
Topological Methods in Nonlinear Analysis
Volume 47, No. 2, 2016, 659–679

DOI: 10.12775/TMNA.2016.024

c© 2016 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

MULTIPLE SOLUTIONS

WITH PRESCRIBED MINIMAL PERIOD

FOR SECOND ORDER ODD NEWTONIAN SYSTEMS

WITH SYMMETRIES

Wieslaw Krawcewicz — Yanli Lv — Huafeng Xiao

Abstract. For an orthogonal Γ-representation V (Γ is a finite group) and
for an even Γ-invariant C2-functional f : V → R satisfying the condition
0 < θ∇f(x) • x ≤ ∇2f(x)x • x (for θ > 1 and x ∈ V \ {0}), we consider
the odd Newtonian system ẍ(t) = −∇f(x(t)) and establish the existence of
multiple periodic solutions with a minimal period p (for any given p > 0).
As an example, we prove the existence of arbitrarily many periodic solutions
with minimal period p for a specific Dn-symmetric Newtonian system.

1. Introduction

The purpose of this paper is to study the existence of multiple periodic

solutions with a given minimal period p > 0 for the Newtonian systems of the
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type

(1.1) ẍ = −∇f(x), x ∈ V := Rn,

where V is an orthogonal Γ-representation (with Γ being a finite group), f : V →
R is a Γ-invariant even C2-function satisfying the condition

(1.2) 0 < θ∇f(x) • x ≤ ∇2f(x)x • x for x ∈ V \ {0},

for some θ > 1.

The problem of finding periodic solutions with minimal period for variational

problems is not new and there is a large literature devoted to this topic. Be-

ginning with the pioneering work of P. Rabinowitz (cf. [21]), the question of

existence of such solutions in the first order Hamiltonian systems

(1.3)
dz

dt
= J∇f(z), J =

[
0 −Id

Id 0

]
,

was discussed in the works of Clark and Ekeland (cf. [6]), Ambrosetti and Mancini

(cf. [2]), Girardi and Matzeu (cf. [13], [14]), Deng (cf. [7]), Ekeland and Hofer

(cf. [9]), Zhang and Tang (cf. [23], 2013), Michalek and Tarantello (cf. [20]), Fei et

al. (cf. [12], [10]), Liu and Wang (cf. [19]), and many others. These authors used

various methods, such as the Mountain Pass lemma, finite-dimensional approx-

imations, duality principle, index theory, and restrictions to Nehari manifold,

to prove several interesting existence results for multiple periodic solutions with

the prescribed minimal period.

On the other hand, although there are many existence results for multiple pe-

riodic solutions of (1.3) with prescribed minimal period, there are only few such

results for system (1.1). The existence of such periodic solutions was discussed,

for example, in papers by Long (cf. [16, 17]), Fei et al. (cf. [11]), Xiao (cf. [22]),

and others. The main goal of this paper is to combine the Nehari manifold tech-

niques with the H-fixed-point reduction method in order to show the existence

of multiple periodic solutions with the prescribed minimal period for symmet-

ric Newtonian systems satisfying condition (1.2). More precisely, by exploring

Γ-symmetries of system (1.1), where Γ is a finite group, and by applying the

H-fixed-point reduction (for a specific subgroup H ⊂ Γ×Z2×S1), we show that

the second order odd Newtonian system (1.1), where V is a Γ-representation and

f is a Γ-invariant function (Γ is a finite group), has multiple p-periodic solutions

with the minimal period p. Depending on the size of the group Γ, this number

of p-periodic solutions may be arbitrarily large. Our approach is based on the

usage of the Nehari manifold techniques developed by Yu Ming Xiao in [22].

Our main result, Theorem 4.4, mainly states that for any Γ-symmetric New-

tonian system (1.1), satisfying (1.2), and for any p > 0, there exist multiple



Periodic Solutions for Odd Newtonian Systems with Symmetries 661

Γ-orbits of p-periodic solutions with the minimal period p. In fact, such an or-

bit exists for any “maximal” orbit type (which we call twisted maximal type) in

the functional space H (see Subsection 3.1). In addition, we present an exam-

ple of such symmetric systems (3.1), where Γ is a dihedral group Dn. Then, if

n = qα1
1 · . . . · qαs

s , where q1 < . . . < qs are prime numbers, we define

σ(n) :=

⎧⎨⎩2(q1 + q2 + . . .+ qs) when n is odd;

2 + 2(q2 + . . .+ qs) when n is even.

The obtained result shows, as an example, that the Newtonian system (3.1)

with f given by (6.7), admits at least σ(n) periodic solutions with the minimal

period p. Notice that for any N , there is n such that σ(n) ≥ N .

To the best of our knowledge, this is the first time the combined equivariant

and Nehari techniques were applied to obtain the existence of multiple periodic

solutions with a prescribed minimal period p for symmetric Newtonian systems.

This paper consists of five sections. In Section 2, various definitions con-

cerning key concepts are listed. In the meantime, basic results pertaining to

the equivariant topology, representation theory, and the Principle of Symmet-

ric Criticality are elaborated (cf. Subsection 2.3). In Section 3, all the required

assumptions are formulated for the Γ-symmetric system (3.1), which is refor-

mulated as a symmetric variational problem (cf. Subsection 3.2). Properties of

the Sobolev space H̃ of p-periodic functions and its H-fixed-point subspace H

(cf. Subsection 3.1) are also discussed. Then this variational problem (3.8) is

reduced to a Γ × Z2-symmetric variational problem on H (cf. Subsection 3.1).

In Section 4, properties of twisted subgroups are discussed and the notion of

maximal twisted orbit type in H is introduced. The main result, Theorem 4.4,

is stated in Subsection 4.2 and the proof of Theorem 4.4 is presented in Sec-

tion 5. For completeness, all the auxiliary results needed in the proof are listed

in Subsection 5.1. Next, the Nehari manifold for the variational functional J as-

sociated with (3.1) is defined and its properties are examined in Subsection 5.2.

