Topological Methods in Nonlinear Analysis
Volume 47, No. 1, 2016, 73-89
DOI: 10.12775/TMNA.2015.091
(C) 2016 Juliusz Schauder Centre for Nonlinear Studies

Nicolaus Copernicus University

TOPOLOGICAL STRUCTURE OF THE SOLUTION SET OF SINGULAR EQUATIONS
 WITH SIGN CHANGING TERMS UNDER DIRICHLET BOUNDARY CONDITION

José V. Gonçalves - Marcos R. Marcial - Olimpio H. Miyagaki

Abstract. In this paper we establish existence of connected components of positive solutions of the equation $-\Delta_{p} u=\lambda f(u)$ in Ω, under Dirichlet boundary conditions, where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega, \Delta_{p}$ is the p-Laplacian, and $f:(0, \infty) \rightarrow \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin.

1. Introduction

In this paper we establish existence of a continuum of positive solutions of
$(\mathrm{P})_{\lambda}$

$$
\begin{cases}-\Delta_{p} u=\lambda f(u) & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary $\partial \Omega, \Delta_{p}$ is the p Laplacian, $1<p<\infty, \lambda>0$ is a real parameter, $f:(0, \infty) \rightarrow \mathbb{R}$ is a continuous function which may blow up to $\pm \infty$ at the origin.

[^0]Definition 1.1. By a solution of $(\mathrm{P})_{\lambda}$ we mean a function $u \in W_{0}^{1, p}(\Omega) \cap$ $C(\bar{\Omega})$, with $u>0$ in Ω, such that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x=\lambda \int_{\Omega} f(u) \varphi d x, \quad \varphi \in W_{0}^{1, p}(\Omega) \tag{1.1}
\end{equation*}
$$

Definition 1.2. The solution set of $(\mathrm{P})_{\lambda}$ is

$$
\begin{equation*}
\mathcal{S}:=\left\{(\lambda, u) \in(0, \infty) \times C(\bar{\Omega}) \mid u \text { is a solution of }(\mathrm{P})_{\lambda}\right\} \tag{1.2}
\end{equation*}
$$

In the pioneering work [5], Crandall, Rabinowitz and Tartar employed topological methods, Schauder Theory, and Maximum Principles to prove existence of an unbounded connected subset in $\mathbb{R} \times C_{0}(\bar{\Omega})$ of positive solutions $u \in$ $C^{2}(\Omega) \cap C(\bar{\Omega})$ of the problem

$$
\begin{cases}-L u=g(x, u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where L is a linear second order uniformly elliptic operator,

$$
C_{0}(\bar{\Omega})=\{u \in C(\bar{\Omega}) \mid u=0 \text { on } \partial \Omega\}
$$

and $g: \bar{\Omega} \times(0, \infty) \rightarrow(0, \infty)$ is a continuous function satisfying $g(x, t) \xrightarrow{t \rightarrow 0^{+}} 0$ uniformly for $x \in \bar{\Omega}$. A typical example is $g(x, t)=t^{\gamma}$, where $\gamma>0$.

Several techniques have been employed in the study of $\left(\mathrm{P}_{\lambda}\right)$. In [11], Giacomoni, Schindler and Takac employed variational methods to investigate the problem

$$
\begin{cases}-\Delta_{p} u=\frac{\lambda}{u^{\delta}}+u^{q} & \text { in } \Omega \\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $1<p<\infty, p-1<q<p^{*}-1, \lambda>0$ and $0<\delta<1$ with $p^{*}=N p /(N-p)$ if $1<p<N, p^{*} \in(N, \infty)$ if $p=N$, and $p^{*}=\infty$ if $p>N$. Several results were shown in that paper, among them existence, multiplicity and regularity of solutions.

In the present work we exploit the topological structure of the solution set of $\left(\mathrm{P}_{\lambda}\right)$ and our main assumptions are:
$\left(\mathrm{f}_{1}\right) f:(0, \infty) \rightarrow \mathbb{R}$ is continuous and

$$
\lim _{u \rightarrow \infty} \frac{f(u)}{u^{p-1}}=0
$$

(f_{2}) there are positive numbers a, β, A with $\beta<1$ such that
(i) $f(u) \geq a / u^{\beta}$ for $u>A$,
(ii) $\limsup _{u \rightarrow 0} u^{\beta}|f(u)|<\infty$.

The main result of this paper is:

Theorem 1.3. Assume $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$. Then there is a number $\lambda_{0}>0$ and a connected subset Σ of $\left[\lambda_{0}, \infty\right) \times C(\bar{\Omega})$ satisfying

$$
\begin{align*}
\Sigma & \subset \mathcal{S}, \tag{1.3}\\
\Sigma \cap(\{\lambda\} \times C(\bar{\Omega})) & \neq \emptyset, \quad \lambda_{0} \leq \lambda<\infty . \tag{1.4}
\end{align*}
$$

There is a broad literature on singular problems and we further refer the reader to Lazer and McKenna in [16], Diaz, Morel and Oswald [8], Gerghu and Radulescu [10], Goncalves, Rezende and Santos [13], Hai [14, 15], Mohammed [19], Shi and Yao [21], Hoang Loc and Schmitt [18], Carl and Perera [4], and their references.

Our result includes examples such as

$$
\begin{aligned}
& u^{q}-\frac{1}{u^{\beta}}, \quad \beta>0,0<q<p-1 \\
& \frac{1}{u^{\beta}}-\frac{1}{u^{\alpha}}, \quad 0<\beta<\alpha<1 \\
& \ln (u) .
\end{aligned}
$$

In the proof of our Theorem 1.3 we shall employ topological arguments to construct a suitable connected component of the solution set \mathcal{S} of $(\mathrm{P})_{\lambda}$. More precisely, we shall use in a nontrivial way Theorem 2.1 from Sun and Song [23] whose proof is based on the famous lemma of Whyburn, (cf. [26, Theorem 9.3]). At first some notations:

Let $M=(M, d)$ be a metric space and denote by $\left\{\Sigma_{n}\right\}$ a sequence of connected components of M. The upper limit of $\left\{\Sigma_{n}\right\}$ is defined by

$$
\overline{\lim } \Sigma_{n}=\left\{u \in M \mid \text { there is }\left(u_{n_{i}}\right) \subseteq \bigcup \Sigma_{n} \text { with } u_{n_{i}} \in \Sigma_{n_{i}} \text { and } u_{n_{i}} \rightarrow u\right\} .
$$

Remark 1.4. $\overline{\lim } \Sigma_{n}$ is a closed subset of M.
Theorem 1.5. Let M be a metric space and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\} \in \mathbb{R}$ be sequences satisfying $\ldots<\alpha_{n}<\ldots<\alpha_{1}<\beta_{1}<\ldots<\beta_{n}<\ldots$ with $\alpha_{n} \rightarrow-\infty$ and $\beta_{n} \rightarrow \infty$. Assume that $\left\{\Sigma_{n}^{*}\right\}$ is a sequence of connected subsets of $\mathbb{R} \times M$ satisfying:
(a) $\Sigma_{n}^{*} \cap\left(\left\{\alpha_{n}\right\} \times M\right) \neq \emptyset$,
(b) $\Sigma_{n}^{*} \cap\left(\left\{\beta_{n}\right\} \times M\right) \neq \emptyset$,
for each n. For each $\alpha, \beta \in(-\infty, \infty)$ with $\alpha<\beta$,
(c) $\left(\bigcup \Sigma_{n}^{*}\right) \cap([\alpha, \beta] \times M)$ is a relatively compact subset of $\mathbb{R} \times M$.

