Topological Methods in Nonlinear Analysis Volume 47, No. 1, 2016, 73–89 DOI: 10.12775/TMNA.2015.091

O 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

TOPOLOGICAL STRUCTURE OF THE SOLUTION SET OF SINGULAR EQUATIONS WITH SIGN CHANGING TERMS UNDER DIRICHLET BOUNDARY CONDITION

José V. Gonçalves — Marcos R. Marcial — Olimpio H. Miyagaki

ABSTRACT. In this paper we establish existence of connected components of positive solutions of the equation $-\Delta_p u = \lambda f(u)$ in Ω , under Dirichlet boundary conditions, where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, Δ_p is the *p*-Laplacian, and $f: (0, \infty) \to \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin.

1. Introduction

In this paper we establish existence of a continuum of positive solutions of

 $(\mathbf{P})_{\lambda} \qquad \begin{cases} -\Delta_p u = \lambda f(u) & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$

where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial\Omega$, Δ_p is the *p*-Laplacian, $1 , <math>\lambda > 0$ is a real parameter, $f: (0, \infty) \to \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin.

²⁰¹⁰ Mathematics Subject Classification. 35J25, 35J55, 35J70.

Key words and phrases. Connected sets; fixed points; Schauder theory; elliptic equations. This work was supported by CNPq/CAPES/PROCAD/UFG/UnB-Brazil.

The first and the third authors were supported in part by CNPq/Brazil.

The second author was supported by CAPES/Brazil.

DEFINITION 1.1. By a solution of $(P)_{\lambda}$ we mean a function $u \in W_0^{1,p}(\Omega) \cap C(\overline{\Omega})$, with u > 0 in Ω , such that

(1.1)
$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx = \lambda \int_{\Omega} f(u) \varphi \, dx, \quad \varphi \in W_0^{1,p}(\Omega).$$

DEFINITION 1.2. The solution set of $(P)_{\lambda}$ is

(1.2)
$$\mathcal{S} := \{ (\lambda, u) \in (0, \infty) \times C(\overline{\Omega}) \mid u \text{ is a solution of } (\mathbf{P})_{\lambda} \}.$$

In the pioneering work [5], Crandall, Rabinowitz and Tartar employed topological methods, Schauder Theory, and Maximum Principles to prove existence of an unbounded connected subset in $\mathbb{R} \times C_0(\overline{\Omega})$ of positive solutions $u \in C^2(\Omega) \cap C(\overline{\Omega})$ of the problem

$$\begin{cases} -Lu = g(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where L is a linear second order uniformly elliptic operator,

$$C_0(\overline{\Omega}) = \{ u \in C(\overline{\Omega}) \mid u = 0 \text{ on } \partial\Omega \}$$

and $g: \overline{\Omega} \times (0, \infty) \to (0, \infty)$ is a continuous function satisfying $g(x, t) \xrightarrow{t \to 0^+} 0$ uniformly for $x \in \overline{\Omega}$. A typical example is $g(x, t) = t^{\gamma}$, where $\gamma > 0$.

Several techniques have been employed in the study of (P_{λ}) . In [11], Giacomoni, Schindler and Takac employed variational methods to investigate the problem

$$\begin{cases} -\Delta_p u = \frac{\lambda}{u^{\delta}} + u^q & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

where $1 , <math>p-1 < q < p^*-1$, $\lambda > 0$ and $0 < \delta < 1$ with $p^* = Np/(N-p)$ if $1 , <math>p^* \in (N, \infty)$ if p = N, and $p^* = \infty$ if p > N. Several results were shown in that paper, among them existence, multiplicity and regularity of solutions.

In the present work we exploit the topological structure of the solution set of (P_{λ}) and our main assumptions are:

(f₁) $f: (0, \infty) \to \mathbb{R}$ is continuous and

$$\lim_{u \to \infty} \frac{f(u)}{u^{p-1}} = 0,$$

(f₂) there are positive numbers a, β, A with $\beta < 1$ such that

(i)
$$f(u) \ge a/u^{\beta}$$
 for $u > A$,
(ii) $\limsup_{u \to 0} u^{\beta} |f(u)| < \infty$.

The main result of this paper is:

THEOREM 1.3. Assume $(f_1)-(f_2)$. Then there is a number $\lambda_0 > 0$ and a connected subset Σ of $[\lambda_0, \infty) \times C(\overline{\Omega})$ satisfying

(1.3)
$$\Sigma \subset \mathcal{S},$$

(1.4)
$$\Sigma \cap (\{\lambda\} \times C(\overline{\Omega})) \neq \emptyset, \quad \lambda_0 \le \lambda < \infty.$$

There is a broad literature on singular problems and we further refer the reader to Lazer and McKenna in [16], Diaz, Morel and Oswald [8], Gerghu and Radulescu [10], Goncalves, Rezende and Santos [13], Hai [14, 15], Mohammed [19], Shi and Yao [21], Hoang Loc and Schmitt [18], Carl and Perera [4], and their references.

Our result includes examples such as

$$\begin{split} & u^{q} - \frac{1}{u^{\beta}}, \quad \beta > 0, \ 0 < q < p - 1, \\ & \frac{1}{u^{\beta}} - \frac{1}{u^{\alpha}}, \quad 0 < \beta < \alpha < 1, \\ & \ln(u). \end{split}$$

In the proof of our Theorem 1.3 we shall employ topological arguments to construct a suitable connected component of the solution set S of $(P)_{\lambda}$. More precisely, we shall use in a nontrivial way Theorem 2.1 from Sun and Song [23] whose proof is based on the famous lemma of Whyburn, (cf. [26, Theorem 9.3]). At first some notations:

Let M = (M, d) be a metric space and denote by $\{\Sigma_n\}$ a sequence of connected components of M. The *upper limit* of $\{\Sigma_n\}$ is defined by

$$\overline{\lim} \Sigma_n = \bigg\{ u \in M \ \bigg| \text{ there is } (u_{n_i}) \subseteq \bigcup \Sigma_n \text{ with } u_{n_i} \in \Sigma_{n_i} \text{ and } u_{n_i} \to u \bigg\}.$$

REMARK 1.4. $\overline{\lim} \Sigma_n$ is a closed subset of M.

