# ON THE ASYMPTOTIC RELATION OF TOPOLOGICAL AMENABLE GROUP ACTIONS 

Wojciech BuŁatek - Brunon Kamiński - Jerzy Szymański


#### Abstract

For a topological action $\Phi$ of a countable amenable orderable group $G$ on a compact metric space we introduce a concept of the asymptotic relation $\mathbf{A}(\Phi)$ and we show that $\mathbf{A}(\Phi)$ is non-trivial if the topological entropy $h(\Phi)$ is positive. It is also proved that if the Pinsker $\sigma$-algebra $\pi_{\mu}(\Phi)$ is trivial, where $\mu$ is an invariant measure with full support, then $\mathbf{A}(\Phi)$ is dense. These results are generalizations of those of Blanchard, Host and Ruette ([3]) that concern the asymptotic relation for $\mathbb{Z}$-actions. We give an example of an expansive $G$-action $\left(G=\mathbb{Z}^{2}\right)$ with $\mathbf{A}(\Phi)$ trivial which shows that the Bryant-Walters classical result ([3]) fails to be true in general case.


## 1. Introduction

One of important characteristics of topological dynamical systems with $\mathbb{Z}$ as the group of time is the asymptotic relation. Let $\mathbf{A}(T)$ denote the asymptotic relation of a dynamical system $(X, T)$. It is known $([10])$ that $\mathbf{A}(T)$ is trivial (i.e. equals the diagonal relation $\Delta$ ) for deterministic systems in the sense of [10], in particular for distal systems. On the other hand, $\mathbf{A}(T)$ is non-trivial for expansive $T$ (cf. [3]) and also for systems with positive topological entropy $h(T)$ (cf. [2]). An interesting characterization of systems with zero topological entropy by use of $\mathbf{A}(T)$ is given in [6].

[^0]If $T$ admits an invariant probability measure $\mu$ with full support such that $T$ is a $K$-automorphism with respect to $\mu$, then $\mathbf{A}(T)$ is dense in $X \times X([2],[10])$.

The aim of this paper is to extend the concept of asymptoticity to topological actions of countable amenable orderable groups.

First we show that if the topological entropy $h(\Phi)$ is positive then $\mathbf{A}(\Phi)$ is non-trivial (Corollary 4.5).

Next we prove that if $\Phi$ satisfies a stronger condition, namely if the Pinsker $\sigma$-algebra $\pi_{\mu}(\Phi)$ is trivial for an invariant measure $\mu$ with full support then $\mathbf{A}(\Phi)$ is dense in $X \times X$ (Proposition 4.6).

In order to show these results we first prove that for any invariant measure $\mu$ there exists a measurable partition $\eta$ with properties analogous to those of the Rokhlin extreme partitions (cf. [16]) and such that any pair of points from the same atom of $\eta$ belongs to $\mathbf{A}(\Phi)$.

We also give an example of an expansive $\mathbb{Z}^{2}$-action ( $\mathbb{Z}^{2}$ is equipped with the lexicographical order) with $\mathbf{A}(\Phi)$ trivial.

## 2. Preliminaries

Let $(X, d)$ be a compact metric space and suppose $\mu$ is a Borel probability measure on $X$.

We assume $X$ is equipped with the $\sigma$-algebra $\mathcal{B}$ being the completion of the Borel $\sigma$-algebra with respect to $\mu$. The extension of $\mu$ to $\mathcal{B}$ will be also denoted by $\mu$.

We denote by $\mathcal{M}(X)$ the lattice of measurable partitions of $(X, \mathcal{B}, \mu)$. For the definition and basic properties of $\mathcal{M}(X)$ we refer the reader to [16] (see also [12]).

Let $\mathcal{F}(X) \subset \mathcal{M}(X)$ denote the set of finite partitions.
For any $\xi \in \mathcal{M}(X)$ we denote by $R_{\xi} \subset X \times X$ the equivalence relation determined by $\xi$ and by $\widehat{\xi}$ the $\sigma$-algebra of $\xi$-sets, i.e. measurable unions of elements of $\xi$. We denote by $\mathcal{N}$ the $\sigma$-algebra corresponding to the trivial partition $\nu_{X}$ of $X$.

Let $\xi, \eta \in \mathcal{M}(X)$. The relation $\xi \prec \eta$ means that any atom of $\eta$ is included in some atom of $\xi$.

If $\xi \prec \eta$ then obviously $\widehat{\xi} \subset \widehat{\eta}$.
For a countable family $\left\{\xi_{t} ; t \in T\right\} \subset \mathcal{M}(X)$ we denote by $\bigvee_{t \in T} \xi_{t}$ its join. It is known ([16]) that $\bigvee_{t \in T} \xi_{t} \in \mathcal{M}(X)$. Moreover, if the elements of $\xi_{t}, t \in T$, are Borel sets then the elements of $\bigvee_{t \in T} \xi_{t}$ are so.

