1

is a periodic trajectory. Hence, {0} and S1 are two weak control sets (minimal
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sets). The trajectories in the interior of the unit circle spiral from the unit circle

to the origin 0 as t → +∞. Hence, {0} is Lyapunov stable. The trajectories in

the exterior of S1 spiral away from S1. Thus, S1 is Lyapunov unstable. On the

other hand, by considering the time-reversal dynamical system, the unit disk D1

is Lyapunov stable but not controllable.

Let D ⊂M be an F-control set for S. The set

D0 =
{
x ∈ D : x ∈ int(Ax) ∩ int(A∗x) for all A ∈ F

}
is called the F-transitivity set of D. If D0 is nonempty, then the F-control set

D is said to be an effective F-control set.

Remark 4.3. Let A ⊂ S be a subsemigroup and x ∈ M . If x ∈ int(A∗x),

then A∗x is an open set. In fact, we have A∗x ⊂ A∗int(A∗x) ⊂ int(A∗A∗x) ⊂
int(A∗x). Hence, A∗x = int(A∗x). In the same way, if the action of A is open

and x ∈ int(Ax), then Ax is an open set.

The following result is proved in [17, Propositions 3.2 and 3.3].

Proposition 4.4. Assume that F is a family of subsemigroups of S. A non-

empty subset D ⊂M is a weak F-control set if and only if for each A ∈ F there

is a weak control set DA of A such that

D =
⋂
A∈F

DA.

Furthermore,

Aw(D) =
⋂
A∈F

Aw(DA).

We have an additional result on transitivity sets, as follows.

Proposition 4.5. Assume that F is a family of subsemigroups of S. If

D ⊂M is an F-control set, then for each A ∈ F there is a control set DA of A

such that D =
⋂
A∈F

DA and

D0 =
⋂
A∈F

(DA)0,

where (DA)0 is the transitivity set of DA.

Proof. By Proposition 4.4, for each A ∈ F there is a weak control set DA

of A such that D=
⋂
A∈F

DA. Since int(D) 6=∅, we have int(DA) 6=∅ for all A∈F .

Hence, DA is a control set of A, for each A ∈ F . Let x ∈ D0 and A ∈ F . Then

x ∈ int(Ax) ∩ int(A∗x). Since x ∈ D ⊂ DA, it follows that x ∈ (DA)0. As to

the converse, if x ∈
⋂
A∈F

(DA)0, then x ∈ D and x ∈ int(Ax) ∩ int(A∗x), for all

A ∈ F . Thus x ∈ D0. �
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The next proposition extends a theorem that has been proved in the setting

of semigroup of homeomorphisms, which states the properties of the transitivity

sets of the effective control sets for a semigroup (see [4] and [12]).

Proposition 4.6. Let A ⊂ S be a subsemigroup and D ⊂ M an effective

control set for A. The transitivity set D0 has the following properties:

(a) D ⊂ int(A∗x) for every x ∈ D0.

(b) D0 = int(Ax) ∩ int(A∗x) for every x ∈ D0.

(c) (total transitivity) For every x, y ∈ D0 there is s ∈ A such that sx = y.

(d) D0 is dense in D.

(e) If the action of A is open, then D0 is A-invariant on D, that is, if s ∈ A,

x ∈ D0, and sx ∈ D, then sx ∈ D0.

Proof. (a) Let y ∈ D and x ∈ D0. Then x ∈ int(A∗x) and x ∈ cls(Ay).

Hence, there is s ∈ A such that sy ∈ int(A∗x). It follows that y ∈ µ−1
s (int(A∗x))

⊂ int(A∗x). Thus D ⊂ int(A∗x).

(b) If x ∈ D0 and y ∈ int(Ax) ∩ int(A∗x), then there are t, s ∈ A such

that y = tx and x = sy. Hence, x ∈ µ−1
t (y), and therefore y ∈ int(A∗x) ⊂

int(A∗µ−1
t (x)) ⊂ int(A∗y). Moreover, y ∈ int(Ax) = int(Asy) ⊂ int(Ay). Thus,

y ∈ int(Ay) ∩ int(A∗y). As x ∈ Ay and y ∈ Ax, we have y ∈ D, and therefore

y ∈ D0. It follows that int(Ax) ∩ int(A∗x) ⊂ D0 and D0 is an open set. On the

other hand, let x, y ∈ D0. By item (a) we have y ∈ int(A∗x) and x ∈ int(A∗y).

