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MULTIPLE SOLUTIONS TO THE BAHRI–CORON PROBLEM

IN A BOUNDED DOMAIN

WITHOUT A THIN NEIGHBORHOOD OF A MANIFOLD

Mónica Clapp — Juan Carlos Fernández

Abstract. We show that the critical problem

−∆u = |u|4/(N−2)u in Ω, u = 0 on ∂Ω,

has at least

max{cat(Θ,Θ \BrM), cupl(Θ,Θ \BrM) + 1} ≥ 2

pairs of nontrivial solutions in every domain Ω obtained by deleting from

a given bounded smooth domain Θ ⊂ RN a thin enough tubular neighbor-

hood BrM of a closed smooth submanifold M of Θ of dimension ≤ N − 2,
where “cat” is the Lusternik–Schnirelmann category and “cupl” is the cup-

length of the pair.

1. Introduction

Let Θ be a bounded smooth domain in RN , N ≥ 3, and let M be a compact

smooth submanifold of RN , without boundary, contained in Θ. Consider the

problem

(1.1)

−∆u = |u|2∗−2u in Θr,

u = 0 on ∂Θr,
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where 2∗ := 2N/(N − 2) is the critical Sobolev exponent and

Θr := {x ∈ Θ : dist(x,M) > r}, r > 0.

Our aim is to establish multiplicity of solutions for r small.

If M is a point and r is small enough, Coron showed in [9] that this problem

has at least one positive solution. The existence of at least two solutions was

established by Clapp and Weth in [8]. More recently, Ge, Musso and Pistoia [14]

proved that the number of sign changing solutions becomes arbitrarily large as r

goes to zero. Their solutions are bubble-towers, i.e. they look like superpositions

of standard bubbles with alternating signs concentrating at the point M . Under

additional assumptions, positive and sign changing solutions which look like

a sum of standard bubbles one of which concentrates at the point M and the

others at some points in Θ \M were constructed in [6]. There are also various

results on the existence and shape of solutions to this problem when M is a finite

set of points and r is small enough, see e.g. [16], [17], [18], [19].

In contrast to this, if M has positive dimension only few results are known.

Hirano and Shioji established the existence of two solutions in an annular do-

main with a thin straight tunnel in [15]. Some multiplicity results were recently

obtained by Clapp, Grossi and Pistoia in [5] when both Θ and M are invariant

under the action of some group of symmetries. They also showed that, without

any symmetry assumption, this problem has at least cat(Θ,Θr) positive solutions

for small enough r, where cat(Θ,Θr) is the Lusternik-Schnirelmann category of

the pair (Θ,Θr).

Here we show that for some domains there is an additional solution. We write

cupl(Θ,Θr) for the cup-length of the pair (Θ,Θr). The definitions of category

and cup-length are given in appendix A. We prove the following result.

Theorem 1.1. Assume that dimM ≤ N − 2. Then there exists r0 > 0 such

that, if Ω is a bounded smooth domain in RN which satisfies

M ∩ Ω = ∅ and Θr ⊂ Ω ⊂ Θ,

for some r ∈ (0, r0), then problem

(1.2)

−∆u = |u|2∗−2u in Ω,

u = 0 on ∂Ω,

has at least max{cat(Θ,Θr), cupl(Θ,Θr) + 1} ≥ 2 pairs of nontrivial solutions.

It is well known that cat(Θ,Θr) ≥ cupl(Θ,Θr) (see Lemma A.3). So The-

orem 1.1 improves Corollary 1.2 in [5] when cat(Θ,Θr) = cupl(Θ,Θr). There

are some interesting situations in which this occurs. For example, the following

ones.
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Example 1.2. If M is contractible in Θ, then cat(Θ,Θr) = cupl(Θ,Θr) = 1

for r small enough.

Example 1.3. If Θ is a tubular neighborhood of M and cat(M) = cupl(M),

then cat(Θ,Θr) = cupl(Θ,Θr) = cupl(M) for r small enough.

Examples of manifolds M such that cat(M) = cupl(M) are those having the

homotopy type of a sphere Sk, of a real RP k, a complex CP k or a quaternionic

HP k projective space, or of a product of such spaces.

Note that both cat(Θ,Θr) and cupl(Θ,Θr) depend on the embedding of M

into Θ. For example, if M is the circle C := {(x1, x2, 0) ∈ R3 : x2
1 + x2

2 = 1} and

Θ is the torus {x ∈ R3 : dist(x,C) < 1/2}, then Θ is a tubular neighborhood of

M and Example 1.3 gives

cat(Θ,Θr) = cupl(Θ,Θr) = cupl(S1) = 2

for r ∈ (0, 1/2). On the other hand, if M is the circle {(x1, 0, x3) ∈ R3 :

(x1 − 1)2 + x2
3 = 1/4}, then Example 1.2 gives cat(Θ,Θr) = cupl(Θ,Θr) = 1

for r ∈ (0, 1/4). Theorem 1.1 asserts the existence of three solutions in the first

case, and two solutions in the second one.

As we shall show in Proposition 4.1, at least cat(Θ,Θr) ≥ 1 solutions are pos-

itive. Our methods do not allow us to conclude whether the additional solution

is sign changing or not.

We wish to stress the fact that multiplicity results for problem (1.2) are

only available for some particular types of domains. A remarkable result ob-

tained by Bahri and Coron [1] establishes the existence of at least one positive

solution to (1.2) in every domain Ω having nontrivial reduced homology with

Z/2-coefficients. One expects to have multiple solutions in every domain of this

type, but the proof of this fact remains open. Classical variational methods

cannot be applied to establish multiplicity due to the lack of compactness of

the associated energy functional. Under suitable symmetry assumptions com-

pactness is restored: if Ω is invariant under the action of a group G of linear

isometries of RN and every G-orbit in Ω is infinite, problem (1.2) is known to

have infinitely many G-invariant solutions [3]. Recently, Clapp and Faya [4] con-

sidered domains having finite G-orbits and gave conditions for the existence of

a prescribed number of solutions. In a non-symmetric setting, the Lyapunov–

Schmidt reduction method has been successfully applied to obtain multiplicity

results for problem (1.1) when M is a point or a finite set (see [14] and the

references therein), but this method becomes very hard to apply when M has

positive dimension.

