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ON ABSTRACT DIFFERENTIAL EQUATIONS

WITH NON INSTANTANEOUS IMPULSES

Eduardo Hernández — Michelle Pierri — Donal O’Regan

Abstract. We introduce a class of abstract differential equation with non

instantaneous impulses which extend and generalize some recent models

considered in the literature. We study the existence of mild and classical
solution and present some applications involving partial differential equa-

tions with non-instantaneous impulses.

1. Introduction

In this work we introduce and study a new model of abstract impulsive dif-

ferential equations which improve substantially the theory on differential equa-

tions with non-instantaneous impulsive introduced recently by Hernandez and

O’Regan in [8]. Specifically, we study a class of abstract differential equations

with non-instantaneous impulses of the form

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, . . . , N,(1.1)

u(t) = hi(t, u|Ii(t)), t ∈ (ti, si], i = 1, . . . , N,(1.2)

u(0) = x0,(1.3)

where A : D(A) ⊂ X → X is the generator of a C0-semigroup of bounded linear

operators (T (t))t≥0 defined on a Banach space (X, ‖ · ‖), x0 ∈ X, 0 = t0 =

s0 < t1 ≤ s1 ≤ t2 < . . . tN ≤ sN ≤ tN+1 = a are pre-fixed numbers, the relation

2010 Mathematics Subject Classification. 34K30, 34K45, 35R12, 47D06.
Key words and phrases. Non-instantaneous impulses, impulsive differential equation, mild

solution, partial differential equations with impulses.

1067



1068 E. Hernández — M. Pierri — D. O’Regan

t→ Ii(t) defines a 2[0,t]-set valued function, each function hi(t, · ) is a continuous

function defined from a Banach space Ci(t) into X, the spaces Ci(t) are formed

by function defined from Ii(t) into X, the symbol u|I denotes the restriction of

u( · ) to an interval I ⊂ [0, a] and f : [0, a]×X → X is a suitable function.

To explain our motivations and objectives, we include some comments re-

lated to the problem studied in [8]. In Hernández and O’Regan [8] the authors

introduced a new class of differential equations with impulses (called differential

equation with non-instantaneous impulses) described in the form

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, . . . , N,(1.4)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, . . . , N,(1.5)

u(0) = x0,(1.6)

where A, f , x0, si, ti are as above and gi ∈ C((ti, si]×X;X) for all i = 1, . . . , N .

The main results in [8], see Theorems 2.1 and 2.2, are proved via fixed point

techniques and assuming that the functions gi are globally Lipschitz. Specifically,

the authors proved that the map Γ: PC(X) → PC(X) (see the definition of

PC(X) below) given by Γu(0) = x0, Γu(t) = gi(t, u(t)) for t ∈ (ti, si] and

Γu(t) = T (t− si)gi(si, u(si)) +

∫ t

si

T (t− s)f(s, u(s)) ds, t ∈ [si, ti+1],

Γu(t) =

∫ t

0

T (t− s)f(s, u(s)) ds, t ∈ [0, t1],

have a fixed point u ∈ PC(X), which is called a mild solution of (1.4)–(1.5).

A review of the proofs of the cited Theorems reveals that for each i ∈ {1, . . . , N},
the map

Γi : PC(X)|(ti,si] =
{
u ∈ C((ti, si];X) : lim

t↓ti
u(t) exists

}
→ PC(X)|(ti,si],

given by Γiu = gi( · , u( · ))|(ti,si] is a contraction on PC(X)|(ti,si] and there exists

a unique function vi ∈ PC(X)|(ti,si] such that Γivi = vi. This can be a non-

realistic situation and it is quite restrictive for a general theory. However we note

that the ideas and analysis in [8] partly motivates the general theory presented

below.

Motivated by the above and by the fact that the above restriction arise

from the abstract formulation of the problem (1.4)–(1.5), in this work we in-

troduce a new abstract formulation for abstract differential equations with non-

instantaneous impulses and we study the existence of mild and classical solutions

for this type of problems.

Next we include some comments on the associated literature. The litera-

ture on abstract impulsive differential equations consider basically problems for

which the impulses are abrupt and instantaneous. The literature on this type of

problem is vast and different topics on the existence and qualitative properties
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of solutions are considered. On the general motivations, relevant developments

and the current status of the theory we refer the reader to [1]–[7], [9]–[11], [13],

[15], [18]–[20], [25] and the references therein.

The literature on abstract impulsive differential equations with non-instan-

taneous impulses is limited and recent. The theory was initiated by Hernández

and O’Regan in [8]. In this paper the authors introduced the concepts of mild

and classical solution, established some relations between these type of solutions

and studied the existence and uniqueness of solutions. In [17] the authors studied

the existence of mild solutions with values in fractional spaces. We also mention

the recent papers [12], [21]–[24].

For motivations on the study of differential equations with non-instantaneous

impulses, we include the example presented in [8] concerning the hemodynamical

equilibrium of a person. In the case of a decompensation (for example, high or

low levels of glucose) one can prescribe some intravenous drugs (insulin). Since

the introduction of the drugs in the bloodstream and the consequent absorbtion

for the body are gradual and continuous processes, we can interpret the above

situation as an impulsive action which starts abruptly and stays active on a finite

time interval.

Concerning the above example it is important to note the advantages of

the new abstract model (1.1)–(1.3). In the formulation proposed in [8], we can

think that the decision to administer glucose at the time ti is independent of

the “quantity of glucose” at the times t < ti. On the other hand, in the current

formulation, the introduction of drug at ti depend on the level of glucose observed

in time intervals previous to the time ti.

We include now some notations and results. In work A : D(A) ⊂ X → X is

the generator of a C0-semigroup (T (t))t≥0 on X and C0, γ are positive constants

such that ‖T (t)‖L(X) ≤ C0e
γt for all t > 0. Next, for sake of simplicity, we

assume that 0 ∈ ρ(A) and we use the notation D for the domain of A endowed

with the graph ‖x‖D = ‖Ax‖. For additional details on semigroup, we refer the

reader to Pazy [16].

For Banach spaces (Z, ‖ · ‖Z) and (W, ‖ · ‖W ), we use the notation L(Z,W )

for the space of bounded linear operators from Z into W endowed with the norm

of operators denoted by ‖·‖L(Z,W ) and we write L(Z) and ‖·‖L(Z) when Z = W .

In addition, C(Z;W ) denotes the space of bounded continuous functions defined

from Z into W endowed with the uniform norm denoted by ‖ · ‖C(Z;W ) and we

use the symbol Br(z, Z) for the closed ball with center at z ∈ Z and radius r

in Z.

As usual, C(J, Z) (with J ⊂ R) is the space formed by all the continuous

bounded functions defined from J into Z endowed with the norm

‖u‖C(J,Z) = sup
t∈J
‖u(t)‖Z .
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To treat the impulsive conditions, we consider the space PC(X) which is

formed by all the functions u : [0, a] → X such that u( · ) is continuous at t 6=
ti, u(t−i ) = u(ti) and u(t+i ) exists for all i = 1, . . . , N, endowed with the uniform

norm on [0, a] denoted by ‖u‖PC(X). It is easy to see that PC(X) is a Banach

space.