Let $\langle G, \cdot\rangle$ be a countable amenable group equipped with a set $\Gamma \subset G$ called an algebraic past satisfying the following conditions:

- $\Gamma \cap \Gamma^{-1}=\emptyset$,
- $\Gamma \cup \Gamma^{-1} \cup\{e\}=G$,
- $\Gamma \cdot \Gamma \subset \Gamma$,
- $g \Gamma g^{-1} \subset \Gamma$,
where $e$ is the identity of $G, g \in G$.
For a finite set $A \subset G$ we denote by $|A|$ the number of elements of $A$.
It is well known that the amenability of $G$ is equivalent to the existence of a Følner sequence $\left(A_{n}\right)$ of finite subsets of $G$, i.e. a sequence satisfying the condition

$$
\lim _{n \rightarrow \infty} \frac{\left|g \cdot A_{n} \cap A_{n}\right|}{\left|A_{n}\right|}=1 \quad \text { for any } g \in G
$$

It is also known (cf. [14]) that every countable amenable group has a Følner sequence $\left(A_{n}\right)$ such that

$$
A_{n}^{-1}=A_{n}, \quad A_{n} \subset A_{n+1}, \quad n \geq 1, \quad \bigcup_{n=1}^{\infty} A_{n}=G
$$

Such sequences will be called summing ones (cf. [8]).
The existence of an algebraic past in $G$ is equivalent to the fact that $G$ is orderable, i.e. there exists in $G$ a linear order < compatible with the group operation. We have $\Gamma=\{g \in G ; g<e\}$.

It is well-known that all free groups are orderable and abelian groups are orderable iff they are torsion free ([7]).

Let $\mathcal{H}(X)$ be the group of all homeomorphisms of $X$ and let $\Phi$ be a topological action of $G$ on $X$, i.e. a homomorphism of $G$ into $\mathcal{H}(X)$.

For $g \in G$ we denote by $\Phi^{g}$ the homeomorphism corresponding to $g$.
Let $h(\Phi)$ be the topological entropy of $\Phi$. We denote by $\mathcal{P}(X, \Phi)$ the set of all $\Phi$-invariant probability measures. Given a measure $\mu \in \mathcal{P}(X, \Phi)$ we use $h_{\mu}(\Phi)$ and $\pi_{\mu}(\Phi)$ for the entropy and the Pinsker $\sigma$-algebra of $\Phi$, respectively.

The generalized variational principle ([15], [18]) says that

$$
h(\Phi)=\sup \left\{h_{\mu}(\Phi) ; \mu \in \mathcal{P}(X, \Phi)\right\} .
$$

## 3. Generalized Pinsker formula

Let $\mu \in \mathcal{P}(X, \Phi)$. From now up to the proof of Corollary 4.4 we will omit subscript $\mu$ in the notation of entropies $H_{\mu}$ and $h_{\mu}$.

For a partition $\xi \in \mathcal{M}(X)$ and a set $A \subset G$ we put

$$
\xi(A)=\bigvee_{g \in A} \Phi^{g} \xi
$$

Let $\xi^{-}=\xi(\Gamma), \xi_{\Phi}=\xi(G)$. Let $\sigma \in \mathcal{M}(X)$ be totally invariant, i.e. $\sigma_{\Phi}=\sigma$.
Proceeding in the same manner as Safonov in the proof of Theorem 1 ([17]) we obtain the following relative version of that theorem. Namely, we have

Proposition 3.1. For any Følner sequence $\left(A_{n}\right)$ in $G$ and any $\xi \in \mathcal{F}(X)$ it holds that

$$
\lim _{n \rightarrow \infty} \frac{1}{\left|A_{n}\right|} H\left(\xi\left(A_{n}\right) \mid \widehat{\sigma}\right)=H\left(\xi \mid \widehat{\xi}^{-} \vee \widehat{\sigma}\right)
$$

Taking $\sigma=\nu_{X}$ (i.e. $\widehat{\sigma}=\mathcal{N}$ ) we put

$$
h(\xi, \Phi)=\lim _{n \rightarrow \infty} \frac{1}{\left|A_{n}\right|} H\left(\xi\left(A_{n}\right)\right)=H\left(\xi \mid \widehat{\xi}^{-}\right)
$$

and we call this limit the mean entropy of $\xi$ w.r. to $\Phi$.
Lemma 3.2. If $A \subset G$ is finite, then

$$
h(\xi(A), \Phi)=h(\xi, \Phi)
$$

Proof. Let $\left(A_{n}\right)$ be a F $ø$ lner sequence. It is easy to see that

$$
H\left([\xi(A)]\left(A_{n}\right)\right)=H\left(\bigvee_{g \in A_{n}} \Phi^{g} \xi(A)\right)=H\left(\xi\left(A_{n} \cdot A\right)\right)
$$

for any $n \geq 1$. It is also easy to check that $\left(A_{n} \cdot A\right)_{n \geq 1}$ is a F $\varnothing$ lner sequence and

$$
\lim _{n \rightarrow \infty} \frac{\left|A_{n} \cdot A\right|}{\left|A_{n}\right|}=1
$$

which implies our result.
Next three results are generalizations of facts well-known in the case of $\mathbb{Z}$ actions (see for example [5]).

