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BIFURCATION AND MULTIPLICITY RESULTS

FOR CLASSES OF p, q-LAPLACIAN SYSTEMS

Ratnasingham Shivaji — Byungjae Son

Abstract. We study positive solutions to boundary value problems of the

form 
−∆pu = λ{up−1−α + f(v)} in Ω,

−∆qv = λ{vq−1−β + g(u)} in Ω,

u = 0 = v on ∂Ω,

where ∆mu := div (|∇u|m−2∇u), m > 1, is the m-Laplacian operator of

u, λ > 0, p, q > 1, α ∈ (0, p − 1), β ∈ (0, q − 1) and Ω is a bounded

domain in RN , N ≥ 1, with smooth boundary ∂Ω. Here f, g : [0,∞) → R
are nondecreasing continuous functions with f(0) = 0 = g(0). We first

establish that for λ ≈ 0 there exist positive solutions bifurcating from the

trivial branch (λ, u ≡ 0, v ≡ 0) at (0, 0, 0). We further discuss an existence
result for all λ > 0 and a multiplicity result for a certain range of λ under

additional assumptions on f and g. We employ the method of sub-super

solutions to establish our results.

1. Introduction

Consider boundary value problems of the form−∆pu = λf̃(u) in Ω,

u = 0 on ∂Ω,
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where ∆pu := div (|∇u|p−2∇u), p > 1, is the p-Laplacian operator of u, λ > 0

and Ω is a bounded domain in RN , N ≥ 1, with smooth boundary ∂Ω. Here

f̃ : [0,∞) → R is a nondecreasing continuous function. When f̃(0) > 0, there

is a rich history on the study of positive solutions. The authors in [5] have

considered such problems in the Laplacian case (p = 2) and established an

existence result for all λ > 0 and a multiplicity result for a certain range of λ

under additional assumptions on f̃ . Later in [7], these results were extended

to the p-Laplacian case (p > 1). In particular, the authors in [7] proved the

existence of a positive solution for all λ > 0 when f̃ is p sublinear at ∞, and

multiplicity results for a certain range of λ when there exist a and b such that

0 < a < b and (ap−1/f̃(a))/(bp−1/f̃(b)) is sufficiently large. See also [1], [2] and

[6] for related results in the case f̃(0) > 0. Here, we focus on the case f̃(0) = 0. If

f̃(0) > 0, then u ≡ 0 is a very useful nonnegative strict subsolution to help with

the study of establishing positive solutions. In this paper, u ≡ 0 is a solution

for each λ > 0 and hence we lack the presence of this trivial nonnegative strict

subsolution. However, we use the presence of the term up−1−α as our advantage

to overcome this difficulty and show that positive solutions bifurcate at (0, 0)

from the trivial branch (λ, u ≡ 0). Under additional properties on f̃ , we establish

further existence and multiplicity results. We also extend these results to classes

of p, q-Laplacian systems. In particular, we consider boundary value problems

of the form

(1.1)


−∆pu = λ{up−1−α + f(v)} in Ω,

−∆qv = λ{vq−1−β + g(u)} in Ω,

u = 0 = v on ∂Ω,

where ∆mu := div (|∇u|m−2∇u), m > 1, is the m-Laplacian operator of u,

λ > 0, p, q > 1, α ∈ (0, p− 1), β ∈ (0, q − 1) are parameters and Ω is a bounded

domain in RN , N ≥ 1, with smooth boundary ∂Ω. Here f, g : [0,∞) → R are

nondecreasing continuous functions with f(0) = 0 = g(0). Clearly for all λ,

(u ≡ 0, v ≡ 0) is a solution of (1.1). In this paper, we are interested in the study

of solution (u, v) ∈ W 1,p(Ω) ∩ C(Ω) ×W 1,q(Ω) ∩ C(Ω) with u, v > 0 in Ω. We

first establish:

Theorem 1.1. There exists λ0 > 0 such that for all λ ∈ (0, λ0), (1.1)

has a positive solution (u, v) such that ‖u‖∞ → 0, ‖v‖∞ → 0 as λ → 0

(see Figure 1).