Our proof of Theorem 1.1 uses variational methods and some tools from alge-

braic topology which include the fixed point transfer introduced by Dold in [10].

Key elements of our variational approach are a refinement of the deformation
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lemma which was proved in [8] and a lower bound for the energy of sign changing

solutions to the limit problem in RN obtained by Weth in [23]. These results

are stated in Section 2. Section 3 is devoted to the construction of two auxiliary

maps which play an important role in the proof of Theorem 1.1. The proof of

this theorem is given in Section 4. Finally, in Appendix A we recall the definition

and properties of the Lusternik–Schnirelmann category and the cup-length, and

prove the statements of Examples 1.2 and 1.3.

2. Preliminaries and notation

Let Ω be a bounded smooth domain in RN . We consider the Sobolev space

H1
0 (Ω) with the norm

‖u‖ :=

(∫
Ω

|∇u|2
)1/2

.

We write |u|p for the Lp-norm of u, 1 ≤ p ≤ ∞.

The solutions to problem (1.2) are the critical points of the energy functional

J : H1
0 (Ω)→ R given by

J(u) :=
1

2
‖u‖2 − 1

2∗
|u|2

∗

2∗ .

The nontrivial solutions are the critical points of the restriction of J to the

Nehari manifold

N := {u ∈ H1
0 (Ω) : u 6= 0, ‖u‖2 = |u|2

∗

2∗},

which is a C2-manifold, radially diffeomorphic to the unit sphere in H1
0 (Ω).

Recall that J is said to satisfy the Palais–Smale condition (PS)c on N at the

level c ∈ R if every sequence (uk) in N such that J(uk)→ c and ∇NJ(uk)→
0 contains a convergent subsequence. Here ∇NJ denotes the gradient of the

restriction of J to N , i.e. ∇NJ(u) is the orthogonal projection of ∇J(u) onto

the tangent space to N at u.

We write C1
0(Ω) for the Banach space of C1-functions on Ω which vanish on

∂Ω, endowed with the norm

‖u‖C1 := |u|∞ + |∇u|∞.

For d ∈ R we write N d := {u ∈ N : J(u) ≤ d}. The following refinement of the

deformation lemma was proved in [8, Lemma 1].

Lemma 2.1. Assume that J has no critical values in the interval [b, d] and

that it satisfies (PS)c for every b ≤ c ≤ d. Then there exists a continuous map

η : [0, 1]×N d → N d with the following properties:

(a) η(0, u) = u and η(1, u) ∈ N b for every u ∈ N d, and η(t, v) = v for

every v ∈ N b, t ∈ [0, 1].

(b) If u ∈ N d ∩ C1
0(Ω), then η(t, u) ∈ C1

0(Ω) for every t ∈ [0, 1].
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(c) If B ⊂ N d ∩ C1
0(Ω) is bounded in C1

0(Ω), then B̂ := {η(t, u) : u ∈ B, t ∈
[0, 1]} is bounded in C1

0(Ω).

(d) If u ∈ N d ∩ C1
0(Ω) and u ≥ 0, then η(t, u) ≥ 0 for every t ∈ [0, 1].

Next, we consider the limit problem

(2.1) −∆u = |u|2
∗−2u, u ∈ D1,2(RN ),

and write ‖u‖ := (
∫
RN |∇u|

2)1/2 for the norm in D1,2(RN ). The energy func-

tional J∞ : D1,2
(
RN
)
→ R associated to (2.1) is given by

J∞(u) :=
1

2
‖u‖2 − 1

2∗
|u|2

∗

2∗ ,

and the Nehari manifold is

N∞ := {u ∈ D1,2(RN ) : u 6= 0, ‖u‖2 = |u|2
∗

2∗}.

As usual we consider H1
0 (Ω) as a Hilbert subspace of D1,2(RN ) via trivial ex-

tensions. Then J is the restriction of J∞ to H1
0 (Ω) and N = N∞ ∩H1

0 (Ω). The

radial projection ρ : D1,2(RN ) \ {0} → N∞ onto the Nehari manifold is given by

ρ(u) =

(
‖u‖2

|u|2∗2∗

)(N−2)/4

u.

Set c∞ := inf
N∞

J∞. The standard bubbles

Uλ,y(x) = [N(N − 2)](N−2)/4 λ(N−2)/2

(λ2 + |x− y|2)(N−2)/2
, λ ∈ (0,∞), y ∈ RN ,

are the only positive solutions to problem (2.1). They satisfy J(Uλ,y) = c∞. It

is a well known fact that

inf
N
J = inf

N∞
J∞ = c∞,

independently of Ω, and that c∞ is not attained by J on N if Ω is bounded, see

e.g. [22], [24].

We consider the barycenter map β : H1
0 (Ω) \ {0} → RN , given by

β(u) :=

∫
RN

x|u(x)|2
∗
dx∫

RN
|u(x)|2

∗
dx

.

The following fact will be used below.

Lemma 2.2. Let X be a closed subset of RN such that Ω ∩X = ∅. Then

cX := inf{J(u) : u ∈ N , β(u) ∈ X} > c∞.
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Proof. Arguing by contradiction, assume there exist uk ∈ N with β(uk) ∈
X and J(uk) → c∞. Using Ekeland’s variational principle [12], [24], we may

assume that (uk) is a (PS)c∞ sequence. Then, by Struwe’s global compactness

theorem [21], [24], there exist yk ∈ Ω and λk > 0 such that, after passing to a

subsequence,

‖uk − Uλk,yk‖ → 0 as k →∞.
It follows that |β(uk) − yk| → 0 as k → ∞ and, hence, that dist(β(uk),Ω) → 0

as k →∞. This is a contradiction. �

We shall also use the following result, which was proved by Weth in [23].

Theorem 2.3. There exists an ε0 > 0 such that J∞(u) > 2c∞ + 3ε0 for

every sign changing solution u of problem (2.1).

