Topological Methods in Nonlinear Analysis Volume 47, No. 1, 2016, 43–54 DOI: 10.12775/TMNA.2015.086

O 2016 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

# ON THE ASYMPTOTIC RELATION OF TOPOLOGICAL AMENABLE GROUP ACTIONS

Wojciech Bułatek — Brunon Kamiński — Jerzy Szymański

ABSTRACT. For a topological action  $\Phi$  of a countable amenable orderable group G on a compact metric space we introduce a concept of the asymptotic relation  $\mathbf{A}(\Phi)$  and we show that  $\mathbf{A}(\Phi)$  is non-trivial if the topological entropy  $h(\Phi)$  is positive. It is also proved that if the Pinsker  $\sigma$ -algebra  $\pi_{\mu}(\Phi)$  is trivial, where  $\mu$  is an invariant measure with full support, then  $\mathbf{A}(\Phi)$  is dense. These results are generalizations of those of Blanchard, Host and Ruette ([3]) that concern the asymptotic relation for  $\mathbb{Z}$ -actions. We give an example of an expansive G-action ( $G = \mathbb{Z}^2$ ) with  $\mathbf{A}(\Phi)$  trivial which shows that the Bryant–Walters classical result ([3]) fails to be true in general case.

### 1. Introduction

One of important characteristics of topological dynamical systems with  $\mathbb{Z}$  as the group of time is the asymptotic relation. Let  $\mathbf{A}(T)$  denote the asymptotic relation of a dynamical system (X,T). It is known ([10]) that  $\mathbf{A}(T)$  is trivial (i.e. equals the diagonal relation  $\Delta$ ) for deterministic systems in the sense of [10], in particular for distal systems. On the other hand,  $\mathbf{A}(T)$  is non-trivial for expansive T (cf. [3]) and also for systems with positive topological entropy h(T) (cf. [2]). An interesting characterization of systems with zero topological entropy by use of  $\mathbf{A}(T)$  is given in [6].

<sup>2010</sup> Mathematics Subject Classification. Primary: 37B05, 37B40; Secondary: 28D20.

Key words and phrases. Topological G-action; entropy; asymptotic relation; generalized Pinsker formula; Pinsker  $\sigma$ -algebra.

If T admits an invariant probability measure  $\mu$  with full support such that T is a K-automorphism with respect to  $\mu$ , then  $\mathbf{A}(T)$  is dense in  $X \times X$  ([2], [10]).

The aim of this paper is to extend the concept of asymptoticity to topological actions of countable amenable orderable groups.

First we show that if the topological entropy  $h(\Phi)$  is positive then  $\mathbf{A}(\Phi)$  is non-trivial (Corollary 4.5).

Next we prove that if  $\Phi$  satisfies a stronger condition, namely if the Pinsker  $\sigma$ -algebra  $\pi_{\mu}(\Phi)$  is trivial for an invariant measure  $\mu$  with full support then  $\mathbf{A}(\Phi)$  is dense in  $X \times X$  (Proposition 4.6).

In order to show these results we first prove that for any invariant measure  $\mu$  there exists a measurable partition  $\eta$  with properties analogous to those of the Rokhlin extreme partitions (cf. [16]) and such that any pair of points from the same atom of  $\eta$  belongs to  $\mathbf{A}(\Phi)$ .

We also give an example of an expansive  $\mathbb{Z}^2$ -action ( $\mathbb{Z}^2$  is equipped with the lexicographical order) with  $\mathbf{A}(\Phi)$  trivial.

# 2. Preliminaries

Let (X, d) be a compact metric space and suppose  $\mu$  is a Borel probability measure on X.

We assume X is equipped with the  $\sigma$ -algebra  $\mathcal{B}$  being the completion of the Borel  $\sigma$ -algebra with respect to  $\mu$ . The extension of  $\mu$  to  $\mathcal{B}$  will be also denoted by  $\mu$ .

We denote by  $\mathcal{M}(X)$  the lattice of measurable partitions of  $(X, \mathcal{B}, \mu)$ . For the definition and basic properties of  $\mathcal{M}(X)$  we refer the reader to [16] (see also [12]). Let  $\mathcal{F}(X) \subset \mathcal{M}(X)$  denote the set of finite partitions.

For any  $\xi \in M(Y)$  we denote by  $P_{\xi} \subset Y \times Y$  the equi

For any  $\xi \in \mathcal{M}(X)$  we denote by  $R_{\xi} \subset X \times X$  the equivalence relation determined by  $\xi$  and by  $\hat{\xi}$  the  $\sigma$ -algebra of  $\xi$ -sets, i.e. measurable unions of elements of  $\xi$ . We denote by  $\mathcal{N}$  the  $\sigma$ -algebra corresponding to the trivial partition  $\nu_X$ of X.

Let  $\xi, \eta \in \mathcal{M}(X)$ . The relation  $\xi \prec \eta$  means that any atom of  $\eta$  is included in some atom of  $\xi$ .