Hence, y ∈ Ax ∩ int(A∗x), and therefore D0 ⊂ Ax ∩ int(A∗x). Then we have

int(Ax) ∩ int(A∗x) ⊂ D0 ⊂ Ax ∩ int(A∗x). Since D0 is open, it follows that

D0 = int(Ax) ∩ int(A∗x).

(c) Follows immediately form item (b).

(d) Let x ∈ D0. By item (a), we have D ⊂ int(A∗x). Since D ⊂ cls(Ax), it

follows thatD ⊂ cls(Ax)∩int(A∗x). By item (b), we have cls(D0) = cls(int(Ax)∩
int(A∗x)). Hence

D ⊂ cls(Ax) ∩ int(A∗x) ⊂ cls(int(Ax) ∩ int(A∗x)) = cls(D0)

and therefore D0 is dense in D.

(e) Suppose that the action of A is open, s ∈ A, x ∈ D0, and sx ∈ D. By

item (b) and Remark 4.3, we have D0 = Ax ∩A∗x. By item (a), it follows that

sx ∈ D0. �

By Remark 4.3, property (a) of Proposition 4.6 may be stated as D ⊂ A∗x

for every x ∈ D0. If the action of A is open, then property (b) may be enunciated

as D0 = Ax ∩ A∗x for every x ∈ D0. As a consequence from Propositions 4.5

and 4.6, we have the following result on transitivity sets of control sets.
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Proposition 4.7. Assume that F is a family of subsemigroups of S. Let D ⊂
M be an effective F-control set. The F-transitivity set of D has the following

properties:

(a) D ⊂ ω∗(x,F) for every x ∈ D0.

(b) D0 =
⋂
A∈F

int(Ax ∩A∗x) for all x ∈ D0.

(c) For every x, y ∈ D0 and A ∈ F there is sA ∈ A such that sAx = y.

(d) If the action is open and F satisfies hypothesis (H1), then D0 is S-

invariant on D, that is, if s ∈ S, x ∈ D0, and sx ∈ D, then sx ∈ D0.

Proof. Items (a)–(c) follow immediately from Propositions 4.5 and 4.6. For

item (d), suppose that the action is open, F satisfies hypothesis (H1), s ∈ S,

x ∈ D0, and sx ∈ D. By item (a) of Proposition 4.6, we have sx ∈
⋂
A∈F

int(A∗x).

For A ∈ F , there is B ∈ F such that sB ⊂ A. As x ∈ int(Bx), it follows that

sx ∈ sint(Bx) ⊂ int(sBx) ⊂ int(Ax). Hence,

sx ∈
⋂
A∈F

int(Ax ∩A∗x) = D0. �

We now show that a set satisfying item (a) of Definition 4.1 may be extended

to a weak F-control set.

Proposition 4.8. Assume that F satisfies hypothesis (H1). Assume that

D ⊂M is a nonempty subset of M satisfying D ⊂ ω(x,F) for all x ∈ D. Then

there is a weak F-control set D′ ⊂M containing D.

Proof. Let D be the collection of sets

D = {C ⊂M : D ⊂ C and C ⊂ ω(x,F) for all x ∈ C}.

Take an arbitrary chain (Ci)i∈I in D and let U =
⋃
i∈I

Ci. Given x, y ∈ U , choose

j, k ∈ I such that x ∈ Cj and y ∈ Ck and fix z ∈ D. Then we have z ∈ ω(x,F)

and y ∈ ω(z,F). It follows that y ∈ ω(x,F). Hence, U ⊂ ω(x,F) for all x ∈ U ,

and therefore U ∈ D. By Zorn’s Lemma, there is a maximal set (with respect

to the inclusion) D′ ⊂ M such that D′ ⊂ ω(x,F) for all x ∈ D′, and the result

is proved. �

This result shows that every forward F-Poisson stable point is contained in

a weak F-control set whenever hypothesis (H1) holds.

Corollary 4.9. Assume that F satisfies hypothesis (H1). Assume that

D ⊂M is a nonempty subset of M satisfying:

(a) int(D) 6= ∅ and

(b) D ⊂ ω(x,F) for all x ∈ D.

There is an F-control set D′ ⊂M containing D.
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Proof. By Proposition 4.8, there is a weak F-control set D′ containing D.