Next we consider the case when f, g satisfy the following combined p, q sub-

linear condition at ∞:

(H1) lim
s→∞

f(Mg(s)1/(q−1))

sp−1
= 0, for all M > 0,

and establish:



Bifurcation and Multiplicity Results for Classes of p, q-Laplacian Systems 105

Figure 1

Theorem 1.2. Let (H1) hold. Then (1.1) has a positive solution (u, v) for

all λ > 0 (see Figure 2).

Figure 2

If in addition, f, g satisfy:

(H2) There exist positive constants a1 and a2(> a1) such that

min[min{aα1 , a
p−1
1 /f(a1)},min{aβ1 , a

q−1
1 /g(a1)}]

max{ap−1
2 /f(a2), aq−1

2 /g(a2)}
≥ C(Ω),

where

C(Ω) = 2 max{‖ep‖p−1
∞ , ‖eq‖q−1

∞ }min
[
max{Ap,p, Ap,q},max{Aq,p, Aq,q}

]
,

em is the solution of −∆me = 1; Ω, e = 0; ∂Ω,

Am,n =
(N +m− 1)N+n−1

RnNN−1(m− 1)n−1

and R is the radius of the largest inscribed ball BR in Ω,

we prove:

Theorem 1.3. Let (H1)–(H2) hold. Then (1.1) has at least three positive

solutions for λ ∈ (λ∗, λ
∗), where (see Figure 3)

λ∗ = min

[
max

{
ap−1

2

f(a2)
Ap,p,

aq−1
2

g(a2)
Ap,q

}
,max

{
ap−1

2

f(a2)
Aq,p,

aq−1
2

g(a2)
Aq,q

}]
,

λ∗ = min

[
1

2‖ep‖p−1
∞

min

{
aα1 ,

ap−1
1

f(a1)

}
,

1

2‖eq‖q−1
∞

min

{
aβ1 ,

aq−1
1

g(a1)

}]
.
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Figure 3

In the case of single equations, namely equation of the form

(1.2)

−∆pu = λ{up−1−α + f(u)} in Ω,

u = 0 on ∂Ω,

our results easily reduce to:

Theorem 1.4. There exists λ0 > 0 such that for all λ ∈ (0, λ0), (1.2) has

a positive solution u such that ‖u‖∞ → 0 as λ→ 0.

Theorem 1.5. Assume f(s)/sp−1 → 0 as s→∞. Then (1.2) has a positive

solution u for all λ > 0.

Theorem 1.6. Assume f(s)/sp−1 → 0 as s → ∞ and there exist positive

constants a1 and a2(> a1) such that

min{aα1 , a
p−1
1 /f(a1)}

ap−1
2 /f(a2)

> C̃(Ω), where C̃(Ω) = 2‖ep‖p−1
∞ Ap,p,

ep is a solution of −∆pe = 1; Ω, e = 0; ∂Ω,

Ap,p =
(N + p− 1)N+p−1

RpNN−1(p− 1)p−1

and R is the radius of the largest inscribed ball BR in Ω. Then (1.2) has a positive

solution for all λ, and at least three positive solutions for λ ∈ (λ∗, λ
∗), where

λ∗ =
ap−1

2

f(a2)
Ap,p, λ∗ =

1

2‖ep‖p−1
∞

min

{
aα1 ,

ap−1
1

f(a1)

}
.

Remark 1.7. If sp−1/(sp−1−α + f(s)) is strictly increasing on (0,∞), which

will be the case if sp−1/f(s) is increasing on (0,∞), and there exists c > 0

such that sp−1−α + f(s) ≤ c(sp−1 + 1) for s ∈ [0,∞), which will be satisfied if

f(s)/sp−1 → 0 as s → ∞, then (1.2) has at most one positive solution for all

λ > 0 (see [4]). Note that the hypotheses in Theorem 1.6 do not allow sp−1/f(s)

to be increasing for all s ∈ (0,∞).
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We establish Theorems 1.1–1.3 by the method of sub-super solutions. By

a subsolution of (1.1) we mean a pair of functions (ψ,ψ) ∈ W 1,p(Ω) ∩ C(Ω) ×
W 1,q(Ω) ∩ C(Ω) such that (ψ,ψ) = (0, 0) on ∂Ω and∫