The Palais–Smale condition is established in Subsection 5.3 and the existence of

the minimum of J on the Nehari manifold is proved in Subsection 5.4. Finally,

we show that the function minimizing J on the H-fixed-point subspace of the

Nehari manifold has the minimal period p (Subsection 5.5). In Section 6, an

example of a system (3.1) is presented, which is symmetric with respect to an

action of the dihedral group Dn and satisfying all the required properties of the

main theorem. For this particular example, the existence of multiple (depend-

ing only on the number n) periodic solutions with an arbitrary period p > 0 is

established (cf. Theorem 6.1).

Acknowledgments. The authors would like to express their thankfulness to

the referee, who by pointing out several instances in the text requiring additional
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explanations and editorial corrections, contributed to the improvement of this

paper.

2. Preliminaries

Throughout this section, G is assumed to be a compact Lie group.

2.1. Equivariant jargon. For a subgroup H ⊂ G (it is always assumed to

be closed), we denote the normalizer of H in G by N(H), the Weyl group of H

in G by W (H) := N(H)/H and the conjugacy class of H in G by (H). The set

Φ(G) of all conjugacy classes in G admits a partial order which can be defined

as follows: (H) ≤ (K) if and only if gHg−1 ⊂ K for some g ∈ G.

For a G-space X and x ∈ X , Gx := {g ∈ G : gx = x} is called the isotropy

of x and G(x) := {gx : g ∈ G} is called the orbit of x. One can easily verify that

G(x) � G/Gx. Denote the orbit space of X by X/G, which is the set of all orbits

in X under the action of G. Furthermore, we call the conjugacy class (Gx) the

orbit type of x (or simply an orbit type) in X and put Φ(G;X) := {(H) ∈ Φ(G) :

H = Gx for some x ∈ X}.
Also, for a G-space X and a closed subgroup H of G, we adopt the following

notations: XH := {x ∈ X : Gx = H}, XH := {x ∈ X : Gx ⊃ H}, X(H) := {x ∈
X : (Gx) = (H)}, X(H) := {x ∈ X : (Gx) ≥ (H)}, among which XH is called

the H-fixed-point subspace of X .

Let X and Y be two G-spaces. A continuous map f : X → Y is said to be

equivariant if f(gx) = gf(x) for all x ∈ X and g ∈ G. If the functional f : X → R

satisfies f(gx) = f(x) for all x ∈ X and g ∈ G, then f is called G-invariant. As

is known (see, for instance, [8], [5]), for any subgroup H ⊂ G and equivariant

map f : X → Y , the map fH : XH → Y H , with fH := f |XH , is well-defined and

W (H)-equivariant.

2.2. Isotypical decomposition of finite-dimensional representations.

As is well-known, any compact group admits only countably many non-equivalent

real (resp. complex) irreducible representations. Therefore, given a compact Lie

group Γ, we always assume that a complete list of all real (resp. complex) irre-

ducible Γ-representations, denoted by Vi, i = 0, 1, . . . (resp. Uj , j = 0, 1, . . .), is

available. Here we assume that V0 (resp. U0) stands for trivial real (resp. com-

plex) one-dimensional G-representations. Let V (resp. U) be a finite-dimensional

real (resp. complex) Γ-representation (without loss of generality, V (resp. U) can

be assumed to be orthogonal (resp. unitary)). Then, it is possible to represent

V (resp. U) as the direct sum

V = V0 ⊕ . . .⊕ Vr,(2.1)

(resp. U = U0 ⊕ . . .⊕ Us),(2.2)
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which is called the Γ-isotypical decomposition of V (resp. U), where the isotypical

component Vi (resp. Uj) is modeled on the irreducible Γ-representation Vi, i =

0, . . . , r (resp. Uj , j = 0, . . . , s), i.e. Vi (resp. Uj) contains all the irreducible

subrepresentations of V (resp. U) which are equivalent to Vi (resp. Uj).

Given an orthogonal Γ-representation V , denote the group of all Γ-equivariant

linear invertible operators on V by GLΓ(V ) . Then, the isotypical decomposition

(2.1) induces a decomposition of GLΓ(V ):

(2.3) GLΓ(V ) =

r⊕
i=0

GLΓ(Vi).

For every isotypical component Vi from (2.1), one has GLΓ(Vi) � GL(mi,F),

where mi = dimVi/ dimVi and F is a finite-dimensional division algebra, i.e.

F = R,C or H, depending on the type of the irreducible representation Vi.

2.3. Principle of symmetric criticality. Assume that H is a Hilbert G-

representation and ϕ : H → R is a continuously differentiable G-invariant func-

tional. Assume (H) ∈ Φ(G;H) and let ϕH : HH → R be the restriction of ϕ

to HH . Then, since ∇ϕ is G-equivariant, we have ∇ϕ(HH) ⊂ HH . Therefore

∇ϕH(x) = PH∇ϕ(x) = ∇ϕ(x), x ∈ HH ,

where PH is the orthogonal projection onto HH . Consequently, if x is a critical

point of ϕH then it is also a critical point of ϕ, i.e. H-symmetric critical points

of ϕ are critical points of ϕ (Palais-Symmetric Criticality Principle).

3. Multiple periodic solutions for symmetric Newtonian systems

Assume that p > 0 is an arbitrary number. Let Γ be a finite group and

V = Rn an orthogonal representation of Γ (Γ is acting on Rn by permuting

the vector coordinates in Rn). We are interested in the following second order

Newtonian system

(3.1)

⎧⎨⎩ẍ(t) = −∇f(x(t)), t ∈ R, x(t) ∈ V,

x(t) = x(t+ p), ẋ(t) = ẋ(t+ p),

where f : V → R is a C2-function satisfying the following assumptions:

(A1) f is even, i.e. f(−x) = f(x), for all x ∈ V , f(0) = 0.

(A2) f is Γ-invariant, i.e. f(γx) = f(x) for all γ ∈ Γ and x ∈ V .

(A3) There exists a constant θ > 1 such that for all x ∈ V \ {0}

(3.2) 0 < θ∇f(x) • x ≤ ∇2f(x)x • x,

where • stands for the dot product in Rn.