3. Two auxiliary maps

Let Θ be a bounded smooth domain in RN and let M be a compact smooth

submanifold of Θ, without boundary, such that dimM ≤ N − 2. We write

d(x) := dist(x,M).

For a > 0 we set BaM := {x ∈ RN : d(x) < a}, and write BaM for its closure

and SaM for its boundary in RN .
We fix R > 0 such that BRM is a tubular neighborhood of M in RN and

BRM ⊂ Θ. Then, the following statement holds true.

Lemma 3.1. For any given a ∈ (0, R) and ε > 0 there exists a0 ∈ (0, a) such

that, for every δ > 0, there is a continuous function hδ : RN → D1,2(RN ) with

the following properties:

(a) hδ(y) ∈ N∞ ∩ C∞c (RN ) and hδ(y) ≥ 0 for all y ∈ RN ,

(b) The C1-norm of hδ(y) is uniformly bounded on RN , i.e.

sup{|hδ(y)|∞ + |∇(hδ(y))|∞ : y ∈ RN} <∞.

(c) J∞(hδ(y)) ≤ c∞ + ε for all y ∈ RN ,

(d) J∞(hδ(y)) ≤ c∞ + δ for all y ∈ RN \BaM .

(e) supp(hδ(y)) ⊂ Ba+δM \Ba0M for all y ∈ BaM ,

(f) supp(hδ(y)) ⊂ Bδ(y) for all y ∈ RN \BaM ,

(g) β(hδ(y)) = y for all y ∈ RN \BaM ,

(h) β(hδ(y)) ∈ BaM for all y ∈ BaM , and there is a continuous map

ϑ : [0, 1] × BaM → BaM such that ϑ(0, y) = y, ϑ(1, y) = β(hδ(y)) for

all y ∈ BaM , and ϑ(t, z) = z for all z ∈ SaM.

Proof. Let χ ∈ C∞c (RN ) be a radial function such that χ(x) = 1 if |x| ≤ a/8,

χ(x) ∈ (0, 1] if |x| < a/4 and χ(x) = 0 if |x| ≥ a/4. Fix µ > 0 so that the function

w := ρ(χUµ,0)
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satisfies J∞(w) ≤ c∞ + min{δ, ε/2}, were Uµ,0 is the standard bubble and ρ is

the radial projection onto N∞. For λ > 0 and y ∈ RN we define

wλ,y(x) := λ(2−N)/2w

(
x− y
λ

)
.

Then wλ,y ∈ N∞∩C∞c (RN ), J∞(wλ,y) = J∞(w) ≤ c∞+min{δ, ε/2}, supp(wλ,y)

⊂ Bλa/4(y) and β(wλ,y) = y.

Set γ := min{δ, a/4} > 0 and choose a nonincreasing function Λ ∈ C∞[0,∞)

such that Λ(t) = 1 if t ≤ a/2, Λ(t) = 4γ/a if t ≥ a and Λ(t) ≤ 4(a+ γ − t)/a for

all t ≤ a. Define h̃ : RN → N∞ ∩ C∞c (RN ) as

h̃(y) := wΛ(d(y)),y.

Note that h̃(y) = w1,y if d(y) ≤ a/2, supp(h̃(y)) ⊂ Bγ(y) if d(y) ≥ a and

supp(h̃(y)) ⊂ Ba−d(y)+γ(y) ⊂ Ba+δM for all y ∈ BaM.

Fix a1 ∈ (0, a/4). Since dimM ≤ N−2, the 2-capacity ofM in RN is zero, see

[13, 4.7 Theorem 3]. Hence, for k > 1/a1, there are functions ψk ∈ C∞c (RN ) such

that ψk(x) = 1 if d(x) ≤ 1/k, ψk(x) = 0 if d(x) ≥ a1, and ‖ψk‖ → 0 as k →∞.

Then, [1−ψk]h̃(y) = h̃(y) 6= 0 if d(y) ≥ a/2 and [1−ψk]h̃(y) = [1−ψk]w1,y 6= 0

if d(y) ≤ a/2, because w1,y > 0 in Ba/4(y) and Ba/4(y) \Ba1M 6= ∅. Therefore,

the function h̃k : RN → N∞ ∩ C∞c (RN ) given by

h̃k(y) := ρ([1− ψk]h̃(y))

is well defined. It satisfies that supp(h̃k(y)) ⊂ Ba+δM \B1/kM for all y ∈ BaM .

Moreover, since

‖[1− ψk]w1,y − w1,y‖2 = ‖ψkw1,y‖2 =

∫
RN
|w1,y∇ψk − ψk∇w1,y|2

≤ 4

∫
RN
|w1,y|2|∇ψk|2 + |ψk|2|∇w1,y|2 ≤ C(‖ψk‖2 + |ψk|22)→ 0

as k →∞, the set

K = {w1,y : y ∈ Ba/2M} ∪ {[1− ψk]w1,y : y ∈ Ba/2M, k > 1/a1}

is compact in D1,2(RN ) and the functions J∞ ◦ ρ and β ◦ ρ are uniformly con-

tinuous on K. This implies that there exists k0 > 1/a1 such that∣∣∣J∞(h̃k(y))− J∞(h̃(y))
∣∣∣ < ε

2
and

∣∣∣β(h̃k(y))− y
∣∣∣ < a

2

for all k ≥ k0 and all y ∈ RN . Set

hδ(y) := h̃k0(y) and a0 :=
1

k0
.

Then, supp(h̃δ(y)) ⊂ Ba+δM \ Ba0M for all y ∈ BaM and, since J∞(h̃(y)) ≤
c∞ + ε/2, we have that

J∞(hδ(y)) ≤ c∞ + ε for all y ∈ RN ,
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Clearly, hδ(y) satisfies (a) and (b) and, since hδ(y) = h̃(y) if d(y) ≥ a/2, it also

satisfies properties (d), (f) and (g). The map ϑ(t, y) := (1 − t)y + tβ(hδ(y)) is

well defined and has the properties stated in (h). �

Since BRM is a tubular neighborhood of M in RN , for every x ∈ BRM there

is a unique point q(x) ∈M such that

(3.1) d(x) = |x− q(x)|.