This paper has three sections. In the next section we introduce the concept of

mild and classical solution for the problem (1.1)–(1.2) and we study the existence

of these type of solutions. In the same section we also discuss the existence of

mild solution with values in fractional interpolation spaces. In the last section,

some applications involving partial differential equation with non-instantaneous

impulses are presented.

2. Existence of solution

In this section we study the existence and some qualitative properties of solu-

tions for the problem (1.1)–(1.3). To begin, we introduce the following concepts

of a solution.

Definition 2.1. A function u ∈ PC(X) is said to be a mild solution of (1.1)–

(1.3) if u(0) = x0, u(t) = hi(t, u|Ii(t)) for all t ∈ (ti, si] and each i = 1, . . . , N ,

and

u(t) = T (t)x0 +

∫ t

0

T (t− τ)f(τ, u(τ)) dτ, for all t ∈ [0, t1],

u(t) = T (t− si)hi(si, u|Ii(si)) +

∫ t

si

T (t− τ)f(τ, u(τ)) dτ,

for all t ∈ [si, ti+1] and every i = 1, . . . , N.

Definition 2.2. A function u ∈ PC(X) is said to be a classical solution of

(1.1)–(1.3) if u(0) = x0, u(t) = hi(t, u|Ii(t)) for all t ∈ (ti, si] and i ∈ {1, . . . , N},
the function u|(si,ti+1]

belongs to C((si, ti+1];D) for all i = 1, . . . , N and u( · )
satisfies (1.1).

To prove the results of this section, we introduce the following conditions.

Next we use the notation (Ci(t), ‖ · ‖Ci(t)), with t ∈ (ti, si] and i ∈ {1, . . . , N},
to represent an abstract Banach space formed by functions defined from Ii(t) ⊂
[0, si] into X. In addition, for a set I ⊂ [0, a], we use the notation PC(X)|I for

the space PC(X)|I = {u|Ii(t) : u ∈ PC(X)} endowed with the uniform norm.

Similarly, we define the spaces PC(Z) and PC(Z)|I for a given Banach space Z.

(H1) For all i = 1, . . . , N and each t ∈ (ti, si], the function hi(t, · ) belongs

to C(Ci(t);X) and there is a bounded function Li ∈ C((ti, si];R+) such

that

‖hi(t, u)− hi(t, v)‖ ≤ Li(t)‖u− v‖Ci(t), for all u, v ∈ Ci(t).
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(H2) The function f( · ) belongs to C([0, a]×X;X) and there is a non-decre-

asing function Wf ∈ C([0,∞);R+) and a function mf ∈ Lp([0, a];R+),

with p ≥ 1, such that ‖f(t, x)‖ ≤ mf (t)Wf (‖x‖) for all (t, x) ∈ [0, a]×X.
(H3) The function f( · ) is continuous and there is a Lf ∈ Lp([0, a];R+), with

p > 1, such that ‖f(t, x) − f(t, y)‖ ≤ Lf (t)‖x − y‖ for all x, y ∈ X and

t ∈ [0, a].

(H4) For all i ∈ {1, . . . , N} and each u ∈ PC(X), the function t 7→ hi(t, u|Ii(t))

belongs to C((ti, si];X) and lim
t↓ti

hi(t, u|Ii(t)) exists.

(H5) For all t ∈ (ti, si] and i ∈ {1, . . . , N}, the map

Ψi(t) : PC(X)|Ii(t) = {u|Ii(t) : u ∈ PC(X)} → Ci(t),

given by Ψi(t)u = u|Ii(t) is a bounded linear operator and we always

assume that the set of operators {Ψi(t) : t ∈ (ti, si], i = 1, . . . , N} is

bounded. For convenience, next we use the notation

Ψ̃i(s) = ‖Ψi(s)‖L(PC(X)|Ii(s)
,Ci(s)).

We establish now our first result on the existence of a mild solution for (1.1)–

(1.3).

Theorem 2.3. Let the conditions (H1), (H3)–(H5) be holded and assume that

any one of the following conditions is satisfied:

(a) ŝi = sup
⋃

t∈(ti,si]
Ii(t) < ti for all i ∈ {1, . . . , N},

(b) ti < ŝi < si for all i ∈ 1, . . . , N ,

‖Lhi‖C((ti,si];R)e
−γ(ti−ŝi) sup

s∈(ti,si]
Ψ̃i(s) < 1,

C0(eγ(ŝi−si)Lhi(si)Ψ̃i(si) + ‖Lf‖L1([si,ti+1];R)) < 1.

for all i = 1, . . . , N , and C0‖Lf‖L1([0,t1];R) < 1,

(c) ŝi = si for all i,

C0Lhi(si)Ψ̃i(si) + C0‖Lf‖L1([si,ti+1];R) < 1,

‖Lhi‖C((ti,si];R)e
−γ(ti−si) sup

s∈(ti,si]
Ψ̃i(s) < 1

and C0‖Lf‖L1([0,t1];R) < 1 for all i = 0, . . . , N .

Then there exists a unique mild solution of the problem (1.1)–(1.3).

Proof. Let β ≥ γ and PβC(X) be the set PC(X) endowed with the norm

‖ · ‖PβC(X) given by ‖u‖PβC(X) = sup
s∈[0,a]

e−βt‖u(t)‖. Let Γ: PβC(X) → PβC(X)
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be the map defined by Γu(0) = x0, Γu(t) = hi(t, u|Ii(t)) for t ∈ (ti, si] and

Γu(t) = T (t− si)hi(si, u|Ii(si)) +

∫ t

si

T (t− s)f(s, u(s)) ds, t ∈ [si, ti+1],

Γu(t) = T (t)x0 +

∫ t

0

T (t− s)f(s, u(s)) ds, t ∈ [0, t1].

From the assumptions is easy to see that Γ is a well defined PβC(X)-valued

function. Next we prove that there exists β ≥ γ such that Γ is a contraction on

PβC(X). In the remainder of this proof, we assume that u, v ∈ PC(X).

To begin, for i ∈ {1, . . . , N} and t ∈ [si, ti+1] we note that

‖Γu(t) − Γv(t)‖

≤‖T (t− si)hi(si, u|Ii(si))− T (t− si)hi(si, v|Ii(si))‖

+ C0

∫ t

si

eγ(t−s)eβsLf (s)e−βs‖u(s)− v(s)‖ ds

≤C0e
γ(t−si)Lhi(si)‖u|Ii(si) − v|Ii(si)‖Ci(si)

+ C0e
βt

∫ t

si

e(γ−β)(t−s)Lf (s) ds‖u− v‖PβC(X)

≤C0e
γ(t−si)Lhi(si)‖Ψi(si)‖L(PC(X)|Ii(si)

,Ci(si)) sup
s∈Ii(si)

eβse−βs‖u(s)− u(s)‖

+ C0e
βt

∫ t

si

e(γ−β)(t−s)Lf (s) ds‖u− v‖PβC(X),

so that,

e−βt‖Γu(t)− Γv(t)‖ ≤C0e
γ(t−si)eβ(ŝi−t)Lhi(si)Ψ̃i(si)‖u− v‖PβC(X)

+ C0

∫ t

si

e(γ−β)(t−s)Lf (s) ds‖u− v‖PβC(X),

for all t ∈ [si, ti+1]. From the above, we obtain that

(2.1) sup
t∈[si,ti+1]

e−βt‖Γu(t)− Γv(t)‖

≤ C0 sup
t∈[si,ti+1]

e(γ−β)(t−si)eβ(ŝi−si)Lhi(si)Ψ̃i(si)‖u− v‖PβC(X)

+ C0 sup
t∈[si,ti+1]

∫ t

si

e(γ−β)(t−s)Lf (s)ds‖u− v‖PβC(X).