664 W. Krawcewicz — Y. Lv — H. Xiao

3.1. Sobolev spaces of p-periodic functions. Let H̃ denote the first

Sobolev space of p-periodic functions from R to V , i.e.

H̃ := H1
p (R, V ) = {x : R → V : x(0) = x(p), x|[0,p] ∈ H1([0, p];V )},

equipped with the inner product

〈x, y〉 :=
∫ p

0

(ẋ(t) • ẏ(t) + x(t) • y(t)) dt, x, y ∈ H1
p (R, V ).

Let O(2) denote the group of 2× 2-orthogonal matrices. Notice that O(2) =

SO(2) ∪ SO(2)κ, where κ =
[
1 0
0 −1

]
. It is convenient to identify a rotation[

cos τ − sin τ
sin τ cos τ

] ∈ SO(2) with eiτ ∈ S1 ⊂ C. Notice that κeiτ = e−iτκ.

Put G̃ = Γ × Z2 × O(2), then the space H̃ is an orthogonal Hilbert repre-

sentation of G̃. Indeed, for x ∈ H̃ and γ ∈ Γ, eiτ ∈ S1 we can define the group

action as

(γ,±1, eiτ )x(t) = ±γx

(
t+

pτ

2π

)
, (γ,±1, eiτκ)x(t) = ±γx

(
− t+

pτ

2π

)
.

Γ is acting on V = Rn by permuting the vector coordinates in Rn.

It is useful to identify a p-periodic function x : R → V with a function

x̃ : S1 → V via the following commuting diagram:

R
e

��

x
��
��

��
��

��
S1

x̃
����
��
��
��

V

eτ = ei2πτ/p.

Using this identification, we will write H1(S1
p , V ) instead of H1

p (R, V ). In ad-

dition, notice that for x ∈ H̃ , the isotropy group G′
x, where G′ := Γ × S1, is

twisted if and only if x is a non-constant periodic function.

Consider the O(2)-isotypical decomposition of H̃ , which is

(3.3) H̃ =

∞⊕
k=0

Vk, Vk := {uk cos(2kπ/p · t) + vk sin(2kπ/p · t) : uk, vk ∈ V }.

Each of the components Vk can be identified G̃-equivariantly to the space V′
k of

complex p-periodic functions defined by

V′
k :=

{
ei2πkt/p(xk + iyk) : xk, yk ∈ V

}
, where xk =

uk + vk
2

, yk =
uk − vk

2
.

One can easily notice that the space V′
k is equivalent to the complexification

V c := V ⊕ V of V , where κ acts on vectors in V c by conjugation and for

eiτ ∈ SO(2) � S1, eiτz = eikτ · z, where ‘ · ’ denotes complex multiplication and

z = x+ iy ∈ V c. We will denote this G̃-representation by vk(V
c). Let us define
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the space h̃2,p(V c) composed of all sequences z := {zk}∞k=0 such that z0 ∈ V ,

zk ∈ vk(V
c) for k > 0, and satisfying the condition

‖z‖2 := ‖z0‖2 +
∞∑
k=1

‖zk‖2
(
p

2
+ 4π2k2

)
< ∞.

The space h̃2,p(V c) is clearly a Hilbert G̃-representation, which is equivalent

to H̃ .

Denote by H ⊂ Z2 ×O(2) the subgroup

H := {(1, 1), (−1,−1), (1, κ), (−1,−κ)} =: Dd
2.

We are interested in the H-fixed-point subspace H := H̃ H . Notice that the

normalizer N(H) = Γ × Z2 ×D2, therefore W (H) = Γ× Z2, and H = H̃ H is

a W (H)-orthogonal representation.

Clearly, each Vk in the decomposition (3.3) is Γ × Z2 × O2-invariant and

therefore

(3.4) H =

∞⊕
k=0

VH
k .

By the definition of fixed-point subspace, we can easily obtain that x ∈ H if and

only if x is even and −x(p/2 + t) = −x(p/2− t) = x(t). It follows immediately

that

VH
k :=

⎧⎨⎩{0} if k is even,

{uk cos(2kπ/p · t) : uk ∈ V } if k is odd.

Then we have the following decomposition of H :

(3.5) H =

∞⊕
l=0

W2l+1, W2l+1 := {u2l+1 cos(2(2l+ 1)π/p · t) : u2l+1 ∈ V },

where each of the components W2l+1 is Γ-equivariant to V .

For any function x ∈ H ⊂ H̃ , by using the isotypical decomposition (3.4)

of H , we have

‖x‖2 =

∫ p

0

(ẋ(t) • ẋ(t) + x(t) • x(t)) dt =
∞∑
l=0

|u2l+1|2
(
p

2
+

2π2(2l + 1)2

p

)
.

Notice that the norm ||| · ||| on H , associated with the inner product

〈x, y〉′ :=
∫ p

0

ẋ(t) • ẏ(t) dt, x, y ∈ H ,

which is given by

(3.6) |||x|||2 :=

∞∑
l=0

|u2l+1|2
(
2π2(2l + 1)2

p

)
,
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is equivalent to the norm ‖·‖, therefore (H , ‖·‖) is equivalent to the Hilbert space

(H , ||| · |||). Therefore, without loss of generality, we can assume in what follows

that H is equipped with the norm (3.6). In order to simplify the notation, in

what follows we will simply write ‖ · ‖ instead of ||| · ||| and we will denote the

inner product 〈 · , · 〉′ by 〈 · , · 〉. In addition, notice that we also have

(3.7) ‖x‖L2 ≤ ‖x‖ for all x ∈ H .

3.2. Reformulation of (3.1) as a symmetric variational problem.

Consider the space H̃ defined in Subsection 3.1 and define the following varia-

tional functional J : H̃ → R:

(3.8) J (x) :=

∫ p

0

(
1

2
|ẋ(t)|2 − f(x(t))

)
dt, |x(t)|2 := x(t) • x(t),

where x ∈ H̃ . Notice that solutions to (3.1) are the critical points of J , i.e. if

∇J (x) = 0 then x is a C3-function satisfying (3.1) and vice versa. Therefore,

finding solutions to (3.1) can be reduced to finding critical points of J .

