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NECESSARY CONDITIONS FOR FINITE CRITICAL SETS.

MAPS WITH INFINITE CRITICAL SETS

Ioan Radu Peter — Cornel Pintea

Abstract. We provide necessary conditions on a given map, between two

compact differential manifolds, for its critical set to be finite. As conse-
quences of these conditions we also provide several examples of pairs of

compact differential manifolds such that every map between them has in-

finite critical set.

1. Introduction

In the last decades the maps with small critical sets have been intensively

studied by many authors, most of results concern information on the local behav-

ior of maps themselves or even on their source and target manifolds. Andrica

and Funar [1], [2] showed that the source compact n-dimensional manifold of

a map with finitely many critical points is a connected sum of a finite covering

of its target compact n-dimensional manifold and an exotic sphere. Later on,

Funar [7] extended this type of results to higher codimension maps with finitely

many critical points in which the role of finite covering maps is played by fi-

brations and the role of the exotic sphere is played by some homotopy sphere.

Church and Timourian [3], [4] were able to control, in the small codimension

cases (0, 1 and 2), the local behavior of a map with 0-dimensional branch lo-

cus. Using a different approach, the second author [12], [13] showed, in the small
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codimension cases, that the homotopy groups of compact source and target man-

ifolds of a map f : M −→ N with finitely many critical points are, up to a certain

rank, close to each other, as the fiber of the restriction

(1.1) M \ f−1(B(f))
g−→ N \B(f), p 7→ f(p)

is fully topologically controllable. We apply here this technique to obtain neces-

sary conditions for finite critical sets in the higher codimension case. If, on the

contrary, some homotopy groups of the two involved manifolds are ‘away’ from

each other, then every map between the two manifolds has infinite critical set.

This is the case for the examples we provide within the last section. The latter

approach works in the higher codimension case as soon as we have some topolog-

ical control on the fiber of restriction (1.1). We rely on the Poincaré conjecture,

the Epstein classification theorem of three manifolds [5], [6], the Smale and Wall

classification of 6-manifolds [16], [17] as well as on the Micallef–Moore theorem

[11], for the topological control on the fiber of restriction (1.1).

A 3-manifold X is said to be irreducible if every embedded two dimensional

sphere bounds a 3-ball. A 3-manifold X is called prime if X cannot be written

as a non-trivial connected sum of two manifolds, i.e. X = X1]X2 implies that

X1 = S3 or X2 = S3. Note that an irreducible 3-manifold is prime.

Recall that if X is an orientable prime 3-manifold with no spherical boundary

components, then X is either irreducible or X = S1 × S2 [9, Lemma 3.13]. In

fact the product X = S1 × S2 is the only prime closed 3-manifold with infinite

cyclic group.

Theorem 1.1 (Epstein [5], [6]). Let X be a compact, orientable, irreducible

3-manifold with empty or toroidal boundary. If π1(X) is isomorphic to a direct

product G×H of two non-trivial groups, then X = S1 × Σ, with Σ a surface.

Theorem 1.2 (Smale [16, Corollary 1.3]). The semi-group of 2-connected

6-manifolds, whose operation is the connected sum ], is generated by S3 × S3.

Theorem 1.3 (Wall [17]). Let X be a closed, smooth, 1-connected 6-manifold.

Then we can write X as a connected sum X1]X2, where H3(X1) is finite and

X2 is a connected sum of copies of S3 × S3.

In other words, every simply connected 6-manifold X is diffeomorphic to

a connected sum

X ∼= X1](]r (S3 × S3)), H3(X1,Z) – finite,

and every 2-connected 6-manifold Y is diffeomorphic to a connected sum

Y ∼= ]s(S3 × S3).
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Theorem 1.4 (Micallef–Moore [11]). Let M be a smooth, orientable, closed

n-manifold such that π1(M) is a free group on k generators and πi(M) = 0 for

2 ≤ i ≤ n/2. If n 6= 4 or k = 1, then M is homeomorphic to the connected sum

of k copies of S1 × Sn−1.