Moreover, from the above estimates it is easy to infer that

(2.2) sup
t∈[0,t1]

e−βt‖Γu(t)− Γv(t)‖

≤ C0 sup
t∈[0,t1]

∫ t

0

e(γ−β)(t−s)Lf (s)ds‖u− v‖PβC(X).
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On the other hand, for t ∈ (ti, si] we find that

‖Γu(t)− Γv(t)‖ ≤‖hi(t, u|Ii(t))− hi(t, v|Ii(t))‖

≤Lhi(t)‖Ψi(t)‖L(PC(X)|Ii(t)
,Ci(t)) sup

s∈Ii(t)
eβse−βs‖u(s)− u(s)‖

≤Lhi(t) sup
s∈(ti,si]

Ψ̃i(s)e
βŝi‖u− v‖PβC(X),

which implies that

(2.3) sup
t∈[ti,si]

e−βt‖Γu(t)− Γv(t)‖

≤ ‖Lhi‖C((ti,si];R) sup
t∈(ti,si]

e−β(t−ŝi) sup
s∈(ti,si]

Ψ̃i(s)‖u− v‖PβC(X).

From the inequalities (2.1), (2.2) and (2.3) it follows that

(2.4) ‖Γu−Γv‖PβC(X) ≤ max
i=1,...,N

{(Λi(β) + Ξi(β)),Θi(β),Ξ0(β)}‖u− v‖PβC(X),

where

Λi(β) = C0e
β(ŝi−si)Lhi(si)Ψ̃i(si),

Θi(β) = e−β(ti−ŝi)‖Lhi‖C((ti,si];R) sup
s∈(ti,si]

Ψ̃i(s),

Ξi(β) = C0 sup
t∈[si,ti+1]

∫ t

si

e(γ−β)(t−s)Lf (s) ds.

Next, we consider the cases in which any of the conditions (a), (b) or (c) is

satisfied.

Suppose that condition (a) is valid. In this case, for β > γ we have that

(2.5) Ξj(β) ≤ C0(p′(β − γ))−1/p
′
‖Lf‖Lp([sj ,tj+1];R), j = 1, . . . , N,

where 1/p+1/p′ = 1, which implies Λi(β)+Θi(β)+Ξi(β)+Ξ0(β)→ 0 as β → 0

for all i ∈ {1, . . . , N} since max{β(ŝi − si),−β(ti − ŝi)} < 0. Thus, for β > γ

large enough, the map Γ( · ) is a contraction on PβC(X) which shows that there

exists a unique mild solution of problem (1.1)–(1.3).

We assume now that condition (b) is satisfied. In this case, for β = γ we get

Ξi(γ) ≤ C0‖Lf‖L1([si,ti+1];R).

From this inequality, (2.4) and condition (b) it follows that Γ is a contraction

on PγC(X) and there a unique mild solution of the problem (1.1)–(1.3).

To finish, we suppose that condition (c) is valid. In this case, for β = γ

we have that Λi(β) = C0Lhi(si)Ψ̃i(si), Ξi(β) ≤ ‖Lf‖L1([si,ti+1];R) and Θi(β) =

‖Lhi‖C((ti,si];R)e
−γ(ti−ŝi) sup

s∈(ti,si]
Ψ̃i(s), which allows us to infer that Γ is a con-

traction and there exists a unique mild solution of (1.1)–(1.3). �
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In the next result we note that Theorem [8, Theorem 2.1] follows directly

Theorem 2.3.

Corollary 2.4. If the conditions in [8, Theorem 2.1] are satisfied, then

there exists a unique mild solution u ∈ PC(X) of the problem (1.4)–(1.6).

Proof. From [8, Theorem 2.1] we note that each function gi is globally

Lipschitz with Lipschitz constant Lgi and γ = 0.

To use Theorem 2.3, for i ∈ {1, . . . , N} and t ∈ (ti, si] we consider the space

Ci(t) = C({t} : X) and the functions hi : (ti, si]×Ci(t)→ X, Ψi(t) : PC(X)|{t} →
Ci(t) given by Ψi(t)u = u|{t} and hi(t, v) = gi(t, v(t)). It is easy to see that the

condition (H1) is satisfied with Lhi = Lgi , the maps Ψi(t) are bounded linear

operator and Ψ̃i(t) = 1 for t ∈ (ti, si].

Finally, by noting that in [8, Theorem 2.1] it is assumed that

Θ = C0 max{Lgi + ‖Lf‖L1([si,ti+1]), ‖Lf‖L1([0,t1]) : i = 1, . . . N} < 1,

so we have that condition (c) in Theorem 2.3 is satisfied, which implies that

there exists a unique mild solution of problem (1.4)–(1.6). �

In the next theorem we prove the existence of a mild solution via a fixed

point result for condensing operators.

Theorem 2.5. Assume the conditions (H1), (H2), (H4) and (H5) are satis-

fied, the semigroup (T (t))t≥0 is compact and

(2.6) Θ = C0 lim
r→∞

sup
t∈[si,ti+1]

r−1Wf (r)

∫ t

si

eγ(t−τ)mf (τ) dτ < 1,

for all i ∈ {0, 1, . . . , N}. If any one of the next conditions is verified,

(a) ŝi = sup
⋃

t∈(ti,si]
Ii(t) < ti for all i ∈ {1, . . . , N},

(b) ti < ŝi < si, C0e
γ(ŝi−si)Lhi(si)Ψ̃i(si) < 1−Θ and

e−γ(ti−ŝi)‖Lhi‖C((ti,si];R) sup
s∈(ti,si]

Ψ̃i(s) < 1−Θ

for all i = 1, . . . , N,

(c) for all i ∈ {1, . . . , N}, ŝi = si, e
−γ(ti−ŝi)‖Lhi‖C((ti,si];R) sup

t∈(ti,si]
Ψ̃i(t) <

1−Θ and C0Lhi(si)Ψ̃i(si) < 1−Θ,

then there exists a mild solution of the problem (1.1)–(1.3).

Proof. Let Γ be the map introduced in the proof of Theorem 2.3 and

consider the decomposition Γ = Γ1 + Γ2 where

Γ1u(t) = hi(t, u|Ii(t)), for t ∈ (ti, si],

Γ1u(t) = T (t− si)hi(si, u|Ii(si)), for t ∈ [si, ti+1],
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Γ2u(t) =

∫ t

si

T (t− s)f(s, u(s)) ds, for t ∈ [si, ti+1],

and Γiu(t) = 0 otherwise. Next, we prove that there exists β ≥ γ and r > 0

such that Γ is a condensing map from Br(0,PβC(X)) into Br(0,PβC(X)).