Let us make the following obvious remarks:

Remark 3.1. Under assumptions (A2), the functional J : H̃ → R is Γ ×
O(2)-invariant, thus ∇J : H̃ → H̃ is Γ × O(2)-equivariant. Moreover, J is

C2-Fréchet differentiable and we have

〈∇J (x), y〉 = DJ (x)y =

∫ p

0

(ẋ(t) • ẏ(t)−∇f(x) • y(t)) dt,

〈∇2J (x)y, z〉 = D2J (x)(y, z) =

∫ p

0

(ẏ(t) • ż(t)−∇2f(x(t))y(t) • z(t), ) dt,

where x, y, z ∈ H̃ .

Remark 3.2. Under assumption (A1), the gradient map ∇J has additional

symmetry Z2, i.e. it is Γ× Z2 ×O(2)-equivariant. Let H be the H-fixed-point

subspace of H̃ and J be the restriction of J to the H-fixed-point subspace, i.e.

H := H̃ H , J := J |H : H → R. Since ∇J (H ) ⊂ H , it follows that ∇J =

∇J |H is a Γ× Z2-equivariant completely continuous gradient field. Therefore,

the critical points of J are also critical points of J , and consequently they are

the solutions to (3.1). In addition, notice that any non-zero critical point x of

J is a non-constant p-periodic solution to (3.1), i.e. 0 is the unique stationary

solution of (3.1) in H .

Remark 3.3. Notice that the Γ×Z2-equivariant operator ∇J(x) defined on

the space H equipped with the norm (3.6) can be explicitly expressed by the

formula

(3.9) ∇J(x) = x− j ◦ L−1
o ◦N∇f−Id (x), N∇f (x)(t) := ∇f(x(t)),
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where Lox = ẍ, L−1
o : H → (H3(S1

p ;V ))H , j : H3(S1
p ;V ) → H̃ is a compact

operator.

4. Statement of the main result

Put G = Γ× Z2.

4.1. Maximal orbit types in H . Consider the Hilbert G̃-representation

introduced in above, where G̃ := Γ×Z2×O(2) and G′ := Γ×S1. By identifying

S1 with SO(2), we have G′ ⊂ G̃. Consider the following subgroups of G′:

Kφ,l := {(γ, z) ∈ K × S1 : φ(γ) = zl},
where K ⊂ Γ is a subgroup, φ : K → S1 is a homomorphism, and k is a fixed

positive integer. In such a case, the group Kφ,l is called a twisted (by homo-

morphism φ) l-folded subgroup of G′. Following this practice, we denote the

twisted one-folded group Kφ,1 by Kφ and simply call it twisted. Notice that the

normalizer N(Kφ,l) of Kφ,l can be written as

N(Kφ,l) = No × S1, where K ⊂ No ⊂ N(K),

No := {g ∈ N(K) : φ(gkg−1) = φ(k) for all k ∈ K}.
Since (K × S1)/Kφ,l � S1, we have the following exact sequence:

0 −→ S1 −→ W (Kφ,l) −→ No/K −→ 0,

thus there is a natural injective homomorphism from S1 to W (Kφ,l). Denote

the set of conjugacy classes of all twisted isotropy groups in X by Φt(G′;X) ⊂
Φ(G′;X), i.e. Φt(G′;X) is the set of all twisted orbit types in X . Also, denote

the subset of Φt(G′;X) composed of all (H) such that H is a twisted l-folded

subgroup by Φt
l(G

′, X). We have the following definition.

Definition 4.1. A one-twisted orbit type (Kφ) ∈ Φ(G′;X) is said to be

a twisted maximal orbit type if (Kφ) is maximal in Φt
1(G

′;X) with respect to the

natural order relation.

Definition 4.2. Let x ∈ H \ {0}. Then the orbit type (Gx) is called to be

t-maximal, if (G′
x) is twisted maximal orbit type in H̃ .

Remark 4.3. Notice that if (Gx) is a t-maximal orbit type in H \ {0}, then
it is a maximal orbit type in H \ {0}. Indeed, suppose that H ⊂ G and (H) is

the orbit type in H \ {0} for some x. Then there exists a subgroup K ⊂ Γ and

a homomorphism ϕ : K → Z2 such thatH = Kϕ. If H is not maximal in H \{0}
then the homomorphism ϕ can be extended to ϕ′ : K ′ → Z2, where K � K ′ and
H ′ := K ′ϕ′

is a G-isotropy for some x′ ∈ H \ {0}. Therefore, kerϕ � kerϕ′.
Plus, since x and x′ are non-constant, then G′

x, G
′
x′ ∈ Φt(G′;H ). Let φ and

φ′ be the homomorphisms associated with G′
x and G′

x′ , hence, kerφ � kerφ′.
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Therefore, we have G′
x � G′

x′ , and thus (G′
x) is not a maximal twisted orbit type

in H̃ which is a contradiction with Definition 4.2.

4.2. Formulation of the main result.

Theorem 4.4. Let p > 0 be an arbitrary number. Assume that the function

f : V → R is a C2-functional satisfying conditions (A1)–(A3). Then, for every

maximal orbit type (K) in H \ {0}, there exists at least one G-orbit of critical

points of J in H , corresponding to an orbit of p-periodic solutions to (3.1) in

the space H with the minimal period exactly p. Moreover, if {(K1), . . . , (Km)}
is the collection of all t-maximal orbit types in H , then system (3.1) has at least
m∑
j=1

|Γ/Kj| periodic solutions with the minimal period exactly p.

5. Proof of the main result

The proof follows the ideas from [22], which are based on the application of

the concept of Nehari manifold. For the sake of completeness, we include all the

related details. Full credit for the main idea of proof should be given to Yu Ming

Xiao.