The map q : BRM →M is well defined and smooth. It is convenient sometimes

to write the elements of BRM as

(3.2) [ζ, t] := q(ζ) +
t

R
(ζ − q(ζ)) with ζ ∈ SRM and t ∈ [0, R].

Define E := {u ∈ N : u+, u− ∈ N}, where u+ := max{u, 0} and u− :=

min{u, 0}. We prove the following statement.

Lemma 3.2. Given ε ∈ (0, c∞) there exist b0, b1, b2 ∈ (0, R) such that, if Ω

is a bounded smooth domain in RN which satisfies

M ∩ Ω = ∅ and (Θ \BrM) ⊂ Ω ⊂ Θ,

for some r ∈ (0, b0), and c∞ < c0 < c1 < c∞ + ε are such that J has no critical

values in (c1, c∞+ε], then there exists a continuous map G : Bb1M×Bb2M → E
with the following properties:

(a) J(G(x, y)) ≤ 2c∞ + 2ε for all (x, y) ∈ Bb1M ×Bb2M ,

(b) J(G(x, y)) ≤ c0 + c1 for all (x, y) ∈ (Sb1M ×Bb2M) ∪ (Bb1M × Sb2M),

(c) J(G(x, y)+) ≤ c0 and β(G(x, y)+) = x for all (x, y) ∈ (Sb1M ×Bb2M),

(d) J(G(x, y)−) ≤ c0 and β(G(x, y)−) = y for all (x, y) ∈ (Bb1M × Sb2M).

Proof. Fix a1 ∈ (0, R). For a := a1 and the given ε, let a1,0 ∈ (0, a1) be

as in Lemma 3.1. Now fix a2 ∈ (0, a1,0) and, for a := a2 and the same ε, let

a2,0 ∈ (0, a2) be as in Lemma 3.1. Set b0 := a2,0 and r ∈ (0, b0). Let

δ :=
1

4
min{R− a1, a1,0 − a2, a2 − b0, b0 − r, 2ε, c0 − c∞, c∞ + ε− c1}

and choose a function hiδ : RN → D1,2(RN ) with the properties stated in

Lemma 3.1 for ai, ε and ai,0. Since

supp(hiδ(x)) ⊂ (Bai+δM \Bai,0M) ⊂ (BRM \Bai,0M) for all x ∈ BaiM,

we have that

hiδ
(
BaiM

)
⊂ N ∩ C1

0(Ω) if r ∈ (0, b0), i = 1, 2,

In addition, hiδ(x) ≥ 0 and J(hiδ(x)) ≤ c∞ + ε for all x ∈ BaiM ; J(hiδ(y)) ≤
c∞ + δ, supp(hiδ(y)) ⊂ Bδ(y) and β(hiδ(y)) = y for all y ∈ SaiM ; and the set

{hiδ(x) : x ∈ BaiM} is bounded in C1
0(Ω).
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Since J satisfies (PS)c at every c ∈ (c∞, 2c∞) and J has no critical values in

(c1, c∞ + ε], Lemma 2.1 yields a deformation

η : [0, 1]×N c∞+ε → N c∞+ε

such that η(0, u) = u and η(1, u) ∈ N c1+δ for every u ∈ N c∞+ε; η(t, v) = v for

every v ∈ N c1+δ, t ∈ [0, 1]; and η(t, hiδ(x)) ≥ 0 for every x ∈ BaiM . Moreover,

the sets

Ki := {η(t, hiδ(x)) : x ∈ BaiM, t ∈ [0, 1]}, i = 1, 2,

are compact in H1
0 (Ω) and, by statement (c) in Lemma 2.1, they are bounded

in the C1-norm.

Fix a radial function φ ∈ C∞(RN ) such that φ(x) = 1 if |x| ≥ 2 and φ(x) =

0 if |x| ≤ 1. Then, there is a γ ∈ (0, δ/2) such that the function φx(y) :=

φ((y − x)/γ) satisfies

φxu 6= 0 and |J(ρ(φxu))− J(u)| < δ, for all (x, u) ∈ RN × (K1 ∪ K2),

see [8, Lemma 2]. Note that φxu ≡ 0 in Bγ(x) for every u ∈ K1 ∪ K2, x ∈ RN .
Next, we choose λi ∈ C∞[0,∞) nonincreasing and such that λi(t) = 1 if

t ≤ ai and λi(t) = γ/δ if t ≥ ai + δ. Using the notation introduced in (3.2), we

define Gi : Bai+2δM → N as follows:

Gi([ζ, t]) :=

hiδ([ζ, t]) if t ∈ [0, ai], ζ ∈ SRM ,(
hiδ([ζ, ai])

)
λ(t),[ζ,t]−λ(t)[ζ,ai]

if t ∈ [ai, ai + 2δ], ζ ∈ SRM ,

where uλ,x(y) := λ(2−N)/2u((y − x)/λ). Then, J(Gi(y)) ≤ c∞ + δ and β(Gi(y))

= y if ai ≤ d(y) ≤ ai + 2δ, and supp(Gi(y)) ⊂ Bγ(y) if ai + δ ≤ d(y) ≤ ai + 2δ.

We defineG : Ba1+2δM×Ba2+2δM → E in the following way: for x ∈ Ba1+2δ,

y ∈ Ba2+2δM , let

G(x, y) :=



G1(x)−G2(y) if d(x) ≤ a1 + δ, d(y) ≤ a2 + δ,

ρ

[
φyη

(
d(y)− a2 − δ

δ
,G1(x)

)]
−G2(y)

if d(x) ≤ a1 + δ, a2 + δ ≤ d(y),

G1(x)− ρ
[
φxη

(
d(x)− a1 − δ

δ
,G2(y)

)]
if a1 + δ ≤ d(x), d(y) ≤ a2 + δ,

G1(x)−G2(y) if a1 + δ ≤ d(x), a2 + δ ≤ d(y).