Then there is a number $\lambda_{0}>0$ and a connected component Σ^{*} of $\overline{\lim } \Sigma_{n}^{*}$ such that $\Sigma^{*} \cap(\{\lambda\} \times M) \neq \emptyset \quad$ for each $\lambda \in\left(\lambda_{0}, \infty\right)$.

2. Some auxiliary results

We gather below a few technical results. For completeness, a few proofs will be provided in the appendix. The Euclidean distance from $x \in \Omega$ to $\partial \Omega$ is

$$
d(x)=\operatorname{dist}(x, \partial \Omega)
$$

The result below derives from Gilbarg and Trudinger [12], and Vàzquez [25].
Lemma 2.1. Let $\Omega \subset \mathbb{R}^{N}$ be a smooth bounded domain. Then:
(a) $d \in \operatorname{Lip}(\bar{\Omega})$ and d is C^{2} in a neighbourhood of $\partial \Omega$,
(b) if ϕ_{1} denotes a positive eigenfunction of $\left(-\Delta_{p}, W_{0}^{1, p}(\Omega)\right)$ one has

$$
\phi_{1} \in C^{1, \alpha}(\bar{\Omega}) \quad \text { with } 0<\alpha<1, \quad \frac{\partial \phi_{1}}{\partial \nu}<0 \quad \text { on } \partial \Omega,
$$

and there are positive constants C_{1}, C_{2} such that

$$
C_{1} d(x) \leq \phi_{1}(x) \leq C_{2} d(x), \quad x \in \Omega .
$$

The result below is due to Crandall, Rabinowitz and Tartar [5], Lazer and McKenna [16] in the case $p=2$ and Giacomoni, Schindler and Takac [11] in the case $1<p<\infty$.

Lemma 2.2. Let $\beta \in(0,1)$ and $m>0$. Then the problem

$$
\begin{cases}-\Delta_{p} u=\frac{m}{u^{\beta}} & \text { in } \Omega \tag{2.1}\\ u>0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits only a weak solution $u_{m} \in W_{0}^{1, p}(\Omega)$. Moreover, $u_{m} \geq \varepsilon_{m} \phi_{1}$ in Ω for some constant $\varepsilon_{m}>0$.

Remark 2.3. By the results in [17], [11], there is $\alpha \in(0,1)$ such that $u_{m} \in$ $C^{1, \alpha}(\bar{\Omega})$.

The result below, which is crucial in this work, and whose proof is provided in the appendix, is basically due to Hai [15].

Lemma 2.4. Let $g \in L_{\text {loc }}^{\infty}(\Omega)$. Assume that there is $\beta \in(0,1)$ and $C>0$ such that

$$
\begin{equation*}
|g(x)| \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega . \tag{2.2}
\end{equation*}
$$

Then there is only a weak solution $u \in W_{0}^{1, p}(\Omega)$ of

$$
\begin{cases}-\Delta_{p} u=g & \text { in } \Omega \tag{2.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

In addition, there exist constants $\alpha \in(0,1)$ and $M>0$, with M depending only on C, β, Ω such that $u \in C^{1, \alpha}(\bar{\Omega})$ and $\|u\|_{C^{1, \alpha}(\bar{\Omega})} \leq M$.

Remark 2.5. The solution operator associated to (2.3) is: let

$$
\begin{gathered}
\mathcal{M}_{\beta, \infty}=\left\{g \in L_{l o c}^{\infty}(\Omega)| | g(x) \left\lvert\, \leq \frac{C}{d(x)^{\beta}}\right., x \in \Omega\right\} \\
S: \mathcal{M}_{\beta, \infty} \rightarrow W_{0}^{1, p}(\Omega) \cap C^{1, \alpha}(\bar{\Omega}), \quad S(g):=u
\end{gathered}
$$

Notice that $\|S(g)\|_{C^{1, \alpha}(\bar{\Omega})} \leq M$, for all $g \in \mathcal{M}_{C, d, \beta, \infty}$, with M depending only on C, β, Ω.

Corollary 2.6. Let $g, \widetilde{g} \in L_{\mathrm{loc}}^{\infty}(\Omega)$ with $g \geq 0, g \neq 0$ satisfying (2.2). Then, for each $\varepsilon>0$, the problem

$$
\begin{cases}-\Delta_{p} u_{\varepsilon}=g \chi_{\{d>\varepsilon\}}+\widetilde{g} \chi_{\{d<\varepsilon\}} & \text { in } \Omega \tag{2.4}\\ u_{\epsilon}=0 & \text { on } \partial \Omega\end{cases}
$$

admits only a solution $u_{\varepsilon} \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. In addition, there is $\varepsilon_{0}>0$ such that

$$
u_{\varepsilon} \geq \frac{u}{2} \quad \text { in } \Omega \text { for each } \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

where u is the solution of (2.3).
A proof of the corollary above will be included in the appendix.

3. Lower and upper solutions

In this section we present two results, due to Hai [15, Theorem 2.1], on existence of lower and upper solutions of $(\mathrm{P})_{\lambda}$. At first some definitions.

Definition 3.1. A function $\underline{u} \in W_{0}^{1, p}(\Omega)$ with $\underline{u}>0$ in Ω such that

$$
\int_{\Omega}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla \varphi d x \leq \lambda \int_{\Omega} f(\underline{u}) \varphi d x, \quad \varphi \in W_{0}^{1, p}(\Omega), \varphi \geq 0
$$

is a lower solution of $(\mathrm{P})_{\lambda}$.
Definition 3.2. A function $\bar{u} \in W_{0}^{1, p}(\Omega)$ with $\bar{u}>0$ in Ω such that

$$
\int_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \cdot \nabla \varphi d x \geq \lambda \int_{\Omega} f(\bar{u}) \varphi d x, \quad \varphi \in W_{0}^{1, p}(\Omega), \varphi \geq 0
$$

is an upper solution of $(\mathrm{P})_{\lambda}$.
We establish the existence of a lower solution.
Theorem 3.3. Assume $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$. Then there exist $\lambda_{0}>0$ and a non-negative function $\psi \in C^{1, \alpha}(\bar{\Omega})$, with $\psi>0$ in $\Omega, \psi=0$ on $\partial \Omega, \alpha \in(0,1)$ such that for each $\lambda \in\left[\lambda_{0}, \infty\right), \underline{u}=\lambda^{r} \psi$ with $r=1 /(p+\beta-1)$, is a lower solution of $(\mathrm{P})_{\lambda}$.

Proof of Theorem 3.3. See Hai [15, p. 622].