5.1. Auxiliary results.

Lemma 5.1. Assume f : V → R satisfies conditions (A1)–(A3). Then

(5.1) 0 < (1 + θ)f(x) ≤ ∇f(x) • x for all x ∈ V \ {0}.
Proof. For any x ∈ V \ {0}, define the function φ : R → R by φ(t) := f(tx)

for all t ∈ R. Clearly φ is of class C1 and by direct computation, we have

φ(0) = f(0) = 0, φ′(t) = ∇f(tx) • x and φ′′(t) = ∇2f(tx)x • x. Therefore, by

(A3), we obtain that for any t > 0, the following inequality holds:

0 < θ∇f(tx) • (tx) ≤ ∇2f(tx)(tx) • (tx),
which implies 0 < θφ′(t) ≤ tφ′′(t). Thus,

θf(x) =

∫ 1

0

θφ′(t) dt ≤
∫ 1

0

tφ′′(t) dt = ∇f(x) • x− f(x).

Thus, it follows immediately that 0 < (1 + θ)f(x) ≤ ∇f(x) • x. �

Lemma 5.2. Assume f : V → R satisfies conditions (A1)–(A3). Put

M := max{f(x) : |x| = 1} and m := min{f(x) : |x| = 1}.
Then, for all x ∈ V ,

(5.2) f(x) ≤ M |x|θ+1 for |x| ≤ 1 and f(x) ≥ m|x|θ+1 for |x| ≥ 1,

where |x|2 = x • x.
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Proof. If x = 0, then f(x) = 0 and |x| = 0, so, obviously, the lemma is

true. For any x ∈ V \ {0}, define the function φ : R → R by φ(t) := f(tx) for all

t ∈ R. Clearly, φ is of class C1 and φ′(t) = ∇f(tx) • x. By the previous lemma,

we have 0 < (1 + θ)f(tx) ≤ ∇f(tx) • tx, i.e. 0 < (1 + θ)φ(t) ≤ tφ′(t). Assume

s ≥ 1, then ∫ s

1

φ′(t)
φ(t)

dt ≥
∫ s

1

1 + θ

t
dt.

Consequently, f(sx) = φ(s) ≥ s(1+θ)φ(1) = s(1+θ)f(x). Therefore, we can

conclude that if |x| ≥ 1, then

f(x) = f

(
|x| x|x|

)
≥ |x|(1+θ)f

(
x

|x|
)

≥ m|x|(1+θ),

if |x| ≤ 1, then

f

(
x

|x|
)

≥ 1

|x|(1+θ)
f(x).

Therefore, it follows that

f(x) ≤ |x|(1+θ)f

(
x

|x|
)

≤ M |x|(1+θ). �

5.2. Nehari manifold for J . We define the following set:

(5.3) N := {x ∈ H \ {0} : 〈∇J(x), x〉 = 0}.
Proposition 5.3. N is a complete sub-manifold of H of co-dimension one.

Proof. Define the function Ψ: H → R by

Ψ(x) := 〈∇J(x), x〉 for all x ∈ H .

Clearly, Ψ is of class C1. We claim that zero is a regular value of Ψ on H \ {0}.
Indeed, notice that N = Ψ−1(0) ∩ (H \ {0}), and for every x ∈ N (remember

x �= 0) we have

0 = 〈∇J(x), x〉 ⇔
∫ p

0

|ẋ(t)|2 dt =
∫ p

0

∇f(x(t)) • x(t) dt.

Since DΨ(x)v = 〈∇2J(x)v, x〉 + 〈∇J(x), v〉, thus by (A3)

DΨ(x)x = 〈∇2J(x)x, x〉 + 〈∇J(x), x〉 = 〈∇2J(x)x, x〉 + 0

=

∫ p

0

(|ẋ(t)|2 −∇2f(x(t))x(t) • x(t)) dt

=

∫ p

0

(∇f(x(t)) • x(t) −∇2f(x(t))x(t) • x(t)) dt < 0.

Consequently, DΨ(x) : H → R is surjective for all x ∈ N , and therefore zero

is a regular value of Ψ restricted to H \ {0}. Thus N is a sub-manifold of

co-dimension one. In order to show that N is complete, we notice that there

exists ε > 0 such that Bε(0) ∩N = ∅. Notice that, inequality (5.2) implies that
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‖∇2f(0)‖ = 0. For, by the Taylor formula f(x) = ∇2f(0)x • x/2 + r(x), where

lim
x→0

r(x)/|x|2 = 0, thus by (5.2)

1

2
∇2f(0)x • x ≤ M |x|θ+1 + |r(x)|

and, consequently,

∇2f(0)x • x
|x|2 ≤ 2M |x|θ−1 +

2|r(x)|
|x|2 ,

which implies that the non-negative quadratic form ∇2f(0)x•x is zero for any x.

By continuity of ∇2f(x), there exists η > 0 such that for |x| < η we have

‖∇2f(x)‖ < 1. The continuity of the inclusion i : H → C(S1
p ;V ) (C(S1

p ;V )

equipped with the norm ‖x‖∞ := max{|x(t)| : t ∈ [0, p]}) implies that there

exists ε > 0 such that if ‖x‖ < ε then ‖x‖∞ < η. Then, by applying inequalities

(A3), (5.2) and (3.7) we obtain

Ψ(x) =

∫ p

0

ẋ(t) • ẋ(t) dt−
∫ p

o

∇f(x(t)) • x(t) dt

≥ ‖x‖2 − 1

θ

∫ p

0

∇2f(x(t))x(t) • x(t) dt

≥ ‖x‖2 − 1

θ
‖x‖2L2 ≥ ‖x‖2 − 1

θ
‖x‖2 = ‖x‖2

(
1− 1

θ

)
> 0.

Consequently, if x ∈ Bε(0) then x /∈ N . �

Proposition 5.4. Assume f : V → R satisfies conditions (A1)–(A3). Let

J : H → R be defined as in Remark 3.2 and N be defined by (5.3). Then

x ∈ H \ {0} is a critical point of J if and only if x ∈ N and it is a critical point

of J |N : N → R.

Proof. It is clear that if for x �= 0 we have ∇J(x) = 0 then x ∈ N and x

is also a critical point of J |N . Suppose that x ∈ N and DJ(x)|Tx(N) ≡ 0. Since

Tx(N) is a subspace of co-dimension 1 such that Tx(N) ⊕ span {x} = H , we

have that for every v ∈ H there exists u ∈ Tx(N) and t ∈ R so v = u + tx.