Since int(D) 6= ∅ and int(D) ⊂ D′, the set D′ is indeed an F-control set. �

A dynamic order among the weak F-control sets of (S,M) can be defined in

the following way:

(RCS) for two weak F-control sets D and D′, let D 4 D′ ⇔ D ∩Aw(D′) 6= ∅.

Proposition 4.10. Assume that F satisfies hypothesis (H1). Then the rela-

tion (RCS) among the weak F-control sets is an order relation.

Proof. If D is a weak F-control set, then D ⊂ ω(x,F) for all x ∈ D. Hence,

D ⊂ Aw(D) and therefore D 4 D. If D and D′ are two weak F-control sets

such that D 4 D′ and D′ 4 D, then D∩Aw(D′) 6= ∅ and D′∩Aw(D) 6= ∅. Take

x ∈ D∩Aw(D′) and y ∈ D′∩Aw(D). Then ω(x,F)∩D′ 6= ∅ and ω(y,F)∩D 6= ∅.
Now, take u ∈ ω(x,F)∩D′ and v ∈ ω(y,F)∩D. As x ∈ D and y ∈ D′, we have

x ∈ ω(v,F) ⊂ ω(y,F) and y ∈ ω(u,F) ⊂ ω(x,F). Hence, x ∼F y, and therefore

D = D′. Finally, suppose that D 4 D′ and D′ 4 D′′. Then D∩Aw(D′) 6= ∅ and

D′ ∩Aw(D′′) 6= ∅. Take x ∈ D ∩Aw(D′) and y ∈ D′ ∩Aw(D′′). Then there are

u ∈ ω(x,F)∩D′ and v ∈ ω(y,F)∩D′′. As y ∈ D′, it follows that y ∈ ω(u,F) ⊂
ω(x,F), and v ∈ ω(y,F) ⊂ ω(u,F) ⊂ ω(x,F). Hence, v ∈ ω(x,F) ∩ D′′, and

therefore D 4 D′′. �

By using the dynamic order relation among the weak F-control sets, we can

present an alternative characterization of minimal subset in compact space, as

follows.

Proposition 4.11. Assume that M is a compact Hausdorff space and F
satisfies hypotheses (H1) and (H3). Let X ⊂M be a nonempty subset. Then the

following statements are equivalent:

(a) X is a forward minimal set.

(b) X is a closed weak F-control set.

(c) X is a weak F-control set that is maximal with respect to the order

relation (RCS).

Proof. See proof in [17], Proposition 3.4. �

4.1. Prolongational control sets. We now introduce the notion of pro-

longational controllability for semigroup actions.

Definition 4.12. A nonempty set E ⊂M is said to be a weak prolongational

F-control set if

(a) E ⊂ J(x,F) for all x ∈ E,

(b) E is maximal satisfying property (a).
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The set E is called a prolongational F-control set if it is a weak prolongational

F-control set with interior points.

If A ⊂ S is a subsemigroup and E ⊂ M , we say that E is a weak prolonga-

tional control set for A if it is a weak prolongational {A}-control set. Thus, E

is a weak prolongational control set for A if

(a) E ⊂ D(x,A) for all x ∈ E,

(b) E is maximal satisfying property (a).

By Theorem 3.17, every weak prolongational F-control set is an F-non-

wandering set.

Definition 4.13. Let y ∈ M . The action of S on M is said to be equicon-

tinuous at y if the family of functions {µs}s∈S is equicontinuous at y, that is,

for a given U ∈ O there is V ∈ O such that sB(y,V) ⊂ B(sy,U) for all s ∈ S.

The action is equicontinuous provide it is equicontinuous at every point in M .

Under equicontinuity we may describe the weak prolongational F-control sets

as equivalence classes for certain equivalence relation among the F-nonwandering

points. We need the following lemma.

Lemma 4.14. Assume that the action is equicontinuous at y ∈ M . If x ∈
D(y,A) and y ∈ D(z,B), then x ∈ D(z, C), where C ⊃ AB.