Recall that the critical set of a differentiable map f : M → N is denoted by

C(f), its set of regular points M \C(f) by R(f) and the set of its critical values

f(C(f)) is denoted by B(f). We rely on the restriction (1.1) of such a mapping

f : M → N , which is a fibration whenever M and N are compact connected

manifolds such that dim(M) ≥ dim(N). The source and target manifolds of this

restriction turn out to be connected under the countability assumption on the

critical set C(f). It therefore produces the following long homotopy sequence:

(1.2) → πr+1(N \B(f)) −→ πr(F ) −→ πr(M \f−1(B(f))) −→ πr(N \B(f))→

In fact we have

Proposition 1.5 ([13]). If Mn+k, Nn are differential manifolds and f : M→
N is a smooth mapping with finite critical set, then

πr(M,M \ f−1(B(f))) ∼= 0 ∼= πr(N,N \B(f)) for all r ∈ {1, . . . , n− 1}.

In particular, the open manifolds M \f−1(B(f)) and N \B(f) are connected and

the inclusions i : M \ f−1(B(f)) ↪→M , j : N \B(f) ↪→ N are (n− 1)-connected,

i.e. the induced homotopy group homomorphisms

(1.3)
πk(i) : πk(M \ f−1(B(f))) → πk(M),

πk(j) : πk(N \B(f)) → πk(N)

are isomorphisms for k = 1, . . . , n− 2 and an epimorphism for k = n− 1.

By using the long homotopy sequence (1.2) of the fibration

F
iF
↪→M \ f−1(B(f))→ N \B(f)

alongside isomorphisms (1.3) we get, for r ≤ n− 3, the picture

πr+1(N \B(f)) // πr(F ) // πr(M \ f−1(B(f))) // πr(N \B(f))

πr+1(N) // πr(F ) // πr(M) // πr(N)

which produces, for r ≤ n− 3, the following finite exact sequence:

(1.4) −→ πr+1(N) −→ πr(F ) −→ πr(M) −→ πr(N) −→ πr−1(F ) −→

The exact sequence (1.4) has some effective impact on the relation between the

topologies of manifolds M and N only for n ≥ 4, a good enough reason to work

under this assumption all over the paper.
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We close this section by recalling a relation among ranks of terms of a finite

exact sequence of finitely generated abelian groups, which will be repeatedly used

along the paper in connection with the exact homotopy sequence of restriction

(1.1). More precisely, if

0 −→ G1 −→ · · · −→ Gn −→ 0

is an exact sequence of finitely generated abelian groups, then [14, p. 87]

(1.5)

n∑
i=1

(−1)irank(Gi) = 0.

2. The main result

Throughout this section f : M → N will be a map with finite critical set and

F the fiber of the restricted fibration (1.1), namely

F ↪→M \ f−1(B(f))
g−→ N \B(f), p 7→ f(p).

For the topological control of the fiber, we rely in this section on the Poincaré

conjecture, the classification theorem of three manifolds [5], [6], the classification

of the 6-manifolds [16], [17] as well as on the Micallef–Moore theorem [11].

Theorem 2.1. Let f : Mn+k −→ Nn be a map with finite critical set, where

M and N are compact connected manifolds.

(a) If k = 3, the induced group homomorphism π2(M) → π2(N) is trivial

and the kernel ker[π1(M)→ π1(N)] is a subgroup of Z, then F = S3 or

F = S1 × S2.

(b) If k = 3, M,N are orientable, N is 3-connected, π1(M) is isomorphic

to a direct product G×H of two nontrivial groups and π2(M) ≡ 0, then

F = S1 ×Σg, where Σg is the compact orientable surface of some genus

g ≥ 1.