Lemma 3.3 (generalized Pinsker formula). For any $\xi, \eta \in \mathcal{F}(X)$ we have

$$
h(\xi \vee \eta, \Phi)=h(\xi, \Phi)+H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}_{\Phi}\right)
$$

Proof. Let $\left(A_{n}\right)$ be a summing sequence and let $\xi_{n}=\xi\left(A_{n}\right), \eta_{n}=\eta\left(A_{n}\right)$, for $n \geq 1$. We have

$$
H\left(\xi_{n} \vee \eta_{n}\right)=H\left(\xi_{n}\right)+H\left(\eta_{n} \mid \xi_{n}\right) \geq H\left(\xi_{n}\right)+H\left(\eta_{n} \mid \widehat{\xi}_{\Phi}\right) \quad \text { for all } n \geq 1
$$

Hence, dividing both sides of the above inequality by $\left|A_{n}\right|$, taking the limit as $n \rightarrow \infty$ and applying Proposition 3.1, we get

$$
h(\xi \vee \eta, \Phi) \geq h(\xi, \Phi)+H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}_{\Phi}\right)
$$

To prove the converse inequality we take $n_{0}$ such that $e \in A_{n_{0}}$ and let $n>n_{0}$. Applying Proposition 3.1, Lemma 3.2 and simple properties of entropy we have

$$
\begin{aligned}
h(\xi \vee \eta, \Phi) & \leq h\left(\xi_{n} \vee \eta, \Phi\right)=H\left(\xi_{n} \vee \eta \mid \widehat{\xi}_{n}^{-} \vee \widehat{\eta}^{-}\right) \\
& =H\left(\xi_{n} \mid \widehat{\xi}_{n}^{-} \vee \widehat{\eta}^{-}\right)+H\left(\eta \mid \widehat{\xi}_{n} \vee \widehat{\xi}_{n}^{-} \vee \widehat{\eta}^{-}\right) \leq H\left(\xi_{n} \mid \widehat{\xi}_{n}^{-}\right)+H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}_{n}\right) \\
& =h\left(\xi_{n}, \Phi\right)+H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}_{n}\right)=h(\xi, \Phi)+H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}_{n}\right) .
\end{aligned}
$$

Since $A_{n} \nearrow G$ we have $\xi_{n} \nearrow \xi_{\Phi}$ and so taking the limit in the above inequality as $n \rightarrow \infty$ we get

$$
h(\xi \vee \eta, \Phi) \leq h(\xi, \Phi)+H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}_{\Phi}\right)
$$

which completes the proof.
Let $\left(\mathcal{A}_{g}\right)_{g \in G}$ be a net of sub- $\sigma$-algebras of $\mathcal{B}$. We denote by $\bigvee_{g \in G} \mathcal{A}_{g}$ the smallest $\sigma$-algebra containing all $\mathcal{A}_{g}$ and by $\bigcap_{g \in G} \mathcal{A}_{g}$ the intersection of all $\mathcal{A}_{g}$, $g \in G$. We say that $\left(\mathcal{A}_{g}\right)_{g \in g}$ is increasing (decreasing) if for any $g_{1}, g_{2} \in G$ such that $g_{1}<g_{2}$ we have $\mathcal{A}_{g_{1}} \subset \mathcal{A}_{g_{2}}\left(\mathcal{A}_{g_{1}} \supset \mathcal{A}_{g_{2}}\right)$.

Theorem 3.4 (Martingale Convergence Theorem). If the net $\left(\mathcal{A}_{g}\right)_{g \in G}$ of sub- $\sigma$-algebras of $\mathcal{B}$ is increasing (decreasing), then for every $f \in L^{2}(X, \mu)$ it holds

$$
\lim _{g \in G} E\left(f \mid \mathcal{A}_{g}\right)=E\left(f \mid \bigvee_{g \in G} \mathcal{A}_{g}\right) \quad\left(E\left(f \mid \bigcap_{g \in G} \mathcal{A}_{g}\right)\right)
$$

in the $L^{2}$-norm.
One can show this theorem applying standard methods of the theory of projections of Hilbert space (cf. [13]).

In the proof of the next proposition we need the following corollary of the above theorem.

Corollary 3.5. If the net $\left(\mathcal{A}_{g}\right)_{g \in G}$ is increasing (decreasing), then for every partition $\xi \in \mathcal{F}(X)$ we have

$$
\lim _{g \in G} H\left(\xi \mid \mathcal{A}_{g}\right)=H\left(\xi \mid \bigvee_{g \in G} \mathcal{A}_{g}\right) \quad\left(H\left(\xi \mid \bigcap_{g \in G} \mathcal{A}_{g}\right)\right)
$$

The proof of this corollary is based on the fact that the convergence in the $L^{2}$-norm implies the convergence in measure $\mu$ and on the natural generalization of the Lebesgue dominated convergence theorem for the nets of functions indexed by $G$.