Therefore,

DJ(x)v = DJ(x)u + tDJ(x)x = DJN (x)u + t〈∇J(x), x〉 = 0+ 0 = 0,

and consequently ∇J(x) ≡ 0, i.e. x is a critical point of J . �

Lemma 5.5. Assume f : V → R satisfies conditions (A1)–(A3). Let J : H →
R be defined as in Remark 3.2 and N be defined by (5.3). Put S(H ) := {w ∈
H : ‖w‖ = 1}. Then there exists a differentiable function s : S(H ) → (0,∞)

such that

(a) for all w ∈ S(H ) we have 〈∇J(s(w)w), s(w)w〉 = 0;
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(b) if for some c > 0 and w ∈ S(H ) we have 〈∇J(cw), cw〉 = 0, then

c = s(w).

Proof. Define the function K : S(H )× R → R by the following formula:

(5.4) K(w, s) := J(sw) =
s2

2

∫ p

0

|ẇ(t)|2 dt−
∫ p

0

f(sw(t)) dt.

Then, for every s > 0, we have

K′
s(w, s) = s

∫ p

0

|ẇ(t)|2 dt− 1

s

∫ p

0

∇f(sw(t)) • (sw(t)) dt,

K′′
s (w, s) =

∫ p

0

|ẇ(t)|2 dt− 1

s2

∫ p

0

∇2f(sw(t))(sw(t)) • (sw(t)) dt,

where w ∈ S(H ) and s ∈ R. Let wo ∈ S(H ) be fixed. Put

ηo :=
1

2

∫ p

0

|wo(t)|2 dt > 0,

then there exists δ > 0 such that for all w ∈ M := S(H ) ∩Bδ(wo) we have∫ p

0

|w(t)|2 dt > ηo.

Let 0 < η < ηo. Put Aw := {t ∈ [0, p] : |w(t)|2 ≥ η/p}. We claim that

inf{µ(Aw) : w ∈ M} = αo > 0. Indeed, suppose for contradiction that there

exists a sequence wn ∈ M such that µ(Awn) → 0 as n → ∞, then we have for

all n ∈ N

η < ηo <

∫ p

0

|wn(t)|2 dt =

∫
Awn

|wn(t)|2 dt+
∫
Ac

wn

|wn(t)|2 dt

≤
∫
Awn

|wn(t)|2 dt+ η

p
(p− µ(Awn)).

Since
∫
Awn

|wn(t)|2 dt → 0 as n → ∞, it follows that η < ηo ≤ η which is

a contradiction. Therefore, for s > 0 being a sufficiently large number we have

for all w ∈ M
K(w, s) =

1

2
s2‖w‖2 −

∫ p

0

f(sw(t)) dt(5.5)

≤ 1

2
s2 −

∫ p

0

f(sw(t)) dt ≤ 1

2
s2 −

(
η

p

)(θ+1)/2

mα0s
θ+1 < 0,

so, for s sufficiently large, K(w, s) < 0. Similarly, for s > 0 being a sufficiently

large number we also have, for all w ∈ M,

(5.6) K′
s(w, s) = s‖w‖2 −

∫ p

0

∇f(sw(t)) • w(t) dt

≤ s− θ + 1

s

∫ p

0

f(sw(t)) dt ≤ s− (1 + θ)

(
η

p

)(θ+1)/2

mα0s
θ < 0.
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Notice that for s > 0 being sufficiently small (say 0 < s < αo), we have that for

all w ∈ S(H ) and t ∈ [0, p], |w(st)| < 1, therefore, by Lemma 5.2, f(sw(t)) ≤
M(s|w(t)|)θ+1. Consequently, we have

K(w, s) =
1

2
s2‖w‖2 −

∫ p

0

f(sw(t)) dt ≥ 1

2
s2 −Msθ+1

∫ p

0

|w(t)|θ+1 dt,

and therefore, for sufficiently small s > 0 we have K(w, s) > 0 for all w ∈ S(H ).

Clearly, we also have that for sufficiently small s > 0, K′
s(w, s) < 0 for all

w ∈ S(H ).

Put c1 = s, where s > 0 is a number for which inequality (5.6) holds for

all w ∈ M, i.e. K′
s(w, c1) < 0. On the other hand, one can choose co = s,

where s > 0 is a sufficiently small number such that K′
s(w, s) > 0 for all w ∈ M.

Therefore, by the Intermediate Value theorem, for every w ∈ M, there exists

so(w) ∈ (c0, c1) such that K′
s(w, so(w)) = 0. In order to prove the uniqueness,

assume that for a given w in M there exist two s1, s2 ∈ (co, c1) such that

K′
s(w, si) = 0, i = 1, 2. Notice that, if K′

s(w, so) = 0, then∫ p

0

|ẇ(t)|2 dt = 1

s2o

∫ p

0

∇f(sow(t)) • (sow(t)) dt,

and therefore (since θ > 1)

K′′
s (w, so) =

∫ p

0

|ẇ(t)|2 dt− 1

s2o

∫ p

0

∇2f(sow(t))(sow(t)) • (sow(t)) dt

=
1

s2o

∫ p

0

(∇f(sow(t)) • (sow(t)) −∇2f(sow(t))(sow(t)) • (sow(t))
)
dt < 0.

This means we have

(5.7) K′
s(w, so) = 0 ⇒ K′′

s (w, so) < 0.