THEOREM 1.5. Let M be a metric space and $\{\alpha_n\}, \{\beta_n\} \in \mathbb{R}$ be sequences satisfying ... < $\alpha_n < \ldots < \alpha_1 < \beta_1 < \ldots < \beta_n < \ldots$ with $\alpha_n \to -\infty$ and $\beta_n \to \infty$. Assume that $\{\Sigma_n^*\}$ is a sequence of connected subsets of $\mathbb{R} \times M$ satisfying:

- (a) $\Sigma_n^* \cap (\{\alpha_n\} \times M) \neq \emptyset$,
- (b) $\Sigma_n^* \cap (\{\beta_n\} \times M) \neq \emptyset$,

for each n. For each $\alpha, \beta \in (-\infty, \infty)$ with $\alpha < \beta$,

(c) $\left(\bigcup \Sigma_n^*\right) \cap \left([\alpha, \beta] \times M\right)$ is a relatively compact subset of $\mathbb{R} \times M$.

Then there is a number $\lambda_0 > 0$ and a connected component Σ^* of $\overline{\lim} \Sigma_n^*$ such that $\Sigma^* \cap (\{\lambda\} \times M) \neq \emptyset$ for each $\lambda \in (\lambda_0, \infty)$.

2. Some auxiliary results

We gather below a few technical results. For completeness, a few proofs will be provided in the appendix. The Euclidean distance from $x \in \Omega$ to $\partial \Omega$ is

$$d(x) = \operatorname{dist}(x, \partial \Omega)$$

The result below derives from Gilbarg and Trudinger [12], and Vàzquez [25].

LEMMA 2.1. Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain. Then:

- (a) $d \in \operatorname{Lip}(\overline{\Omega})$ and d is C^2 in a neighbourhood of $\partial\Omega$,
- (b) if ϕ_1 denotes a positive eigenfunction of $(-\Delta_p, W_0^{1,p}(\Omega))$ one has

$$\phi_1 \in C^{1,\alpha}(\overline{\Omega}) \quad with \ 0 < \alpha < 1, \qquad \frac{\partial \phi_1}{\partial \nu} < 0 \quad on \ \partial \Omega,$$

and there are positive constants C_1, C_2 such that

$$C_1 d(x) \le \phi_1(x) \le C_2 d(x), \quad x \in \Omega.$$

The result below is due to Crandall, Rabinowitz and Tartar [5], Lazer and McKenna [16] in the case p = 2 and Giacomoni, Schindler and Takac [11] in the case 1 .

LEMMA 2.2. Let $\beta \in (0,1)$ and m > 0. Then the problem

(2.1)
$$\begin{cases} -\Delta_p u = \frac{m}{u^{\beta}} & in \ \Omega, \\ u > 0 & in \ \Omega, \\ u = 0 & on \ \partial\Omega, \end{cases}$$

admits only a weak solution $u_m \in W_0^{1,p}(\Omega)$. Moreover, $u_m \geq \varepsilon_m \phi_1$ in Ω for some constant $\varepsilon_m > 0$.

REMARK 2.3. By the results in [17], [11], there is $\alpha \in (0, 1)$ such that $u_m \in C^{1,\alpha}(\overline{\Omega})$.

The result below, which is crucial in this work, and whose proof is provided in the appendix, is basically due to Hai [15].

LEMMA 2.4. Let $g \in L^{\infty}_{loc}(\Omega)$. Assume that there is $\beta \in (0,1)$ and C > 0 such that

(2.2)
$$|g(x)| \le \frac{C}{d(x)^{\beta}}, \quad x \in \Omega$$

Then there is only a weak solution $u \in W_0^{1,p}(\Omega)$ of

(2.3)
$$\begin{cases} -\Delta_p u = g & in \ \Omega, \\ u = 0 & on \ \partial\Omega. \end{cases}$$

In addition, there exist constants $\alpha \in (0,1)$ and M > 0, with M depending only on C, β, Ω such that $u \in C^{1,\alpha}(\overline{\Omega})$ and $||u||_{C^{1,\alpha}(\overline{\Omega})} \leq M$. REMARK 2.5. The solution operator associated to (2.3) is: let

$$\mathcal{M}_{\beta,\infty} = \left\{ g \in L^{\infty}_{loc}(\Omega) \mid |g(x)| \le \frac{C}{d(x)^{\beta}}, \ x \in \Omega \right\}.$$
$$S \colon \mathcal{M}_{\beta,\infty} \to W^{1,p}_0(\Omega) \cap C^{1,\alpha}(\overline{\Omega}), \quad S(g) := u.$$

Notice that $||S(g)||_{C^{1,\alpha}(\overline{\Omega})} \leq M$, for all $g \in \mathcal{M}_{C,d,\beta,\infty}$, with M depending only on C, β, Ω .

COROLLARY 2.6. Let $g, \tilde{g} \in L^{\infty}_{loc}(\Omega)$ with $g \ge 0, g \ne 0$ satisfying (2.2). Then, for each $\varepsilon > 0$, the problem

(2.4)
$$\begin{cases} -\Delta_p u_{\varepsilon} = g \,\chi_{\{d > \varepsilon\}} + \widetilde{g} \,\chi_{\{d < \varepsilon\}} & \text{in } \Omega; \\ u_{\epsilon} = 0 & \text{on } \partial\Omega, \end{cases}$$

admits only a solution $u_{\varepsilon} \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$. In addition, there is $\varepsilon_0 > 0$ such that

 $u_{\varepsilon} \geq \frac{u}{2}$ in Ω for each $\varepsilon \in (0, \varepsilon_0)$,

where u is the solution of (2.3).

A proof of the corollary above will be included in the appendix.

3. Lower and upper solutions

In this section we present two results, due to Hai [15, Theorem 2.1], on existence of lower and upper solutions of $(P)_{\lambda}$. At first some definitions.

DEFINITION 3.1. A function $\underline{u} \in W_0^{1,p}(\Omega)$ with $\underline{u} > 0$ in Ω such that

$$\int_{\Omega} |\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla \varphi \, dx \le \lambda \int_{\Omega} f(\underline{u}) \varphi \, dx, \quad \varphi \in W_0^{1,p}(\Omega), \ \varphi \ge 0$$

is a lower solution of $(P)_{\lambda}$.

DEFINITION 3.2. A function $\overline{u} \in W_0^{1,p}(\Omega)$ with $\overline{u} > 0$ in Ω such that

$$\int_{\Omega} |\nabla \overline{u}|^{p-2} \nabla \overline{u} \cdot \nabla \varphi \, dx \ge \lambda \int_{\Omega} f(\overline{u}) \varphi \, dx, \quad \varphi \in W_0^{1,p}(\Omega), \ \varphi \ge 0,$$

is an upper solution of $(\mathbf{P})_{\lambda}$.

We establish the existence of a lower solution.