Let β ≥ γ. From the assumptions, we select r0 > 0 and Θ ∈ (0, 1) such that

(2.7) C0
Wf (eβsis)

eβsis
sup

s∈[si,ti+1]

∫ s

si

eγ(s−τ)mf (τ) dτ < Θ,

for all s ≥ r0 and for all i ∈ {0, . . . , N}. Proceeding as in the proof of Theo-

rem 2.3, for r ≥ r0, u ∈ Br(0,PβC(X)) and i ≥ 1 we infer that

sup
t∈[si,ti+1]

e−βt‖Γ1u(t)‖ ≤C0 sup
t∈[si,ti+1]

e(γ−β)(t−si)eβ(ŝi−si)Lhi(si)Ψ̃i(si)‖u‖PβC(X)

+ C0 sup
t∈[si,ti+1]

eγ(t−si)−βt‖hi(si, 0)‖,

and hence,

sup
t∈[si,ti+1]

e−βt‖Γ1u(t)‖ ≤C0 sup
t∈[si,ti+1]

e(γ−β)(t−si)eβ(ŝi−si)Lhi(si)Ψ̃i(si)r(2.8)

+ C0 sup
t∈[si,ti+1]

eγ(t−si)−βt‖hi(si, 0)‖.

Similarly, from the proof of Theorem 2.3 we also infer that

(2.9) sup
t∈[ti,si]

e−βt‖Γ1u(t)‖

≤ ‖Lhi‖C((ti,si];R) sup
t∈(ti,si]

e−β(t−ŝi) sup
s∈(ti,si]

Ψ̃i(s)r + e−βti‖hi( · , 0)‖C((ti,si];X).

On the other hand, for t ∈ [si, ti+1] and i ≥ 0 we have that

e−βt‖Γ2u(t)‖ ≤C0

∫ t

si

e−βteγ(t−s)Wf (eβse−βs‖u(s)‖)mf (s) ds

≤C0r

∫ t

si

eγ(t−s)
Wf (eβsr)

eβsr
mf (s) ds

≤ rC0
Wf (eβsir)

eβsir
sup

t∈[si,ti+1]

∫ t

si

eγ(t−s)mf (s) ds,

which implies via (2.7) that

(2.10) sup
t∈[si,ti+1]

e−βt‖Γ2u(t)‖ ≤ rΘ, for all i = 0, 1, . . . , N.

From the estimates (2.8)–(2.10) we obtain that

(2.11) ‖Γu‖PβC(X) ≤ max
i=1,...,N

{Λi(β)r + Λ̃i(β) + rΘ,Θi(β)r + Θ̃i(β), rΘ}
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where

Λi(β) =C0e
β(ŝi−si)Lhi(si)Ψ̃i(si),

Θi(β) = e−β(ti−ŝi)‖Lhi‖C((ti,si];R) sup
s∈(ti,si]

Ψ̃i(s),

Λ̃i(β) =C0e
γ(ti+1−si)−βsi‖hi(si, 0)‖,

Θ̃i(β) = e−βti‖hi( · , 0)‖C((ti,si];X).

Moreover, from the proof of Theorem 2.3 it is easy to note that

(2.12) ‖Γ1u− Γ1v‖PβC(X) ≤ max
i=1,...,N

{Λi(β),Θi(β)}‖u− v‖PβC(X).

We divide the remainder of the proof into several steps.

Step 1. Γ2Br(0,PβC(X)) ⊂ Br(0,PβC(X)) and Γ2 is a condensing map on

Br(0,PβC(X)) for all r ≥ r0,

Let r ≥ r0. The fact that Γ2Br(0,PC(X)) ⊂ Br(0,PC(X)) follows directly

from the estimate (2.10). The proof that Γ2 is condensing on Br(0,PβC(X))

follows from the proof of Steps 3–5 in the proof of [8, Theorem 2.2]. We omit

the details.

Step 2. If r ≥ r0 and condition (a) is valid, then there exists β ≥ γ large

enough such that the problem (1.1)-(1.3) has a mild solution u ∈ Br(0,PβC(X)).

From condition (a) and the definition of the numbers Λi(β), Λ̃i(β), Θi(β),

Θ̃i(β) it is easy to see that max
i=1,...,N

{Λi(β) + Λ̃i(β) + Θi(β) + Θ̃i(β)} → 0 as

β →∞. Thus, there exists β ≥ γ large enough such that

max
i=1,...,N

{Λi(β)r + Λ̃i(β),Θi(β)r + Θ̃i(β)} ≤ (1−Θ)r,(2.13)

max
i=1,...,N

{Λi(β),Θi(β)} < 1.(2.14)

From the inequalities (2.11)–(2.14) we have that

ΓBr(0,PβC(X)) ⊂ Br(0,PβC(X))

and Γ1 is a contraction on Br(0,PβC(X)).

From the above and Step 1 it follows that Γ is condensing on Br(0,PβC(X)),

which implies that there exists a mild solution of the problem (1.1)–(1.3).

Step 3. If condition (b) is valid, then there exists r > r0 large enough such

that problem (1.1)–(1.3) has a mild solution u ∈ Br(0,PγC(X)).

From condition (b) we select Φ ∈ (0, 1 − Θ), Φ̃ ∈ (0, 1) and r > r0 large

enough such that Φ + Φ̃ < 1−Θ and

max
i=1,...,N

{Λi(γ),Θi(γ)} <Φ,(2.15)

max
i=1,...,N

{Λ̃i(γ), Θ̃i(γ)} < Φ̃r.(2.16)
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From the above, for u ∈ Br(0,PβC(X)) we have that

‖Γu‖PβC(X) ≤ max
i=1,...,N

{Λi(β)r + Λ̃i(β) + rΘ,Θi(β)r + Θ̃i(β), rΘ}

≤ max
i=1,...,N

{Φr + Φ̃r + Θr,Φr + Φ̃r, rΘ} ≤ (1−Θ)r + Θr = r,

which implies that ΓBr(0,PβC(X)) ⊂ Br(0,PβC(X)). Moreover, from (2.15)

and (2.12) we have that Γ1 is a contraction on Br(0,PγC(X))) which allows us

to conclude via Step 1 that Γ is condensing on Br(0,PγC(X))). This proves

that Γ has a fixed point in Br(0,PβC(X)) and there exists a mild solution of

(1.1)–(1.3).

Step 4. If condition (c) is satisfied, then there exists r > r0 large enough

such that problem (1.1)–(1.3) has a mild solution u ∈ Br(0,PγC(X)).

The proof of this step follows the argument uses in the proof of Step 3. We

omit the details. The proof of this theorem is complete. �

2.1. Regularity of mild solutions. In this section we study the existence

of mild solution with values in fractional spaces. In the remainder of this section

we assume 0 ∈ ρ(A), α ∈ (0, 1) and (T (t))t≥0 is analytic. Next, we use the

notation Xα for the domain of the fractional power (−A)α of −A endowed with

the α-norm given by ‖x‖α = ‖(−A)αx‖. We note that Xα is a Banach space

and there is Cα > 0 such that ‖(−A)αT (t)‖L(X) ≤ Cαeγtt−α for t > 0.