If  $\xi \prec \eta$  then obviously  $\widehat{\xi} \subset \widehat{\eta}$ .

For a countable family  $\{\xi_t; t \in T\} \subset \mathcal{M}(X)$  we denote by  $\bigvee_{t \in T} \xi_t$  its join. It is known ([16]) that  $\bigvee_{t \in T} \xi_t \in \mathcal{M}(X)$ . Moreover, if the elements of  $\xi_t, t \in T$ , are Borel sets then the elements of  $\bigvee_{t \in T} \xi_t$  are so.

Let  $\langle G, \cdot \rangle$  be a countable amenable group equipped with a set  $\Gamma \subset G$  called an algebraic past satisfying the following conditions:

- $\Gamma \cap \Gamma^{-1} = \emptyset$ ,
- $\Gamma \cup \Gamma^{-1} \cup \{e\} = G$ ,

• 
$$\Gamma \cdot \Gamma \subset \Gamma$$
,

• 
$$g\Gamma g^{-1} \subset \Gamma$$

where e is the identity of  $G, g \in G$ .

For a finite set  $A \subset G$  we denote by |A| the number of elements of A.

It is well known that the amenability of G is equivalent to the existence of a Følner sequence  $(A_n)$  of finite subsets of G, i.e. a sequence satisfying the condition

$$\lim_{n \to \infty} \frac{|g \cdot A_n \cap A_n|}{|A_n|} = 1 \quad \text{for any } g \in G.$$

It is also known (cf. [14]) that every countable amenable group has a Følner sequence  $(A_n)$  such that

$$A_n^{-1} = A_n, \quad A_n \subset A_{n+1}, \quad n \ge 1, \quad \bigcup_{n=1}^{\infty} A_n = G$$

Such sequences will be called summing ones (cf. [8]).

The existence of an algebraic past in G is equivalent to the fact that G is orderable, i.e. there exists in G a linear order < compatible with the group operation. We have  $\Gamma = \{g \in G; g < e\}$ .

It is well-known that all free groups are orderable and abelian groups are orderable iff they are torsion free ([7]).

Let  $\mathcal{H}(X)$  be the group of all homeomorphisms of X and let  $\Phi$  be a topological action of G on X, i.e. a homeomorphism of G into  $\mathcal{H}(X)$ .

For  $g \in G$  we denote by  $\Phi^g$  the homeomorphism corresponding to g.

Let  $h(\Phi)$  be the topological entropy of  $\Phi$ . We denote by  $\mathcal{P}(X, \Phi)$  the set of all  $\Phi$ -invariant probability measures. Given a measure  $\mu \in \mathcal{P}(X, \Phi)$  we use  $h_{\mu}(\Phi)$  and  $\pi_{\mu}(\Phi)$  for the entropy and the Pinsker  $\sigma$ -algebra of  $\Phi$ , respectively.

The generalized variational principle ([15], [18]) says that

$$h(\Phi) = \sup\{h_{\mu}(\Phi); \mu \in \mathcal{P}(X, \Phi)\}\$$

## 3. Generalized Pinsker formula

Let  $\mu \in \mathcal{P}(X, \Phi)$ . From now up to the proof of Corollary 4.4 we will omit subscript  $\mu$  in the notation of entropies  $H_{\mu}$  and  $h_{\mu}$ .

For a partition  $\xi \in \mathcal{M}(X)$  and a set  $A \subset G$  we put

$$\xi(A) = \bigvee_{g \in A} \Phi^g \xi.$$

Let  $\xi^- = \xi(\Gamma)$ ,  $\xi_{\Phi} = \xi(G)$ . Let  $\sigma \in \mathcal{M}(X)$  be totally invariant, i.e.  $\sigma_{\Phi} = \sigma$ .

Proceeding in the same manner as Safonov in the proof of Theorem 1 ([17]) we obtain the following relative version of that theorem. Namely, we have

PROPOSITION 3.1. For any Følner sequence  $(A_n)$  in G and any  $\xi \in \mathcal{F}(X)$  it holds that

$$\lim_{n \to \infty} \frac{1}{|A_n|} H(\xi(A_n)|\widehat{\sigma}) = H(\xi|\widehat{\xi}^- \lor \widehat{\sigma}).$$

Taking  $\sigma = \nu_X$  (i.e.  $\hat{\sigma} = \mathcal{N}$ ) we put

$$h(\xi, \Phi) = \lim_{n \to \infty} \frac{1}{|A_n|} H(\xi(A_n)) = H(\xi|\widehat{\xi}^-)$$

and we call this limit the mean entropy of  $\xi$  w.r. to  $\Phi$ .

LEMMA 3.2. If  $A \subset G$  is finite, then

$$h(\xi(A), \Phi) = h(\xi, \Phi).$$

**PROOF.** Let  $(A_n)$  be a Følner sequence. It is easy to see that

$$H([\xi(A)](A_n)) = H\left(\bigvee_{g \in A_n} \Phi^g \xi(A)\right) = H(\xi(A_n \cdot A))$$

for any  $n \ge 1$ . It is also easy to check that  $(A_n \cdot A)_{n\ge 1}$  is a Følner sequence and

$$\lim_{n \to \infty} \frac{|A_n \cdot A|}{|A_n|} = 1$$

which implies our result.