THEOREM 3.3. Assume $(f_1)-(f_2)$. Then there exist $\lambda_0 > 0$ and a non-negative function $\psi \in C^{1,\alpha}(\overline{\Omega})$, with $\psi > 0$ in Ω , $\psi = 0$ on $\partial\Omega$, $\alpha \in (0,1)$ such that for each $\lambda \in [\lambda_0, \infty)$, $\underline{u} = \lambda^r \psi$ with $r = 1/(p + \beta - 1)$, is a lower solution of $(P)_{\lambda}$.

PROOF OF THEOREM 3.3. See Hai [15, p. 622].

By Lemma 2.2, there are both a function $\phi \in C^{1,\alpha}(\overline{\Omega})$, with $\alpha \in (0,1)$, such that

(3.1)
$$\begin{cases} -\Delta_p \phi = \frac{1}{\phi^\beta} & \text{in } \Omega, \\ \phi > 0 & \text{in } \Omega, \\ \phi = 0 & \text{on } \partial\Omega \end{cases}$$

and a constant $C_1 > 0$ such that $\phi \ge C_1 d$ in Ω .

Next, we establish the existence of an upper solution.

THEOREM 3.4. Assume $(f_1)-(f_2)$ and take $\Lambda > \lambda_0$ with λ_0 as in Theorem 3.3. Then for each $\lambda \in [\lambda_0, \Lambda]$, $(P)_{\lambda}$ admits an upper solution $\overline{u} = \overline{u}_{\lambda} = M\phi$ where M > 0 is a constant and ϕ is given by (3.1).

PROOF OF THEOREM 3.4. See Hai in [15, p. 623].

4. Further technical results

At first we introduce some notations, remarks and lemmas. Take $\Lambda > \lambda_0$ and set $I_{\Lambda} := [\lambda_0, \Lambda]$. For each $\lambda \in I_{\Lambda}$, by Theorem 3.3,

$$\underline{u} = \underline{u}_{\lambda} = \lambda^r \psi$$

is a lower solution of $(P)_{\lambda}$. Pick $M = M_{\Lambda} \ge \Lambda^r \delta^{1/(p-1)}$. By Theorem 3.4,

$$\overline{u} = \overline{u}_{\lambda} = M_{\Lambda}\phi$$

is an upper solution of $(P)_{\lambda}$. It follows that

(4.1)
$$\underline{u} = \lambda^r \psi \le \Lambda^r \delta^{1/(p-1)} \phi \le M \phi = \overline{u}.$$

The convex, closed subset of $I_{\Lambda} \times C(\overline{\Omega})$, defined by

$$\mathcal{G}_{\Lambda} := \{ (\lambda, u) \in I_{\Lambda} \times C(\overline{\Omega}) \mid \lambda \in I_{\Lambda}, \ \underline{u} \leq u \leq \overline{u} \text{ and } u = 0 \text{ on } \partial \Omega \}$$

will play a key role in this work.

For each $u \in C(\overline{\Omega})$ define

(4.2)
$$f_{\Lambda}(u) = \chi_{S_1} f(\underline{u}) + \chi_{S_2} f(u) + \chi_{S_3} f(\overline{u}), \quad x \in \Omega,$$

where $S_1 := \{x \in \Omega \mid u(x) < \underline{u}(x)\}, S_2 := \{x \in \Omega \mid \underline{u}(x) \leq \overline{u}(x) \leq \overline{u}(x)\}, S_3 := \{x \in \Omega \mid \overline{u}(x) < u(x)\}, \text{ and } \chi_{S_i} \text{ is the characteristic function of } S_i.$

LEMMA 4.1. For each $u \in C(\overline{\Omega})$, $f_{\Lambda}(u) \in L^{\infty}_{loc}(\Omega)$ and there are C > 0, $\beta \in (0, 1)$ such that

(4.3)
$$|f_{\Lambda}(u)(x)| \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega.$$

PROOF. Indeed, let $\mathcal{K} \subset \Omega$ be a compact subset. Then both \underline{u} and \overline{u} achieve a positive maximum and a positive minimum on \mathcal{K} . Since f is continuous in $(0,\infty)$ then $f_{\Lambda}(u) \in L^{\infty}_{loc}(\Omega)$.

Verification of (4.3): Since $\Omega = \bigcup_{i=1}^{3} S_i$ it is enough to show that

$$|f(u(x))| \le \frac{C}{d(x)^{\beta}}, \quad x \in S_i, \ i = 1, 2, 3.$$

At first, by $(f_2)(ii)$ there are $C, \delta > 0$ such that

$$|f(s)| \le \frac{C}{s^{\beta}}, \quad 0 < s < \delta.$$

Let $\Omega_{\delta} = \{x \in \Omega \mid d(x) < \delta\}$. Recalling that $\underline{u} \in C^1(\overline{\Omega})$, let

$$D = \max_{\overline{\Omega}} d(x), \qquad \nu_{\delta} := \min_{\overline{\Omega_{\delta}^c}} d(x), \qquad \nu^{\delta} := \max_{\overline{\Omega_{\delta}^c}} d(x),$$

and notice that both $0 < \nu_{\delta} \leq \nu^{\delta} \leq D < \infty$ and $f([\nu_{\delta}, \nu^{\delta}])$ are compact.

On the other hand, applying Theorems 3.3, 3.4, Lemmas 2.1 and 2.2 we infer that $0 < \lambda_0^r \psi \leq \lambda^r \psi = \underline{u} \leq \overline{u} = M \phi$ in Ω and

$$\frac{1}{\underline{u}^{\beta}}, \frac{1}{\overline{u}^{\beta}} \leq \frac{1}{(\lambda_0^r \psi(x))^{\beta}} \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega_{\delta}.$$

To finish the proof, we distinguish three cases:

(1) $x \in S_1$. In this case, $f_{\Lambda}(u(x)) = f(\underline{u}(x))$. If $x \in S_1 \cap \Omega_{\delta}$ we infer that

$$|f_{\Lambda}(u(x))| \le \frac{C}{\underline{u}(x)^{\beta}} \le \frac{C}{d(x)^{\beta}}$$

If $x \in S_1 \cap \Omega_{\delta}^c$ pick positive numbers d_i , i = 1, 2, such that $d_1 \leq \underline{u}(x) \leq d_2$, $x \in \Omega_{\delta}^c$. Hence

$$|f_{\Lambda}(u(x))| \le rac{C}{d(x)^{eta}}, \quad x \in \Omega$$

(2) $x \in S_2$. In this case, $0 < \lambda_0^r \psi \le u \le M \phi$ and, as a consequence,

$$|f(u(x))| \le \frac{C}{u(x)^{\beta}}, \quad x \in \Omega_{\delta}.$$

Hence, there is a positive constant \widetilde{C} such that $|f(u(x))| \leq \widetilde{C}, x \in \overline{\Omega^c_{\delta}}$. Thus

$$|f(u(x))| \leq \begin{cases} \widetilde{C} & \text{if } x \in \overline{\Omega_{\delta}^c}, \\ \frac{C}{d(x)^{\beta}} & \text{if } x \in \Omega_{\delta}. \end{cases}$$