Next, for β > 0 we use the notation PβC(X,Xα) for the space formed

by all the functions u ∈ PC(X) such that u|(ti,si] ∈ C((ti, si];X), u|(si,ti+1]
∈

C((si, ti+1];Xα) for all i = 1, . . . , N and

[| u |]β,α,i = sup
t∈(si,ti+1]

(t− si)αe−βt‖u(t)‖α <∞

for every i = 0, . . . , N , endowed with the norm

‖u‖β,α = max
i=1,...,N

{
sup

s∈(ti,si]
e−βs‖u(s)‖C((ti,si];X), [| u |]β,α,i, [| u |]β,α,0

}
.

It is easy to see that (PβC(X,Xα), ‖ · ‖β,α) is a Banach space.

To avoid confusion with the problem studied in the first section, we believe it

is convenient to introduce some new notations and assumptions. Next, we study

the existence of a mild solution for the problem

u′(t) =Au(t) + fα(t, u(t)), t ∈ (si, ti+1], i = 0, . . . , N,(2.17)

u(t) =hi,α(t, u|Ii(t)), t ∈ (ti, si], i = 1, . . . , N,(2.18)

u(0) =x0.(2.19)

In this section, (Ci,α(t), ‖ · ‖Ci,α(t)) are Banach spaces formed by functions

defined from Ii(t) into Xα and we assume that the functions hi,α( · ) and fα( · )
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are defined from Ci,α(t) into X and from [0, a] × Xα into X, respectively. To

prove the results of this section, we include the following conditions:

(Hα,1) For t ∈ (ti, si], the function hi,α(t, · ) belongs to C(Ci,α(t);X) and there

is a function Lhi,α ∈ C((ti, si];R+) such that

‖hi,α(t, u)− hi,α(t, v)‖ ≤ Lhi,α(t)‖u− v‖Ci,α(t),

for all u, v ∈ Ci,α(t), t ∈ (ti, si] and each i = 1, . . . , N .

(Hα,2) The function fα( · ) belongs to C([0, a] × Xα;X) and there is Lfα ∈
Lp([0, a];R+) (with p > 1) such that ‖fα(t, x) − fα(t, y)‖ ≤ Lfα(t)‖x −
y‖α for all x, y ∈ Xα and each t ∈ [0, a].

(Hα,4) For i ∈ {1, . . . , N} and u ∈ PC(X,Xα), the function t → hi,α(t, u|Ii(t))

belongs to C((ti, si];X) and limt↓ti hi,α(t, u|Ii(t)) exists.

(Hα,5) For t ∈ (ti, si] and i ∈ {1, . . . , N}, the operator

Ψi,α(t) : PC(X,Xα)|Ii(t) = {u|Ii(t) : u ∈ PC(X,Xα)} → Ci,α(t),

given by Ψi,α(t)u = u|
Ii(t)

is a bounded linear operator and the operator

family {Ψi,α(t) : t ∈ (ti, si], i = 1, . . . , N} is bounded. Next, we use the

notation Ψ̃i,α(s) = ‖Ψi(s)‖L(PC(X,Xα)|Ii(s) ,Ci(s)).

To simplify, in the remainder of this work, for q > 1 we use the notation q′

for the conjugate of q given by q′ = q/(q − 1) and δi is the number defined by

δi = ti+1 − si.

Lemma 2.6. Assume ξ ∈ Lp([si, ti+1];R) for some i ∈ {i, . . . , N} and p >

1/(1− α). Then the function s→ ξ(s)/((t− s)α(s− si)α) is integrable on [si, t]

for all t ∈ [si, ti+1] and

(2.20) lim
β→∞

sup
t∈[si,ti+1]

(t− si)α
∫ t

si

ξ(s)e(γ−β)(t−s)

(t− s)α(s− si)α
ds = 0.

Proof. Let t ∈ [si, ti+1] and δ = (t− si)/2. The integrability of the function

s → ξ(s)/((t− s)α(s− si)α) follows from the fact that p > 1/(1− α) and from

the inequality,∫ t

si

ξ(s)

(t− s)α(s− si)α
ds ≤

(∫ si+δ

si

ξ(s)

δα(s− si)α
ds+

∫ t

si+δ

ξ(s)

(t− s)αδα
ds

)
≤‖ξ‖Lp([si,ti+1];R)δ

−α
(

δ1/p
′−α

[1− αp′]1/p′
+

δ1/p
′−α

[1− αp′]1/p′
)
.

To prove the second assertion, by noting that p > 1/(1− α) we select 1 < r

such that 1/(αp′) > r. Then

(t− si)α
∫ t

si

ξ(s)e(γ−β)(t−s)

(t− s)α(s− si)α
ds =

∫ t

si

ξ(s)e(γ−β)(t−s)
(

1

(t− s)
+

1

(s− si)

)α
ds

≤ 2α
∫ t

si

ξ(s)e(γ−β)(t−s)
(

1

(t− s)α
+

1

(s− si)α

)
ds
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≤ 2α‖ξ‖Lp([si,ti])
((∫ t

si

ep
′(γ−β)(t−s)

(t− s)αp′
ds

)1/p′

+

(∫ t

si

ep
′(γ−β)(t−s)

(s− si)αp′
ds

)1/p′)
≤ 2α‖ξ‖Lp([si,ti])

(∫ t

si

ep
′r′(γ−β)(t−s) ds

)1/(r′p′)(∫ t

si

ds

(t− s)αp′r

)1/(p′r)

+ 2α‖ξ‖Lp([si,ti])
(∫ t

si

ep
′r′(γ−β)(t−s) ds

)1/(r′p′)(∫ t

si

ds

(s− si)αp′r

)1/p′r

≤ 2α‖ξ‖Lp([si,ti])
(

1

p′r′(β − γ)

)1/(r′p′)

2

(
δ1−αp

′r
i

1− αp′r

)1/(αp′r)

,

and hence

(2.21) sup
t∈[si,ti+1]

(t− si)α
∫ t

si

ξ(s)e(γ−β)(t−s)

(t− s)α(s− si)α
ds

≤ Ξβ,α,i(ξ) := 2α+1‖ξ‖Lp([si,ti])
(

1

p′r′(β − γ)

)1/(r′p′)(
δ1−αp

′r
i

1− αp′r

)1/(αp′r)

,

which completes the proof since Ξβ,α,i(ξ)→ 0 as β →∞. �

Proceeding as in the proof of Lemma 2.6 we can prove the next result.

Lemma 2.7. If ξ ∈ Lp([si, ti+1];R) for some i ∈ {i, . . . , N} and p>1/(1−α),

then

(2.22) sup
t∈[si,ti+1]

(t− si)α
∫ t

si

ξ(s)

(t− s)α(s− si)α
ds

≤ 2α+1δ
1/(αp′−1
i [1− αp′]−1/(αp

′)‖ξ‖Lp([si,ti]).

In Theorem 2.8 we establish the existence of a mild solution for (2.17)–(2.19).