Proposition 3.6. For any $\xi, \eta, \zeta \in \mathcal{F}(X)$ with $\xi \preceq \eta$ we have

$$
\lim _{g \in \Gamma} H\left(\xi \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right)=H\left(\xi \mid \widehat{\eta}^{-}\right)
$$

Proof. First we consider the case $\xi=\eta$. By Lemma 3.3 and the invariance of $\mu$ w.r. to $\Phi$, we have
$h\left(\xi \vee \Phi^{g} \zeta, \Phi\right)=h(\xi, \Phi)+H\left(\Phi^{g} \zeta \mid \Phi^{g} \widehat{\zeta}^{-} \vee \widehat{\xi}_{\Phi}\right)=h(\xi, \Phi)+H\left(\zeta \mid \widehat{\zeta}^{-} \vee \widehat{\xi}_{\Phi}\right), \quad g \in \Gamma$.

On the other hand,

$$
\begin{aligned}
h\left(\xi \vee \Phi^{g} \zeta, \Phi\right) & =H\left(\xi \vee \Phi^{g} \zeta \mid \widehat{\xi}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right) \\
& =H\left(\Phi^{g} \zeta \mid \widehat{\xi}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right)+H\left(\xi \mid \widehat{\xi}^{-} \vee \Phi^{g}\left(\widehat{\zeta} \vee \widehat{\zeta}^{-}\right)\right) \\
& =H\left(\zeta \mid \widehat{\zeta}^{-} \vee \Phi^{g^{-1}} \widehat{\xi}^{-}\right)+H\left(\xi \mid \widehat{\xi}^{-} \vee \Phi^{g}\left(\widehat{\zeta} \vee \widehat{\zeta}^{-}\right)\right) .
\end{aligned}
$$

Combining the two above equalities, we get

$$
\begin{aligned}
h(\xi, \Phi) & =H\left(\xi \mid \widehat{\xi}^{-} \vee \Phi^{g}\left(\widehat{\zeta} \vee \widehat{\zeta}^{-}\right)\right)+H\left(\zeta \mid \widehat{\zeta}^{-} \vee \Phi^{g^{-1}} \widehat{\xi}^{-}\right)-H\left(\zeta \mid \widehat{\zeta}^{-} \vee \widehat{\xi}_{\Phi}\right) \\
& \leq H\left(\xi \mid \widehat{\xi}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right)+H\left(\zeta \mid \widehat{\zeta}^{-} \vee \Phi^{g^{-1}} \widehat{\xi}^{-}\right)-H\left(\zeta \mid \widehat{\zeta}^{-} \vee \widehat{\xi}_{\Phi}\right)
\end{aligned}
$$

From Corollary 3.5 we get

$$
\lim _{g \in \Gamma} H\left(\zeta \mid \widehat{\zeta}^{-} \vee \Phi^{g^{-1}} \widehat{\xi}^{-}\right)=H\left(\zeta \mid \widehat{\zeta}^{-} \vee \widehat{\xi}_{\Phi}\right)
$$

Therefore

$$
\lim _{g \in \Gamma} H\left(\xi \mid \widehat{\xi}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right) \geq h(\xi, \Phi)=H\left(\xi \mid \widehat{\xi}^{-}\right)
$$

Since the converse inequality is obvious we obtain the desired equality.
Now, let $\xi \preceq \eta$. Thus we have

$$
\begin{aligned}
H\left(\xi \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right) & =H\left(\xi \vee \eta \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right)-H\left(\eta \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-} \vee \widehat{\xi}\right) \\
& =H\left(\eta \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right)-H\left(\eta \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-} \vee \widehat{\xi}\right) \\
& \geq H\left(\eta \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right)-H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}\right)
\end{aligned}
$$

By the first part of the proof, we get

$$
\begin{aligned}
\lim _{g \in \Gamma} H\left(\xi \mid \widehat{\eta}^{-} \vee \Phi^{g} \widehat{\zeta}^{-}\right) & \geq H\left(\eta \mid \widehat{\eta}^{-}\right)-H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}\right) \\
& =H\left(\xi \vee \eta \mid \widehat{\eta}^{-}\right)-H\left(\eta \mid \widehat{\eta}^{-} \vee \widehat{\xi}\right)=H\left(\xi \mid \widehat{\eta}^{-}\right) .
\end{aligned}
$$

Since the converse inequality is clear we obtain the result.

## 4. Asymptotic relation

Definition 4.1. For a given topological $G$-action $\Phi$ on $X$ the relation

$$
\mathbf{A}(\Phi)=\left\{\left(x, x^{\prime}\right) \in X \times X ; \lim _{g \in \Gamma^{-1}} d\left(\Phi^{g} x, \Phi^{g} x^{\prime}\right)=0\right\}
$$

is said to be the asymptotic relation of $\Phi$.
The limit in the above definition has the following meaning:

$$
\forall \varepsilon>0 \quad \exists g_{0} \in \Gamma^{-1} \quad \forall g>g_{0} \quad d\left(\Phi^{g} x, \Phi^{g} x^{\prime}\right)<\varepsilon
$$