Ω

|∇ψ|p−2∇ψ · ∇ζ ≤
∫

Ω

λ(ψp−1−α+ f(ψ))ζ for all ζ ∈W,∫
Ω

|∇ψ|q−2∇ψ · ∇ζ ≤
∫

Ω

λ(ψ
q−1−β

+ g(ψ))ζ for all ζ ∈W,

where W = {h ∈ C∞0 (Ω) : h ≥ 0 in Ω}. By a supersolution of (1.1) we mean

a pair of functions (φ, φ) ∈W 1,p(Ω)∩C(Ω)×W 1,q(Ω)∩C(Ω) such that (φ, φ) =

(0, 0) on ∂Ω and∫
Ω

|∇φ|p−2∇φ · ∇ζ ≥
∫

Ω

λ(φp−1−α+ f(φ))ζ for all ζ ∈W,∫
Ω

|∇φ|q−2∇φ · ∇ζ ≥
∫

Ω

λ(φ
q−1−β

+ g(φ))ζ for all ζ ∈W.

By a strict subsolution of (1.1) we mean a subsolution which is not a solution. By

a strict supersolution of (1.1) we mean a supersolution which is not a solution.

Then the following results are well-known (see [3], [6] and [8]).

Proposition 1.8. If there exist a subsolution (ψ,ψ) and a supersolution

(φ, φ) of (1.1) such that (ψ,ψ) ≤ (φ, φ), then (1.1) has at least one solution

(u, v) ∈W 1,p(Ω) ∩ C(Ω)×W 1,q(Ω) ∩ C(Ω) satisfying (ψ,ψ) ≤ (u, v) ≤ (φ, φ).

Proposition 1.9. Let f and g be nonnegative and nondecreasing, and sup-

pose there exist a subsolution (ψ1, ψ1), a strict supersolution (φ1, φ1), a strict

subsolution (ψ2, ψ2), and a supersolution (φ2, φ2) for (1.1) such that (ψ1, ψ1) ≤
(φ1, φ1) ≤ (φ2, φ2), (ψ1, ψ1) ≤ (ψ2, ψ2) ≤ (φ2, φ2), and (ψ2, ψ2) 6≤ (φ1, φ1).

Then (1.1) has at least three distinct solutions (ui, vi), i = 1, 2, 3, such that

(u1, v1) ∈ [(ψ1, ψ1), (φ1, φ1)], (u2, v2) ∈ [(ψ2, ψ2), (φ2, φ2)],

(u3, v3) ∈ [(ψ1, ψ1), (φ2, φ2)] \ ([(ψ1, ψ1), (φ1, φ1)] ∪ [(ψ2, ψ2), (φ2, φ2)]).

We will establish Theorem 1.1 in Section 2 and Theorems 1.2–1.3 in Section 3.

Finally in Section 4, we discuss simple examples satisfying the hypotheses of

Theorems 1.3 and 1.6.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let γ > 0 be such that γα < 1, γβ < 1, γ(p−1) <

1 and γ(q − 1) < 1. For sufficiently small λ, we have

1 ≥λ1−γα‖ep‖p−1−α
∞ + λ1−γ(p−1)f(λγ‖eq‖∞),

1 ≥λ1−γβ‖eq‖q−1−β
∞ + λ1−γ(q−1)g(λγ‖ep‖∞).
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Let (w1, w1) = (λγep, λ
γeq). Then

−∆pw1 =λγ(p−1) ≥ λ((λγ‖ep‖∞)p−1−α + f(λγ‖eq‖∞))

≥λ((λγep)
p−1−α + f(λγeq)) = λ(wp−1−α

1 + f(w1)),

−∆qw1 =λγ(q−1) ≥ λ((λγ‖eq‖∞)q−1−β + g(λγ‖ep‖∞))

≥λ((λγeq)
q−1−β + g(λγep)) = λ(wq−1−β

1 + g(w1)).

Thus, (w1, w1) is a supersolution of (1.1) for sufficiently small λ. Next, we

construct a positive subsolution of (1.1). Let zm > 0; Ω be the eigenfunction

with ‖zm‖∞ = 1 corresponding the principal eigenvalue λ1,m of the problem−∆mz = λ|z|m−2z in Ω,

z = 0 on ∂Ω.