Next three results are generalizations of facts well-known in the case of  $\mathbb{Z}$ -actions (see for example [5]).

LEMMA 3.3 (generalized Pinsker formula). For any  $\xi, \eta \in \mathcal{F}(X)$  we have

$$h(\xi \lor \eta, \Phi) = h(\xi, \Phi) + H(\eta | \widehat{\eta}^- \lor \widehat{\xi}_{\Phi}).$$

PROOF. Let  $(A_n)$  be a summing sequence and let  $\xi_n = \xi(A_n)$ ,  $\eta_n = \eta(A_n)$ , for  $n \ge 1$ . We have

$$H(\xi_n \vee \eta_n) = H(\xi_n) + H(\eta_n | \xi_n) \ge H(\xi_n) + H(\eta_n | \widehat{\xi_{\Phi}}) \quad \text{for all } n \ge 1.$$

Hence, dividing both sides of the above inequality by  $|A_n|$ , taking the limit as  $n \to \infty$  and applying Proposition 3.1, we get

$$h(\xi \lor \eta, \Phi) \ge h(\xi, \Phi) + H(\eta | \widehat{\eta}^- \lor \widehat{\xi}_{\Phi}).$$

To prove the converse inequality we take  $n_0$  such that  $e \in A_{n_0}$  and let  $n > n_0$ . Applying Proposition 3.1, Lemma 3.2 and simple properties of entropy we have

$$\begin{split} h(\xi \lor \eta, \Phi) &\leq h(\xi_n \lor \eta, \Phi) = H(\xi_n \lor \eta | \widehat{\xi}_n^- \lor \widehat{\eta}^-) \\ &= H(\xi_n | \widehat{\xi}_n^- \lor \widehat{\eta}^-) + H(\eta | \widehat{\xi}_n \lor \widehat{\xi}_n^- \lor \widehat{\eta}^-) \leq H(\xi_n | \widehat{\xi}_n^-) + H(\eta | \widehat{\eta}^- \lor \widehat{\xi}_n) \\ &= h(\xi_n, \Phi) + H(\eta | \widehat{\eta}^- \lor \widehat{\xi}_n) = h(\xi, \Phi) + H(\eta | \widehat{\eta}^- \lor \widehat{\xi}_n). \end{split}$$

Since  $A_n \nearrow G$  we have  $\xi_n \nearrow \xi_{\Phi}$  and so taking the limit in the above inequality as  $n \to \infty$  we get

$$h(\xi \lor \eta, \Phi) \le h(\xi, \Phi) + H(\eta | \hat{\eta}^- \lor \hat{\xi}_{\Phi})$$

which completes the proof.

Let  $(\mathcal{A}_g)_{g\in G}$  be a net of sub- $\sigma$ -algebras of  $\mathcal{B}$ . We denote by  $\bigvee_{g\in G} \mathcal{A}_g$  the smallest  $\sigma$ -algebra containing all  $\mathcal{A}_g$  and by  $\bigcap_{g\in G} \mathcal{A}_g$  the intersection of all  $\mathcal{A}_g$ ,  $g \in G$ . We say that  $(\mathcal{A}_g)_{g\in g}$  is increasing (decreasing) if for any  $g_1, g_2 \in G$  such that  $g_1 < g_2$  we have  $\mathcal{A}_{g_1} \subset \mathcal{A}_{g_2}$   $(\mathcal{A}_{g_1} \supset \mathcal{A}_{g_2})$ .

THEOREM 3.4 (Martingale Convergence Theorem). If the net  $(\mathcal{A}_g)_{g\in G}$  of sub- $\sigma$ -algebras of  $\mathcal{B}$  is increasing (decreasing), then for every  $f \in L^2(X,\mu)$  it holds

$$\lim_{g \in G} E(f|\mathcal{A}_g) = E\left(f \middle| \bigvee_{g \in G} \mathcal{A}_g\right) \qquad \left(E\left(f \middle| \bigcap_{g \in G} \mathcal{A}_g\right)\right)$$

in the  $L^2$ -norm.

One can show this theorem applying standard methods of the theory of projections of Hilbert space (cf. [13]).

In the proof of the next proposition we need the following corollary of the above theorem.

COROLLARY 3.5. If the net  $(\mathcal{A}_g)_{g\in G}$  is increasing (decreasing), then for every partition  $\xi \in \mathcal{F}(X)$  we have

$$\lim_{g \in G} H(\xi | \mathcal{A}_g) = H\left(\xi \Big| \bigvee_{g \in G} \mathcal{A}_g\right) \qquad \left(H\left(\xi \Big| \bigcap_{g \in G} \mathcal{A}_g\right)\right).$$

The proof of this corollary is based on the fact that the convergence in the  $L^2$ -norm implies the convergence in measure  $\mu$  and on the natural generalization of the Lebesgue dominated convergence theorem for the nets of functions indexed by G.