By Lemma 2.2 , there are both a function $\phi \in C^{1, \alpha}(\bar{\Omega})$, with $\alpha \in(0,1)$, such that

$$
\begin{cases}-\Delta_{p} \phi=\frac{1}{\phi^{\beta}} & \text { in } \Omega \tag{3.1}\\ \phi>0 & \text { in } \Omega \\ \phi=0 & \text { on } \partial \Omega\end{cases}
$$

and a constant $C_{1}>0$ such that $\phi \geq C_{1} d$ in Ω.
Next, we establish the existence of an upper solution.
Theorem 3.4. Assume $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$ and take $\Lambda>\lambda_{0}$ with λ_{0} as in Theorem 3.3. Then for each $\lambda \in\left[\lambda_{0}, \Lambda\right],(\mathrm{P})_{\lambda}$ admits an upper solution $\bar{u}=\bar{u}_{\lambda}=M \phi$ where $M>0$ is a constant and ϕ is given by (3.1).

Proof of Theorem 3.4. See Hai in [15, p. 623].

4. Further technical results

At first we introduce some notations, remarks and lemmas. Take $\Lambda>\lambda_{0}$ and set $I_{\Lambda}:=\left[\lambda_{0}, \Lambda\right]$. For each $\lambda \in I_{\Lambda}$, by Theorem 3.3,

$$
\underline{u}=\underline{u}_{\lambda}=\lambda^{r} \psi
$$

is a lower solution of $(\mathrm{P})_{\lambda}$. Pick $M=M_{\Lambda} \geq \Lambda^{r} \delta^{1 /(p-1)}$. By Theorem 3.4,

$$
\bar{u}=\bar{u}_{\lambda}=M_{\Lambda} \phi
$$

is an upper solution of $(\mathrm{P})_{\lambda}$. It follows that

$$
\begin{equation*}
\underline{u}=\lambda^{r} \psi \leq \Lambda^{r} \delta^{1 /(p-1)} \phi \leq M \phi=\bar{u} . \tag{4.1}
\end{equation*}
$$

The convex, closed subset of $I_{\Lambda} \times C(\bar{\Omega})$, defined by

$$
\mathcal{G}_{\Lambda}:=\left\{(\lambda, u) \in I_{\Lambda} \times C(\bar{\Omega}) \mid \lambda \in I_{\Lambda}, \underline{u} \leq u \leq \bar{u} \text { and } u=0 \text { on } \partial \Omega\right\}
$$

will play a key role in this work.
For each $u \in C(\bar{\Omega})$ define

$$
\begin{equation*}
f_{\Lambda}(u)=\chi_{S_{1}} f(\underline{u})+\chi_{S_{2}} f(u)+\chi_{S_{3}} f(\bar{u}), \quad x \in \Omega, \tag{4.2}
\end{equation*}
$$

where $S_{1}:=\{x \in \Omega \mid u(x)<\underline{u}(x)\}, S_{2}:=\{x \in \Omega \mid \underline{u}(x) \leq u(x) \leq \bar{u}(x)\}$, $S_{3}:=\{x \in \Omega \mid \bar{u}(x)<u(x)\}$, and $\chi_{S_{i}}$ is the characteristic function of S_{i}.

Lemma 4.1. For each $u \in C(\bar{\Omega}), f_{\Lambda}(u) \in L_{\text {loc }}^{\infty}(\Omega)$ and there are $C>0$, $\beta \in(0,1)$ such that

$$
\begin{equation*}
\left|f_{\Lambda}(u)(x)\right| \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega \tag{4.3}
\end{equation*}
$$

Proof. Indeed, let $\mathcal{K} \subset \Omega$ be a compact subset. Then both \underline{u} and \bar{u} achieve a positive maximum and a positive minimum on \mathcal{K}. Since f is continuous in $(0, \infty)$ then $f_{\Lambda}(u) \in L_{\text {loc }}^{\infty}(\Omega)$.

Verification of (4.3): Since $\Omega=\bigcup_{i=1}^{3} S_{i}$ it is enough to show that

$$
|f(u(x))| \leq \frac{C}{d(x)^{\beta}}, \quad x \in S_{i}, i=1,2,3 .
$$

At first, by $\left(\mathrm{f}_{2}\right)(\mathrm{ii})$ there are $C, \delta>0$ such that

$$
|f(s)| \leq \frac{C}{s^{\beta}}, \quad 0<s<\delta
$$

Let $\Omega_{\delta}=\{x \in \Omega \mid d(x)<\delta\}$. Recalling that $\underline{u} \in C^{1}(\bar{\Omega})$, let

$$
D=\max _{\bar{\Omega}} d(x), \quad \nu_{\delta}:=\min _{\overline{\Omega_{\delta}^{c}}} d(x), \quad \nu^{\delta}:=\max _{\overline{\Omega_{\delta}^{c}}} d(x),
$$

and notice that both $0<\nu_{\delta} \leq \nu^{\delta} \leq D<\infty$ and $f\left(\left[\nu_{\delta}, \nu^{\delta}\right]\right)$ are compact.
On the other hand, applying Theorems 3.3, 3.4, Lemmas 2.1 and 2.2 we infer that $0<\lambda_{0}^{r} \psi \leq \lambda^{r} \psi=\underline{u} \leq \bar{u}=M \phi$ in Ω and

$$
\frac{1}{\underline{u}^{\beta}}, \frac{1}{\bar{u}^{\beta}} \leq \frac{1}{\left(\lambda_{0}^{r} \psi(x)\right)^{\beta}} \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega_{\delta} .
$$

To finish the proof, we distinguish three cases:
(1) $x \in S_{1}$. In this case, $f_{\Lambda}(u(x))=f(\underline{u}(x))$. If $x \in S_{1} \cap \Omega_{\delta}$ we infer that

$$
\left|f_{\Lambda}(u(x))\right| \leq \frac{C}{\underline{u}(x)^{\beta}} \leq \frac{C}{d(x)^{\beta}} .
$$

If $x \in S_{1} \cap \Omega_{\delta}^{c}$ pick positive numbers $d_{i}, i=1,2$, such that $d_{1} \leq \underline{u}(x) \leq d_{2}$, $x \in \Omega_{\delta}^{c}$. Hence

$$
\left|f_{\Lambda}(u(x))\right| \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega .
$$

(2) $x \in S_{2}$. In this case, $0<\lambda_{0}^{r} \psi \leq u \leq M \phi$ and, as a consequence,

$$
|f(u(x))| \leq \frac{C}{u(x)^{\beta}}, \quad x \in \Omega_{\delta} .
$$

Hence, there is a positive constant \widetilde{C} such that $|f(u(x))| \leq \widetilde{C}, x \in \overline{\Omega_{\delta}^{c}}$. Thus

$$
|f(u(x))| \leq \begin{cases}\widetilde{C} & \text { if } x \in \overline{\Omega_{\delta}^{c}} \\ \frac{C}{d(x)^{\beta}} & \text { if } x \in \Omega_{\delta}\end{cases}
$$

On the other hand,

$$
\frac{1}{D^{\beta}} \leq \frac{1}{d(x)^{\beta}}, \quad x \in \overline{\Omega_{\delta}^{c}}
$$

and therefore there is a constant $C>0$ such that

$$
|f(u(x))| \leq \begin{cases}\frac{C}{D_{C}^{\beta}} & \text { if } x \in \overline{\Omega_{\delta}^{c}} \\ \frac{C}{d(x)^{\beta}} & \text { if } x \in \Omega_{\delta}\end{cases}
$$