On the other hand,

$$\frac{1}{D^{\beta}} \leq \frac{1}{d(x)^{\beta}}, \quad x \in \overline{\Omega^c_{\delta}},$$

and therefore there is a constant C > 0 such that

$$|f(u(x))| \leq \begin{cases} \frac{C}{D_{\delta}^{\beta}} & \text{if } x \in \overline{\Omega_{\delta}^{c}}, \\ \frac{C}{d(x)^{\beta}} & \text{if } x \in \Omega_{\delta}. \end{cases}$$

Therefore,

$$|f(u(x))| \le \frac{C}{d(x)^{\beta}}, \quad x \in S_2, \ u \in \mathcal{G}_{\Lambda}.$$

(3) $x \in S_3$. In this case $f_{\Lambda}(u(x)) = f(\overline{u}(x))$. If $x \in S_3 \cap \Omega_{\delta}$ we infer that

$$|f_{\Lambda}(u(x))| \le \frac{C}{\overline{u}(x)^{\beta}} \le \frac{C}{d(x)^{\beta}}$$

If $x \in S_3 \cap \Omega_{\delta}^c$. Pick positive numbers d_i , i = 1, 2, such that $d_1 \leq \overline{u}(x) \leq d_2$, $x \in \Omega_{\delta}^c$. Hence

$$|f_{\Lambda}(u(x))| \le \frac{C}{d(x)^{\beta}}, \quad x \in \Omega$$

This ends the proof of Lemma 4.1.

REMARK 4.2. By Lemmas 2.4, 4.1 and Remark 2.5, for each $v \in C(\overline{\Omega})$ and $\lambda \in I_{\Lambda}$,

(4.4)
$$\lambda f_{\Lambda}(v) \in L^{\infty}_{\text{loc}}(\Omega) \text{ and } |\lambda f_{\Lambda}(v)| \leq \frac{C_{\Lambda}}{d^{\beta}(x)} \text{ in } \Omega,$$

where $C_{\Lambda} > 0$ is a constant independent of v and $\beta \in (0, 1)$. So for each v,

(4.5)
$$\begin{cases} -\Delta_p u = \lambda f_{\Lambda}(v) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

admits only a solution $u = S(\lambda f_{\Lambda}(v)) \in W_0^{1,p}(\Omega) \cap C^{1,\alpha}(\overline{\Omega}).$

Set $F_{\Lambda}(u)(x) = f_{\Lambda}(u(x)), u \in C(\overline{\Omega})$, and consider the operator

$$T: I_{\Lambda} \times C(\overline{\Omega}) \to W_0^{1,p}(\Omega) \cap C^{1,\alpha}(\overline{\Omega}),$$
$$T(\lambda, u) = S(\lambda F_{\Lambda}(u)) \quad \text{if } \lambda_0 \le \lambda \le \Lambda, \ u \in C(\overline{\Omega})$$

Notice that if $(\lambda, u) \in I_{\Lambda} \times C(\overline{\Omega})$ satisfies $u = T(\lambda, u)$ then u is a solution of

$$\begin{cases} -\Delta_p u = \lambda f_{\Lambda}(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

LEMMA 4.3. If $(\lambda, u) \in I_{\Lambda} \times C(\overline{\Omega})$ and $u = T(\lambda, u)$ then $(\lambda, u) \in \mathcal{G}_{\Lambda}$.

PROOF. Indeed, let $(\lambda, u) \in I_{\Lambda} \times C(\overline{\Omega})$ such that $T(\lambda, u) = u$. Then

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx = \lambda \int_{\Omega} f_{\Lambda}(u) \varphi \, dx, \quad \varphi \in W_0^{1,p}(\Omega).$$

We claim that $u \geq \underline{u}$. Assume on the contrary, that $\varphi := (\underline{u} - u)^+ \neq 0$. Then

$$\begin{split} \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx &= \int_{u < \underline{u}} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx \\ &= \lambda \int_{u < \underline{u}} f_{\Lambda}(u) \cdot \varphi \, dx = \lambda \int_{u < \underline{u}} f(\underline{u}) \cdot \varphi \, dx \\ &\geq \int_{u < \underline{u}} |\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla \varphi \, dx = \int_{\Omega} |\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla \varphi \, dx. \end{split}$$

Hence

$$\int_{\Omega} [|\nabla u|^{p-2} \nabla u - |\nabla \underline{u}|^{p-2} \nabla \underline{u}] \cdot \nabla (u - \underline{u}) \, dx \le 0.$$

It follows, by Lemma 1.2, that $\int_{\Omega} |\nabla(u-\underline{u})|^p dx \leq 0$, contradicting $\varphi \not\equiv 0$. Thus, $(\underline{u}-u)^+ = 0$, that is, $\underline{u}-u \leq 0$, and so $\underline{u} \leq T(\lambda, u)$.

We claim that $\overline{u} \ge u$. Assume on the contrary that $\varphi := (u - \overline{u})^+ \neq 0$. We have

$$\begin{split} \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx &= \int_{\overline{u} < u} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx \\ &= \lambda \int_{\overline{u} < u} f_{\Lambda}(u) \cdot \varphi \, dx = \lambda \int_{\overline{u} < u} f(\overline{u}) \cdot \varphi \, dx \\ &\leq \int_{\overline{u} < u} |\nabla \overline{u}|^{p-2} \nabla \overline{u} \cdot \nabla \varphi \, dx = \int_{\Omega} |\nabla \overline{u}|^{p-2} \nabla \overline{u} \cdot \nabla \varphi \, dx \end{split}$$

Therefore,

$$\int_{\Omega} [|\nabla u|^{p-2} \nabla u - |\nabla \overline{u}|^{p-2} \nabla \overline{u}] \cdot \nabla (u - \overline{u}) \, dx \le 0,$$

contradicting $\varphi \neq 0$. Thus $(u - \overline{u})^+ = 0$ so that $u - \overline{u} \leq 0$, which gives $\overline{u} \geq T(\lambda, u)$. As a consequence of the arguments above $u \in \mathcal{G}_{\Lambda}$, showing Lemma 4.3.