Note that in all four cases, the first summand and the second summand in the

definition of G(x, y) have disjoint supports. Therefore, the first summand is

G(x, y)+ and the second one is G(x, y)−. Since both summands belong to N we
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conclude that G(x, y) ∈ E . Moreover,

J(G(x, y)) = J(G(x, y)+) + J(G(x, y)−).

Setting bi := ai + 2δ, one can easily check that G has the desired properties. �

4. Proof of Theorem 1.1

As before, we fix R small enough so that BRM is a tubular neighborhood of

M contained in Θ. Fix % ∈ (0,dist(BRM,∂Θ)) small enough so that B%(∂Θ) is

a tubular neighborhood of ∂Θ, and set Θ− := Θ\B%(∂Θ) and Θ+ := Θ∪B%(∂Θ).

Define

d∗ := inf{J∞(u) : u ∈ N∞ ∩H1
0 (Θ), β(u) /∈ Θ+}.

By Lemma 2.2 we have that d∗ > c∞.

Choose ε0 ∈ (0, c∞/3) as in Theorem 2.3 and such that c∞ + ε0 < d∗. For

ε := 3ε0/2 fix b0, b1, b2 ∈ (0, R) as in Lemma 3.2, and for a := b1 and ε := ε0 fix

a0 ∈ (0, a) as in Lemma 3.1.

Set r0 := min{a0, b0} and let Ω be a bounded smooth domain in RN which

satisfies

M ∩ Ω = ∅ and (Θ \BrM) ⊂ Ω ⊂ Θ

for some r ∈ (0, r0). Set r1 := dist(Ω,M)/2 and define

c∗ := inf{J(u) : u ∈ N , β(u) ∈ Br1M}.

By Lemma 2.2 we have that c∗ > c∞. Now fix a regular value c0 of J such that

c∞ < c0 < min{c∗, c∞ + ε0}.

Note that

β(u) ∈ Θ+ for all u ∈ N c with c ∈ (0, d∗),

β(u) ∈ Θ+ \Br1M for all u ∈ N c0 .

Let H∗ be C̆ech cohomology with Z/2-coefficients and define

c1 := inf{c ∈ [c0, d
∗) : β∗ : H∗(Θ+,Θ+ \Br1M)→ H∗(N c,N c0)

is a monomorphism}.

For these data all statements below hold true.

Proposition 4.1. c0 < c1 ≤ c∞ + ε0, and problem (1.2) has at least

cat(Θ,Θ \BrM) ≥ 1

positive solutions with energy in [c0, c∞ + ε0], and at least

cupl(Θ,Θ \BrM) ≥ 1

positive solutions with energy in [c0, c1]. Moreover, c1 is a critical value of J.
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Proof. Since c0 ∈ (c∞, 2c∞) and (PS)c holds true for every c ∈ (c∞, 2c∞),

there exist α > 0 and a deformation of N c0+α into N c0 which keeps N c0 fixed.

Hence H∗(N c0+α,N c0) = 0. On the other hand, the inclusion i : (Br1M,Sr1M)

↪→ (Θ+,Θ+ \Br1M) induces an isomorphism in cohomology

i∗ : H∗(Θ+,Θ+ \Br1M) ∼= H∗(Br1M,Sr1M)

by excision. HN−m(Br1M,Sr1M) contains a nontrivial element: the Thom class

of the disk bundle q : Br1M → M , where m := dimM . Therefore, HN−m(Θ+,

Θ+ \ Br1M) 6= 0. This implies that c1 ≥ c0 + α > c0. Note that it also implies

that

(4.1) cupl(Θ,Θ \BrM) = cupl(Θ+,Θ+ \Br1M) ≥ 1.

Set δ := min{c0 − c∞, %}. Then, Lemma 3.1 yields a map hδ : RN →
D1,2(RN ) with supp(hδ(x)) ⊂ Θ \ Ba0M ⊂ Ω for all x ∈ Θ−, which restricts to

a map of pairs

(4.2) hδ : (Θ−,Θ− \BaM)→ (N c∞+ε0 ,N c0)

such that the composition

(Θ−,Θ− \BaM)
hδ−→ (N c∞+ε0 ,N c0)

β−→ (Θ+,Θ+ \Br1M)

is homotopic to the inclusion ι : (Θ−,Θ− \BaM) ↪→ (Θ+,Θ+ \Br1M). Since

ι∗ = h∗δ ◦ β∗ : H∗(Θ+,Θ+ \Br1M)→ H∗(Θ−,Θ− \BrM)

is an isomorphism, we have that

β∗ : H∗(Θ+,Θ+ \Br1M)→ H∗(N c∞+ε0 ,N c0)

is a monomorphism. Hence, c1 ≤ c∞ + ε0.

If c ∈ (c0, 2c∞), the number of pairs ±u of critical points of J on N with

critical values in [c0, c] is at least cat(Ñ c, Ñ c0), where Ñ c is the quotient space

of N c obtained by identifying u with −u (see [2], [7]). Note that β(u) = β(−u).

Hence, there is a map β̃ : (Ñ c, Ñ c0) → (Θ+,Θ+ \ Br1M) such that β̃ ◦ κ = β,

where κ : (N c,N c0)→ (Ñ c, Ñ c0) is the quotient map.

Set c := c∞+ε0 and let hδ be the map given in (4.2). Since β̃◦κ◦hδ = β◦hδ is

homotopic to ι, and each of the inclusions (Θ−,Θ− \BaM) ↪→ (Θ,Θ \BrM) ↪→
(Θ+,Θ+ \ Br1M) is a homotopy equivalence of pairs, using Lemma A.4 we

conclude that

cat(Ñ c∞+ε0 , Ñ c0) ≥ cat(Θ,Θ \BrM).

Hence, problem (1.2) has at least cat(Θ,Θ \ BrM) pairs of solutions ±u with

J(u) ∈ [c0, c∞ + ε0]. Moreover, Lemma A.3 and inequality (4.1) allow us to

conclude that

cat(Θ,Θ \BrM) ≥ cupl(Θ,Θ \BrM) ≥ 1.
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Now set c := c1. Since β∗ : H∗(Θ+,Θ+ \Br1M)→ H∗(N c1 ,N c0) is a mono-

morphism, β̃∗ : H∗(Θ+,Θ+ \ Br1M) → H∗(Ñ c1 , Ñ c0) is also a monomorphism.