PROPOSITION 3.6. For any  $\xi, \eta, \zeta \in \mathcal{F}(X)$  with  $\xi \leq \eta$  we have

$$\lim_{g\in\Gamma} H(\xi|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^-) = H(\xi|\widehat{\eta}^-)$$

PROOF. First we consider the case  $\xi = \eta$ . By Lemma 3.3 and the invariance of  $\mu$  w.r. to  $\Phi$ , we have

$$h(\xi \vee \Phi^g \zeta, \Phi) = h(\xi, \Phi) + H(\Phi^g \zeta | \Phi^g \widehat{\zeta}^- \vee \widehat{\xi}_{\Phi}) = h(\xi, \Phi) + H(\zeta | \widehat{\zeta}^- \vee \widehat{\xi}_{\Phi}), \quad g \in \Gamma.$$

On the other hand,

$$\begin{split} h(\xi \vee \Phi^g \zeta, \Phi) &= H(\xi \vee \Phi^g \zeta | \widehat{\xi}^- \vee \Phi^g \widehat{\zeta}^-) \\ &= H(\Phi^g \zeta | \widehat{\xi}^- \vee \Phi^g \widehat{\zeta}^-) + H(\xi | \widehat{\xi}^- \vee \Phi^g (\widehat{\zeta} \vee \widehat{\zeta}^-)) \\ &= H(\zeta | \widehat{\zeta}^- \vee \Phi^{g^{-1}} \widehat{\xi}^-) + H(\xi | \widehat{\xi}^- \vee \Phi^g (\widehat{\zeta} \vee \widehat{\zeta}^-)). \end{split}$$

Combining the two above equalities, we get

$$\begin{split} h(\xi,\Phi) &= H(\xi|\widehat{\xi}^- \vee \Phi^g(\widehat{\zeta} \vee \widehat{\zeta}^-)) + H(\zeta|\widehat{\zeta}^- \vee \Phi^{g^{-1}}\widehat{\xi}^-) - H(\zeta|\widehat{\zeta}^- \vee \widehat{\xi}_{\Phi}) \\ &\leq H(\xi|\widehat{\xi}^- \vee \Phi^g\widehat{\zeta}^-) + H(\zeta|\widehat{\zeta}^- \vee \Phi^{g^{-1}}\widehat{\xi}^-) - H(\zeta|\widehat{\zeta}^- \vee \widehat{\xi}_{\Phi}). \end{split}$$

From Corollary 3.5 we get

$$\lim_{g\in\Gamma} H(\zeta|\widehat{\zeta}^- \vee \Phi^{g^{-1}}\widehat{\xi}^-) = H(\zeta|\widehat{\zeta}^- \vee \widehat{\xi}_{\Phi}).$$

Therefore

$$\lim_{g\in\Gamma} H(\xi|\widehat{\xi}^- \vee \Phi^g\widehat{\zeta}^-) \ge h(\xi,\Phi) = H(\xi|\widehat{\xi}^-).$$

Since the converse inequality is obvious we obtain the desired equality.

Now, let  $\xi \leq \eta$ . Thus we have

$$\begin{split} H(\xi|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^-) &= H(\xi \vee \eta|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^-) - H(\eta|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^- \vee \widehat{\xi}) \\ &= H(\eta|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^-) - H(\eta|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^- \vee \widehat{\xi}) \\ &\geq H(\eta|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^-) - H(\eta|\widehat{\eta}^- \vee \widehat{\xi}). \end{split}$$

By the first part of the proof, we get

$$\begin{split} \lim_{g\in\Gamma} H(\xi|\widehat{\eta}^- \vee \Phi^g \widehat{\zeta}^-) &\geq H(\eta|\widehat{\eta}^-) - H(\eta|\widehat{\eta}^- \vee \widehat{\xi}) \\ &= H(\xi \vee \eta|\widehat{\eta}^-) - H(\eta|\widehat{\eta}^- \vee \widehat{\xi}) = H(\xi|\widehat{\eta}^-). \end{split}$$

Since the converse inequality is clear we obtain the result.

#### 4. Asymptotic relation

DEFINITION 4.1. For a given topological G-action  $\Phi$  on X the relation

$$\mathbf{A}(\Phi) = \left\{ (x, x') \in X \times X; \lim_{g \in \Gamma^{-1}} d(\Phi^g x, \Phi^g x') = 0 \right\}$$

is said to be the asymptotic relation of  $\Phi$ .

The limit in the above definition has the following meaning:

 $\forall \varepsilon > 0 \quad \exists \, g_0 \in \Gamma^{-1} \quad \forall \, g > g_0 \qquad d(\Phi^g x, \Phi^g x') < \varepsilon.$ 

It is clear that  $\mathbf{A}(\Phi)$  is an equivalence relation.