Therefore, since K′′
s (w, s1) < 0 and K′′

s (w, s2) < 0, there exists s′ ∈ (s1, s2) such

that Ks(w, s
′) = min{Ks(w, s) : s ∈ [s1, s2]}. Consequently, K′

s(w, s
′) = 0 and

K′′
s (w, s

′) ≥ 0. However, on the other hand, by (5.7), we have K′′
s (w, s

′) < 0

which is a contradiction. Differentiability of the function s : S(H ) → (0,∞)

follows from the Implicit Function theorem. �

Remark 5.6. Assume f : V → R satisfies conditions (A1)–(A3) and consider

the function K : S(H ) × R → R defined by (5.4) and the function s : S(H ) →
(0,∞) given in Lemma 5.5. The properties of the function K can be summarized

as follows:

(a) for every w ∈ S(H ) the function K(w, · ) has a unique maximum at s(w)

and K(w, s(w)) > 0;

(b) for every w ∈ S(H ), lim
s→∞K(w, s) = −∞;

(c) for every w ∈ S(H ), K′
s(w, s(w)) = 0 and K′′

s (w, s(w)) < 0.
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For a given w ∈ S(H ) the function ξ(s) := K(w, s) can be illustrated by the

following graph:

�

�

s(w)

ξ(s)

s

Corollary 5.7. Assume f : V → R satisfies conditions (A1)–(A3) and

consider the function K : S(H ) × R → R defined by (5.4) and the function

s : S(H ) → (0,∞) given in Lemma 5.5. Let N be the Nehari manifold defined

by (5.3). Define W : S(H ) → N by W(w) := s(w)w, for w ∈ S(H ). Then W

is a diffeomorphism.

5.3. Palais–Smale condition.

Proposition 5.8. Assume f : V → R satisfies conditions (A1)–(A3). Let

J : H → R be defined as in Remark 3.2 and let N be the Nehari manifold defined

by (5.3). Then J satisfies the Palais–Smale condition ((PS)-condition for short)

on N , i.e. if xn ∈ N is a sequence such that

(a) for some a < b, a < J(xn) < b for all n ∈ N, and

(b) lim
n→∞∇J(xn) = 0, then {xn} contains a convergent to an element in N

subsequence.

Proof. Assume that a sequence {xn} satisfies conditions (a) and (b). Notice

that, since xn ∈ N , thus

(5.8) ‖xn‖2 =

∫ p

0

∇f(xn(t)) • xn(t) dt.

By assumption, J(xn) < b for all n ∈ N, thus by Lemma 5.1 and (5.8),

b > J(xn) =
1

2
‖xn‖2 −

∫ p

0

f(xn(t)) dt

≥ 1

2
‖xn‖2 − 1

θ + 1

∫ p

0

∇f(xn(t)) • xn(t) dt

=
1

2
‖xn‖2 − 1

1 + θ
‖xn‖2 = ‖xn‖2

(
1

2
− 1

θ + 1

)
.

Since θ > 1, thus we get, for all n ∈ N,

b

1/2− 1/(θ + 1)
≥ ‖xn‖2,
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which implies that the sequence {xn} is bounded. By formula (3.9), we have

that

∇J(xn) = xn − j ◦ L−1 ◦N∇f (xn),

where j is a compact operator. Therefore, the sequence yn := j ◦L−1 ◦N∇f (xn),

n ∈ N contains a convergent to x∗ subsequence {ynk
}. However, ∇J(xnk

) → 0

as k → ∞, thus lim
k→∞

xnk
= lim

k→∞
ynk

= x∗. Since N is complete, x∗ ∈ N . �

5.4. Minimization of J on Nehari manifold.

Lemma 5.9. Assume f : V → R satisfies conditions (A1)–(A3). Let J : H →
R be defined as in Remark 3.2 and let N be the Nehari manifold defined by (5.3).

Then for every x ∈ N , J(x) > 0.

Proof. By a similar argument as in the proof of Proposition 5.8, for every

x ∈ N , we have

J(x) =
1

2
‖x‖2 −

∫ p

0

f(x(t)) dt ≥ ‖x‖2
(
1

2
− 1

θ + 1

)
> 0. �

Lemma 5.10. Assume f : V → R satisfies conditions (A1)–(A3). Let J : H →
R be defined as in Remark 3.2 and let N be the Nehari manifold defined by (5.3).

Assume that H is a subgroup of G := Γ × Z2 such that (H) is an orbit type in

H . Put NH := {x ∈ N : gx = x for all g ∈ H}. Then, there exists xo ∈ NH

such that J(xo) = inf{J(x) : x ∈ NH} and ∇J(x0) = 0. Moreover, Gxo ⊃ H.

In the case (H) is a maximal orbit type in H , we have Gxo = H.

Proof. Notice that NH is a closed subset of N , thus it is a complete Hilbert

manifold. On the other hand, since (H) is a twisted orbit type in H , thus

(H) ∈ Φt(G;H \ {0}) = Φ(G;S(H )).

Moreover, if w ∈ S(H ) then s(w)w ∈ N and since Gw = Gs(w)w, we have

Φt(G;S(H )) = Φt(G;N),

thus NH �= ∅. Since J satisfies the (PS)-condition on N , it also satisfies the

(PS)-condition on the submanifoldNH , thus by standard arguments, there exists

xo ∈ NH such that J(xo) = inf{J(x) : x ∈ NH}. Denote by JH
o the restriction

of J to NH . Then ∇JH
o (xo) = 0 and therefore, by the Principle of Symmetric

Criticality, ∇J |N (xo) = 0. Then, by Proposition 5.4, ∇J(xo) = 0. �

5.5. Proof of minimality of period.

Lemma 5.11. Assume f : V → R satisfies conditions (A1)–(A3). Let J : H →
R be defined as in Remark 3.2 and let N be the Nehari manifold defined by (5.3).

Assume that H is a subgroup of G := Γ × Z2 such that (H) is a maximal orbit

type in H and let xo ∈ NH be such that J(xo) = min{J(x) : x ∈ NH}. Then

the minimal period of xo is p.
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�
�

�

�

S(H )

Nxo

axo
x1

yo = ax1

Figure 1. Minimization of J over Nehari manifold.

Proof. Assume for contradiction that xo has the minimal period p/k, where

k > 1 (k has to be an odd number). Suppose that H = Kϕ, thus we have

Gxo = Kϕ. Define the function x1(t) := xo(t/k), t ∈ [0, p]. Then x1 ∈ H and

Gx1 = H . Denote by yo ∈ N the element yo = s(x1/‖x1‖)x1/‖x1‖ =: ax1(t).

Then we have J(axo) ≤ J(xo) and J(yo) ≥ J(xo).