Lemmas A.3 to A.5 imply that

cat(Ñ c1 , Ñ c0) ≥ cupl(Ñ c1 , Ñ c0) ≥ cupl(Θ+,Θ+ \Br1M) = cupl(Θ,Θ \BrM).

Hence, problem (1.2) has at least cupl(Θ,Θ \ BrM) ≥ 1 pairs of solutions ±u
with J(u) ∈ [c0, c1].

Note that c1 must be a critical value. Otherwise, for α > 0 small enough, we

would be able to deformN c1+α intoN c1−α keepingN c0 fixed. Since β∗ : H∗(Θ+,

Θ+ \ Br1M) → H∗(N c1+α,N c0) is a monomorphism, this would imply that

β∗ : H∗(Θ+,Θ+ \ Br1M) → H∗(N c1−α,N c0) is also a monomorphism, contra-

dicting the definition of c1.

Finally, recall that every critical point u of J with J(u) ∈ (c∞, 2c∞) does

not change sign. Otherwise, we would have that u+ 6= 0 and u− 6= 0 and,

hence, that u± ∈ N , because ‖u±‖2 − |u±|2∗2∗ = J ′(u)u± = 0. But then J(u) =

J(u+) + J(u−) ≥ 2c∞, which is a contradiction. �

To conclude the proof of Theorem 1.1 we shall show next that J has a critical

value in (c1, 2c∞ + 3ε0]. We need the following two lemmas.

Lemma 4.2. The connecting homomorphism

δ∗ : H̃∗−1(Θ+ \Br1M)→ H∗(Θ+,Θ+ \Br1M)

of the reduced cohomology exact sequence of the pair (Θ+,Θ+ \ Br1M) is an

epimorphism.

Proof. Since the sequence

H̃∗−1(Θ+ \Br1M)
δ∗−→ H∗(Θ+,Θ+ \Br1M)

j∗−→ H̃∗(Θ+)

is exact, we need only to show that the homomorphism j∗, induced by the

inclusion, is trivial. The diagram

H∗(RN ,RN \Br1M) //

∼=
��

H̃∗(RN )

��

H∗(Θ+,Θ+ \Br1M)
j∗
// H̃∗(Θ+)

induced by inclusions, commutes. The left vertical arrow is an isomorphism by

excision. Since H̃∗(RN ) = 0, we conclude that j∗ = 0. �

The next lemma is a consequence of Struwe’s global compactness theorem

[21], [24] and Theorem 2.3.

Lemma 4.3. If J does not have a critical value in (c1, 2c∞), then J satisfies

(PS)c for every c ∈ (c∞ + c1, 2c∞ + 3ε0].
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Proof. See [8, Lemma 6]. �

Proposition 4.4. J has a critical value in (c1, 2c∞ + 3ε0].

Proof. Arguing by contradiction, assume that J does not have a critical

value in (c1, 2c∞ + 3ε0]. By Lemma 3.2 there is a continuous map G : Bb1M ×
Bb2M → E such that

J(G(x, y)) ≤ 2c∞ + 3ε0 for all (x, y) ∈ Bb1M ×Bb2M,

J(G(x, y)) ≤ c0 + c1 for all (x, y) ∈ (Sb1M ×Bb2M) ∪ (Bb1M × Sb2M),

J(G(x, y)+) ≤ c0 and β(G(x, y)+) = x for all (x, y) ∈ (Sb1M ×Bb2M),

J(G(x, y)−) ≤ c0 and β(G(x, y)−) = y for all (x, y) ∈ (Bb1M × Sb2M),

where b1, b2 were chosen at the beginning of this section. By Lemma 4.3 there

is a continuous map

η : [0, 1]×N 2c∞+3ε0 → N 2c∞+3ε0

such that η(0, u) = u and η(1, u) ∈ N c0+c1 for every u ∈ N 2c∞+3ε0 , and η(t, v) =

v for every v ∈ N c0+c1 , t ∈ [0, 1].

For t ∈ [0, 1] we define gt : Bb1M ×Bb2M × [−1, 1]→ N 2c∞+3ε0 by

gt(x, y, λ) := η(t, ρ((1 + λ)G(x, y)+ + (1− λ)G(x, y)−)),

where ρ is the radial projection onto N . Then,

gt(x, y, λ) = ρ((1 + λ)G(x, y)+ + (1− λ)G(x, y)−)

for all (x, y) ∈ ∂(Bb1M ×Bb2M × [−1, 1]). Consider the sets

E∗ := {u ∈ E : β(u−) ∈M},

K := {z ∈ Bb1M ×Bb2M × [−1, 1] : g1(z) ∈ E∗}.

Since K is compact and

c0 + c1 ≥ J(g1(z)) = J(g1(z)+) + J(g1(z)−) > J(g1(z)+) + c0 for all z ∈ K,

we have that

d := max
z∈K

J(g1(z)+) < c1.

We claim that β : (N d,N c0)→ (Θ+,Θ+ \Br1M) induces a monomorphism

(4.3) β∗ : H∗(Θ+,Θ+ \Br1M)→ H∗(N d,N c0).

This contradicts the definition of c1, and proves the proposition by contradiction.

The rest of the argument is devoted to the proof of this claim. Let γ0 : H1
0 (Ω)

→ R be given by

γ0(u) :=


|u|2∗2∗
‖u‖2

− 1 if u 6= 0,

−1 if u = 0.
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Then γ0 is continuous, and γ0(u) = 0 if and only if u ∈ N .

Define γ : N → R as γ(u) := γ0(u+)− γ0(u−). Note that

γ(u) = −1 iff u ≤ 0, γ(u) = 1 iff u ≥ 0, γ(u) = 0 iff u ∈ E .