Proof. Since x ∈ D(y,A), there are nets (tλ) in A and (yλ) in M such

that yλ → y and tλyλ → x. As y ∈ D(y,A), there are nets (sα) in B and

(zα) in M such that zα → z and sαzα → y. Let U ,V ∈ O and take W ∈ O
with W ≤ U/2. By the equicontinuity at y, we can take W ′ ∈ O such that

sB(y,W ′) ⊂ B(sy,W) for all s ∈ S. There are indexes λ0 and α0 such that

yλ, sαzα ∈ B(y,W ′), tλyλ ∈ B(x,W), and zα ∈ B(z,V) for all λ ≥ λ0 and

α ≥ α0. Hence, tλyλ, tλsαzα ∈ B(tλy,W) for all λ ≥ λ0 and α ≥ α0. As

W ≤ U/2, it follows that tλsαzα ∈ B(x,U) with tλsα ∈ AB and zα ∈ B(z,V).

Hence, B(x,U) ∩ CB(z,V) 6= ∅, and therefore x ∈ D(z, C). �

Now, assume that F is a family of subsemigroups of S and denote by NF
the set of all F-nonwandering points

NF = {x ∈M : x ∈ J(x,F)}.

We can define an equivalence relation in NF as follows:

for x, y ∈ NF , let x ≈F y ⇔ x ∈ J(y,F) and y ∈ J(x,F).

Assume that the action is equicontinuous. By Lemma 4.14, if A ∈ F , x ∈
D(y,A), and y ∈ D(z,A), then x ∈ D(z,A). Hence, x ∈ J(y,F) and y ∈ J(z,F)

implies x ∈ J(z,F). Thus, the relation “≈F” is transitive. Since “≈F” is clearly

reflexive and symmetric, it is an equivalence relation. It is not difficult to see
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that the equivalence classes of “≈F” coincide with the weak prolongational F-

control sets. Hence, if E is a weak prolongational F-control set, then E ⊂ E

where E = J(x,F) for every x ∈ E.

From now on, we assume that the relation “≈F” is an equivalence relation

among the F-nonwandering points. The next proposition shows that a set sat-

isfying item (a) of Definition 4.12 can be extended to a weak prolongational

F-control set.

Proposition 4.15. Assume that E ⊂ M is a nonempty subset satisfying

D ⊂ J(x,F) for all x ∈ E. Then there is a weak prolongational F-control set E′

containing E.

Proof. The proof follows similarly to the proof of Proposition 4.8. �

This result shows that every F-nonwandering point is contained in a weak

prolongational F-control set. The next result is an immediate consequence from

Proposition 4.15.

Corollary 4.16. Assume that E ⊂M is a nonempty subset satisfying

(a) int(E) 6= ∅ and

(b) E ⊂ J(x,F) for all x ∈ E.

Then there is a prolongational F-control set E′ containing E.

The next result describes a weak prolongational F-control set as the inter-

section of weak prolongational control sets for the subsemigroups in F .

Proposition 4.17. Assume that F is a family of subsemigroups of S. A non-

empty subset E ⊂ M is a weak prolongational F-control set if and only if for

each A ∈ F there is a weak prolongational control set EA for A such that

E =
⋂
A∈F

EA.

Furthermore, if the action is equicontinuous, then

Awu(E,F) =
⋂
A∈F

Awu(EA, A).

Proof. Let E be a weak prolongational F-control set. For each A ∈ F , we

have E ⊂ J(x,F) ⊂ D(x,A) for all A ∈ F . Then there is a weak prolongational

control set EA for A such that E ⊂ EA. Hence, E ⊂
⋂
A∈F

EA. On the other

hand, for any x, y ∈
⋂
A∈F

EA, we have y ∈
⋂
A∈F

EA ⊂
⋂
A∈F

D(x,A) = J(x,F).

Hence, the points of
⋂
A∈F

EA lie in the same equivalent class of ≈F , and therefore

E =
⋂
A∈F

EA. As to the converse, suppose that E =
⋂
A∈F

EA, where each EA is

a weak prolongational control set for A ∈ F . For x ∈ E, we have E ⊂ J(x,F).
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Hence, there is a weak prolongational F-control set E′ such that E ⊂ E′. By

the first part of this proof, it follows that E′ =
⋂
A∈F

E′A, where each E′A is a weak

prolongational control set for A ∈ F . Since distinct weak prolongational control

sets are disjoint, we have EA = E′A, for all A ∈ F . Therefore E = E′.

Now assume that E =
⋂
A∈F

EA and take x ∈ Awu(E,F). Then J(x,F)∩E 6= ∅.

It follows that D(x,A)∩EA 6= ∅ for all A ∈ F . Hence, x ∈
⋂
A∈F

Awu(EA, A). On

the other hand, take y ∈
⋂
A∈F

Awu(EA, A). Then D(y,A)∩EA 6= ∅ for all A ∈ F .