Let mλ > 0 be sufficiently small such that λ1,pm
α
λ ≤ λ and λ1,qm

β
λ ≤ λ. Let

(ψ1, ψ1) = (mλzp,mλzq). Then

−∆pψ1 =λ1,p(mλzp)
p−1 ≤ λ(mλzp)

p−1−α ≤ λ(ψp−1−α
1 + f(ψ1)),

−∆qψ1 =λ1,q(mλzq)
q−1 ≤ λ(mλzq)

q−1−β ≤ λ(ψ
q−1−β
1 + g(ψ1)).

Thus, (ψ1, ψ1) is a subsolution of (1.1) for all λ > 0. Further, we can choose mλ

sufficiently small such that (ψ1, ψ1) ≤ (w1, w1). By Proposition 1.8, there exists

a positive solution (u, v) such that (ψ1, ψ1) ≤ (u, v) ≤ (w1, w1) for sufficiently

small λ, and note that ‖w1‖∞ → 0 and ‖w1‖∞ → 0 as λ→ 0. �

3. Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2. Let (ψ1, ψ1) be as before in the proof of Theo-

rem 1.1. Then (ψ1, ψ1) is a subsolution for all λ > 0. Next, we construct a po-

sitive supersolution (φ1, φ1) of (1.1). If f and g are bounded, choose Mλ � 1

such that Mα
λ ≥ 2λ(p−1−α)/(p−1)‖ep‖p−1−α

∞ , Mβ
λ ≥ 2λ(q−1−β)/(q−1)‖eq‖q−1−β

∞ ,

Mp−1
λ ≥ 2‖f‖∞ and Mq−1

λ ≥ 2‖g‖∞.

Let (φ1, φ1) = (λ1/(p−1)Mλep, λ
1/(q−1)Mλeq). Then

−∆pφ1 =λMp−1
λ ≥ λ(λ(p−1−α)/(p−1)Mp−1−α

λ ‖ep‖p−1−α
∞ + ‖f‖∞)

≥λ((λ1/(p−1)Mλep)
p−1−α + f(λ1/(q−1)Mλeq)) = λ(φp−1−α

1 + f(φ1)),

−∆qφ1 =λMq−1
λ ≥ λ(λ(q−1−β)/(q−1)Mq−1−β

λ ‖eq‖q−1−β
∞ + ‖g‖∞)

≥λ((λ1/(q−1)Mλeq)
q−1−β + g(λ1/(p−1)Mλep)) = λ(φ

q−1−β
1 + g(φ1)).

Thus, (φ1, φ1) is a supersolution of (1.1) for all λ > 0.

Suppose g(s)→∞ as s→∞. Choose Mλ � 1 such that

1

‖ep‖p−1
∞
≥ λ

(
1

Mα
λ ‖ep‖α∞

+
f((2λ)1/(q−1)‖eq‖∞g(Mλ‖ep‖∞)1/(q−1))

(Mλ‖ep‖∞)p−1

)
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and

g(Mλ‖ep‖∞)β/(q−1) ≥ (2λ)(q−1−β)/(q−1)‖eq‖q−1−β
∞ .

Let (φ1, φ1) = (Mλep, (2λ)1/(q−1)g(Mλ‖ep‖∞)1/(q−1)eq). Then

−∆pφ1 =Mp−1
λ

≥λ(Mp−1−α
λ ‖ep‖p−1−α

∞ + f((2λ)1/(q−1)g(Mλ‖ep‖∞)1/(q−1)‖eq‖∞))

≥λ((Mλep)
p−1−α + f((2λ)1/(q−1)g(Mλ‖ep‖∞)1/(q−1)eq))

=λ(φp−1−α
1 + f(φ1))

and

−∆qφ1 = 2λg(Mλ‖ep‖∞)

≥λ((2λ)(q−1−β)/(q−1)g(Mλ‖ep‖∞)(q−1−β)/(q−1)‖eq‖q−1−β
∞ + g(Mλ‖ep‖∞))

≥λ(((2λ)1/(q−1)g(Mλ‖ep‖∞)1/(q−1)eq)
q−1−β + g(Mλep))

=λ(φ
q−1−β
1 + g(φ1)).