In this result, Ξβ,α,i(Lfα) is defined as in (2.21) and s̃i,j , ŝi,j , s
∗
i,j with 1 ≤ j ≤ i,

are the numbers defined by

s̃i,j = sup
⋃

t∈(ti,si]

Ii(t) ∩ [sj−1, tj ],

ŝi,j = sup
⋃

t∈(ti,si]

Ii(t) ∩ (tj , sj ],

s∗i,j = inf
⋃

t∈(si,ti+1]

Ii(t) ∩ [sj−1, tj ].

Theorem 2.8. Assume the conditions (Hα,1), (Hα,2), (Hα,4) and (Hα,5) are

satisfied, ti > max{s̃i,j , ŝi,j} and s∗i,j > sj−1 for all 1 ≤ j ≤ i. Then there exists

a mild solution u ∈ PβC(X,Xα) of the impulsive problem (2.17)–(2.19).

Proof. Let Γ: PβC(X,Xα) → PβC(X,Xα) be defined as in the proof of

Theorem 2.3. We will prove that there exists β ≥ γ large enough such that Γ is

a contraction on PβC(X,Xα).
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To begin, for u ∈ PβC(X,Xα) and t ∈ (ti, si] it is convenient to estimate

the expression ‖u|Ii(t)‖PC(X,Xα)|Ii(t) . By noting that Ii(t) ∩ [si, ti+1] = ∅, for

u ∈ PβC(X,Xα) and t ∈ (ti, si] we note that

‖u|Ii(t)‖PC(X,Xα)|Ii(t) ≤ max
1≤j≤i

{
sup

s∈Ii(t)∩[sj−1,tj ]

‖u(s)‖α, sup
s∈Ii(t)∩(tj ,sj ]

‖u(s)‖
}

≤ max
1≤j≤i

{
sup

s∈Ii(t)∩[sj−1,tj ]

eβs‖u‖PβC(X,Xα)
(s− sj−1)α

, sup
s∈Ii(t)∩(tj ,sj ]

eβs‖u‖PβC(X,Xα)
}
,

so that

(2.23) ‖u|Ii(t)‖PC(X,Xα)|Ii(t) ≤ max
1≤j≤i

{
eβs̃i,j

(s∗i,j − sj−1)α
, eβŝi,j

}
‖u‖PβC(X,Xα).

From the above inequality, for t ∈ [si, ti+1] we get

‖(−A)αΓu(t)‖ ≤ Cαe
γ(t−si)

(t− si)α
‖Lhi,α‖C((ti,si];R)Ψ̃i,α(si)‖u|Ii(si)‖PC(Xα)|Ii(si)

+
Cαe

γ(t−si)

(t− si)α
‖hi,α(si, 0)‖

+ Cα

∫ t

si

Lfα(s)eγ(t−s)

(t− s)α
‖u(s)‖α ds+ Cα

∫ t

si

eγ(t−s)

(t− s)α
‖fα(s, 0)‖ ds

≤ Cαe
γ(t−si)

(t− si)α
‖Lhi,α‖C((ti,si];R)Ψ̃i,α(si)

× max
1≤j≤i

{
eβs̃i,j

(s∗i,j − sj−1)α
, eβŝi,j

}
‖u‖PβC(X,Xα)

+
Cαe

γ(t−si)

(t− si)α
‖hi,α(si, 0)‖+ Cα‖u‖PβC(X,Xα)

∫ t

si

Lfα(s)eγ(t−s)eβs

(t− s)α(s− si)α
ds

+ Cα‖fα( · , 0)‖C([0,a];X)e
γ(ti+1−si) δ

1−α
i

1− α
,

which implies via (2.21) that

sup
t∈[si,ti+1]

(t− si)αe−βt‖(−A)αΓu(t)‖ ≤ Cα‖Lhi,α‖C((ti,si];R)(2.24)

× Ψ̃i,α(si)‖u‖PβC(X,Xα)e
γδi−βsi max

1≤j≤i

{
eβs̃i,j

(s∗i,j − sj−1)α
, eβŝi,j

}
+ Cα sup

t∈[si,ti+1]

eγδi−βsi‖hi,α(si, 0)‖

+ Cα‖u‖PβC(X,Xα)Ξβ,α,i(Lfα)

+ eγδi−βsiCα‖fα( · , 0)‖C([0,a];X)
δi

1− α
.

Proceeding as above, we prove that
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(2.25) sup
t∈[0,t1]

tαe−βt‖(−A)αΓu(t)‖

≤ Cα‖u‖PβC(X,Xα)Ξβ,α,0(Lfα)(fα) + eγt1Cα‖fα( · , 0)‖C([0,a];X)
t1

1− α
.

On the other hand, by using the estimate (2.23), for t ∈ [ti, si] we see that

‖Γu(t)‖ ≤Lhi,α(t)Ψ̃i,α(t)‖u|Ii(t)‖PC(X,Xα)|Ii(t) + ‖hi,α(si, 0)‖

≤‖Lhi,α‖C((ti,si];R)Ψ̃i,α(t)‖u‖PβC(X,Xα) max
1≤j≤i

{
eβs̃i,j

(s∗i,j − sj−1)α
, eβŝi,j

}
+ ‖hi,α(si, 0)‖,

and hence,

sup
t∈(ti,si]

e−βt‖Γu(t)‖ ≤ ‖Lhi,α‖C((ti,si];R)

× sup
t∈(ti,si]

Ψ̃i,α(t)‖u‖PβC(X,Xα) max
1≤j≤i

{
eβ(s̃i,j−ti)

(s∗i,j − sj−1)α
, eβ(ŝi,j−ti)

}
+ ‖hi,α(si, 0)‖.

From the above estimates is obvious that ‖Γu‖α,β is finite, which proves that Γ

is a well defined PβC(X,Xα)-valued function. Moreover, from the above we also

infer that

(2.26) ‖Γu− Γv‖α,β
≤ max
i=1,...,N

{Θi,α(β)+CαΞβ,α,i(Lfα), CαΞβ,α,0(Lfα),Φi,α(β)}‖u−v‖PβC(X,Xα),

where

Θi,α(β) =Cα‖Lhi,α‖C((ti,si];R)Ψ̃i,α(si) max
1≤j≤i

{
eγδi−β(si−s̃i,j)

(s∗i,j − sj−1)α
, eγδi−β(si−ŝi,j)

}
,

Φi,α(β) = ‖Lhi,α‖C((ti,si];R) sup
t∈(ti,si]

Ψ̃i,α(t) max
1≤j≤i

{
eβ(s̃i,j−ti)

(s∗i,j − sj−1)α
, eβ(ŝi,j−ti)

}
.

From the assumptions and Lemma 2.6 we have that

Θi,α(β) + Ξβ,α,i(Lfα) + Ξβ,α,0(Lfα) + Φi,α(β)→ 0, as β →∞,

which implies via (2.26) that there exists β > γ large enough such that Γ is

a contraction on PβC(X,Xα). Thus, there exists a unique mild solution u ∈
PβC(X,Xα) of problem (2.17)–(2.19). �

From the proof of Theorem 2.8, it is easy to infer the following result.