For each A ∈ F , take xA ∈ D(y,A) ∩ EA. If z ∈ E then z ∈ D(xA, A) for all

A ∈ F . By Lemma 4.14, z ∈ D(y,A)∩E for all A ∈ F , that is, z ∈ J(y,F)∩E.

Therefore, y ∈ Awu(E,F). �

We now define the following relation among the weak prolongational F-

control sets of (S,M):

(RPCS) for two weak prolongational F-control sets E and E′,

let E 4 E′ ⇔ E ∩Awu(E′) 6= ∅.

Proposition 4.18. The relation (RPCS) among the weak prolongational F-

control sets is an order relation.

Proof. If E is a weak prolongational F-control set, then E ⊂ J(x,F) for

all x ∈ E. Hence, E ⊂ Awu(E) and therefore E 4 E. If E and E′ are two

weak prolongational F-control sets such that E 4 E′ and E′ 4 E, then there

are x ∈ E ∩ Awu(E′) and y ∈ E′ ∩ Aw(E), that is, J(x,F) ∩ E′ 6= ∅ and

J(y,F) ∩ E 6= ∅. Take u ∈ J(x,F) ∩ E′ and v ∈ J(y,F) ∩ D. As x ∈ E and

y ∈ E′, we have x ∈ J(y,F) and y ∈ J(x,F). Hence, x ≈F y, and therefore

E = E′. Finally, suppose that E 4 E′ and E′ 4 E′′. Then E ∩ Awu(E′) 6= ∅
and E′ ∩Awu(E′′) 6= ∅. Take x ∈ E ∩Aw(E′) and y ∈ E′ ∩Aw(E′′). Then there

are u ∈ J(x,F)∩E′ and v ∈ J(y,F)∩E′′. As y ∈ E′, it follows that y ∈ J(x,F)

and therefore v ∈ J(x,F). Thus, v ∈ J(x,F) ∩ E′′, which means E 4 E′′. �

We shall describe the maximal weak prolongational F-control sets with re-

spect to the dynamic order (RPCS) in the case of F being a family of ideals of S.

We need the following concept.

Definition 4.19. A subset X ⊂ M is said to be minimal equistable if it is

nonempty, closed, equistable, and has no proper subset satisfying these proper-

ties.

Proposition 4.20. Assume that X ⊂M is an equistable set. If D(x, S) = X

for all x ∈ X then X is minimal equistable.



24 J. Souza — H. Tozatti — V. Hugo

Proof. Suppose that Y ⊂ X is equistable. By Proposition 3.2, we have

D(y, S) ⊂ Y for every y ∈ Y . Hence, X = D(y, S) ⊂ Y for any y ∈ Y , and

therefore Y = X. �

Evidently, the converse to Proposition 4.20 will be true if the prolongations

are equistable sets. This fact occurs under compactness and equicontinuity.

Proposition 4.21. Assume that the action is equicontinuous. Let F be

a family of left ideals of S. If the prolongational limit set J(x,F) is a nonempty

compact set, then it is equistable. In particular, if M is compact, then J(x,F) is

a compact equistable set for all x ∈M .

Proof. Suppose by contradiction that J(x,F) is not equistable. Then there

is y ∈ M \ J(x,F) such that y ∈ cls(SB(J(x,F),U)) for all U ∈ O. Hence, for

each U ∈ O there are tU ∈ S, xU ∈ B(J(x,F),U), and zU ∈ J(x,F) such that

xU ∈ B(zU ,U) and tUxU ∈ B(y,U). We may assume that (zU )U∈O converges to

a point z ∈ J(x,F). By Proposition 2.6, it follows that xU → z. Since tUxU → y,

we have y ∈ D(z, S). As z ∈ J(x,F), we have y ∈ D(z, S) and z ∈ D(x,A) for

every A ∈ F . By Lemma 4.14, it follows that y ∈ D(x,A) for every A ∈ F ,

because the elements of F are left ideals of S. Hence, y ∈ J(x,F), which is

a contradiction. �

In particular, in the case of equicontinuous action, the prolongation D(x, S)

is equistable if it is compact.

Propositions 3.2 and 4.21 imply the following result.