(c) If k = 6 and the groups ker[π1(M) → π1(N)], π2(N) are trivial, then

F is diffeomorphic to some connected sum X1](]r (S3 × S3)). Under the

stronger requirements on M to be 3-connected and N to be k-connected

for some 6 ≤ k ≤ n − 4, the diffeomorphism type of the fiber F is

a connected sum ]
s
(S3 × S3).

(d) If k is even, π1(M) = Z, π1(N) is finite and πi(M) = πi(N) = πk/2+1(N)

= 0 for all 2 ≤ i ≤ k/2, then F is homeomorphic to S1 × Sk−1.

Proof. Assume that the critical set C(f) is finite for some C1-smooth map

f : M → N .

(a) By using the exact homotopy sequence (1.4) corresponding to r = 1, one

obtains the exact sequence

· · · −→ π2(M) −→ π2(N) −→ π1(F ) −→ π1(M) −→ π1(N).
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Since the induced group homomorphism π2(M)→ π2(N) is trivial, it follows that

the next group homomorphism is one to one, i.e. π1(F ) ∼= ker[π1(M)→ π1(N)]

is a subgroup of Z. But the subgroups of Z are mZ, m ∈ Z, and the nontrivial

ones are still isomorphic to Z. Thus π1(F ) is either trivial or π1(F ) ∼= Z, what

shows that the fiber F is either homeomorphic to S3 or F is homeomorphic to

S1 × S2.

(b) The orientability of M and N insures, according with Hirsch [10, Lem-

ma 4.1] adjusted to the exact sequence

0 −→ ker(dg) −→ T
(
M \ f−1(B(f))

)
−→ T (N \B(f)) −→ 0,

the orientability of the integrable vector bundle ker(dg) and implicitly the ori-

entability of its leaves which are the fibers of the restriction (1.1), namely

M \ f−1(B(f))
g−→ N \B(f), p 7→ f(p).

If f : M → N has finite critical set, then the fibration (1.1) produces the exact

sequence (1.4), which, for r ≤ 2, becomes

· · · → π3(N) −→ π2(F ) −→ π2(M) −→ π2(N) −→ π1(F ) −→ π1(M) −→ π1(N).

It shows that π2(F ) is isomorphic to π2(M) ≡ 0 and π1(F ) is isomorphic to

π1(M) ∼= G × H. The triviality of π2(F ) implies the irreducibility of F . By

the Epstein theorem [5, 6] combined with our hypothesis, one can deduce that

F = S1 × Σg, where Σg is the compact orientable surface of some genus g ≥ 1.

(c) By using the exact homotopy sequence (1.4) corresponding to r = 1, one

obtains the following exact sequence:

· · · → π2(M) −→ π2(N) −→ π1(F ) −→ π1(M) −→ π1(N).

Since the groups ker[π1(M) −→ π1(N)], π2(N) are trivial, we obtain the simply

connectedness of the fiber F , i.e. π1(F ) ∼= 0. This shows that the closed 6-

dimensional fiber F of the restriction

f |M\(f−1(B(f))) : M \ (f−1(B(f)))→ N \B(f)

is, according to Wall’s classification result, diffeomorphic to some connected sum

X1]
(
]
r
(S3 × S3)

)
.

In the 3-connected case of M combined with the k-connectedness of N we

use the exact homotopy sequence (1.4) for r ∈ {1, 2}. Taking into account the

hypothesis, we obtain that π1(F ) ∼= 0 ∼= π2(F ), i.e. F is 2-connected. Thus, the

closed 6-dimensional fiber F of the restriction

f |M\(f−1(B(f))) : M \ (f−1(B(f)))→ N \B(f)

is, according to Smale’s classification result, diffeomorphic to some connected

sum ]
s
(S3 × S3).
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(d) The existence of a map f : M → N with finite critical set produces the

exact sequence (1.4), which, for 2 ≤ r ≤ k/2, becomes

// πr+1(N) // πr(F ) // πr(M) //

0 0

and this shows that πj(F ) = 0 for 2 ≤ i ≤ k/2. The exact sequence (1.4) for

r = 1 becomes

// π2(N) // π1(F ) // π1(M) // π1(N)

��

0 Z finite

and this shows that π1(F ) is isomorphic to one nontrivial subgroup of Z, i.e.