It is clear that $\mathbf{A}(\Phi)$ is an equivalence relation.
Theorem 4.2. There exists a partition $\eta \in \mathcal{M}(X)$ with
(a) $\Phi^{g} \eta \preceq \eta, g \in \Gamma$,
(b) $\bigvee_{g \in G} \Phi^{g} \widehat{\eta}=\mathcal{B}$,
(c) $\bigcap_{g \in G} \Phi^{g} \widehat{\eta} \subset \pi_{\mu}(\Phi)$,
(d) $R_{\eta} \subset \mathbf{A}(\Phi)$,
where $R_{\eta}$ denotes the equivalence relation associated with $\eta$.
Proof. Let $\left(\alpha_{n}\right) \subset \mathcal{F}(X)$ be a sequence of Borel measurable partitions such that

$$
\begin{equation*}
\alpha_{n} \preceq \alpha_{n+1}, n \in \mathbb{N} \quad \text { and } \quad \operatorname{diam} \alpha_{n} \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{4.1}
\end{equation*}
$$

It is well-known (cf. [1]) that $\alpha_{n}, n \geq 1$, generate the Borel $\sigma$-algebra.
Now we modify $\left(\alpha_{n}\right)$, applying a technique similar to that of Rokhlin from [16], to get a new sequence $\left(\xi_{p}\right) \subset \mathcal{F}(X)$ with

$$
\begin{equation*}
H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-}\right)-H\left(\xi_{p} \mid \widehat{\xi}_{p+t}^{-}\right)<\frac{1}{p} \quad \text { for any } p, t \geq 1 \tag{4.2}
\end{equation*}
$$

For a sequence $\left(g_{k}\right) \subset G$ with $g_{k}<g_{k+1}, k \in \mathbb{N}$, we put

$$
\xi_{p}=\bigvee_{k=1}^{p} \Phi^{g_{k}^{-1}} \alpha_{k}, \quad p \geq 1
$$

Now we shall choose $\left(g_{k}\right)$ in such a way that (4.2) holds. Let $g_{1} \in G$ be arbitrary. Suppose that $g_{1}, \ldots, g_{j-1}$ are defined. Applying Proposition 3.6, we choose $g_{j}>g_{j-1}$ such that

$$
H\left(\xi_{i} \mid \widehat{\xi}_{j-1}^{-}\right)-H\left(\xi_{i} \mid \widehat{\xi}_{j}^{-}\right)<\frac{1}{i} \cdot \frac{1}{2^{j-i}}, \quad 1 \leq i \leq j-1
$$

Now let $p, t \geq 1$ be arbitrary. We have

$$
H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-}\right)-H\left(\xi_{p} \mid \widehat{\xi}_{p+t}^{-}\right)=\sum_{j=p}^{p+t-1}\left(H\left(\xi_{p} \mid \widehat{\xi}_{j}^{-}\right)-H\left(\xi_{p} \mid \widehat{\xi}_{j+1}^{-}\right)\right)<\frac{1}{p} \cdot \sum_{j=1}^{t-1} \frac{1}{2^{j}}<\frac{1}{p}
$$

We put

$$
\xi=\bigvee_{p=1}^{\infty} \xi_{p}, \quad \eta=\xi^{-}
$$

Taking in (4.2) the limit as $t \rightarrow \infty$ we get

$$
\begin{equation*}
H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-}\right)-H\left(\xi_{p} \mid \widehat{\eta}\right)<\frac{1}{p}, \quad p \geq 1 \tag{4.3}
\end{equation*}
$$

It is clear that $\eta$ satisfies (a).
In order to prove (b) observe that taking any $h \in \Gamma$ we get

$$
\begin{aligned}
\bigvee_{g \in G} \Phi^{g} \widehat{\eta} & =\bigvee_{g \in G} \bigvee_{h \in \Gamma} \bigvee_{p=1}^{\infty} \Phi^{g \cdot h} \widehat{\xi}_{p} \supset \bigvee_{g \in G} \bigvee_{p=1}^{\infty} \Phi^{g \cdot h} \widehat{\xi}_{p} \\
& \supset \bigvee_{p=1}^{\infty} \bigvee_{k=1}^{p} \Phi^{g_{k} \cdot h^{-1} \cdot h \cdot g_{k}^{-1}} \widehat{\alpha}_{k}=\bigvee_{p=1}^{\infty} \widehat{\alpha}_{p}
\end{aligned}
$$

i.e. (b) is satisfied. Since $\left(\widehat{\xi}_{p}\right)_{\Phi}$ contains $\widehat{\alpha}_{p}$ for all $p \geq 1$, we have

$$
\begin{equation*}
\bigvee_{p=1}^{\infty}\left(\widehat{\xi}_{p}\right)_{\Phi}=\mathcal{B} \tag{4.4}
\end{equation*}
$$

Now we shall show that (c) is also true. Indeed, let $\alpha \in \mathcal{F}(X)$ be measurable w.r. to $\bigcap_{g \in G} \Phi^{g} \widehat{\eta}$ and let $p \in \mathbb{N}$. Applying Lemma 3.3 we have

$$
h\left(\alpha \vee \xi_{p}, \Phi\right)=h(\alpha, \Phi)+H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-} \vee \widehat{\alpha}_{\Phi}\right)=h\left(\xi_{p}, \Phi\right)+H\left(\alpha \mid \widehat{\alpha}^{-} \vee\left(\widehat{\xi}_{p}\right)_{\Phi}\right)
$$