THEOREM 4.2. There exists a partition  $\eta \in \mathcal{M}(X)$  with (a)  $\Phi^g \eta \preceq \eta, \ g \in \Gamma$ ,

- (b)  $\bigvee_{g \in G} \Phi^g \widehat{\eta} = \mathcal{B},$ (c)  $\bigcap_{g \in G} \Phi^g \widehat{\eta} \subset \pi_\mu(\Phi),$ (d)  $R_\eta \subset \mathbf{A}(\Phi),$

where  $R_{\eta}$  denotes the equivalence relation associated with  $\eta$ .

**PROOF.** Let  $(\alpha_n) \subset \mathcal{F}(X)$  be a sequence of Borel measurable partitions such that

(4.1) 
$$\alpha_n \preceq \alpha_{n+1}, n \in \mathbb{N} \text{ and } \operatorname{diam} \alpha_n \to 0 \text{ as } n \to \infty.$$

It is well-known (cf. [1]) that  $\alpha_n, n \ge 1$ , generate the Borel  $\sigma$ -algebra.

Now we modify  $(\alpha_n)$ , applying a technique similar to that of Rokhlin from [16], to get a new sequence  $(\xi_p) \subset \mathcal{F}(X)$  with

(4.2) 
$$H(\xi_p | \hat{\xi}_p^-) - H(\xi_p | \hat{\xi}_{p+t}^-) < \frac{1}{p} \quad \text{for any } p, t \ge 1.$$

For a sequence  $(g_k) \subset G$  with  $g_k < g_{k+1}, k \in \mathbb{N}$ , we put

$$\xi_p = \bigvee_{k=1}^p \Phi^{g_k^{-1}} \alpha_k, \quad p \ge 1.$$

Now we shall choose  $(g_k)$  in such a way that (4.2) holds. Let  $g_1 \in G$  be arbitrary. Suppose that  $g_1, \ldots, g_{j-1}$  are defined. Applying Proposition 3.6, we choose  $g_j > g_{j-1}$  such that

$$H(\xi_i|\widehat{\xi}_{j-1}^-) - H(\xi_i|\widehat{\xi}_j^-) < \frac{1}{i} \cdot \frac{1}{2^{j-i}}, \quad 1 \le i \le j-1.$$

Now let  $p, t \ge 1$  be arbitrary. We have

$$H(\xi_p|\hat{\xi}_p^-) - H(\xi_p|\hat{\xi}_{p+t}^-) = \sum_{j=p}^{p+t-1} (H(\xi_p|\hat{\xi}_j^-) - H(\xi_p|\hat{\xi}_{j+1}^-)) < \frac{1}{p} \cdot \sum_{j=1}^{t-1} \frac{1}{2^j} < \frac{1}{p}.$$

We put

$$\xi = \bigvee_{p=1}^{\infty} \xi_p, \quad \eta = \xi^-.$$

Taking in (4.2) the limit as  $t \to \infty$  we get

(4.3) 
$$H(\xi_p|\widehat{\xi}_p^-) - H(\xi_p|\widehat{\eta}) < \frac{1}{p}, \quad p \ge 1.$$

It is clear that  $\eta$  satisfies (a).

In order to prove (b) observe that taking any  $h \in \Gamma$  we get

$$\bigvee_{g \in G} \Phi^{g} \widehat{\eta} = \bigvee_{g \in G} \bigvee_{h \in \Gamma} \bigvee_{p=1}^{\infty} \Phi^{g \cdot h} \widehat{\xi}_{p} \supset \bigvee_{g \in G} \bigvee_{p=1}^{\infty} \Phi^{g \cdot h} \widehat{\xi}_{p}$$
$$\supset \bigvee_{p=1}^{\infty} \bigvee_{k=1}^{p} \Phi^{g_{k} \cdot h^{-1} \cdot h \cdot g_{k}^{-1}} \widehat{\alpha}_{k} = \bigvee_{p=1}^{\infty} \widehat{\alpha}_{p},$$

49

i.e. (b) is satisfied. Since  $(\widehat{\xi}_p)_{\Phi}$  contains  $\widehat{\alpha}_p$  for all  $p \ge 1$ , we have

(4.4) 
$$\bigvee_{p=1}^{\infty} (\widehat{\xi}_p)_{\Phi} = \mathcal{B}$$

Now we shall show that (c) is also true. Indeed, let  $\alpha \in \mathcal{F}(X)$  be measurable w.r. to  $\bigcap_{\alpha \in \mathcal{F}} \Phi^g \hat{\eta}$  and let  $p \in \mathbb{N}$ . Applying Lemma 3.3 we have

$$h(\alpha \vee \xi_p, \Phi) = h(\alpha, \Phi) + H(\xi_p | \widehat{\xi}_p^- \vee \widehat{\alpha}_\Phi) = h(\xi_p, \Phi) + H(\alpha | \widehat{\alpha}^- \vee (\widehat{\xi}_p)_\Phi).$$

Hence

$$h(\alpha, \Phi) = h(\xi_p, \Phi) - H(\xi_p | \widehat{\xi}_p^- \lor \widehat{\alpha}_\Phi) + H(\alpha | \widehat{\alpha}^- \lor (\widehat{\xi}_p)_\Phi)$$