Therefore,

$$
|f(u(x))| \leq \frac{C}{d(x)^{\beta}}, \quad x \in S_{2}, u \in \mathcal{G}_{\Lambda}
$$

(3) $x \in S_{3}$. In this case $f_{\Lambda}(u(x))=f(\bar{u}(x))$. If $x \in S_{3} \cap \Omega_{\delta}$ we infer that

$$
\left|f_{\Lambda}(u(x))\right| \leq \frac{C}{\bar{u}(x)^{\beta}} \leq \frac{C}{d(x)^{\beta}}
$$

If $x \in S_{3} \cap \Omega_{\delta}^{c}$. Pick positive numbers $d_{i}, i=1,2$, such that $\left.d_{1} \leq \bar{u}(x)\right) \leq d_{2}$, $x \in \Omega_{\delta}^{c}$. Hence

$$
\left|f_{\Lambda}(u(x))\right| \leq \frac{C}{d(x)^{\beta}}, \quad x \in \Omega
$$

This ends the proof of Lemma 4.1.
Remark 4.2. By Lemmas 2.4, 4.1 and Remark 2.5, for each $v \in C(\overline{\Omega)}$ and $\lambda \in I_{\Lambda}$,

$$
\begin{equation*}
\lambda f_{\Lambda}(v) \in L_{\mathrm{loc}}^{\infty}(\Omega) \quad \text { and } \quad\left|\lambda f_{\Lambda}(v)\right| \leq \frac{C_{\Lambda}}{d^{\beta}(x)} \quad \text { in } \Omega \tag{4.4}
\end{equation*}
$$

where $C_{\Lambda}>0$ is a constant independent of v and $\beta \in(0,1)$. So for each v,

$$
\begin{cases}-\Delta_{p} u=\lambda f_{\Lambda}(v) & \text { in } \Omega \tag{4.5}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

admits only a solution $u=S\left(\lambda f_{\Lambda}(v)\right) \in W_{0}^{1, p}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$.
Set $F_{\Lambda}(u)(x)=f_{\Lambda}(u(x)), u \in C(\bar{\Omega})$, and consider the operator

$$
\begin{gathered}
T: I_{\Lambda} \times C(\bar{\Omega}) \rightarrow W_{0}^{1, p}(\Omega) \cap C^{1, \alpha}(\bar{\Omega}) \\
T(\lambda, u)=S\left(\lambda F_{\Lambda}(u)\right) \quad \text { if } \lambda_{0} \leq \lambda \leq \Lambda, u \in C(\bar{\Omega})
\end{gathered}
$$

Notice that if $(\lambda, u) \in I_{\Lambda} \times C(\bar{\Omega})$ satisfies $u=T(\lambda, u)$ then u is a solution of

$$
\begin{cases}-\Delta_{p} u=\lambda f_{\Lambda}(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Lemma 4.3. If $(\lambda, u) \in I_{\Lambda} \times C(\bar{\Omega})$ and $u=T(\lambda, u)$ then $(\lambda, u) \in \mathcal{G}_{\Lambda}$.
Proof. Indeed, let $(\lambda, u) \in I_{\Lambda} \times C(\bar{\Omega})$ such that $T(\lambda, u)=u$. Then

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u . \nabla \varphi d x=\lambda \int_{\Omega} f_{\Lambda}(u) \varphi d x, \quad \varphi \in W_{0}^{1, p}(\Omega)
$$

We claim that $u \geq \underline{u}$. Assume on the contrary, that $\varphi:=(\underline{u}-u)^{+} \not \equiv 0$. Then

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x & =\int_{u<\underline{u}}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x \\
& =\lambda \int_{u<\underline{u}} f_{\Lambda}(u) \cdot \varphi d x=\lambda \int_{u<\underline{u}} f(\underline{u}) \cdot \varphi d x \\
& \geq \int_{u<\underline{u}}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla \varphi d x=\int_{\Omega}|\nabla \underline{u}|^{p-2} \nabla \underline{u} \cdot \nabla \varphi d x .
\end{aligned}
$$

Hence

$$
\int_{\Omega}\left[|\nabla u|^{p-2} \nabla u-|\nabla \underline{u}|^{p-2} \nabla \underline{u}\right] \cdot \nabla(u-\underline{u}) d x \leq 0 .
$$

It follows, by Lemma 1.2 , that $\int_{\Omega}|\nabla(u-\underline{u})|^{p} d x \leq 0$, contradicting $\varphi \not \equiv 0$. Thus, $(\underline{u}-u)^{+}=0$, that is, $\underline{u}-u \leq 0$, and so $\underline{u} \leq T(\lambda, u)$.

We claim that $\bar{u} \geq u$. Assume on the contrary that $\varphi:=(u-\bar{u})^{+} \not \equiv 0$. We have

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x & =\int_{\bar{u}<u}|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi d x \\
& =\lambda \int_{\bar{u}<u} f_{\Lambda}(u) \cdot \varphi d x=\lambda \int_{\bar{u}<u} f(\bar{u}) \cdot \varphi d x \\
& \leq \int_{\bar{u}<u}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \cdot \nabla \varphi d x=\int_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \cdot \nabla \varphi d x
\end{aligned}
$$

Therefore,

$$
\int_{\Omega}\left[|\nabla u|^{p-2} \nabla u-|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right] \cdot \nabla(u-\bar{u}) d x \leq 0
$$

contradicting $\varphi \not \equiv 0$. Thus $(u-\bar{u})^{+}=0$ so that $u-\bar{u} \leq 0$, which gives $\bar{u} \geq$ $T(\lambda, u)$. As a consequence of the arguments above $u \in \mathcal{G}_{\Lambda}$, showing Lemma 4.3.

REmark 4.4. By the definitions of f_{Λ} and \mathcal{G}_{Λ}, for each $(\lambda, u) \in \mathcal{G}_{\Lambda}$

$$
\begin{equation*}
f_{\Lambda}(u)=f(u), \quad x \in \Omega \tag{4.6}
\end{equation*}
$$

Remark 4.5. By Remark 2.5, there is $R_{\Lambda}>0$ such that $\mathcal{G}_{\Lambda} \subset B\left(0, R_{\Lambda}\right) \subset$ $C(\bar{\Omega})$ and

$$
T\left(I_{\Lambda} \times \overline{B\left(0, R_{\Lambda}\right)}\right) \subseteq B\left(0, R_{\Lambda}\right)
$$

Notice that, by (4.6) and Lemma 4.3, if $(\lambda, u) \in I_{\Lambda} \times C(\bar{\Omega})$ satisfies $u=T(\lambda, u)$ then (λ, u) is a solution of $(\mathrm{P})_{\lambda}$. By Remark 4.4, to solve $(\mathrm{P})_{\lambda}$ it suffices to look for fixed points of T.