Hence

$$
h(\alpha, \Phi)=h\left(\xi_{p}, \Phi\right)-H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-} \vee \widehat{\alpha}_{\Phi}\right)+H\left(\alpha \mid \widehat{\alpha}^{-} \vee\left(\widehat{\xi}_{p}\right)_{\Phi}\right)
$$

Since the $\sigma$-algebra $\bigcap_{g \in G} \Phi^{g} \widehat{\eta}$ is $\Phi$-invariant, we have $\widehat{\alpha}_{\Phi} \subset \bigcap_{g \in G} \Phi^{g} \widehat{\eta} \subset \widehat{\eta}$. Therefore, applying the inequality (4.3), we get

$$
\begin{align*}
h(\alpha, \Phi) & \leq h\left(\xi_{p}, \Phi\right)-H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-} \vee \widehat{\eta}\right)+H\left(\alpha \mid \widehat{\alpha}^{-} \vee\left(\widehat{\xi}_{p}\right)_{\Phi}\right)  \tag{4.5}\\
& =H\left(\xi_{p} \mid \widehat{\xi}_{p}^{-}\right)-H\left(\xi_{p} \mid \widehat{\eta}\right)+H\left(\alpha \mid \widehat{\alpha}^{-} \vee\left(\widehat{\xi}_{p}\right)_{\Phi}\right) \\
& <\frac{1}{p}+H\left(\alpha \mid \widehat{\alpha}^{-} \vee\left(\widehat{\xi}_{p}\right)_{\Phi}\right) .
\end{align*}
$$

Hence taking in (4.5) the limit as $p \rightarrow \infty$ and applying (4.4) we get

$$
\begin{equation*}
h(\alpha, \Phi)=0 \tag{4.6}
\end{equation*}
$$

i.e. $\alpha$ is measurable w.r. to $\pi_{\mu}(\Phi)$, which proves (c).

Now we shall check that $R_{\eta}(x) \subset \mathbf{A}(\Phi)(x)$, for any $x \in X$. Indeed, let $y \in R_{\eta}(x), g \in \Gamma^{-1}, \varepsilon>0$ be arbitrary. We take $p \in \mathbb{N}$ with diam $\alpha_{p}<\varepsilon$. From the definition of $\eta$ we have $y \in R_{\Phi^{g^{-1}} \xi}(x)$. The relation $\xi \succeq \xi_{p} \succeq \Phi^{g_{p}^{-1}} \alpha_{p}$ gives $y \in R_{\Phi^{\left(g_{p} \cdot g\right)^{-1}} \alpha_{p}}(x)$. This means that $\left(\Phi^{g_{p} \cdot g} x, \Phi^{g_{p} \cdot g} y\right) \in R_{\alpha_{p}}$, and so $d\left(\Phi^{g_{p} \cdot g} x, \Phi^{g_{p} \cdot g} y\right)<\varepsilon$. In other words, $d\left(\Phi^{g} x, \Phi^{g} y\right)<\varepsilon$ for all $g>g_{p}$, i.e. $y \in \mathbf{A}(\Phi)(x)$.

In the proof of the next corollary we shall use the following.
REMARK 4.3. In order to show (4.6) it is enough to assume $\widehat{\alpha}_{\Phi} \subset \widehat{\eta}$. The relation $\widehat{\alpha}_{\Phi} \subset \bigcap_{g \in G} \Phi^{g} \widehat{\eta}$ is not necessary.

Let $(X, \Phi),(Y, \Psi)$ be topological $G$-actions and let $(Y, \Psi)$ be a factor of $(X, \Phi)$ given by a continuous surjection $\varphi: X \rightarrow Y$. We denote by $R_{\varphi}$ the relation $\left\{\left(x_{1}, x_{2}\right) \in X \times X ; \varphi\left(x_{1}\right)=\varphi\left(x_{2}\right)\right\}$. It is clear that $R_{\varphi}$ is a closed equivalence relation in $X$.

The following result is a generalization of Proposition 2 of [2].
Corollary 4.4. If $(X, \Phi),(Y, \Psi)$ are topological $G$-actions, $(Y, \Psi)$ is a factor of $(X, \Phi)$ with a factor map $\varphi: X \rightarrow Y$ such that $\mathbf{A}(\Phi) \subset R_{\varphi}$, then $h(\Psi)=0$.

Proof. Let $\nu \in \mathcal{P}(Y, \Psi)$ be arbitrary. We shall show that $h_{\nu}(\Psi)=0$. Applying standard methods ([4, Proposition 3.11]) one can find $\mu \in \mathcal{P}(X, \Phi)$ such that $\nu=\mu \circ \varphi^{-1}$.