Corollary 4.22. Assume that the action is equicontinuous and let F be

a family of left ideals of S. Let K be a compact equistable subset of M . Then

J(x,F) is a compact equistable set for all x ∈ K.

The next result characterizes the compact minimal equistable sets by means

of prolongational limit sets.

Proposition 4.23. Assume that the action is equicontinuous and let F be

a family of left ideals of S. Then, a compact subset K ⊂M is minimal equistable

if and only if J(x,F) = K for every x ∈ K.

Proof. If K is minimal equistable and x ∈ K, Proposition 4.21 assures

that J(x,F) is a compact equistable subset of K. The minimality of K implies

that J(x,F) = K. As to the converse, if J(x,F) = K for all x ∈ K, then K

is equistable by Proposition 4.21. Now, let K ′ ⊂ K be a nonempty, closed,

and equistable subset. For x ∈ K ′, we have J(x,F) ⊂ K ′. It follows that

K = J(x,F) ⊂ K ′, and therefore K = K ′. �

Although every equistable set is forward invariant, the following example

shows that the concept of minimal equistable set is different from the concept of

minimal set.
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 Figure 2. A weak prolongational control set that is not a weak control set.

Example 4.24. Consider the dynamical system on M = R2 whose phase

portrait is as in Figure 2. The unit circle S1 consists of a rest point p = (−1, 0)

and a homoclinic trajectory Γ such that ω(x) = ω∗(x) = {p} for all x ∈ Γ.

Hence, the unit circle is not a minimal set. However, the trajectories in the

interior of S1 have the same property as Γ, and all trajectories in the exterior

of S1 spiral to it as t → +∞. Hence, we have J(x) = S1 for all x ∈ S1. By

Theorem 3.3, the unit circle is a minimal equistable set.

Example 4.25. Consider the control system on M = R2 determined by the

set of vector fields F = {X1, X2} which have trajectories as in Figure 3.

Let the notations be as in Example 2.4. For both vector fields, the disk

D is uniformly stable, the circle C is a periodic trajectory (stable for X1 and

unstable for X2), and the origin 0 is an equilibrium point (unstable for X1 and

stable for X2). For the control system, the following statements are clear:

(1) The disk D is uniformly stable.

(2) For every point x outside D, J(x,F) = ω(x,F) = C.

(3) For every x ∈ C, ω(x,F) = C.

(4) For every x ∈ int(D) \ {0}, C ∪ {0} ⊂ ω(x,F).

Note that D is a minimal equistable set, since there is no proper stable set

inside D. Let x, y ∈ int(D) \ {0}. For a given T > 0, there are t > T and s > 0

such that etX1x = e−sX2y. Hence, esX2etX1x = y, and therefore y ∈ S≥Tx. It

follows that int(D) \ {0} ⊂ S≥Tx for all x ∈ int(D) \ {0} and all T > 0. Thus,
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𝑋1 𝑋2 

Figure 3. Trajectories of the vector fields X1 and X2 in the plane.

int(D)\{0} ⊂ ω(x,F) for all x ∈ int(D)\{0}. Since C ∪{0} ⊂ ω(x,F), we have

D ⊂ ω(x,F) for all x ∈ int(D) \ {0}.

Now, for x ∈ C and ε > 0, take y ∈ B(x, ε) ∩ int(D). Then int(D) \ {0} ⊂
S≥T y ⊂ S≥TB(x, ε) for all T > 0. As 0 ∈ cls(S≥TB(x, ε)), it follows that

int(D) ⊂ cls(S≥TB(x, ε)) for all ε, T > 0. Thus, int(D) ⊂ J(x,F), and since

ω(x,F) = C, we have

D ⊂ J(x,F) for all x ∈ C.

Analogously, we have D ⊂ cls(S≥TB(0, ε)) for all ε, T > 0, and hence D ⊂
J(0,F). So we have D = J(x,F) for all x ∈ D, which implies that D is a pro-

longational F-control set for the control system.

Example 4.26. An n-time semidynamical system is a semigroup action

(S,M), where S ⊂ Rn is a cone. Let (S,M, µ) be a two-time semidynami-

cal system with S = {(s, t) ∈ R2 : s, t ≥ 0}, M = R2, and µ((s, t), (x, y)) =

(e−sx, e−ty). Consider the family F = {Ar : r > 0}, where Ar = {(s, t) ∈ S :

s, t ≥ r}. For any (x, y) ∈ R2 \ {0} and Ar ∈ F , we have

D((x, y), Ar) =
⋂
ε>0

cls(ArB((x, y), ε)) = cls(Ar(x, y))

as illustrated in Figure 4. Hence, J((x, y),F) = ω((x, y),F) = {0}, and therefore

the origin 0 is weak prolongational F-control set that is minimal equistable.