Lemma 4.6. $T: I_{\Lambda} \times \overline{B\left(0, R_{\Lambda}\right)} \rightarrow \overline{B\left(0, R_{\Lambda}\right)}$ is continuous and compact.
Proof. Let $\left\{\left(\lambda_{n}, u_{n}\right)\right\} \subseteq I_{\Lambda} \times \overline{B\left(0, R_{\Lambda}\right)}$ be a sequence such that

$$
\lambda_{n} \rightarrow \lambda \quad \text { and } \quad u_{n} \xrightarrow{C(\bar{\Omega})} u, \quad \text { as } n \rightarrow \infty
$$

Set $v_{n}=T\left(\lambda_{n}, u_{n}\right)$ and $v=T(\lambda, u)$ so that $v_{n}=S\left(\lambda_{n} F_{\Lambda}\left(u_{n}\right)\right)$ and $v=$ $S\left(\lambda F_{\Lambda}(u)\right)$. It follows that

$$
\begin{aligned}
& \int_{\Omega}\left(\left|\nabla v_{n}\right|^{p-2} \nabla v_{n}-|\nabla v|^{p-2} \nabla v\right) \cdot \nabla\left(v_{n}-v\right) d x \\
& \quad=\lambda_{n} \int_{\Omega}\left(f_{\Lambda}\left(u_{n}\right)-f_{\Lambda}(u)\right)\left(v_{n}-v\right) d x \leq C \int_{\Omega}\left|f_{\Lambda}\left(u_{n}\right)-f_{\Lambda}(u)\right| d x
\end{aligned}
$$

Since

$$
\left|f_{\Lambda}\left(u_{n}\right)-f_{\Lambda}(u)\right| \leq \frac{C}{d(x)^{\beta}} \in L^{1}(\Omega) \quad \text { and } \quad f_{\Lambda}\left(u_{n}(x)\right) \rightarrow f_{\Lambda}(u(x)) \quad \text { a.e. } x \in \Omega
$$

as $n \rightarrow \infty$, it follows by Lebesgue's theorem that

$$
\int_{\Omega}\left|f_{\Lambda}\left(u_{n}\right)-f_{\Lambda}(u)\right| d x \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Therefore $v_{n} \rightarrow v$, as $n \rightarrow \infty$ in $W_{0}^{1, p}(\Omega)$. On the other hand, since $u_{n} \xrightarrow{C(\bar{\Omega})} u$, as $n \rightarrow \infty$, by the proof of Lemma 4.1,

$$
\lambda_{n} f_{\Lambda}\left(u_{n}\right) \in L_{\mathrm{loc}}^{\infty}(\Omega) \quad \text { and } \quad\left|\lambda_{n} f_{\Lambda}\left(u_{n}\right)\right| \leq \frac{C_{\Lambda}}{d^{\beta}(x)} \quad \text { in } \Omega
$$

By Lemma 2.4, there is a constant $M>0$ such that $\left\|v_{n}\right\|_{C^{1, \alpha}(\bar{\Omega})} \leq M$ so that $v_{n} \xrightarrow{C(\bar{\Omega})} v$. This shows that $T: I_{\Lambda} \times \overline{B\left(0, R_{\Lambda}\right)} \rightarrow \overline{B\left(0, R_{\Lambda}\right)}$ is continuous.

The compactness of T follows from the arguments in the five lines above.

5. Bounded connected sets of solutions of $\left(\mathrm{P}_{\lambda}\right)$

By applying the previous technical results and the Leray-Schauder Continuation theorem (see [6]) which we state below regarding the use of its notations, we get

Theorem 5.1. Let D be an open bounded subset of the Banach space X. Let $a, b \in \mathbb{R}$ with $a<b$ and assume that $T:[a, b] \times \bar{D} \rightarrow X$ is compact and continuous. Consider $\Phi:[a, b] \times \bar{D} \rightarrow X$ defined by $\Phi(t, u)=u-T(t, u)$. Assume that
(a) $\Phi(t, u) \neq 0, t \in[a . b], u \in \partial D$,
(b) $\operatorname{deg}(\Phi(t, \cdot), D, 0) \neq 0$ for some $t \in[a, b]$,
and set $\mathcal{S}_{a, b}=\{(t, u) \in[a, b] \times \bar{D} \mid \Phi(t, u)=0\}$. Then, there is a connected compact subset $\Sigma_{a, b}$ of $\mathcal{S}_{a, b}$ such that

$$
\Sigma_{a, b} \cap(\{a\} \times D) \neq \emptyset \quad \text { and } \quad \Sigma_{a, b} \cap(\{b\} \times D) \neq \emptyset
$$

We will be able to show the following auxiliary result.
Theorem 5.2. Assume $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{2}\right)$. Then there is a number $\lambda_{0}>0$ and for each $\Lambda>\lambda_{0}$ there is a connected set $\Sigma_{\Lambda} \subset\left(\left[\lambda_{0}, \Lambda\right] \times C(\bar{\Omega})\right.$ satisfying:

$$
\Sigma_{\Lambda} \subset \mathcal{S}, \quad \Sigma_{\Lambda} \cap\left(\left\{\lambda_{0}\right\} \times C(\bar{\Omega})\right) \neq \emptyset, \quad \Sigma_{\Lambda} \cap(\{\Lambda\} \times C(\bar{\Omega})) \neq \emptyset
$$

Proof of Theorem 5.2. At first, some notations and technical results are needed. The Leray-Schauder theorem above will be applied to the operator T in the settings of Section 4. Remember that T is continuous, compact and $T\left(I_{\Lambda} \times \overline{B\left(0, R_{\Lambda}\right)}\right) \subset B\left(0, R_{\Lambda}\right)$.

Consider $\left.\Phi: I_{\Lambda} \times \overline{B(0, R)} \rightarrow \overline{B(0, R)}\right)$ defined by $\Phi(\lambda, u)=u-T(\lambda, u)$.
Lemma 5.3. Φ satisfies:
(a) $\Phi(\lambda, u) \neq 0(\lambda, u) \in I_{\Lambda} \times \partial B\left(0, R_{\Lambda}\right)$,
(b) $\operatorname{deg}\left(\Phi(\lambda, \cdot), B\left(0, R_{\Lambda}\right), 0\right) \neq 0$ for each $\lambda \in I_{\Lambda}$.

Proof. The verification of (a) is straightforward since $T\left(I_{\Lambda} \times \overline{B\left(0, R_{\Lambda}\right)}\right) \subset$ $B\left(0, R_{\Lambda}\right)$.