REMARK 4.4. By the definitions of f_{Λ} and \mathcal{G}_{Λ} , for each $(\lambda, u) \in \mathcal{G}_{\Lambda}$

(4.6)
$$f_{\Lambda}(u) = f(u), \quad x \in \Omega$$

REMARK 4.5. By Remark 2.5, there is $R_{\Lambda} > 0$ such that $\mathcal{G}_{\Lambda} \subset B(0, R_{\Lambda}) \subset C(\overline{\Omega})$ and

$$T(I_{\Lambda} \times \overline{B(0, R_{\Lambda})}) \subseteq B(0, R_{\Lambda}).$$

Notice that, by (4.6) and Lemma 4.3, if $(\lambda, u) \in I_{\Lambda} \times C(\overline{\Omega})$ satisfies $u = T(\lambda, u)$ then (λ, u) is a solution of $(P)_{\lambda}$. By Remark 4.4, to solve $(P)_{\lambda}$ it suffices to look for fixed points of T.

LEMMA 4.6. $T: I_{\Lambda} \times \overline{B(0, R_{\Lambda})} \to \overline{B(0, R_{\Lambda})}$ is continuous and compact.

PROOF. Let $\{(\lambda_n, u_n)\} \subseteq I_{\Lambda} \times \overline{B(0, R_{\Lambda})}$ be a sequence such that

 $\lambda_n \to \lambda \quad \text{and} \quad u_n \xrightarrow{C(\overline{\Omega})} u, \quad \text{as } n \to \infty.$

Set $v_n = T(\lambda_n, u_n)$ and $v = T(\lambda, u)$ so that $v_n = S(\lambda_n F_{\Lambda}(u_n))$ and $v = S(\lambda F_{\Lambda}(u))$. It follows that

$$\int_{\Omega} (|\nabla v_n|^{p-2} \nabla v_n - |\nabla v|^{p-2} \nabla v) \cdot \nabla (v_n - v) \, dx$$
$$= \lambda_n \int_{\Omega} (f_{\Lambda}(u_n) - f_{\Lambda}(u))(v_n - v) \, dx \le C \int_{\Omega} |f_{\Lambda}(u_n) - f_{\Lambda}(u)| \, dx.$$

Since

$$|f_{\Lambda}(u_n) - f_{\Lambda}(u)| \le \frac{C}{d(x)^{\beta}} \in L^1(\Omega) \text{ and } f_{\Lambda}(u_n(x)) \to f_{\Lambda}(u(x)) \text{ a.e. } x \in \Omega,$$

as $n \to \infty$, it follows by Lebesgue's theorem that

$$\int_{\Omega} |f_{\Lambda}(u_n) - f_{\Lambda}(u)| \, dx \to 0, \quad \text{as } n \to \infty.$$

Therefore $v_n \to v$, as $n \to \infty$ in $W_0^{1,p}(\Omega)$. On the other hand, since $u_n \xrightarrow{C(\overline{\Omega})} u$, as $n \to \infty$, by the proof of Lemma 4.1,

$$\lambda_n f_{\Lambda}(u_n) \in L^{\infty}_{\mathrm{loc}}(\Omega) \quad \mathrm{and} \quad |\lambda_n f_{\Lambda}(u_n)| \leq rac{C_{\Lambda}}{d^{eta}(x)} \quad \mathrm{in} \ \Omega.$$

By Lemma 2.4, there is a constant M > 0 such that $||v_n||_{C^{1,\alpha}(\overline{\Omega})} \leq M$ so that $v_n \xrightarrow{C(\overline{\Omega})} v$. This shows that $T: I_\Lambda \times \overline{B(0, R_\Lambda)} \to \overline{B(0, R_\Lambda)}$ is continuous.

The compactness of T follows from the arguments in the five lines above. \Box

5. Bounded connected sets of solutions of (P_{λ})

By applying the previous technical results and the Leray–Schauder Continuation theorem (see [6]) which we state below regarding the use of its notations, we get

THEOREM 5.1. Let D be an open bounded subset of the Banach space X. Let $a, b \in \mathbb{R}$ with a < b and assume that $T: [a, b] \times \overline{D} \to X$ is compact and continuous. Consider $\Phi: [a, b] \times \overline{D} \to X$ defined by $\Phi(t, u) = u - T(t, u)$. Assume that

(a) $\Phi(t,u) \neq 0, t \in [a.b], u \in \partial D$,

(b) $\deg(\Phi(t, \cdot), D, 0) \neq 0$ for some $t \in [a, b]$,

and set $S_{a,b} = \{(t,u) \in [a,b] \times \overline{D} \mid \Phi(t,u) = 0\}$. Then, there is a connected compact subset $\Sigma_{a,b}$ of $S_{a,b}$ such that

$$\Sigma_{a,b} \cap (\{a\} \times D) \neq \emptyset \quad and \quad \Sigma_{a,b} \cap (\{b\} \times D) \neq \emptyset.$$

We will be able to show the following auxiliary result.

THEOREM 5.2. Assume $(f_1)-(f_2)$. Then there is a number $\lambda_0 > 0$ and for each $\Lambda > \lambda_0$ there is a connected set $\Sigma_{\Lambda} \subset ([\lambda_0, \Lambda] \times C(\overline{\Omega})$ satisfying:

$$\Sigma_{\Lambda} \subset \mathcal{S}, \qquad \Sigma_{\Lambda} \cap (\{\lambda_0\} \times C(\overline{\Omega})) \neq \emptyset, \qquad \Sigma_{\Lambda} \cap (\{\Lambda\} \times C(\overline{\Omega})) \neq \emptyset.$$

Proof of Theorem 5.2. At first, some notations and technical results are needed. The Leray–Schauder theorem above will be applied to the operator T in the settings of Section 4. Remember that T is continuous, compact and $T(I_{\Lambda} \times \overline{B(0, R_{\Lambda})}) \subset B(0, R_{\Lambda}).$

Consider $\Phi: I_{\Lambda} \times \overline{B(0,R)} \to \overline{B(0,R)}$ defined by $\Phi(\lambda,u) = u - T(\lambda,u)$.

LEMMA 5.3. Φ satisfies:

(a) $\Phi(\lambda, u) \neq 0$ $(\lambda, u) \in I_{\Lambda} \times \partial B(0, R_{\Lambda}),$

(b) deg($\Phi(\lambda, \cdot), B(0, R_{\Lambda}), 0$) $\neq 0$ for each $\lambda \in I_{\Lambda}$.

PROOF. The verification of (a) is straightforward since $T(I_{\Lambda} \times \overline{B(0, R_{\Lambda})}) \subset B(0, R_{\Lambda})$.