Since the  $\sigma$ -algebra  $\bigcap_{g \in G} \Phi^g \widehat{\eta}$  is  $\Phi$ -invariant, we have  $\widehat{\alpha}_{\Phi} \subset \bigcap_{g \in G} \Phi^g \widehat{\eta} \subset \widehat{\eta}$ . Therefore, applying the inequality (4.3), we get

$$(4.5) h(\alpha, \Phi) \le h(\xi_p, \Phi) - H(\xi_p | \widehat{\xi}_p^- \lor \widehat{\eta}) + H(\alpha | \widehat{\alpha}^- \lor (\widehat{\xi}_p)_{\Phi}) = H(\xi_p | \widehat{\xi}_p^-) - H(\xi_p | \widehat{\eta}) + H(\alpha | \widehat{\alpha}^- \lor (\widehat{\xi}_p)_{\Phi}) < \frac{1}{p} + H(\alpha | \widehat{\alpha}^- \lor (\widehat{\xi}_p)_{\Phi}).$$

Hence taking in (4.5) the limit as  $p \to \infty$  and applying (4.4) we get

(4.6) 
$$h(\alpha, \Phi) = 0,$$

i.e.  $\alpha$  is measurable w.r. to  $\pi_{\mu}(\Phi)$ , which proves (c).

Now we shall check that  $R_{\eta}(x) \subset \mathbf{A}(\Phi)(x)$ , for any  $x \in X$ . Indeed, let  $y \in R_{\eta}(x), g \in \Gamma^{-1}, \varepsilon > 0$  be arbitrary. We take  $p \in \mathbb{N}$  with diam  $\alpha_p < \varepsilon$ . From the definition of  $\eta$  we have  $y \in R_{\Phi^{g^{-1}}\xi}(x)$ . The relation  $\xi \succeq \xi_p \succeq \Phi^{g_p^{-1}}\alpha_p$  gives  $y \in R_{\Phi^{(g_p,g)^{-1}}\alpha_p}(x)$ . This means that  $(\Phi^{g_p,g}x, \Phi^{g_p,g}y) \in R_{\alpha_p}$ , and so  $d(\Phi^{g_p,g}x, \Phi^{g_p,g}y) < \varepsilon$ . In other words,  $d(\Phi^g x, \Phi^g y) < \varepsilon$  for all  $g > g_p$ , i.e.  $y \in \mathbf{A}(\Phi)(x)$ .

In the proof of the next corollary we shall use the following.

REMARK 4.3. In order to show (4.6) it is enough to assume  $\widehat{\alpha}_{\Phi} \subset \widehat{\eta}$ . The relation  $\widehat{\alpha}_{\Phi} \subset \bigcap_{g \in G} \Phi^g \widehat{\eta}$  is not necessary.

Let  $(X, \Phi)$ ,  $(Y, \Psi)$  be topological *G*-actions and let  $(Y, \Psi)$  be a factor of  $(X, \Phi)$  given by a continuous surjection  $\varphi \colon X \to Y$ . We denote by  $R_{\varphi}$  the relation  $\{(x_1, x_2) \in X \times X; \varphi(x_1) = \varphi(x_2)\}$ . It is clear that  $R_{\varphi}$  is a closed equivalence relation in X.

The following result is a generalization of Proposition 2 of [2].

COROLLARY 4.4. If  $(X, \Phi)$ ,  $(Y, \Psi)$  are topological G-actions, $(Y, \Psi)$  is a factor of  $(X, \Phi)$  with a factor map  $\varphi \colon X \to Y$  such that  $\mathbf{A}(\Phi) \subset R_{\varphi}$ , then  $h(\Psi) = 0$ . PROOF. Let  $\nu \in \mathcal{P}(Y, \Psi)$  be arbitrary. We shall show that  $h_{\nu}(\Psi) = 0$ . Applying standard methods ([4, Proposition 3.11]) one can find  $\mu \in \mathcal{P}(X, \Phi)$  such that  $\nu = \mu \circ \varphi^{-1}$ .

Take  $\eta \in \mathcal{M}(X)$  given by Theorem 4.2 for the measure  $\mu$ . Hence  $R_{\eta} \subset \mathbf{A}(\Phi)$ and so, by our assumption  $R_{\eta} \subset R_{\varphi}$ . This means that

(4.7) 
$$\eta \succeq \varphi^{-1}(\varepsilon_Y).$$

Let  $\alpha \in \mathcal{F}(Y)$  be arbitrary. We have  $\varphi^{-1}\alpha \preceq \varphi^{-1}(\varepsilon_Y)$ . Since  $\varphi^{-1}(\varepsilon_Y)$  is  $\Phi$ -invariant  $(\varphi^{-1}\alpha)_{\Phi} \preceq \varphi^{-1}(\varepsilon_Y)$ . By (4.7)  $(\varphi^{-1}\alpha)_{\Phi} \preceq \eta$ , i.e.  $(\varphi^{-1}\widehat{\alpha})_{\Phi} \subset \widehat{\eta}$  and so applying Remark 4.3 we get

$$h_{\nu}(\alpha, \Psi) = h_{\mu}(\varphi^{-1}\alpha, \Phi) = 0.$$

Therefore  $h_{\nu}(\Psi) = 0$ . Using the variational principle ([15], [18]) we receive  $h(\Psi) = 0$ .