To prove (b) set $R=R_{\Lambda}$, take $\lambda \in I_{\Lambda}$ and consider the homotopy

$$
\Psi_{\lambda}(t, u)=u-t T(\lambda, u), \quad(t, u) \in[0,1] \times \overline{B(0, R)}
$$

It follows that $0 \notin \Psi_{\lambda}(I \times \partial B(0, R))$. By the invariance under homotopy property of the Leray-Schauder degree

$$
\operatorname{deg}\left(\Psi_{\lambda}(t, \cdot), B(0, R), 0\right)=\operatorname{deg}\left(\Psi_{\lambda}(0, \cdot), B(0, R), 0\right)=1, \quad t \in[0,1]
$$

Setting $\Phi(\lambda, u)=u-T(\lambda, u),(\lambda, u) \in I_{\Lambda} \times \overline{B(0, R)}$, we also have

$$
\operatorname{deg}(\Phi(\lambda, \cdot), B(0, R), 0)=1, \quad \lambda \in I_{\Lambda} .
$$

Set $\mathcal{S}_{\Lambda}=\left\{(\lambda, u) \in I_{\Lambda} \times \overline{B(0, R)} \mid \Phi(\lambda, u)=0\right\} \subset \mathcal{G}_{\Lambda}$. By the Leray-Schauder Continuation theorem, there is a connected component $\Sigma_{\Lambda} \subset \mathcal{S}_{\Lambda}$ such that

$$
\Sigma_{\Lambda} \cap\left(\left\{\lambda_{*}\right\} \times \overline{B(0, R)}\right) \neq \emptyset \quad \text { and } \quad \Sigma_{\Lambda} \cap(\{\Lambda\} \times \overline{B(0, R)}) \neq \emptyset
$$

We point out that \mathcal{S}_{Λ} is the solution set of the auxiliary problem

$$
\begin{cases}-\Delta_{p} u=\lambda f_{\Lambda}(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

and, since $\Sigma_{\Lambda} \subset \mathcal{S}_{\Lambda} \subset \mathcal{G}_{\Lambda}$, it follows using the definition of f_{Λ} that

$$
\begin{cases}-\Delta_{p} u=\lambda f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

for $(\lambda, u) \in \Sigma_{\Lambda}$, showing that $\Sigma_{\Lambda} \subset \mathcal{S}$. This ends the proof of Theorem 5.2.

6. Proof of Theorem 1.3

Consider Λ as introduced in Section 5 and take a sequence $\left\{\Lambda_{n}\right\}$ such that $\lambda_{0}<\Lambda_{1}<\Lambda_{2}<\ldots$ with $\Lambda_{n} \rightarrow \infty$. Set $\beta_{n}=\Lambda_{n}$ and take a sequence $\left\{\alpha_{n}\right\} \subset \mathbb{R}$ such that $\alpha_{n} \rightarrow-\infty$ and $\ldots<\alpha_{n}<\ldots<\alpha_{1}<\lambda_{0}$.

Following the notations of Section 4, consider the sequence of intervals $I_{n}=$ [$\left.\lambda_{0}, \Lambda_{n}\right]$. Set $M=C(\bar{\Omega})$ and let

$$
\mathcal{G}_{\Lambda_{n}}:=\left\{(\lambda, u) \in I_{n} \times \bar{B}_{R_{n}} \mid \underline{u} \leq u \leq \bar{u}, u=0 \text { on } \partial \Omega\right\}
$$

where $R_{n}=R_{\Lambda_{n}}$. Consider the sequence of compact operators

$$
T_{n}:\left[\lambda_{0}, \Lambda_{n}\right] \times \bar{B}_{R_{n}} \rightarrow \bar{B}_{R_{n}}
$$

defined by

$$
\left.T_{n}(\lambda, u)=S\left(\lambda F_{\Lambda_{n}}(u)\right)\right) \quad \text { if } \lambda_{0} \leq \lambda \leq \Lambda_{n}, u \in \bar{B}_{R_{n}}
$$

Next consider the extension of T_{n}, namely $\widetilde{T}_{n}: \mathbb{R} \times \bar{B}_{R_{n}} \rightarrow \bar{B}_{R_{n}}$, defined by

$$
\widetilde{T}_{n}(\lambda, u)= \begin{cases}T_{n}\left(\lambda_{0}, u\right) & \text { if } \lambda \leq \lambda_{0} \\ T_{n}(\lambda, u) & \text { if } \lambda_{0} \leq \lambda \leq \Lambda_{n} \\ T_{n}\left(\Lambda_{n}, u\right) & \text { if } \lambda \geq \Lambda_{n}\end{cases}
$$

Notice that \widetilde{T}_{n} is continuous and compact.
Applying Theorem 5.1 to $\widetilde{T}_{n}:\left[\alpha_{n}, \beta_{n}\right] \times \bar{B}_{R_{n}} \rightarrow \bar{B}_{R_{n}}$, we get a compact connected component Σ_{n}^{*} of $\mathcal{S}_{n}=\left\{(\lambda, u) \in\left[\alpha_{n}, \beta_{n}\right] \times \bar{B}_{R_{n}} \mid \Phi_{n}(\lambda, u)=0\right\}$, where

$$
\Phi_{n}(\lambda, u)=u-\widetilde{T}_{n}(\lambda, u)
$$

Notice that Σ_{n}^{*} is also a connected subset of $\mathbb{R} \times M$. By Theorem 1.5, there is a connected component Σ^{*} of $\overline{\lim } \Sigma_{n}^{*}$ such that

$$
\Sigma^{*} \cap(\{\lambda\} \times M) \neq \emptyset \quad \text { for each } \lambda \in \mathbb{R}
$$

Set $\Sigma=\left(\left[\lambda_{*}, \infty\right) \times M\right) \cap \Sigma^{*}$. Then $\Sigma \subset \mathbb{R} \times M$ is connected and

$$
\Sigma \cap(\{\lambda\} \times M) \neq \emptyset, \quad \lambda_{0} \leq \lambda<\infty .
$$

We claim that $\Sigma \subset \mathcal{S}$. Indeed, at first notice that

$$
\begin{equation*}
\left.\widetilde{T}_{n+1}\right|_{\left(\left[\lambda_{0}, \Lambda_{n}\right] \times \bar{B}_{R_{n}}\right)}=\left.\widetilde{T}_{n}\right|_{\left(\left[\lambda_{0}, \Lambda_{n}\right] \times \bar{B}_{R_{n}}\right)}=T_{n} . \tag{6.1}
\end{equation*}
$$

If $(\lambda, u) \in \Sigma$ with $\lambda>\lambda_{0}$, there is a sequence $\left(\lambda_{n_{i}}, u_{n_{i}}\right) \in \bigcup \Sigma_{n}^{*}$ with $\left(\lambda_{n_{i}}, u_{n_{i}}\right) \in$ $\Sigma_{n_{i}}^{*}$ such that $\lambda_{n_{i}} \rightarrow \lambda$ and $u_{n_{i}} \rightarrow u$, as $n_{i} \rightarrow \infty$. Then $u \in B_{R_{N}}$ for some integer $N>1$.

We can assume that $\left(\lambda_{n_{i}}, u_{n_{i}}\right) \in\left[\lambda_{0}, \Lambda_{N}\right] \times B_{R_{N}}$. On the other hand, by (6.1),

$$
u_{n_{i}}=T_{n_{i}}\left(\lambda_{n_{i}}, u_{n_{i}}\right)=T_{N}\left(\lambda_{n_{i}}, u_{n_{i}}\right) .
$$

Passing to the limit we get $u=T_{N}(\lambda, u)$ which shows that $(\lambda, u) \in \Sigma_{N}$ and so

$$
(\lambda, u) \in \mathcal{S}:=\left\{(\lambda, u) \in(0, \infty) \times C(\bar{\Omega}) \mid u \text { is a solution of }(\mathrm{P})_{\lambda}\right\}
$$

This ends the proof of Theorem 1.3.