π1(F ) is isomorphic to Z. Therefore F is homeomorphic, via the Micallef–Moore

theorem, to S1 × Sk−1. �

Corollary 2.2. Let f : Mn+k → Nn be a map with finite critical set, where

M and N are compact connected manifolds.

(a) If k = 3, M,N are orientable, N is 3-connected, π1(M) is isomorphic

to a direct product G×H of two nontrivial groups and π2(M) ≡ 0, then

πr(M) ∼= πr(N) for every 3 ≤ r ≤ n− 2.

(b) If k = 6, M is 3-connected and N is k-connected for some 6 ≤ k ≤ n−4,

then H5(M,Z) ∼= H5 (N,Z).

(c) If k ≥ 4 is even, π1(M) = Z, π1(N) is finite and πi(M) = πi(N) =

πk/2+1(N) = 0 for some 2 ≤ i ≤ k/2, then πj(M) ∼= πj(N) for every

k/2 < j < min{k − 1, n− 2}.

Proof. (a) According to Theorem 2.1 (a), the fiber is F = S1 × Σg, where

Σg is the compact orientable surface of some genus g ≥ 1. For 3 ≤ r ≤ n − 2,

the exact sequence (1.4) becomes

πr+1(M) // πk(S1 × Σg) // πr(M) // πr(N) // πr−1(S1 × Σg)

0 0

and this shows that πr(M) ∼= πr(N).

(b) The diffeomorphism type of the fiber F is, according to Theorem 2.1 (c),

a connected sum ]s(S3×S3). The k-connectedness of N\B(f) combined with the

2-connectedness of the fiber allow us to use the Serre exact homology sequence

associated to the fibration

(2.1) ]s(S3 × S3) ↪→M \ (f−1(B(f)))→ N \B(f).
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Taking into account that

Hi(M \ (f−1(B(f))),Z) ∼= Hi(M,Z), Hi(N \B(f),Z) ∼= Hi(N,Z),

for i ≤ n − 2, the Serre exact homology sequence with integer coefficients asso-

ciated to the fibration (2.1) is

Hr+2(]
s
(S3 × S3)) −→ Hr+2(M) −→ Hr+2(N) −→ Hr+1(]

s
(S3 × S3))→ · · ·

We particularly obtain

H5(]
s
(S3 × S3)) // H5(M) // H5(N) // H4(]

s
(S3 × S3))

0 ∼=
⊕
s

H5(S3 × S3)
⊕
s

H4(S3 × S3) ∼= 0

which shows that H5(M,Z) ∼= H5 (N,Z).

(c) The diffeomorphism type of the fiber F is, according to Theorem 2.1 (2.1),

S1×Sk−1. By using the sequence (1.4) for some k
2 < r ≤ n− 2, one obtains the

following picture:

// πr+1(N) // πr(S1 × Sk−1) // πr(M) // πr(N) // πr−1(S1 × Sk−1)

πr(Sk−1) πr−1(Sk−1)

which leads us to the following exact sequences:

(2.2) → πr+1(N) −→ πr(Sk−1) −→ πr(M) −→

−→ πr(N) −→ πr−1(Sk−1) −→ πr−1(N).

If k/2 < j < min{k − 1, n − 2}, then πj(S
k−1) = 0 = πj−1(Sk−1) and the

sequence (2.2) shows, for r = j, that πj(M) ∼= πj(N). �

While Corollary 2.2 used the full topological control on the fiber of the restric-

tion (1.1) and the exactness of sequences (1.4) for higher ranks, the next corollary

is going to exploit relation (1.5) in relation with the exact sequence (1.4).

Corollary 2.3. Let f : Mn+k −→ Nn be a map with finite critical set,

where M and N are compact connected manifolds with finitely generated homo-

topy groups.