Proposition 2.9. Let conditions (Hα,1), (Hα,2), (Hα,4)–(Hα,5) be holded,

CαΞγ,α,0(Lfα) < 1 and

Cα‖Lhi,α‖C((ti,si];R)Ψ̃i,α(si) max
1≤j≤i

{
eγδi−γ(si−s̃i,j)

(s∗i,j − sj−1)α
, eγδi−γ(si−ŝi,j)

}
< 1,
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‖Lhi,α‖C((ti,si];R) sup
t∈(ti,si]

Ψ̃i,α(t) max
1≤j≤i

{
eγ(s̃i,j−ti)

(s∗i,j − sj−1)α
, eγ(ŝi,j−ti)

}
< 1,

for all i ∈ {1, . . . , N}. Then there exists a unique mild solution u ∈ PγC(X,Xα)

of problem (2.17)–(2.19).

2.2. Classical solutions. In this section we study the existence of a clas-

sical solution for the impulsive problem (1.1)–(1.3). For convenience, we remark

on some well known concepts on abstract systems of the form

u′(t) = Au(t) + ξ(t), t ∈ [0, a],(2.27)

u(0) = x ∈ X,(2.28)

where ξ ∈ L1([0, a], X). A mild solution of the problem (2.27)–(2.28) on [0, b],

0 < b ≤ a, is the function defined by u(t) = T (t)x +
∫ t
0
T (t − s)ξ(s) ds. In

addition, a function u ∈ C([0, b], X), 0 < b ≤ a, is said to be a classical solution

of (2.27)–(2.28) on [0, b] if u ∈ C1([0, b], X) ∩ C([0, b],D), u(0) = x and u( · ) is

a solution of (2.27) on [0, b].

Our first result follows directly from [14, Theorem 4.3.1] and [16, Theorem

6.1.5]. Concerning the proof of this result we only note that the space Xα is

continuously embedded in the space DA(α,∞), the space in the statement of

[14, Theorem 4.3.1]. In the remainder of this section, we always assume that

u( · ) is a mild solution of the problem (1.1)–(1.3).

Proposition 2.10. If any one of the following conditions is satisfied:

(a) the function f( · , u( · )) belongs to Cα([0, a]X;X), x0 ∈ D(A), Ax0
+

f(0, x0) ∈ Xα, hi(si, u|Ii(si)) ∈ D(A) and Ahi(si, u|Ii(si)) + f(si, u(si)) ∈
Xα for all i ∈ {1, . . . , N},

(b) the function f( · , u( · )) belongs to C1([0, a];X), x0 ∈ D(A), hi(si, u|Ii(si))

∈ D(A) for all i ∈ {1, . . . , N},
then u( · ) is a classical solution of the problem (1.1)–(1.3).

The next results are motivated by Proposition 2.10. In Proposition 2.11

(resp. in Proposition 2.12) we establish conditions on f( · ), hi( · ) and x0 which

implies that the condition (a) (resp. the condition (b)) in Proposition 2.10 is

satisfied. In the examples of the last section, we can see that the assumptions

used in the next propositions are not restrictive.

Proposition 2.11. Assume that f ∈ C1([0, a]×X;X), x0 ∈ D(A) and the

next conditions are satisfied:

(a) hi(si, w) ∈ D(A) if w ∈ Ci(si) is a D(A)-valued continuous function on

Ii(si).

(b) Ii(si) ⊂
⋃

j<i−1
(sj , tj+1] for all i ∈ {1, . . . , N}.



Differential Equations with Non Instantaneous Impulses 1083

Then u( · ) is a classical solution of (1.1)–(1.3).

Proof. Since x0 ∈ D(A), f ∈ C1([0, t1]×X;X) and u|[0,t1]
is a mild solution

of the problem

(2.29) v′(t) = Av(t) + f(t, v(t)), t ∈ [0, t1], v(0) = x0,

on [0, t1], from [16, Theorem 6.1.5] it follows that u|[0,t1]
is a classical solution of

(2.29) and u ∈ C1([0, t1];X) ∩ C([0, t1];D).

Now we prove that u|[s1,t2]
is a classical solution of the problem

(2.30) v′(t) = Av(t) + f(t, v(t)), t ∈ [s1, t2], v(s1) = h1(s1, u|Ii(s1)
),

on [s1, t2]. Since I1(s1) ⊂ [0, t1] and u ∈ C([0, t1];D), from condition (a) we have

that h1(s1, u|I1(s1)
) ∈ D(A). By noting now that f ∈ C1([s1, t2] × X;X) and

u|[s1,t2]
is a mild solution of (2.30), from [16, Theorem 6.1.5] we infer that u|[s1,t2]

is a classical solution of problem (2.30) and u ∈ C1([s1, t2];X) ∩ C([s1, t2];D).

Continuing as above we prove that u|[si,ti+1]
∈ C1([si, ti+1];X) ∩ C([si, ti+1];D)

for all i ∈ {1, . . . , N} and u|[si,ti+1]
is a classical solution of the problem

(2.31) v′(t) = Av(t) + f(t, v(t)), t ∈ [si, ti+1], v(si) = h1(si, u|si ),

on [si, ti+1]. �

Proposition 2.12. Assume f ∈ C([0, a]×X;X), x0 ∈ D(A), Ax0
+f(0, x0)

in Xα and there exists Lf > 0 such that

(2.32) ‖f(t, x)− f(s, y)‖ ≤ Lf (| t− s |α +‖x− y‖),

for all t, s ∈ [0, a] and x, y ∈ X. Suppose there are β1 > β2 ≥ α such that

(a) for all i ∈ {1, 2, . . . , N}, Ii(si) ⊂ ∪j<i(sj , tj+1] and hi(si, w) ∈ X1+α if

w ∈ Ci(si) is a X1+β2-valued continuous function,

(b) the function f( · , v( · )) ∈ C([c, d];Xβ1) if v ∈ C([c, d];D) for some

[c, d] ⊂ [0, a].

Then u( · ) is a classical solution and

u|[si,ti+1]
∈Cα([si, ti+1];D) ∩ C1+α([si, ti+1];X) for all i ∈ {1, . . . , N}.

Proof. Since f( · , u( · )) is continuous on [0, t1] and u( · ) is a mild solution

of (2.29), from [14, Proposition 4.2.1] we have that u ∈ Cα([0, t1];X) which

implies via (2.32) that f( · , u( · )) ∈ Cα([0, t1];X). Now, from [14, Theorem 4.3.1]

we infer that u|[0,t1]
is a classical solution of the problem (2.29) on [0, t1] and

u|[0,t1]
∈ Cα([0, t1];D) ∩ C1+α([0, t1];X).