Appendix A

In this section we present proofs of Lemma 2.4, Corollary 2.6 and recall some results referred to in the paper. We begin with the Browder-Minty theorem, (cf. Deimling [6]). Let X be a real reflexive Banach space with dual space X^{*}. A map $F: X \rightarrow X^{*}$ is monotone if

$$
\langle F x-F y, x-y\rangle \geq 0, \quad x, y \in X
$$

F is hemicontinuous if

$$
F(x+t y) \stackrel{*}{\rightharpoonup} F x \quad \text { as } t \rightarrow 0,
$$

and F is coercive if

$$
\frac{\langle F x, x\rangle}{|x|} \rightarrow \infty \quad \text { as }|x| \rightarrow \infty
$$

Theorem 1.1. Let X be a real reflexive Banach space and let $F: X \rightarrow X^{*}$ be a monotone, hemicontinous and coercive operator. Then $F(X)=X^{*}$. Moreover, if F is strictly monotone then it is a homeomorphism.

The inequality below, (cf. [22], [20]), is very useful when dealing with the p-Laplacian.

Lemma 1.2. Let $p>1$. Then there is a constant $C_{p}>0$ such that

$$
\left(|x|^{p-2} x-|y|^{p-2} y, x-y\right) \geq \begin{cases}C_{p}|x-y|^{p} & \text { if } p \geq 2 \tag{A.1}\\ C_{p} \frac{|x-y|^{p}}{(1+|x|+|y|)^{2-p}} & \text { if } \quad p \leq 2\end{cases}
$$

where $x, y \in \mathbb{R}^{N}$ and (\cdot, \cdot) is the usual inner product of \mathbb{R}^{N}.
Recall the Hardy inequality (cf. Brézis [3]).
Theorem 1.3. There is a positive constant C such that

$$
\int_{\Omega}\left|\frac{u}{d}\right|^{\beta} d x \leq C \int_{\Omega}|\nabla u|^{p}, \quad u \in W_{0}^{1, p}(\Omega)
$$

Proof of Lemma 2.4. By the Hölder inequality,

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p-1}|\nabla v| d x \leq\|u\|_{1, p^{\prime}}\|v\|_{1, p} \tag{A.2}
\end{equation*}
$$

where $1 / p+1 / p^{\prime}=1$, and so the expression

$$
\begin{equation*}
\left\langle-\Delta_{p} u, v\right\rangle:=\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla v d x, \quad u, v \in W_{0}^{1, p}(\Omega) \tag{A.3}
\end{equation*}
$$

defines a continuous, bounded (nonlinear) operator, namely

$$
\Delta_{p}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega), \quad u \mapsto \Delta_{p} u
$$

By (A.1),Δ_{p} it is strictly monotone and coercive, that is

$$
\left\langle-\Delta_{p} u-\left(-\Delta_{p} v\right), u-v\right\rangle>0, \quad u, v \in W_{0}^{1, p}(\Omega), u \neq v
$$

and

$$
\frac{\left\langle-\Delta_{p} u, u\right\rangle}{\|u\|_{1, p}} \xrightarrow{\|u\|_{1, p} \rightarrow \infty} \infty
$$

By the Browder-Minty theorem, $\Delta_{p}: W_{0}^{1, p}(\Omega) \rightarrow W^{-1, p^{\prime}}(\Omega)$ is a homeomorphism.

Consider

$$
F_{g}(u)=\int_{\Omega} g u d x, \quad u \in W_{0}^{1, p}(\Omega)
$$

Claim. $F_{g} \in W^{-1, p^{\prime}}(\Omega)$.
Assume for a while the claim has been proved. Since $-\Delta_{p}: W_{0}^{1, p}(\Omega) \rightarrow$ $W^{-1, p^{\prime}}(\Omega)$ is a homeomorphism, there is only $u \in W_{0}^{1, p}(\Omega)$ such that $-\Delta_{p} u=$ F_{g}, that is

$$
\left\langle-\Delta_{p} u, v\right\rangle=\int_{\Omega} g v d x, \quad v \in W_{0}^{1, p}(\Omega)
$$

Verification of Claim. Let V be an open neighborhood of $\partial \Omega$ such that $0<d(x)<1$ for $x \in V$ so that

$$
1<\frac{1}{d(x)^{\beta}}<\frac{1}{d(x)}, \quad x \in V .
$$

Now, if $v \in W_{0}^{1, p}(\Omega)$ we have

$$
\left|F_{g}(v)\right| \leq \int_{\Omega}\left|g\left\|v\left|d x=\int_{V^{c}}\right| g\right\| v\right| d x+\int_{V}\left|g \left\|\left.v\left|d x \leq C\|v\|_{1, p}+\int_{\Omega}\right| \frac{v}{d} \right\rvert\, d x\right.\right.
$$

Applying the Hardy inequality in the last term above, we get to

$$
\left|F_{g}(v)\right| \leq C\|v\|_{1, p}
$$

showing that $F_{g} \in W^{-1, p^{\prime}}(\Omega)$, proving the claim.
Regularity of u. At first we treat the case $p=2$. By [5], there is a solution v of

$$
\begin{cases}-\Delta v=1 / v^{\beta} & \text { in } \Omega \\ v>0 & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

which belongs to $C^{1}(\bar{\Omega})$ and by the Hopf theorem $\partial v / \partial \nu<0$ on $\partial \Omega$. Since also $d \in C^{1}(\bar{\Omega})$ and $\partial d / \partial \nu<0$ on $\partial \Omega$ there a constant $C>0$ such that $v \leq C d$ in Ω. Moreover, $-\Delta v=1 / v^{\beta} \geq C / d^{\beta}$. Consider the problem

$$
\begin{cases}-\Delta \widetilde{u}=|g| & \text { in } \Omega \\ \widetilde{u}=0 & \text { on } \partial \Omega\end{cases}
$$

By [11, theorem B.1], $\widetilde{u} \in C^{1, \alpha}(\bar{\Omega})$ and $\|\widetilde{u}\|_{C^{1, \alpha}(\bar{\Omega})} \leq M_{0}$ for some positive constant M_{0}. By the Maximum Principle, $\widetilde{u} \leq v \leq C d$ in Ω.