Take $\eta \in \mathcal{M}(X)$ given by Theorem 4.2 for the measure $\mu$. Hence $R_{\eta} \subset \mathbf{A}(\Phi)$ and so, by our assumption $R_{\eta} \subset R_{\varphi}$. This means that

$$
\begin{equation*}
\eta \succeq \varphi^{-1}\left(\varepsilon_{Y}\right) \tag{4.7}
\end{equation*}
$$

Let $\alpha \in \mathcal{F}(Y)$ be arbitrary. We have $\varphi^{-1} \alpha \preceq \varphi^{-1}\left(\varepsilon_{Y}\right)$. Since $\varphi^{-1}\left(\varepsilon_{Y}\right)$ is $\Phi$-invariant $\left(\varphi^{-1} \alpha\right)_{\Phi} \preceq \varphi^{-1}\left(\varepsilon_{Y}\right)$. By (4.7) $\left(\varphi^{-1} \alpha\right)_{\Phi} \preceq \eta$, i.e. $\left(\varphi^{-1} \widehat{\alpha}\right)_{\Phi} \subset \widehat{\eta}$ and so applying Remark 4.3 we get

$$
h_{\nu}(\alpha, \Psi)=h_{\mu}\left(\varphi^{-1} \alpha, \Phi\right)=0
$$

Therefore $h_{\nu}(\Psi)=0$. Using the variational principle ([15], [18]) we receive $h(\Psi)=0$.

Applying the above result for $\varphi$ being the identity we obtain at once the following.

Corollary 4.5. If $\Phi$ is a topological $G$-action with $\mathbf{A}(\Phi)=\Delta$ then the topological entropy $h(\Phi)=0$.

Proposition 4.6. If $(X, \Phi)$ posesses a measure $\mu \in \mathcal{P}(X, \Phi)$ with full support such that $\pi_{\mu}(\Phi)=\mathcal{N}$ then $\mathbf{A}(\Phi)$ is dense in $X \times X$.

Proof. Let $\mu$ satisfy our assumption and let $\eta$ be the partition given by Theorem 4.2. It follows from (a), (c) that

$$
\bigcap_{g \in \Gamma} \Phi^{g} \widehat{\eta}=\bigcap_{g \in G} \Phi^{g} \widehat{\eta}=\mathcal{N} .
$$

For $g \in \Gamma$ let $\lambda_{g}$ be the following relative product:

$$
\lambda_{g}=\underset{\Phi g \widehat{\eta}}{\mu \times} .
$$

Applying Theorem 3.4 and proceeding in the same way as in the proof of Lemma 5 (iv) ([2]) we see that $\mu \times \mu$ is the weak limit

$$
\mu \times \mu=\mu \times \underset{\mathcal{N}}{ } \mu=\lim _{g \in \Gamma} \lambda_{g} .
$$

Therefore and since we deal with a closed set, we get

$$
\begin{equation*}
(\mu \times \mu)(\overline{\mathbf{A}(\Phi)}) \geq \limsup _{g \in \Gamma} \lambda_{g}(\overline{\mathbf{A}(\Phi)}) \tag{4.8}
\end{equation*}
$$

By Lemma 6 of [2] we have

$$
(\mu \times \mu)\left(R_{\eta}\right)=1
$$

and so, by the inclusion $R_{\eta} \subset \mathbf{A}(\Phi) \subset \overline{\mathbf{A}(\Phi)}$ we obtain

$$
(\mu \underset{\widehat{\eta}}{(\mu)}(\overline{\mathbf{A}(\Phi)})=1
$$

Hence the $\Phi \times \Phi$-invariance of $\mathbf{A}(\Phi)$ implies $\lambda_{g}(\overline{\mathbf{A}(\Phi)})=1, g \in G$, and therefore the inequality (4.8) implies $(\mu \times \mu)(\overline{\mathbf{A}(\Phi)})=1$, i.e. $\operatorname{Supp} \mu \times \mu \subset \overline{\mathbf{A}(\Phi)}$.

By our assumption $\operatorname{Supp} \mu=X$ and so $\operatorname{Supp} \mu \times \mu=X \times X$ which implies $\overline{\mathbf{A}(\Phi)}=X \times X$, i.e. $\mathbf{A}(\Phi)$ is dense in $X \times X$.

It is known (cf. [3]) that for any expansive homeomorphism $T$ of $X$ the asymptotic relation $\mathbf{A}(T)$ is nontrivial. We shall show that if we take $G=\mathbb{Z}^{2}$ and we equip it with the lexicographical order $\stackrel{\star}{\succ}$ then we can obtain the trivial relation $\mathbf{A}(\Phi)$ for an expansive action $\Phi$.

Example 4.7. We consider the group $\left(Y=\{0,1\}^{\mathbb{Z}^{2}},+\right)$ where + is the coordinatewise addition mod 2 . The set $Y$ is equipped with the metric

$$
d\left(x, x^{\prime}\right)=\sum_{g \in \mathbb{Z}^{2}} \frac{\left|x(g)-x^{\prime}(g)\right|}{2^{\|g\|}},
$$

where $x, x^{\prime} \in Y,\|g\|=|m|+|n|, g=(m, n) \in \mathbb{Z}^{2}$. It is clear that $(Y,+)$ is a compact metric abelian group.