We now prove that every compact equistable set has an equistable minimal

subset. We need the following lemma.
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Figure 4. An illustration of a forward prolongation in the plane.

Lemma 4.27. Let (Xi)i∈I be a collection of equistable subsets of M . Then⋂
i∈I

Xi is equistable if it is nonempty.

Proof. Take z /∈
⋂
i∈I

Xi. Then there is j ∈ I such that z /∈ Xj . By the

equistability of Xj there is an open covering U ∈ O such that z /∈ cls(SB(Xj ,U)).

Therefore z /∈ cls
(
SB
( ⋂
i∈I

Xi,U
))

and
⋂
i∈I

Xi is equistable. �

Proposition 4.28. Every compact equistable set in M has a minimal equi-

stable subset.

Proof. Let K ⊂M be a compact equistable set and consider the collection

C = {C ⊂M : C is a closed equistable subset of K}

ordered by reverse inclusion, that is, C2 ≥ C1 if and only if C2 ⊂ C1. Note that

C 6= ∅ because K ∈ C. Take an arbitrary chain (Ci)i∈I in C and let C =
⋂
i∈I

Ci.

The compactness of K and Lemma 4.27 imply that C is a nonempty upper bound

of (Ci)i∈I contained in C. By Zorn’s Lemma, we obtain a maximal element of C,

which is a minimal equistable subset of K. �

Finally, we are able to describe the weak prolongational F-control sets which

are maximal with respect to the order relation (RPCS).

Theorem 4.29. Assume that the action is equicontinuous and let F be a fa-

mily of left ideals of S. If K ⊂ M is a compact minimal equistable set, then K

is a weak prolongational F-control set that is maximal with respect to the order

relation (RPCS). The converse holds if the whole space M is compact.
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Proof. Suppose that K is a compact minimal equistable set. By Propo-

sition 4.23, it follows that J(x,F) = K for all x ∈ K. Hence, there is a weak

prolongational F-control set E such that K ⊂ E. For x ∈ K and y ∈ E, we

have y ∈ E ⊂ J(x,F) = K. Thus, K = E is a weak prolongational F-control

set. Suppose that E′ is a weak prolongational F-control set such that K 4 E′.

Then there is x ∈ K ∩ Awu(E,F), that is, J(x,F) ∩ E 6= ∅. As J(x,F) = K,

it follows that K = E′. Thus, K is maximal with respect to (RPCS). Now,

suppose that M is compact and K is a weak prolongational F-control set that is

maximal with respect to (RPCS). For x ∈ K, J(x,F) is compact and equistable.

By Proposition 4.28, there is a minimal equistable set K ′ contained in J(x,F).

By the first part of the proof, K ′ is a weak prolongational F-control set. Since

x ∈ K ∩Awu(K ′,F), we have K 4 K ′. By the maximallity of K, it follows that

K = K ′. Therefore, K is minimal equistable. �

5. Conclusion

We have seen that forward (backward) invariant compact sets are weakly

forward (backward) F-Poisson stable, and invariant compact sets are F-Poisson

stable (Proposition 3.12). As a consequence, compact Lyapunov stable or equi-

stable sets are weakly forward F-Poisson stable. Moreover, if X is a Lagrange

stable set, then cls(SX) is weakly forward F-Poisson stable. If the family F
satisfies hypothesis (H1), then the weak F-control sets coincide with the equiva-

lence classes of the equivalence relation in the set of all F-Poisson stable points.

In this case, weak F-control sets are F-Poisson stable. On the other hand, every

forward F-Poisson stable point is contained in a weak F-control set (Proposi-

tion 4.8). Although the controllability is totally different from the Lyapunov

stability, we have discovered a situation in what they are connected. We have

introduced the notions of weak prolongational control set and minimal equistable

set. If F is a family of left ideals of the semigroup S and the action of S on

the space M is equicontinuous, then a compact minimal equistable set is a weak

prolongational F-control set that is maximal with respect to the dynamic order

among the weak prolongational F-control sets, and the converse holds if the

whole space M is compact (Theorem 4.29).
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