Setting $\bar{u}=u+\widetilde{u}$ we get $-\Delta \bar{u}=g+|g| \geq 0$ in Ω and by the arguments above, $\bar{u} \leq C d$ in Ω. Thus, as a consequence of [11, Theorem B.1], there are $\alpha \in(0,1)$ and $M_{0}>0$ such that

$$
\bar{u}, \widetilde{u} \in C^{1, \alpha}(\bar{\Omega}) \quad \text { and } \quad\|\bar{u}\|_{C^{1, \alpha}(\bar{\Omega})},\|\widetilde{u}\|_{C^{1, \alpha}(\bar{\Omega})} \leq M_{0}
$$

ending the proof of Lemma 2.4 in the case $p=2$.
In what follows we treat the case $p>1$. Let u be a solution of (2.3). It follows that

$$
-\Delta_{p} u=g \leq \frac{C}{d^{\beta}} \quad \text { and } \quad-\Delta_{p}(-u)=(-1)^{p-1} g \leq \frac{C}{d^{\beta}} .
$$

By Lemma 2.2, the problem

$$
\begin{cases}-\Delta_{p} v=C / v^{\beta} & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

admits only a positive solution $v \in W_{0}^{1, p}(\Omega) \cap C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$ with $v \leq C d$ in Ω. Hence,

$$
-\Delta_{p}(v)=\frac{C}{v^{\beta}} \geq \frac{1}{d^{\beta}} \quad \text { in } \Omega
$$

Therefore,

$$
-\Delta_{p}|u| \leq \frac{C}{d^{\beta}} \leq-\Delta_{p} v
$$

By the Weak Comparison Principle, $|u| \leq v \leq C d$ in Ω, showing that $u \in L^{\infty}(\Omega)$. Pick $w \in C^{1, \alpha}(\bar{\Omega})$ such that

$$
-\Delta w=g \quad \text { in } \Omega, \quad w=0 \quad \text { on } \partial \Omega .
$$

We have

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u-\nabla w\right)=0 \quad \text { in } \Omega
$$

in the weak sense. By Lieberman [17, Theorem 1] the proof of Lemma 2.4 ends.
Proof of Corollary 2.6. Existence of u_{ε} follows directly by Lemma 2.4. Moreover, there are $M>0$ and $\alpha \in(0,1)$ such that

$$
\|u\|_{C^{1, \alpha}(\bar{\Omega})},\left\|u_{\varepsilon}\right\|_{C^{1, \alpha}(\bar{\Omega})}<M
$$

By Vázquez [25, Theorem 5], $\partial u / \partial \nu<0$ on $\partial \Omega$ and recalling that $d \in C^{1}(\bar{\Omega})$ and $\partial d / \partial \nu<0$ on $\partial \Omega$ it follows that

$$
\begin{equation*}
u \geq C d \quad \text { in } \Omega \tag{A.4}
\end{equation*}
$$

Multiplying the equation

$$
-\Delta_{p} u-\left(-\Delta_{p} u_{\varepsilon}\right)=g-\left(h \chi_{[d(x)>\varepsilon]}+\widetilde{g} \chi_{[d(x)<\varepsilon]}\right)
$$

by $u-u_{\varepsilon}$ and integrating we have

$$
\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u-\left|\nabla u_{\varepsilon}\right|^{p-2} \nabla u_{\varepsilon}\right) \cdot \nabla\left(u-u_{\varepsilon}\right) d x \leq 2 M \int_{d(x)<\varepsilon}|g-\widetilde{g}| d x .
$$

Using Lemma 1.2, we infer that $\left\|u-u_{\varepsilon}\right\|_{1, p} \rightarrow 0$ as $\varepsilon \rightarrow 0$. By the compact embedding $C^{1, \alpha}(\bar{\Omega}) \hookrightarrow C^{1}(\bar{\Omega})$, it follows that

$$
\left\|u-u_{\varepsilon}\right\|_{C^{1}(\bar{\Omega})} \leq \frac{C}{2} d
$$

and, using (A.4),

$$
u_{\varepsilon} \geq u-\frac{C}{2} d \geq u-\frac{u}{2}=\frac{u}{2}
$$

References

[1] A. AnANE, Simplicité et isolation de la primiére valeur propre du p-Laplacien avec poids, C.R. Acad. Sci. Paris Sér. I (1987), 725-728.
[2] L. Boccardo, F. Murat and J.P. Puel, Résultats d'existence pour certains problémes elliptiques quasilinéaires, Ann. Sc. Norm. Super. Pisa Cl. Sci. 2 (1984), 213-235.
[3] H. Brézis, Functional Analysis, Sobolev Spaces and partial differential equations, Springer-Verlag, Berlin, (2011).
[4] S. Carl and K. Perera, Generalized solutions of singular p-Laplacian problems in \mathbb{R}^{N}, Nonlinear Stud. 18 (2011), 113-124.
[5] M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
[6] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[7] J.I. Diaz, J. Hernandez and F.J. Mancebo, Branches of positive and free boundary solutions for some singular quasilinear elliptic problem, J. Math. Anal. Appl. 352 (2009) 449-474.
[8] J.I. Diaz, J.M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333-1344.
[9] E. DiBenedetto, $C^{1+\alpha}$-local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850.
[10] M. Ghergu and V. Radulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520-536.
[11] J. Giacomoni, I. Schindler and P. Takac, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 117-158.
[12] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1983.
[13] J.V. Goncalves, M.C. Rezende and C.A. Santos, Positive solutions for a mixed and singular quasilinear problem, Nonlinear Anal. 74 (2011), 132-140.
[14] D.D. Hai, Singular boundary value problems for the p-Laplacian, Nonlinear Anal. 73 (2010), 2876-2881.
[15] , On a class of singular p-Laplacian boundary value problems, J. Math. Anal. Appl. 383 (2011), 619-626.
[16] A.C. Lazer and P.J. McKenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730.
[17] G.M. Liebermann, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219.
[18] N.H. Loc and K. Schmitt, Boundary value problems for singular elliptic equations, Rocky Mountain J. Math. 41 (2011), 555-572.
[19] A. Mohammed, Positive solutions of the p-Laplace equation with singular nonlinearity, J. Math. Anal. Appl. 352 (2009), 234-245.
[20] I. Peral, Multiplicity of Solutions for the p-Laplacian, Second School on Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, Italy, 1997.
[21] J. Shi and M. Yao, On a singular nonlinear semilinear elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A 138 (1998), 1389-1401.
[22] J. Simon, Regularité de la solution d'une equation non linéaire dans \mathbb{R}^{N}, Lecture Notes in Mathematics, vol. 665, Springer-Verlag, New York, 1978.
[23] J.X. Sun and F.M. Song, A property of connected components and its applications, Topology Appl. 125 (2002), 553-560.
[24] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.
[25] J.L. VÁzquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.
[26] G.T. Whyburn, Topological Analysis, Princeton University Press, Princeton NJ, 1955.

José V. Gonçalves
Universidade Federal de Goiás
Instituto de Matemática e Estatística
74001-970 Goiânia, GO, BRAZIL
E-mail address: goncalves.jva@gmail.com

Marcos R. Marcial
Universidade Federal de Ouro Preto
Departamento de Matemática - ICEB
Campus Universitário Morro do Cruzeiro
35400-000 Ouro Preto, MG, BRAZIL
E-mail address: marcosrobertomarcial@yahoo.com.br

Olimpio H. Miyagaki
Universidade Federal de Juiz de Fora
Departamento de Matemática
36036-330 Juiz de Fora, MG, BRAZIL
E-mail address: ohmiyagaki@gmail.com

[^0]: 2010 Mathematics Subject Classification. 35J25, 35J55, 35J70.
 Key words and phrases. Connected sets; fixed points; Schauder theory; elliptic equations. This work was supported by CNPq/CAPES/PROCAD/UFG/UnB-Brazil.
 The first and the third authors were supported in part by CNPq/Brazil.
 The second author was supported by CAPES/Brazil.