To prove (b) set $R = R_{\Lambda}$, take $\lambda \in I_{\Lambda}$ and consider the homotopy

$$\Psi_{\lambda}(t,u) = u - tT(\lambda, u), \quad (t,u) \in [0,1] \times B(0,R).$$

It follows that $0 \notin \Psi_{\lambda}(I \times \partial B(0, R))$. By the invariance under homotopy property of the Leray–Schauder degree

$$\deg(\Psi_{\lambda}(t,\,\cdot\,), B(0,R), 0) = \deg(\Psi_{\lambda}(0,\,\cdot\,), B(0,R), 0) = 1, \quad t \in [0,1].$$

Setting $\Phi(\lambda, u) = u - T(\lambda, u), (\lambda, u) \in I_{\Lambda} \times \overline{B(0, R)}$, we also have

$$\deg(\Phi(\lambda, \cdot), B(0, R), 0) = 1, \quad \lambda \in I_{\Lambda}.$$

Set $S_{\Lambda} = \{(\lambda, u) \in I_{\Lambda} \times \overline{B(0, R)} \mid \Phi(\lambda, u) = 0\} \subset \mathcal{G}_{\Lambda}$. By the Leray–Schauder Continuation theorem, there is a connected component $\Sigma_{\Lambda} \subset S_{\Lambda}$ such that

$$\Sigma_{\Lambda} \cap (\{\lambda_*\} \times \overline{B(0,R)}) \neq \emptyset \text{ and } \Sigma_{\Lambda} \cap (\{\Lambda\} \times \overline{B(0,R)}) \neq \emptyset.$$

We point out that \mathcal{S}_{Λ} is the solution set of the auxiliary problem

$$\begin{cases} -\Delta_p u = \lambda f_{\Lambda}(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

and, since $\Sigma_{\Lambda} \subset \mathcal{S}_{\Lambda} \subset \mathcal{G}_{\Lambda}$, it follows using the definition of f_{Λ} that

$$\begin{cases} -\Delta_p u = \lambda f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

for $(\lambda, u) \in \Sigma_{\Lambda}$, showing that $\Sigma_{\Lambda} \subset S$. This ends the proof of Theorem 5.2. \Box

6. Proof of Theorem 1.3

Consider Λ as introduced in Section 5 and take a sequence $\{\Lambda_n\}$ such that $\lambda_0 < \Lambda_1 < \Lambda_2 < \ldots$ with $\Lambda_n \to \infty$. Set $\beta_n = \Lambda_n$ and take a sequence $\{\alpha_n\} \subset \mathbb{R}$ such that $\alpha_n \to -\infty$ and $\ldots < \alpha_n < \ldots < \alpha_1 < \lambda_0$.

Following the notations of Section 4, consider the sequence of intervals $I_n = [\lambda_0, \Lambda_n]$. Set $M = C(\overline{\Omega})$ and let

$$\mathcal{G}_{\Lambda_n} := \{ (\lambda, u) \in I_n \times \overline{B}_{R_n} \mid \underline{u} \le u \le \overline{u}, \ u = 0 \text{ on } \partial\Omega \},\$$

where $R_n = R_{\Lambda_n}$. Consider the sequence of compact operators

$$T_n \colon [\lambda_0, \Lambda_n] \times \overline{B}_{R_n} \to \overline{B}_{R_n}$$

defined by

$$T_n(\lambda, u) = S(\lambda F_{\Lambda_n}(u))) \quad \text{if } \lambda_0 \le \lambda \le \Lambda_n, \ u \in \overline{B}_{R_n}$$

Next consider the extension of T_n , namely $\widetilde{T}_n \colon \mathbb{R} \times \overline{B}_{R_n} \to \overline{B}_{R_n}$, defined by

$$\widetilde{T}_{n}(\lambda, u) = \begin{cases} T_{n}(\lambda_{0}, u) & \text{if } \lambda \leq \lambda_{0}, \\ T_{n}(\lambda, u) & \text{if } \lambda_{0} \leq \lambda \leq \Lambda_{n}, \\ T_{n}(\Lambda_{n}, u) & \text{if } \lambda \geq \Lambda_{n}. \end{cases}$$

Notice that \widetilde{T}_n is continuous and compact.

Applying Theorem 5.1 to $\widetilde{T}_n: [\alpha_n, \beta_n] \times \overline{B}_{R_n} \to \overline{B}_{R_n}$, we get a compact connected component Σ_n^* of $\mathcal{S}_n = \{(\lambda, u) \in [\alpha_n, \beta_n] \times \overline{B}_{R_n} \mid \Phi_n(\lambda, u) = 0\}$, where

$$\Phi_n(\lambda, u) = u - \widetilde{T}_n(\lambda, u)$$

Notice that Σ_n^* is also a connected subset of $\mathbb{R} \times M$. By Theorem 1.5, there is a connected component Σ^* of $\overline{\lim} \Sigma_n^*$ such that

$$\Sigma^* \cap (\{\lambda\} \times M) \neq \emptyset$$
 for each $\lambda \in \mathbb{R}$.

Set $\Sigma = ([\lambda_*, \infty) \times M) \cap \Sigma^*$. Then $\Sigma \subset \mathbb{R} \times M$ is connected and

$$\Sigma \cap (\{\lambda\} \times M) \neq \emptyset, \quad \lambda_0 \le \lambda < \infty.$$

We claim that $\Sigma \subset \mathcal{S}$. Indeed, at first notice that

(6.1)
$$\widetilde{T}_{n+1}|_{([\lambda_0,\Lambda_n]\times\overline{B}_{R_n})} = \widetilde{T}_n|_{([\lambda_0,\Lambda_n]\times\overline{B}_{R_n})} = T_n$$

If $(\lambda, u) \in \Sigma$ with $\lambda > \lambda_0$, there is a sequence $(\lambda_{n_i}, u_{n_i}) \in \bigcup \Sigma_n^*$ with $(\lambda_{n_i}, u_{n_i}) \in \Sigma_{n_i}^*$ such that $\lambda_{n_i} \to \lambda$ and $u_{n_i} \to u$, as $n_i \to \infty$. Then $u \in B_{R_N}$ for some integer N > 1.

We can assume that $(\lambda_{n_i}, u_{n_i}) \in [\lambda_0, \Lambda_N] \times B_{R_N}$. On the other hand, by (6.1),

$$u_{n_i} = T_{n_i}(\lambda_{n_i}, u_{n_i}) = T_N(\lambda_{n_i}, u_{n_i}).$$

Passing to the limit we get $u = T_N(\lambda, u)$ which shows that $(\lambda, u) \in \Sigma_N$ and so

$$(\lambda, u) \in \mathcal{S} := \{(\lambda, u) \in (0, \infty) \times C(\overline{\Omega}) \mid u \text{ is a solution of } (\mathbf{P})_{\lambda}\}.$$

This ends the proof of Theorem 1.3.