Denote by z := (x, y, λ) ∈ Bb1M ×Bb2M × [−1, 1] and, for each t ∈ [0, 1], define

β̃t : Bb1M ×Bb2M × [−1, 1]→ RN by

β̃t(z) :=

[1− γ(gt(z))]β(gt(z)−) + γ(gt(z))y if gt(z)− 6= 0,

y if gt(z)− = 0.

This function is continuous and depends continuously on t.

Next, consider the map θt : Bb1M ×Bb2M × [−1, 1]→ RN × R defined by

θt(z) :=

(β̃t(z), γ(gt(z))) if t ∈ [0, 1],

−t(y, λ) + (1 + t)θ0(z) if t ∈ [−1, 0].

We write θt(z) = (θt,1(z), θt,2(z)) ∈ RN × R. It is easy to check that θt has the

following properties (cf. [8, Lemma 7]):

(a) If θt(z) ∈M × {0} then gt(z) ∈ E∗ for all t ∈ [0, 1].

(b) If λ ∈ {−1, 1} then θt,2(z) = λ for all t ∈ [−1, 1].

(c) If y ∈ Sb2M then θt,1(z) = y for all t ∈ [−1, 1].

(d) If (y, λ) ∈ ∂
(
Bb2M × [−1, 1]

)
then θt(z) /∈M × {0} for all t ∈ [−1, 1].

Performing a translation, if necessary, we may assume that 0 ∈M . Now, for

each t ∈ [−1, 1], we define the map ft : Bb1M ×Bb2M × [−1, 1]→ RN × R by

ft(x, y, λ) := (x, (y, λ)− θt(x, y, λ)).

This is a map over Bb1M , i.e. p ◦ ft = p where p : Bb1M × RN × R→ Bb1M is

the projection. Its set of fixed points,

Fix(ft) := {(x, y, λ) ∈ Bb1M ×Bb2M × [−1, 1] : ft(x, y, λ) = (x, y, λ)},

is the set of zeroes of θt. Thus, by property (d), Fix(ft) ⊂ Bb1M × Bb2M ×
(−1, 1) and, since Fix(ft) is compact, the restriction p : Fix(ft) → Bb1M of the

projection is a proper map. Hence, ft is compactly fixed in the sense of Dold [10],

and there exist transfer homomorphisms

tft : H∗(Fix(ft),Fix(ft) ∩ p−1(Sb1M)) → H∗(Bb1M,Sb1M),

tft : H∗(Fix(ft) ∩ p−1(Sb1M)) → H∗(Sb1M),

for each t ∈ [−1, 1]. The definition and properties of the fixed point transfer

were introduced in [10]. A brief account may be found in [8].
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Observe that the map g+
1 : (Fix(f1),Fix(f1) ∩ p−1(Sb1M)) → (N d,N c0) is

well defined, and consider the diagram

(4.4)

H∗−1(Θ+ \Br1M)
δ∗

//

β∗

��

H∗(Θ+,Θ+ \Br1M)

β∗

��

H∗−1(N c0)
δ∗

//
δ∗

//

(g+1 )∗

��

H∗(N d,N c0)

(g+1 )∗

��

H∗−1(Fix(f1) ∩ p−1(Sb1M))
δ∗
//

tf1
��

H∗(Fix(f1),Fix(f1) ∩ p−1(Sb1M))

tf1
��

H∗−1(Sb1M)
δ∗

// H∗(Bb1M,Sb1M)

Due to the naturality property of the transfer, this diagram commutes.

Note that f−1 = s ◦ p, where s : Sb1M → Sb1M ×Bb2M × [−1, 1] is the zero

section s(x) := (x, 0, 0). So the units property of the transfer [10, (3.11)] gives

tf−1
= s∗ : H∗(s(Sb1M))→ H∗(Sb1M),

and the homotopy property [10, (3.13)] yields

tf1 ◦ p∗ = tf−1
◦ p∗ = s∗ ◦ p∗ = id: H∗(Sb1M)→ H∗(Sb1M).

Note also that

β(g1(z)+) = β(G(x, y)+) = x = p(z)

for all z = (x, y, λ) ∈ Fix(f1) ∩ p−1(Sb1M). Therefore,

(4.5) i∗ = tf1 ◦ (g+
1 )∗ ◦ β∗ : H∗(Θ+ \Br1M)→ H∗(Sb1M),

where i : (Bb1M,Sb1M) ↪→ (Θ+,Θ+\Br1M) is the inclusion. The commutativity

of the diagram (4.4) and equality (4.5) yield

tf1 ◦ (g+
1 )∗ ◦ β∗ ◦ δ∗ = δ∗ ◦ tf1 ◦ (g+

1 )∗ ◦ β∗ = δ∗ ◦ i∗ = i∗ ◦ δ∗.

Since δ∗ is an epimorphism (see Lemma 4.2), we conclude that

tf1 ◦ (g+
1 )∗ ◦ β∗ = i∗ : H∗(Θ+,Θ+ \Br1M)→ H∗(Bb1M,Sb1M).

But i∗ : H∗(Θ+,Θ+ \ Br1M) → H∗(Bb1M,Sb1M) is an isomorphism. Hence,

β∗ : H∗(Θ+,Θ+ \ Br1M) → H∗(N d,N c0) is a monomorphism, and claim (4.3)

is proved. �

Proof of Theorem 1.1. It follows immediately from Propositions 4.1

and 4.4. �
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Appendix A. Category and cup-length

A pair consisting of a topological space X and a subset A of X is denoted by

(X,A). A map of pairs f : (X,A) → (Y,B) is a continuous function f : X → Y

such that f(a) ∈ B for every a ∈ A. Two maps of pairs f0, f1 : (X,A)→ (Y,B)

are homotopic if there exists a map of pairs F : ([0, 1]×X, [0, 1]× A)→ (Y,B)

such that F (0, x) = f0(x) and F (1, x) = f1(x) for every x ∈ X.