J(yo) =
1

2

∫ p

0

|ẏo(t)|2 dt−
∫ p

0

f(yo(t)) dt

=
1

2k2

∫ p

0

|aẋo(t/k)|2 dt−
∫ p

0

f(axo(t/k)) dt

=
1

2k

∫ p/k

0

|aẋo(s)|2 ds− k

∫ p/k

0

f(axo(s)) ds

=
1

2k2

∫ p

0

|aẋo(s)|2 ds−
∫ p

0

f(axo(s)) ds

<
1

2

∫ p

0

|aẋo(s)|2 ds−
∫ p

0

f(axo(s)) ds = J(axo) ≤ J(xo),

and we get a contradiction. See Figure 1. �

6. Example of Dn-symmetric functional

Suppose Γ is the dihedral group Dn ⊂ O(2), which is

Dn = {1, γ, . . . , γn−1, κ, γκ, . . . , γn−1κ}, γ = e2πi/n.

Assume that W := Rn is the natural Dn-representation with the Dn-action

defined on the generators as follows:

γ(x1, . . . , xn)
T := (x2, . . . , xn, x1)

T ,(6.1)

κ(x1, . . . , xn)
T := (x1, xn, . . . , x2),(6.2)
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where (x1, . . . , xn)
T ∈ Rn. Clearly, the matrices of transformation equations

(6.1) and (6.2) are

Tγ :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

1 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ and Tκ :=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0

0 0 0 . . . 1
...

...
...

. . .
...

0 0 1 . . . 0

0 1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

respectively. One can easily construct examples of a function f : Rn → R satis-

fying conditions (A1)–(A3) which is also Dn-symmetric.

For the complete list of irreducible Dn-representations and the corresponding

basic degrees, we refer the reader, for instance, to [5, p. 174]. Here, we restrict

ourselves with the data important for the present paper.

Put m := �n/2�. Then W admits the isotypical decomposition

(6.3) W := V0 ⊕ . . .⊕ Vm,

where Vj � Vj , j = 0, . . . ,m (according to the convention introduced in [5]).

Then, for any collection of real numbers, {µj}mj=0, there exists a unique Dn-

equivariant linear symmetric operator, A : W → W , such that σ(A) := {µj : 0 ≤
j ≤ m} and the eigenspaces E(µj) = Vj (see [4]). If C is a matrix of such an

operator, A : W → W , then

(a) if n is odd, then

(6.4) C = c0 Id +

m∑
k=1

ck
[
T k
γ + T−k

γ

]
and µj = c0 +

m∑
k=1

2ck cos

(
2πkj

n

)
,

(b) if n is even, then

(6.5) C = c0 Id +

m−1∑
k=1

ck[T
k
γ + T−k

γ ] + cmTm
γ

and µj = c0 +

m−1∑
k=1

2ck cos

(
2πkj

n

)
− cm.

Put (see (6.3))

(6.6) V := V1 ⊕ . . .⊕ Vm

and assume therefore that µj > 0, j = 1, . . . ,m are given numbers. Let A : V →
V be the corresponding linear operator, i.e. for n odd, the matrix C of A is

C =

m∑
k=1

ck[T
k
γ + T−k

γ ] and µj =

m∑
k=1

2ck cos

(
2πkj

n

)
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and for n even, the matrix C of A is

C =

m−1∑
k=1

ck[T
k
γ + T−k

γ ] + cmTm
γ and µj =

m−1∑
k=1

2ck cos

(
2πkj

n

)
− cm.

Since A is a positive operator, one can define B :=
√
A. Let f : V → R be

defined by

(6.7) f(x) := |Bx|4 = (Bx •Bx)2 = (Ax • x)2, x ∈ V.

One can easily verify that f is Dn-invariant and satisfies properties (A1)–(A3).

Assume that n = qα1
1 · . . . · qαs

s is an integer, where q1 < . . . < qs are prime

numbers. Notice that each of the subspaces W2l+1 in (3.5) is equivalent to the

Dn × Z2-representation V , consequently, the t-maximal orbit types in H \ {0}
are the same as the maximal orbit types in the space V \ {0}. Consider the Dn-

isotypical decomposition (6.6). Notice that it is also the isotypical decomposition

of V with respect to the action of the group G := Dn × Z2. An orbit type (H)

in V is t-maximal if and only if it is maximal in one of the isotypical components

Vj \ {0}. The lattices of the orbit types for the components Vj , j = 0, . . . ,m, are

shown in Figure 2.

(Dn × Z2)

(Dh)

(Zh)

0 < j < n
2 , l odd

(Dn × Z2)

(D̃d
2h) (Dd

2h)

(Zh)

0 < j < n
2 , l even

(Dn × Z2)

(Dd
n)

n is even and j = n
2

Figure 2. Orbit types in the isotypical components Vj . Here h = gcd(n, j)
and l := n

h
.

We can recognize the maximal orbit types in V \ {0} as follows.

If n is odd, then n = qα1
1 · . . . · qαs

s with q1 > 2. The maximal orbit types in

irreducible representations are (Dhi), where hi = qα1
1 · . . . · qαi−1

i · . . . · qαs
s , i =

1, . . . , s. In such a case, the G-orbit of (Dhi)-type contains |Dn ×Z2/Dhi | = 2qi

elements.

On the other hand, if n is even, then q1 = 2, i.e. n = 2α1 · . . . · qαs
s . In this

case, we have two types of the maximal orbit types in irreducible representations,
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which are (Dhi) i = 2, . . . , s, where |Dn × Z2/Dhi | = 2qi and (Dd
n), where

|Dn × Z2/D
d
n| = 2. Therefore, we have the following result.

Theorem 6.1. Assume that n = qα1
1 · . . . · qαs

s is an integer, where q1 <

. . . < qs are prime numbers. Let V ⊂ Rn be the Dn-representation given by

(6.6) (with the Dn action given by (6.1) and (6.2)) and let f : V → R be given

by (6.7) (where we assume that µj > 0, j = 1, . . . ,m). Then system (3.1) has

at least σ(n) p-periodic solutions with the minimal period p, where σ(n) is given

by:

(a) σ(n) = 2(q1 + . . .+ qs), when n is odd;

(b) σ(n) = 2 + 2(q2 + . . .+ qs), when n is even.
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