Appendix A

In this section we present proofs of Lemma 2.4, Corollary 2.6 and recall some results referred to in the paper. We begin with the Browder–Minty theorem, (cf. Deimling [6]). Let X be a real reflexive Banach space with dual space X^* . A map $F: X \to X^*$ is monotone if

$$\langle Fx - Fy, x - y \rangle \ge 0, \quad x, y \in X,$$

F is hemicontinuous if

$$F(x+ty) \stackrel{*}{\rightharpoonup} Fx \quad \text{as } t \to 0,$$

and F is coercive if

$$\frac{\langle Fx, x \rangle}{|x|} \to \infty \quad \text{as } |x| \to \infty.$$

THEOREM 1.1. Let X be a real reflexive Banach space and let $F: X \to X^*$ be a monotone, hemicontinous and coercive operator. Then $F(X) = X^*$. Moreover, if F is strictly monotone then it is a homeomorphism.

The inequality below, (cf. [22], [20]), is very useful when dealing with the p-Laplacian.

LEMMA 1.2. Let p > 1. Then there is a constant $C_p > 0$ such that

(A.1)
$$(|x|^{p-2}x - |y|^{p-2}y, x - y) \ge \begin{cases} C_p |x - y|^p & \text{if } p \ge 2, \\ C_p \frac{|x - y|^p}{(1 + |x| + |y|)^{2-p}} & \text{if } p \le 2, \end{cases}$$

where $x, y \in \mathbb{R}^N$ and (\cdot, \cdot) is the usual inner product of \mathbb{R}^N .

Recall the Hardy inequality (cf. Brézis [3]).

THEOREM 1.3. There is a positive constant C such that

$$\int_{\Omega} \left| \frac{u}{d} \right|^{\beta} dx \le C \int_{\Omega} |\nabla u|^{p}, \quad u \in W_{0}^{1,p}(\Omega).$$

PROOF OF LEMMA 2.4. By the Hölder inequality,

(A.2)
$$\int_{\Omega} |\nabla u|^{p-1} |\nabla v| \, dx \le \|u\|_{1,p'} \|v\|_{1,p'}$$

where 1/p + 1/p' = 1, and so the expression

(A.3)
$$\langle -\Delta_p u, v \rangle := \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx, \quad u, v \in W_0^{1,p}(\Omega),$$

defines a continuous, bounded (nonlinear) operator, namely

$$\Delta_p \colon W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega), \qquad u \mapsto \Delta_p u.$$

By (A.1), $-\Delta_p$ it is strictly monotone and coercive, that is

$$\langle -\Delta_p u - (-\Delta_p v), u - v \rangle > 0, \quad u, v \in W_0^{1,p}(\Omega), \ u \neq v$$

and

$$\frac{\langle -\Delta_p u, u \rangle}{\|u\|_{1,p}} \xrightarrow{\|u\|_{1,p} \to \infty} \infty.$$

By the Browder–Minty theorem, $\Delta_p \colon W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ is a homeomorphism.

Consider

$$F_g(u) = \int_{\Omega} gu \, dx, \quad u \in W_0^{1,p}(\Omega).$$

CLAIM. $F_g \in W^{-1,p'}(\Omega)$.

Assume for a while the claim has been proved. Since $-\Delta_p \colon W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ is a homeomorphism, there is only $u \in W_0^{1,p}(\Omega)$ such that $-\Delta_p u = F_g$, that is

$$\langle -\Delta_p u, v \rangle = \int_{\Omega} gv \, dx, \quad v \in W_0^{1,p}(\Omega)$$

Verification of Claim. Let V be an open neighborhood of $\partial\Omega$ such that 0 < d(x) < 1 for $x \in V$ so that

$$1 < \frac{1}{d(x)^\beta} < \frac{1}{d(x)}, \quad x \in V$$

Now, if $v \in W_0^{1,p}(\Omega)$ we have

$$|F_g(v)| \le \int_{\Omega} |g| |v| \, dx = \int_{V^c} |g| |v| \, dx + \int_{V} |g| |v| \, dx \le C ||v||_{1,p} + \int_{\Omega} \left| \frac{v}{d} \right| dx.$$

Applying the Hardy inequality in the last term above, we get to

$$|F_g(v)| \le C ||v||_{1,p},$$

showing that $F_g \in W^{-1,p'}(\Omega)$, proving the claim.

Regularity of u. At first we treat the case p = 2. By [5], there is a solution v of

$$\begin{cases} -\Delta v = 1/v^{\beta} & \text{in } \Omega, \\ v > 0 & \text{in } \Omega, \\ v = 0 & \text{on } \partial \Omega \end{cases}$$

which belongs to $C^1(\overline{\Omega})$ and by the Hopf theorem $\partial v/\partial \nu < 0$ on $\partial \Omega$. Since also $d \in C^1(\overline{\Omega})$ and $\partial d/\partial \nu < 0$ on $\partial \Omega$ there a constant C > 0 such that $v \leq Cd$ in Ω . Moreover, $-\Delta v = 1/v^{\beta} \geq C/d^{\beta}$. Consider the problem

$$\begin{cases} -\Delta \widetilde{u} = |g| & \text{in } \Omega, \\ \widetilde{u} = 0 & \text{on } \partial \Omega. \end{cases}$$

By [11, theorem B.1], $\tilde{u} \in C^{1,\alpha}(\overline{\Omega})$ and $\|\tilde{u}\|_{C^{1,\alpha}(\overline{\Omega})} \leq M_0$ for some positive constant M_0 . By the Maximum Principle, $\tilde{u} \leq v \leq Cd$ in Ω .

Setting $\overline{u} = u + \widetilde{u}$ we get $-\Delta \overline{u} = g + |g| \ge 0$ in Ω and by the arguments above, $\overline{u} \le Cd$ in Ω . Thus, as a consequence of [11, Theorem B.1], there are $\alpha \in (0, 1)$ and $M_0 > 0$ such that

$$\overline{u}, \widetilde{u} \in C^{1,\alpha}(\Omega) \text{ and } \|\overline{u}\|_{C^{1,\alpha}(\overline{\Omega})}, \|\widetilde{u}\|_{C^{1,\alpha}(\overline{\Omega})} \leq M_0,$$

ending the proof of Lemma 2.4 in the case p = 2.

In what follows we treat the case p > 1. Let u be a solution of (2.3). It follows that

$$-\Delta_p u = g \le \frac{C}{d^{\beta}}$$
 and $-\Delta_p (-u) = (-1)^{p-1} g \le \frac{C}{d^{\beta}}$.