Definition A.1. The Lusternik–Schnirelmann category of the pair (X,A)

is the smallest number k =: cat(X,A) such that there exists an open cover

U0, U1, . . . , Uk of X with the following properties:

(LS1) A ⊂ U0 and there exists a homotopy F : ([0, 1]×U0, [0, 1]×A)→ (X,A)

such that F (0, x) = x and F (1, x) ∈ A for every x ∈ U0,

(LS2) Uj is contractible in X for every j = 1, . . . , k.

If no such cover exists we set cat(X,A) :=∞.

If A = ∅ we write cat(X) instead of cat(X, ∅).
Let H∗ be C̆ech cohomology with Z/2-coefficients. We write H̃∗ for reduced

C̆ech cohomology. The cup-product endows H∗(X,A) with a (graded right)

H∗(X)-module structure

` : Hi(X,A)×Hj(X)→ Hi+j(X,A),

see e.g. [11].

Definition A.2. The cup-length of (X,A) is the smallest number k ∈ N∪{0}
such that

ξ0 ` ζ1 ` · · · ` ζk = 0 for all ξ0 ∈ H∗(X,A), for all ζ1, . . . , ζk ∈ H̃∗(X).

We denote it by cupl(X,A). If no such number exists we define cupl(X,A) :=∞.

We write cupl(X) instead of cupl(X, ∅). Note that cupl(X,A) ≥ 1 if an only

if H∗(X,A) 6= 0.

The category and the cup-length are related as follows.

Lemma A.3. cat(X,A) ≥ cupl(X,A).

Proof. See [7, Proposition 4.3]. �

Lemma A.4. If f : (X,A) → (Y,B) and h : (Y,B) → (X,A) are maps of

pairs whose composition h ◦ f : (X,A) → (X,A) is homotopic to the identity of

the pair (X,A) then

cat(X,A) ≤ cat(Y,B) and cupl(X,A) ≤ cupl(Y,B).

Proof. The proof is straightforward. �
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Proof of Example 1.2. Let R > 0 be such that BRM is a tubular neigh-

borhood of M contained in Θ. Since M is contractible in Θ, so is BRM . For

every r ∈ (0, R) we have that Θ = Θr∪BRM . Thus cat(Θ,Θr) ≤ 1. Lemma A.3

and Proposition 4.1 yield 1 ≤ cupl(Θ,Θr) ≤ cat(Θ,Θr) ≤ 1. �

Proof of Example 1.3. If Θ = BRM is a tubular neighborhood of M

and r ∈ (0, R) then, for s ∈ (r,R), the inclusion (BsM,SsM) ↪→ (Θ,Θr) is

a homotopy equivalence of pairs. The Thom isomorphism theorem asserts that

Φ: H∗(M)→ HN−m+∗(BsM,SsM), Φ(ω) = τ ` q∗(ω),

is an isomorphism, where τ ∈ HN−m(BsM,SsM) is the Thom class of the

disk bundle q : BsM → M , see e.g. [20]. Hence, cupl(M) = cupl(BsM,SsM).

Clearly, cat(BsM,SsM) ≤ cat(BsM) = cat(M). Since we are assuming that

cat(M) = cupl(M), using Lemmas A.3 and A.4 we obtain

cat(Θ,Θr) = cat(BsM,SsM) = cat(M) = cupl(M)

= cupl(BsM,SsM) = cupl(Θ,Θr) ≤ cat(Θ,Θr),

which proves our claim. �

Lemma A.5. If the map of pairs f : (X,A) → (Y,B) induces a monomor-

phism f∗ : H∗(Y,B)→ H∗(X,A), then

cupl(Y,B) ≤ cupl(X,A).

Proof. Let ξ0 ∈ H∗(Y,B), ζ1, . . . , ζr ∈ H̃∗(Y ) be such that ξ0 ` ζ1 ` . . . `

ζr 6= 0. Then, since f∗ : H∗(Y,B) → H∗(X,A) is a monomorphism, we have

that

0 6= f∗(ξ0 ` ζ1 ` . . . ` ζr) = f∗(ξ0) ` f∗(ζ1) ` . . . ` f∗(ζr).

This proves our claim. �

If Θ is a bounded smooth domain in RN , M is an m-dimensional compact

smooth manifold without boundary, and BrM is a tubular neighborhood of M

contained in Θ, then the inclusion i : (BrM,SrM) ↪→ (Θ,Θ \ BrM) induces an

isomorphism in cohomology

i∗ : H∗(Θ,Θ \BrM) ∼= H∗(BrM,SrM)

by excision. Let τ ∈ HN−m(BrM,SrM) be the Thom class of the disk bundle

q : BrM → M and let τ̃ ∈ HN−m(Θ,Θ \ BrM) be such that i∗(τ̃) = τ . The

cup-lenght of (Θ,Θ \BrM) can be computed in terms of τ̃ , as follows.

Proposition A.6. cupl(Θ,Θ\BrM) is the smallest number k ∈ N such that

(A.1) τ̃ ` ζ1 ` . . . ` ζk = 0 for all ζ1, . . . , ζk ∈ H̃∗(Θ).



1136 M. Clapp — J.C. Fernández

Proof. Let k ∈ N be such that (A.1) holds true, and let ξ0 ∈ H∗(Θ,Θ\BrM)

and ζ1, . . . , ζk ∈ H̃∗(Θ). By the Thom isomorphism theorem, i∗(ξ0) = τ `

q∗(ω) = i∗(τ̃) ` q∗(ω) for some ω ∈ H∗(M). Since τ̃ ` ζ1 ` . . . ` ζk = 0 we

obtain that

i∗(ξ0 ` ζ1 ` . . . ` ζk) = τ ` q∗(ω) ` i∗(ζ1 ` . . . ` ζk)

= q∗(ω) ` i∗(τ̃) ` i∗(ζ1 ` . . . ` ζk)

= q∗(ω) ` i∗(τ̃ ` ζ1 ` . . . ` ζk) = 0

and, since i∗ : H∗(Θ,Θ \ BrM) → H∗(BrM,SrM) is an isomorphism, we con-

clude that ξ0 ` ζ1 ` . . . ` ζn = 0. Hence cupl(Θ,Θ \ BrM) ≤ k. The opposite

inequality is trivial. �
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