Applying the above result for  $\varphi$  being the identity we obtain at once the following.

COROLLARY 4.5. If  $\Phi$  is a topological G-action with  $\mathbf{A}(\Phi) = \Delta$  then the topological entropy  $h(\Phi) = 0$ .

PROPOSITION 4.6. If  $(X, \Phi)$  possesses a measure  $\mu \in \mathcal{P}(X, \Phi)$  with full support such that  $\pi_{\mu}(\Phi) = \mathcal{N}$  then  $\mathbf{A}(\Phi)$  is dense in  $X \times X$ .

PROOF. Let  $\mu$  satisfy our assumption and let  $\eta$  be the partition given by Theorem 4.2. It follows from (a), (c) that

$$\bigcap_{g\in\Gamma} \Phi^g \widehat{\eta} = \bigcap_{g\in G} \Phi^g \widehat{\eta} = \mathcal{N}.$$

For  $g \in \Gamma$  let  $\lambda_g$  be the following relative product:

$$\lambda_g = \underset{\Phi^g \widehat{\eta}}{\mu \times \mu}.$$

Applying Theorem 3.4 and proceeding in the same way as in the proof of Lemma 5 (iv) ([2]) we see that  $\mu \times \mu$  is the weak limit

$$\mu \times \mu = \mu \underset{\mathcal{N}}{\times} \mu = \lim_{g \in \Gamma} \lambda_g.$$

Therefore and since we deal with a closed set, we get

(4.8) 
$$(\mu \times \mu)(\overline{\mathbf{A}(\Phi)}) \ge \limsup_{g \in \Gamma} \lambda_g(\overline{\mathbf{A}(\Phi)}).$$

By Lemma 6 of [2] we have

$$(\mu \times \mu)(R_{\eta}) = 1$$
$$_{\widehat{\eta}}$$

and so, by the inclusion  $R_{\eta} \subset \mathbf{A}(\Phi) \subset \overline{\mathbf{A}(\Phi)}$  we obtain

$$(\mu \times \mu)(\overline{\mathbf{A}(\Phi)}) = 1.$$

Hence the  $\Phi \times \Phi$ -invariance of  $\mathbf{A}(\Phi)$  implies  $\lambda_g(\overline{\mathbf{A}(\Phi)}) = 1, g \in G$ , and therefore the inequality (4.8) implies  $(\mu \times \mu)(\overline{\mathbf{A}(\Phi)}) = 1$ , i.e. Supp  $\mu \times \mu \subset \overline{\mathbf{A}(\Phi)}$ .

By our assumption  $\operatorname{Supp} \mu = X$  and so  $\operatorname{Supp} \mu \times \mu = X \times X$  which implies  $\overline{\mathbf{A}(\Phi)} = X \times X$ , i.e.  $\mathbf{A}(\Phi)$  is dense in  $X \times X$ .

It is known (cf. [3]) that for any expansive homeomorphism T of X the asymptotic relation  $\mathbf{A}(T)$  is nontrivial. We shall show that if we take  $G = \mathbb{Z}^2$  and we equip it with the lexicographical order  $\succeq$  then we can obtain the trivial relation  $\mathbf{A}(\Phi)$  for an expansive action  $\Phi$ .

EXAMPLE 4.7. We consider the group  $(Y = \{0, 1\}^{\mathbb{Z}^2}, +)$  where + is the coordinatewise addition mod 2. The set Y is equipped with the metric

$$d(x, x') = \sum_{g \in \mathbb{Z}^2} \frac{|x(g) - x'(g)|}{2^{\|g\|}}$$

where  $x, x' \in Y$ , ||g|| = |m| + |n|,  $g = (m, n) \in \mathbb{Z}^2$ . It is clear that (Y, +) is a compact metric abelian group.

Let  $\Phi$  be the shift  $\mathbb{Z}^2$ -action on Y, i.e.

$$(\Phi^h x)(g) = x(g+h), \quad x \in Y, \ g, h \in \mathbb{Z}^2.$$

We put  $F = \{(-1, -1), (0, 0), (1, 0), (0, 1), (1, 1)\}$  and  $F_g = F + g, g \in \mathbb{Z}^2$ . We define a continuous homomorphism  $\varphi \colon Y \to Y$  by

$$\varphi(x)(g) = \sum_{u \in F_g} x(u), \quad x \in Y, \ g \in \mathbb{Z}^2.$$

It is clear that  $\varphi$  commutes with the action of  $\Phi$ . Hence the set  $X = \ker \varphi$  is  $\Phi$ invariant (the identity element of Y is a fixed point for  $\Phi$ -action) and obviously compact. From now on  $\Phi$  shall denote the restriction of the  $\Phi$ -action to the set X. We claim that  $\Phi$  is expansive and  $\mathbf{A}(\Phi) = \Delta$ . The expansiveness of  $\Phi$  is obvious.