By Lemma 2.2, the problem

$$\begin{cases} -\Delta_p v = C/v^\beta & \text{in } \Omega, \\ v = 0 & \text{on } \partial\Omega, \end{cases}$$

admits only a positive solution $v \in W_0^{1,p}(\Omega) \cap C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0,1)$ with $v \leq Cd$ in Ω . Hence,

$$-\Delta_p(v) = \frac{C}{v^{\beta}} \ge \frac{1}{d^{\beta}}$$
 in Ω .

Therefore,

$$-\Delta_p |u| \le \frac{C}{d^\beta} \le -\Delta_p v.$$

By the Weak Comparison Principle, $|u| \leq v \leq Cd$ in Ω , showing that $u \in L^{\infty}(\Omega)$. Pick $w \in C^{1,\alpha}(\overline{\Omega})$ such that

$$-\Delta w = g$$
 in Ω , $w = 0$ on $\partial \Omega$.

We have

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u - \nabla w) = 0 \quad \text{in } \Omega$$

in the weak sense. By Lieberman [17, Theorem 1] the proof of Lemma 2.4 ends. \Box

PROOF OF COROLLARY 2.6. Existence of u_{ε} follows directly by Lemma 2.4. Moreover, there are M > 0 and $\alpha \in (0, 1)$ such that

$$\|u\|_{C^{1,\alpha}(\overline{\Omega})}, \|u_{\varepsilon}\|_{C^{1,\alpha}(\overline{\Omega})} < M.$$

By Vázquez [25, Theorem 5], $\partial u/\partial \nu < 0$ on $\partial \Omega$ and recalling that $d \in C^1(\overline{\Omega})$ and $\partial d/\partial \nu < 0$ on $\partial \Omega$ it follows that

(A.4)
$$u \ge Cd$$
 in Ω .

Multiplying the equation

$$-\Delta_p u - (-\Delta_p u_{\varepsilon}) = g - (h\chi_{[d(x) > \varepsilon]} + \widetilde{g}\chi_{[d(x) < \varepsilon]})$$

by $u - u_{\varepsilon}$ and integrating we have

$$\int_{\Omega} (|\nabla u|^{p-2} \nabla u - |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon}) \cdot \nabla (u - u_{\varepsilon}) \, dx \le 2M \int_{d(x) < \varepsilon} |g - \widetilde{g}| \, dx.$$

Using Lemma 1.2, we infer that $||u - u_{\varepsilon}||_{1,p} \to 0$ as $\varepsilon \to 0$. By the compact embedding $C^{1,\alpha}(\overline{\Omega}) \hookrightarrow C^1(\overline{\Omega})$, it follows that

$$\|u - u_{\varepsilon}\|_{C^{1}(\overline{\Omega})} \leq \frac{C}{2}d,$$

and, using (A.4),

$$u_{\varepsilon} \ge u - \frac{C}{2}d \ge u - \frac{u}{2} = \frac{u}{2}.$$

References

- A. ANANE, Simplicité et isolation de la primière valeur propre du p-Laplacien avec poids, C.R. Acad. Sci. Paris Sér. I (1987), 725–728.
- [2] L. BOCCARDO, F. MURAT AND J.P. PUEL, Résultats d'existence pour certains problémes elliptiques quasilinéaires, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (1984), 213–235.
- [3] H. BRÉZIS, Functional Analysis, Sobolev Spaces and partial differential equations, Springer-Verlag, Berlin, (2011).
- [4] S. CARL AND K. PERERA, Generalized solutions of singular p-Laplacian problems in ℝ^N, Nonlinear Stud. 18 (2011), 113–124.
- [5] M.G. CRANDALL, P.H. RABINOWITZ AND L. TARTAR, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193–222.
- [6] K. DEIMLING, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- [7] J.I. DIAZ, J. HERNANDEZ AND F.J. MANCEBO, Branches of positive and free boundary solutions for some singular quasilinear elliptic problem, J. Math. Anal. Appl. 352 (2009) 449–474.
- [8] J.I. DIAZ, J.M. MOREL AND L. OSWALD, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333–1344.
- [9] E. DIBENEDETTO, $C^{1+\alpha}$ -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850.
- [10] M. GHERGU AND V. RADULESCU, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520–536.
- [11] J. GIACOMONI, I. SCHINDLER AND P. TAKAC, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 117–158.
- [12] D. GILBARG AND N.S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.
- [13] J.V. GONCALVES, M.C. REZENDE AND C.A. SANTOS, Positive solutions for a mixed and singular quasilinear problem, Nonlinear Anal. 74 (2011), 132–140.
- [14] D.D. HAI, Singular boundary value problems for the p-Laplacian, Nonlinear Anal. 73 (2010), 2876–2881.
- [15] _____, On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl. 383 (2011), 619–626.
- [16] A.C. LAZER AND P.J. MCKENNA, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721–730.
- [17] G.M. LIEBERMANN, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219.
- [18] N.H. LOC AND K. SCHMITT, Boundary value problems for singular elliptic equations, Rocky Mountain J. Math. 41 (2011), 555–572.

- [19] A. MOHAMMED, Positive solutions of the p-Laplace equation with singular nonlinearity, J. Math. Anal. Appl. 352 (2009), 234–245.
- [20] I. PERAL, Multiplicity of Solutions for the p-Laplacian, Second School on Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, Italy, 1997.
- [21] J. SHI AND M. YAO, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 138 (1998), 1389–1401.
- [22] J. SIMON, Regularité de la solution d'une equation non linéaire dans \mathbb{R}^N , Lecture Notes in Mathematics, vol. 665, Springer-Verlag, New York, 1978.
- [23] J.X. SUN AND F.M. SONG, A property of connected components and its applications, Topology Appl. 125 (2002), 553–560.
- [24] P. TOLKSDORFF, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150.
- [25] J.L. VÁZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.
- [26] G.T. WHYBURN, Topological Analysis, Princeton University Press, Princeton NJ, 1955.

Manuscript received July 2, 2014 accepted February 3, 2015

José V. GONÇALVES Universidade Federal de Goiás Instituto de Matemática e Estatística 74001-970 Goiânia, GO, BRAZIL

E-mail address: goncalves.jva@gmail.com

MARCOS R. MARCIAL Universidade Federal de Ouro Preto Departamento de Matemática – ICEB Campus Universitário Morro do Cruzeiro 35400-000 Ouro Preto, MG, BRAZIL

 $E\text{-}mail\ address:\ marcosrobertomarcial@yahoo.com.br$

OLIMPIO H. MIYAGAKI Universidade Federal de Juiz de Fora Departamento de Matemática 36036-330 Juiz de Fora, MG, BRAZIL *E-mail address*: ohmiyagaki@gmail.com

TMNA : Volume 47 – 2016 – $\rm N^{o}$ 1