(a) If k = 3, π1(M), π1(N) are abelian groups, the induced group homomor-

phism π2(M) → π2(N) is trivial and the kernel ker[π1(M) → π1(N)] is

a subgroup of Z, then rank(πr(M)) ≤ rank(πr(N)) + 1, for all 1 ≤ r ≤
n− 2.
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(b) If k = 3, M,N are orientable, N is 3-connected, π1(M) is isomorphic

to a direct product G×H of two nontrivial groups and π2(M) ≡ 0, then

rank(π2(M)) ≤ rank(π2(N)).

(c) If k is even, π1(M) = Z, π1(N) is finite and

πi(M) = πi(N) = πk/2+1(N) = 0, for all 2 ≤ i ≤ k

2
,

then rank(πj(M)) ≤ rank(πj(N)) + 2 for every k − 1 ≤ j ≤ n− 2.

Proof. (a) According to Theorem 2.1 (a), the fiber is F = S3 or F = S1×S2

and therefore rank(π1(F )) ≤ 1. The exact sequence (1.4) produces the following

short exact sequences:

0 −→ π1(F ) −→ π1(M) −→ G −→ 0(2.3)

0 −→ H −→ πr(M) −→ πr(N) −→ K −→ 0,(2.4)

where

G = range(π1(M)→ π1(N)),

H = range(πr(F )→ πr(M)),

K = range(πr(N)→ πr−1(F )).

Thus, the ranks of groups involved in the exact sequence (2.3) are related by

rank(π1(M)) = rank (π1(F )) + rank(G) ≤ 1 + rank(π1(M)).

Similarly, the ranks of the groups involved in the exact sequence (2.4) are related

by rank(H)− rank(πr(M)) + rank(πr(N))− rank(K) = 0, what implies

rank(πr(M)) = rank(H) + rank(πr(N))− rank(K)

≤ rank(H) + rank(πr(N))

≤ rank(πr(F )) + rank(πr(N)) ≤ rank(πr(N)) + 1.

(b) According to Theorem 2.1 (b), the fiber is F = S1 ×Σg, where Σg is the

compact orientable surface of some genus g ≥ 1. The exact sequence (1.4) for

k = 2 becomes

// π2(S1 × Σg) // π2(M) // π2(N) // π1(S1 × Σg)

0 Z

and this shows that π2(M) is a subgroup of π2(N).

(c) According to Theorem 2.1 (d), the fiber is F = S1 × Sk−1. Assume that

k−1 ≤ r ≤ n−2. From the exact sequence (2.2) we may single out the following

short exact sequence:

(2.5) 0−→ Gr−→ πr(Sk−1)−→ πr(M)−→ πr(N)−→ πr−1(Sk−1)−→ Hr−→0
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where Gr = range(πr+1(N)→ πr(Sk−1)), Hr = range(πr−1(Sk−1)→ πr−1(N)).

Thus, the ranks of groups involved in the exact sequence (2.5) are related by

rank(Gr)− rank(πr(Sk−1)) + rank(πr(M))− rank(πr(N))

+ rank(πr−1(Sk−1))− rank(Hr) = 0,

what shows that

rank(πr(M))− rank(πr(N))

= rank(πr(Sk−1))− rank(πr−1(Sk−1)) + rank(Hr)− rank(Gr)

≤ 1 + rank(Hr) ≤ 2.

The inequality rank(πr(Sk−1))− rank(πr−1(Sk−1))− rank(Gr) ≤ 1 follows from

the finiteness of all homotopy groups of spheres, except for those of the form

πj(S
j) or π4j−1(S2j), when the group is the product of the infinite cyclic group

with a finite abelian group [15]. �

3. Examples of maps with infinite critical sets

If one conclusion of a certain statement of Corollaries 2.2 or 2.3 is violated by

some pair (M,N) of manifolds, then every map f : M → N has infinite critical

set if the pair is subject to the hypotheses of that statement. The potential of

this observation to produce pairs of manifolds (M,N) with infinite critical sets

for all maps f : M −→ N is rather reach and we shall present here a few of them.