Suppose  $(x, y) \in \mathbf{A}(\Phi)$ . There exists  $g_0 = (m_0, n_0) \stackrel{\star}{\succ} (0, 0)$  such that for all  $g \stackrel{\star}{\succ} g_0$  we have  $d(\Phi^g x, \Phi^g y) < 1$  and therefore

$$x(g) = \Phi^g x(0,0) = \Phi^g y(0,0) = y(g).$$

In particular,

(4.9) 
$$x(m,n) = y(m,n) \text{ if } m \ge m_0 + 1.$$

Let  $g = (m_0 + 1, n)$ . Then, by definition of X,

$$\sum_{u \in F_g} x(u) = 0 = \sum_{u \in F_g} y(u).$$

Due to (4.9) four summands in above sums (corresponding to u's with first coordinate greater than  $m_0$ ) are the same, hence

$$x(m_0, n-1) = y(m_0, n-1),$$

thus

$$x(m,n) = y(m,n)$$
 if  $m \ge m_0$ 

and induction gives x(g) = y(g) for all  $g \in \mathbb{Z}^2$ , i.e.  $(x, y) \in \Delta$ .

Acknowledgements. The authors would like to thank the anonymous referee for fruitful remarks which allowed to improve the initial version of this paper.

#### References

- [1] P. BILLINGSLEY, Ergodic Theory and Information, Wiley, New York 1965.
- [2] F. BLANCHARD, B. HOST AND S. RUETTE, Asymptotic pairs in positive entropy systems, Ergodic Theory Dynam. Systems 22 (2002), 671–686.
- B.F. BRYANT AND P. WALTERS, Asymptotic properties of expansive homeomorphisms, Math. System Theory 3 (1969), 60–66.
- [4] M. DENKER, CH. GRILLENBERGER AND K. SIGMUND, Ergodic theory on compact spaces, Lectures Notes Math. 527, Springer Verlag, Berlin, Heidelberg, New York, 1976.
- [5] T. DOWNAROWICZ, Entropy in dynamical systems, Cambridge University Press, New Math. Monogr. 18 Cambridge, New York, Melbourne (2011).
- [6] T. DOWNAROWICZ AND Y. LACROIX, Topological entropy zero and asymptotic pairs, Israel J. Math. 189 (2012), 323–336.
- [7] L. FUCHS, Partially ordered algebraic systems, Pergamon Press, Oxford; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London (1963).
- [8] F.P. GREENLEAF, Ergodic theorems and the construction of summing sequences in amenable locally compact groups, Comm. Pure Appl. Math. 26 (1973), 29–46.
- W. HUANG AND X. YE, Devaney's chaos or 2-scattering implies Li-York's chaos, Topology and its applications 117 (2002), 259–272.
- [10] B. KAMIŃSKI, A. SIEMASZKO AND J. SZYMAŃSKI, On deterministic and Kolmogorov extensions for topological flows, Topol. Methods Nonlinear Anal. 31 (2008), 191–204.
- [11] J.C. KIEFFER, A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Probability 3 (1975), 1031–1037.
- [12] N.F.G. MARTIN AND J.W. ENGLAND, Mathematical theory of entropy, Encyclopedia of Mathematics and its Applications 12, Addison-Wesley Publishing Co., Reading, Mass. 1981.
- [13] W. MLAK, Hilbert spaces and operator theory, PWN Polish Scientific Publishers, Warszawa, Kluwer Academic Publishers, Dodrecht, 1991.
- [14] I. NAMIOKA, Følner's conditions for amenable semi-groups, Math. Scand. 15 (1964), 18– 28.
- [15] J.M. OLLAGNIER AND D. PINCHON, The variational principle, Studia Math. 72 (1982), 151–159.
- [16] V.A. ROKHLIN, On the fundamental ideas of measure theory, Mat. Sb. 25 (67) (1949), 107–150.
- [17] A. V. SAFONOV, Informational pasts in groups, Izv. Akad. Nauk. SSSR 47 (1983), 421– 426.

[18] A.M. STEPIN AND A.T. TAGI-ZADE, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (1980), 545–549.

> Manuscript received May 6, 2014 accepted October 23, 2015

WOJCIECH BULATEK AND JERZY SZYMAŃSKI
Faculty of Mathematics and Computer Science
Nicolaus Copernicus University
ul. Chopina 12/18
87-100 Toruń, POLAND
E-mail address: bulatek@mat.umk.pl, jerzy@mat.umk.pl

BRUNON KAMIŃSKI Toruń School of Banking ul. Młodzieżowa 31a 87-100 Toruń, POLAND *E-mail address*: bkam@mat.umk.pl

54

 $\mathit{TMNA}$  : Volume 47 – 2016 –  $\mathrm{N^{o}}\,1$