Thus, (φ1, φ1) is a supersolution of (1.1) for all λ > 0. If g is bounded and

f(s) → ∞ as s → ∞, then lim
s→∞

g(Mf(s)1/(p−1))/sq−1 = 0 for every M >

0. Then (φ1, φ1) = ((2λ)1/(p−1)f(Mλ‖eq‖∞)1/(p−1)ep,Mλeq) is a supersolution

of (1.1) for all λ > 0 by arguments similar to the previous case with the roles

of f and g interchanged. Also, in each case if Mλ is sufficiently large, (ψ1, ψ1) ≤
(φ1, φ1). Hence, by Proposition 1.8, there exists a positive solution (u, v) such

that (ψ1, ψ1) ≤ (u, v) ≤ (φ1, φ1) for each λ > 0. �

Proof of Theorem 1.3. We first establish this result when Ω is a ball of

radius R. Let (φ2, φ2) = (a1ep/‖ep‖∞, a1eq/‖eq‖∞). For

λ < min

[
1

2‖ep‖p−1
∞

min

{
aα1 ,

ap−1
1

f(a1)

}
,

1

2‖eq‖q−1
∞

min

{
aβ1 ,

aq−1
1

g(a1)

}]
,

we have

−∆pφ2 =
ap−1

1

‖ep‖p−1
∞

=
ap−1

1

2‖ep‖p−1
∞

+
ap−1

1

2‖ep‖p−1
∞

> λap−1−α
1 + λf(a1)

≥λ
((

a1

‖ep‖∞
ep

)p−1−α

+ f

(
a1

‖eq‖∞
eq

))
= λ(φp−1−α

2 + f(φ2))

and

−∆qφ2 =
aq−1

1

‖eq‖q−1
∞

=
aq−1

1

2‖eq‖q−1
∞

+
aq−1

1

2‖eq‖q−1
∞

> λaq−1−β
1 + λg(a1)

≥λ
((

a1

‖eq‖∞
eq

)q−1−β

+ g

(
a1

‖ep‖∞
ep

))
= λ(φ

q−1−β
2 + g(φ2)).

Hence (φ2, φ2) is a strict supersolution with ‖φ2‖∞ = ‖φ2‖∞ = a1.
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We construct a positive strict subsolution (ψ2, ψ2) of (1.1) for

λ > λ∗ = min

[
max

{
ap−1

2

f(a2)
Ap,p,

aq−1
2

g(a2)
Ap,q

}
,max

{
ap−1

2

f(a2)
Aq,p,

aq−1
2

g(a2)
Aq,q

}]
.

Consider the following boundary value problem:
−∆pu = λf(v) in Ω,

−∆qv = λg(u) in Ω,

u = 0 = v on ∂Ω.

For 0 < ε < R and δ, η > 1, define ρ : [0, R]→ [0, 1] by

ρ(t) =


1 for 0 ≤ t ≤ ε,

1−
(

1−
(
R− t
R− ε

)η)δ
for ε < t ≤ R.

Then

ρ′(t) =


0 for 0 ≤ t ≤ ε,

− δη

R− ε

(
R− t
R− ε

)η−1(
1−

(
R− t
R− ε

)η)δ−1

for ε < t ≤ R.

Let d(t) = a2ρ(t). Define (ψ2, ψ2) as the positive radially symmetric and de-

creasing solution of 
−∆pψ2 = λf(d) in BR,

−∆qψ2 = λg(d) in BR,

ψ2 = 0 = ψ2 on ∂BR.

Then ψ2 and ψ2 satisfy
−(tN−1ϕp(ψ

′
2(t)))′ = λtN−1f(d(t)) for t ∈ (0, R),

−(tN−1ϕq(ψ
′
2(t)))′ = λtN−1g(d(t)) for t ∈ (0, R),

ψ′2(0) = 0, ψ2(R) = 0, ψ
′
2(0) = 0, ψ2(R) = 0,

where ϕm(t) = |t|m−2t for all t ∈ R. Integrating once, we get for 0 < t < R,

−ϕp(ψ′2(t)) =
λ

tN−1

∫ t

0

sN−1f(d(s)) ds,

−ϕq(ψ
′
2(t)) =

λ

tN−1

∫ t

0

sN−1g(d(s)) ds.

Since ϕm is monotone, ϕ−1
m is also continuous and monotone. Hence, we have

−ψ′2(t) =ϕ−1
p

(
λ

tN−1

∫ t

0

sN−1f(d(s)) ds

)
,

−ψ′2(t) =ϕ−1
q

(
λ

tN−1

∫ t

0

sN−1g(d(s)) ds

)
.
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For λ > λ∗, we claim that

(3.1) ψ2(t) > d(t) and ψ2(t) > d(t), 0 ≤ t < R.