Homotopy and homology groups of the source and target manifolds are used and

we refer the reader to [8] for their computation.

Example 3.1. If n ≥ 8 and g ≥ 1, then every C1-smooth map

f : S3 × S1 × Σg × Sn−3 → S4 × Sn−4

has, according to Corollary 2.2 (a), infinite critical set, where Σg stands for the

compact orientable surface of genus g. Indeed π1(S3 × S1 × Σg × Sn−3) is the

product Z× π1(Σg), π2(S3 × S1 × Σg × Sn−3) = 0 and

π4(S3 × S1 × Σg × Sn−3) ∼= 0 6∼= π4(S4 × Sn−4).

Let us denote by Σq
g the product Σg × . . .× Σg of q copies of Σg.

Example 3.2. Every C1-smooth map f : M −→ N has infinite critical set

for the following pairs of manifolds:

(a) M = S1 × (S2)m+1 and N = S2m, m ≥ 2.

(b) M = S1 × S2 × (S4)n and N = Σ2n
g , n ≥ 2.

(c) M = S1 × . . .× S4k and N = Σ
(k+1)(4k−3)
g , k ≥ 1.

(d) M = S1 × S2 × RPp and N = Sp, p ≥ 4.
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Indeed, the first three items follow from Corollary 2.3 (a), as π2(S1×(S2)m+1) =

Zm+1, π4(S1 × S2 × (S4)n) = Z2 × Zn and Z × Z is a subgroup of the third

homotopy group π3(S1× . . .×S4k). The last item follows from Corollary 2.3 (b),

as π1(S1 × S2 × RPp) = Z× Z2 and π2(S1 × S2 × RPp) = Z.

Example 3.3.

(a) Every C1-smooth map f : ]r(S2×S3×Sn+1)→ ]s(S
p×Sn−p) has infinite

critical set if p, n− p ≥ 5 and r, s ≥ 1.

(b) Every differentiable map f : ]r(S5 × Sn+1)→ ]s(S
6 × Sn−6) has infinite

critical set if n ≥ 12 and r, s ≥ 1.

Since each of the homology groupsH5(]r(S2×S3×Sn+1),Z), H5(]r(S5×Sn+1),Z)

has an infinite cyclic subgroup and H5(]s(S
p × Sn−p),Z) ∼= 0 ∼= H5(]s(S

6 ×
Sn−6),Z), the two items follow via Corollary 2.2 (b).

Example 3.4.

(a) If k ≥ 2 and n ≥ min{5, k + 3}, then every C1-smooth map f : S1 ×
Sn+k−2 × Sk+1 → RPn has infinite critical set.

(b) If and k ≥ 2 and n ≥ k + 4 then every C1-smooth map

g : S1 × Sn−3 × Sk+1 × Sk+1 → RPn

has infinite critical set.

The two items follow via Corollary 2.2 (c). Indeed,

π1(S1 × Sn+k−2 × Sk+1) ∼= Z ∼= π1(S1 × Sn−3 × Sk+1 × Sk+1)

and π1(RPn) ∼= Z2. On the other hand, for 2 ≤ i ≤ k, one has

πi(S
1 × Sn+k−2 × Sk+1) ∼= 0 ∼= πi(S

1 × Sn−3 × Sk+1 × Sk+1)

and πj(RPn) ∼= 0 for all 2 ≤ j ≤ n− 2. Finally, πk+1(RPn) ∼= 0 and

πk+1(S1 × Sn+k−2 × Sk+1), πk+1(S1 × Sn−3 × Sk+1 × Sk+1) 6∼= 0,

as the first (k+1)-homotopy group has an infinite cyclic subgroup and the second

(k + 1)-homotopy group has a free abelian subgroup with two generators.
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