Let $\Phi$ be the shift $\mathbb{Z}^{2}$-action on $Y$, i.e.

$$
\left(\Phi^{h} x\right)(g)=x(g+h), \quad x \in Y, g, h \in \mathbb{Z}^{2} .
$$

We put $F=\{(-1,-1),(0,0),(1,0),(0,1),(1,1)\}$ and $F_{g}=F+g, g \in \mathbb{Z}^{2}$. We define a continuous homomorphism $\varphi: Y \rightarrow Y$ by

$$
\varphi(x)(g)=\sum_{u \in F_{g}} x(u), \quad x \in Y, g \in \mathbb{Z}^{2}
$$

It is clear that $\varphi$ commutes with the action of $\Phi$. Hence the set $X=\operatorname{ker} \varphi$ is $\Phi$ invariant (the identity element of $Y$ is a fixed point for $\Phi$-action) and obviously compact. From now on $\Phi$ shall denote the restriction of the $\Phi$-action to the set $X$. We claim that $\Phi$ is expansive and $\mathbf{A}(\Phi)=\Delta$. The expansiveness of $\Phi$ is obvious.

Suppose $(x, y) \in \mathbf{A}(\Phi)$. There exists $g_{0}=\left(m_{0}, n_{0}\right) \stackrel{\star}{\succ}(0,0)$ such that for all $g \stackrel{\star}{\succ} g_{0}$ we have $d\left(\Phi^{g} x, \Phi^{g} y\right)<1$ and therefore

$$
x(g)=\Phi^{g} x(0,0)=\Phi^{g} y(0,0)=y(g)
$$

In particular,

$$
\begin{equation*}
x(m, n)=y(m, n) \quad \text { if } m \geq m_{0}+1 . \tag{4.9}
\end{equation*}
$$

Let $g=\left(m_{0}+1, n\right)$. Then, by definition of $X$,

$$
\sum_{u \in F_{g}} x(u)=0=\sum_{u \in F_{g}} y(u) .
$$

Due to (4.9) four summands in above sums (corresponding to $u$ 's with first coordinate greater than $m_{0}$ ) are the same, hence

$$
x\left(m_{0}, n-1\right)=y\left(m_{0}, n-1\right)
$$

thus

$$
x(m, n)=y(m, n) \quad \text { if } m \geq m_{0}
$$

and induction gives $x(g)=y(g)$ for all $g \in \mathbb{Z}^{2}$, i.e. $(x, y) \in \Delta$.
Acknowledgements. The authors would like to thank the anonymous referee for fruitful remarks which allowed to improve the initial version of this paper.

## References

[1] P. Billingsley, Ergodic Theory and Information, Wiley, New York 1965.
[2] F. Blanchard, B. Host and S. Ruette, Asymptotic pairs in positive entropy systems, Ergodic Theory Dynam. Systems 22 (2002), 671-686.
[3] B.F. Bryant and P. Walters, Asymptotic properties of expansive homeomorphisms, Math. System Theory 3 (1969), 60-66.
[4] M. Denker, Ch. Grillenberger and K. Sigmund, Ergodic theory on compact spaces, Lectures Notes Math. 527, Springer Verlag, Berlin, Heidelberg, New York, 1976.
[5] T. Downarowicz, Entropy in dynamical systems, Cambridge University Press, New Math. Monogr. 18 Cambridge, New York, Melbourne (2011).
[6] T. Downarowicz and Y. Lacroix, Topological entropy zero and asymptotic pairs, Israel J. Math. 189 (2012), 323-336.
[7] L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London (1963).
[8] F.P. Greenleaf, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Comm. Pure Appl. Math. 26 (1973), 29-46.
[9] W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-York's chaos, Topology and its applications 117 (2002), 259-272.
[10] B. Kamiński, A. Siemaszko and J. Szymański, On deterministic and Kolmogorov extensions for topological flows, Topol. Methods Nonlinear Anal. 31 (2008), 191-204.
[11] J.C. Kieffer, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probability 3 (1975), 1031-1037.
[12] N.F.G. Martin and J.W. England, Mathematical theory of entropy, Encyclopedia of Mathematics and its Applications 12, Addison-Wesley Publishing Co., Reading, Mass. 1981.
[13] W. Mlak, Hilbert spaces and operator theory, PWN - Polish Scientific Publishers, Warszawa, Kluwer Academic Publishers, Dodrecht, 1991.
[14] I. Namioka, Følner's conditions for amenable semi-groups, Math. Scand. 15 (1964), 1828.
[15] J.M. Ollagnier and D. Pinchon, The variational principle, Studia Math. 72 (1982), 151-159.
[16] V.A. Rokhlin, On the fundamental ideas of measure theory, Mat. Sb. 25 (67) (1949), 107-150.
[17] A. V. Safonov, Informational pasts in groups, Izv. Akad. Nauk. SSSR 47 (1983), 421426.
[18] A.M. Stepin and A.T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (1980), 545-549.

Wojciech Bulatek and Jerzy Szymański
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
ul. Chopina 12/18
87-100 Toruń, POLAND
E-mail address: bulatek@mat.umk.pl, jerzy@mat.umk.pl

Brunon Kamiński
Toruń School of Banking
ul. Młodzieżowa 31a
87-100 Toruń, POLAND
E-mail address: bkam@mat.umk.pl


[^0]:    2010 Mathematics Subject Classification. Primary: 37B05, 37B40; Secondary: 28D20.
    Key words and phrases. Topological $G$-action; entropy; asymptotic relation; generalized Pinsker formula; Pinsker $\sigma$-algebra.