If our claim is true, (ψ2, ψ2) is a strict subsolution of the boundary value problem

(1.1) since

−∆pψ2 = λf(d) < λ(ψp−1−α
2 + f(ψ2)) in BR,

−∆qψ2 = λg(d) < λ(ψ
q−1−β
2 + g(ψ2)) in BR.

It suffices to prove that ψ′2(t) < d′(t) and ψ
′
2(t) < d′(t) on (0, R] in order to

show (3.1) since ψ2(R) = ψ2(R) = 0 = d(R). It is obvious on (0, ε] because

ψ′2(t) < 0 = d′(t) and ψ
′
2(t) < 0 = d′(t). For t > ε, we have

−ψ′2(t) =ϕ−1
p

(
λ

tN−1

∫ t

0

sN−1f(d(s)) ds

)
≥ ϕ−1

p

(
λ

RN−1

∫ ε

0

sN−1f(d(s)) ds

)
=ϕ−1

p

(
λ

RN−1

∫ ε

0

sN−1f(a2) ds

)
= ϕ−1

p

(
λ

RN−1

εN

N
f(a2)

)
and

−ψ ′2(t) =ϕ−1
q

(
λ

tN−1

∫ t

0

sN−1g(d(s)) ds

)
≥ ϕ−1

q

(
λ

RN−1

∫ ε

0

sN−1g(d(s)) ds

)
=ϕ−1

q

(
λ

RN−1

∫ ε

0

sN−1g(a2) ds

)
= ϕ−1

q

(
λ

RN−1

εN

N
g(a2)

)
.

Noting that |d′(t)| ≤ a2δη/(R− ε) on (ε,R), it is easy to see that ψ′2(t) < d′(t)

and ψ
′
2(t) < d′(t) on (ε,R) provided

ϕ−1
p

(
λ

RN−1

εN

N
f(a2)

)
> a2

δη

R− ε
and ϕ−1

q

(
λ

RN−1

εN

N
g(a2)

)
> a2

δη

R− ε
.

Equivalently, if

(3.2) λ > max

{
(δη)p−1 a

p−1
2

f(a2)

RN−1N

εN (R− ε)p−1
, (δη)q−1 a

q−1
2

g(a2)

RN−1N

εN (R− ε)q−1

}
.

Now, if

λ∗ = max

{
ap−1

2

f(a2)
Ap,p,

aq−1
2

g(a2)
Ap,q

}
,

choosing ε = NR/(N + p− 1) in the definition of ρ, (3.2) reduces to showing

(3.3) λ > max

{
(δη)p−1 a

p−1
2

f(a2)
Ap,p, (δη)q−1 a

q−1
2

g(a2)
Ap,q

}
.

But λ > λ∗. Hence we can choose δ(> 1) and η(> 1) such that (3.3) is satisfied.

Next, if

λ∗ = max

{
ap−1

2

f(a2)
Aq,p,

aq−1
2

g(a2)
Aq,q

}
,
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choosing ε = NR/(N + q − 1) in the definition of ρ, (3.2) reduces to showing

(3.4) λ > max

{
(δη)p−1 a

p−1
2

f(a2)
Aq,p, (δη)q−1 a

q−1
2

g(a2)
Aq,q

}
.

Again, since λ > λ∗, we can choose δ(> 1) and η(> 1) such that (3.4) is sat-

isfied. Hence, (3.1) holds for λ > λ∗. Thus, (ψ2, ψ2) is a strict subsolution

of (1.1). From the proof of Theorem 1.2, we have a sufficiently small positive

subsolution (ψ1, ψ1) and a sufficiently large positive supersolution (φ1, φ1) such

that (ψ1, ψ1) ≤ (φ2, φ2) ≤ (φ1, φ1) and (ψ1, ψ1) ≤ (ψ2, ψ2) ≤ (φ1, φ1). Since

‖ψ2‖∞ ≥ ‖d‖∞ = a2 and ‖φ2‖∞ = a1, we have (ψ2, ψ2) � (φ2, φ2). By Proposi-

tion 1.9, (1.1) has at least three distinct solutions for λ ∈ (λ∗, λ
∗).

Next, when Ω is a general bounded domain, let BR be the largest inscribed

ball in Ω. Define

χ(x) =

ψ2 for x ∈ BR,
0 for x ∈ Ω−BR,

and χ(x) =

ψ2 for x ∈ BR,
0 for x ∈ Ω−BR,

where (ψ2, ψ2) is a second subsolution of (1.1) constructed above for Ω = BR.

Then χ ∈W 1,p(Ω) ∩ C(Ω) and χ ∈W 1,q(Ω) ∩ C(Ω). Further, on BR we have

−∆pχ = −∆pψ2 < λ(ψp−1−α
2 + f(ψ2)) = λ(χp−1−α + f(χ)),

−∆qχ = −∆qψ2 < λ(ψ
q−1−β
2 + g(ψ2)) = λ(χq−1−β + g(χ)),

while outside BR we have

−∆pχ = 0 = λ(χp−1−α + f(χ)) and −∆qχ = 0 = λ(χq−1−β + g(χ)).

Hence, (χ, χ) is a strict subsolution of (1.1) in Ω. The rest of the proof is identical

to the previous case except that here for the second subsolution we will use (χ, χ)

described above. �

4. Examples

We illustrate in this section simple examples that satisfy the hypotheses in

Theorems 1.3 and 1.6.

Example 4.1. Consider the boundary value problem

(4.1)

−∆pu = λ{up−1−α + eτu/(τ+u) − 1} in Ω,

u = 0 on ∂Ω,

where f(s) = eτs/(τ+s) − 1 with τ > 0 and Ω is a bounded domain in RN with

smooth boundary ∂Ω. Clearly, f(0) = 0, and f(s)/sp−1 → 0 as s → ∞ since f

is bounded for each τ > 0.
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Next, choosing a1 = 1 and a2 = τ , we have

A =
min{aα1 , a

p−1
1 /f(a1)}

ap−1
2 /f(a2)

=
1

τp−1

eτ/2 − 1

eτ/(1+τ) − 1
for τ � 1

and hence A→∞ as τ →∞. Hence, the hypotheses in Theorem 1.6 are satisfied.

In particular, for any τ > 0, (4.1) has a positive solution for all λ > 0, and for

sufficiently large τ , (4.1) has at least three positive solutions for λ ∈ (λ∗, λ
∗)

where

λ∗ =
τp−1

eτ/2 − 1
Ap,p and λ∗ =

1

2‖ep‖p−1
∞ (eτ/(1+τ) − 1)

.

In fact, given λ ∈ (0, 1/(2‖ep‖p−1
∞ (e− 1))), there exists τ0 > 0 such that (4.1)

has at least three positive solutions for τ > τ0.

Example 4.2. Consider the system

(4.2)


−∆pu = λ{up−1−α + eτv/(τ+v) − 1} in Ω,

−∆qv = λ{vq−1−β + uξ} in Ω,

u = 0 = v on ∂Ω,

where f(s) = eτs/(τ+s) − 1 with τ > 0, g(s) = sξ with ξ > 0 and Ω is a bounded

domain in RN with smooth boundary ∂Ω. Clearly, f(0) = g(0) = 0 and (H1) is

satisfied since f is bounded for each τ > 0. Hence, Theorems 1.1 and 1.2 hold

for all τ > 0 and ξ > 0. Next, choosing a1 = 1 and a2 = τ ,

A =
min[min{aα1 , a

p−1
1 /f(a1)},min{aβ1 , a

q−1
1 /g(a1)}]

max{ap−1
2 /f(a2), aq−1

2 /g(a2)}
=

τ ξ−q+1

eτ/(1+τ) − 1
for τ�1

and hence (H2) is satisfied for τ � 1 and ξ > q − 1 since A → ∞ as τ → ∞.

For sufficiently large τ , there exist at least three positive solutions of (4.2) for

λ ∈ (λ∗, λ
∗) where λ∗ = τ q−1−ξ min{Ap,q, Aq,q} and

λ∗ = min

{
1

2‖ep‖p−1
∞ (eτ/(1+τ) − 1)

,
1

2‖eq‖q−1
∞

}
.

In fact, given

λ ∈
(

0,min

{
1

2‖ep‖p−1
∞ (e− 1)

,
1

2‖eq‖q−1
∞

})
,

there exists τ0 > 0 such that (4.2) has at least three positive solutions for τ > τ0.
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