We prove now that u|[s1,t2]
is a classical solution of (2.30) on [s1, t2]. Arguing

as above, from [14, Proposition 4.2.1] and (2.32) we infer that f( · , u( · )) ∈
Cα([s1, t1];X).
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On the other hand, since I1(s1) ⊂ [0, t1] and u|[0,t1]
∈ C([0, t1];D), from

condition (b) we have f( · , u( · )) ∈ C([0, t1];Xβ1
). Using this fact and noting

that

A1+β2u(t) = A1+β2T (t)x0 +

∫ t

0

(−A)1+β2−β1T (t− s)(−A)β1f(s, u(s) ds,

for t ∈ (0, t1], we infer that u|(0,t1]
∈ C((0, t1];X1+β2

), which implies from the

condition (a) that Ah1(t1, u|I1(t1)
) ∈ Xα. Moreover, from the above we also

obtain that Ah1(t1, u|I1(t1)
) + f(s1, u(s1)) ∈ Xα + Xβ1

⊂ Xα. Now, from [14,

Theorem 4.3.1] and the fact that u|[s1,t2]
is a mild solution of (2.30) on [s1, t2] we

can conclude that u|[s1,t2]
is a classical solution of (2.30) on [s1, t2] and u|[s1,t2]

∈
Cα([s1, t2];D) ∩ C1+α([s1, t2];X). Continuing as above, we can complete the

proof. �

3. Examples

In this section we consider some applications of our abstract results. Here,

X = L2([0, π]) and A : D(A) ⊂ X → X is the operator given by Ax = x′′

on D(A) := {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. It is well known that A

is the infinitesimal generator of a compact semigroup (T (t))t≥0 on X and that

‖T (t)‖ ≤ 1 for all t ≥ 0.

To begin we consider the impulsive problem

∂w

∂t
(t, ξ) =

∂2w

∂ξ2
(t, ξ) + F (t, w(t, ξ)), (t, ξ) ∈

N⋃
i=1

[si, ti+1]× [0, π],(3.1)

w(t, 0) = w(t, π) = 0, t ∈ [0, a],(3.2)

w(0, ξ) = z(ξ), ξ ∈ [0, π],(3.3)

w(t, ξ) = Gi

(
t,

∫ t

ti

ζi(s)w(s, ξ) ds

)
, ξ ∈ [0, π], t ∈ (ti, si],(3.4)

where 0 = t0 = s0 < t1 ≤ s1 < . . . < tN ≤ sN < tN+1 = a are fixed real

numbers, z ∈ X, F ∈ C([0, a]×R;R), Gi ∈ C((ti, si]×R;R) and ζi ∈ C((ti, si];R)

for all i = 1, . . . , N.

To represent this problem in the form (1.1)–(1.3), for t ∈ (ti, si] and i =

1, . . . , N we introduce the space Ci(t) = C((ti, t];X) endowed with the uniform

norm denoted by ‖ · ‖Ci(t). In addition, we consider the maps f : [0, a]×X → X,

Ii : (ti, si] → 2(ti,si] and hi(t, · ) : Ci(t) → X given by f(t, x)(ξ) = F (t, x(ξ)),

Ii(t) = (ti, t] and

hi(t, u)(ξ) = Gi

(
t,

∫ t

ti

ζi(s)u(s, ξ) ds

)
.



Differential Equations with Non Instantaneous Impulses 1085

In the next result, which follows from Theorem 2.3, we say that u ∈ PC(X) is

a mild solution of (3.1)–(3.4) if u( · ) is a mild solution of the associated problem

(1.1)–(1.3).

Proposition 3.1. Assume the functions F,G1, . . . GN , are globally Lipschitz

with Lipschitz constants LF , LG1 , . . . , LN respectively, and

(3.5) max
{

max
i=1,...,N

{LGi‖ζi‖L2((ti,si])δ
1/2
i + LF δi, LF t1

}
< 1.

Then there exists a unique mild solution of the problem (3.1)–(3.4).

Proof. Is easy to see that the functions hi( · ), f( · ) satisfies the conditions

in Theorem 2.3 with Lhi = LG‖ζi‖L2((ti,si])δ
1/2
i and Lf = LF . We also note that

Ψ̃i(t) = 1 and ŝi = si for all t ∈ (ti, si] and each i = 1, . . . , N . From the above

and (3.5), we have that condition (c) of Theorem 2.3 is satisfied which implies

that there exists a unique mild solution of the problem (3.1)–(3.4). �

We consider now the equations (3.1)–(3.3) submitted to the impulsive con-

ditions

(3.6) w(t, ξ) = Gi(t,

∫ t̂i

0

ηi(s)w(s, ξ)) ds, ξ ∈ [0, π], t ∈ (ti, si].

In addition to the previous conditions, we assume that ηi ∈ C([0, t̂i];R) and

0 < t̂i < ti for all i = 1, . . . , N .

Proposition 3.2. If the functions F,G1, . . . , GN , are globally Lipschitz, then

there exists a unique mild solution of (3.1)–(3.3) submitted to the impulsive con-

ditions (3.6).

Proof. We only note that condition (a) of Theorem 2.3 is satisfied with

ŝi = t̂i. �

We consider now the problem (3.1)–(3.3) jointly to the impulsive conditions

(3.7) w(t, ξ) =
∑
j<i

∫ tj+1

sj

ηj(t, s, w(s, ξ)) ds, ξ ∈ [0, π], t ∈ (ti, si],

where ηi ∈ C2([0, a] × [ti, si] × R;R). To simplify, next we assume that the

derivatives of the functions ηi( · ) are uniformly bounded.

Proposition 3.3. Assume that F ( · ) is globally Lipschitz with Lipschitz con-

stant LF , LF t1 < 1 and

(3.8) max
i≤N

{∑
j<i

∥∥∥∥∂ηj∂x
∥∥∥∥
L∞([si,ti+1]×[sj ,tj+1]×R)

(tj+1 − sj)1/2 + LF (si − ti)
}
< 1.

Then there exists a unique mild u( · ) solution of the problem (3.1)–(3.3) submitted

to the impulsive condition (3.7).
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Proof. In this case, we define f as in the first example and for t ∈ (ti, si]

we take
⋃
j<i

C([sj , tj+1] : X) endowed with the norm

‖u‖Ci(t) =
∑
j<i

‖ · ‖C([sj ,tj+1]:X),

t = t and Ii(s) =
⋃
j<i

[sj , tj+1] for s ∈ (ti, si]. In addition, we define maps

hi(t, · ) : C(t)→ X by

hi(t, u)(ξ) =
∑
j<i

∫ tj+1

sj

ηj(t, s, u(s, ξ)) ds.

Since the derivatives of of the function ηi( · ) are uniformly bounded, we have

that each hi( · ) is globally Lipstchiz with Lipschitz constant

Lhi ≤
∑
j<i

∥∥∥∥∂ηi∂x

∥∥∥∥
L∞([si,ti+1]×[sj ,tj+1]×R)

(tj+1 − sj).

From the above and (3.8) we have that condition (c) in Theorem 2.3 is satis-

fied. Thus, there exists a unique mild solution of the problem (3.1)–(3.3) with

impulsive conditions (3.7). �

Concerning the existence of classical solutions, we have the next corollary

which follows directly from Proposition 2.11. We omit the proof.

Corollary 3.4. Assume the conditions in Proposition 3.3 are fulfilled and

let u( · ) be a mild solution of (3.1)–(3.3) with impulsive condition (3.7). Suppose

that F ( · ) is continuously differentiable, there is LF > 0 such that∣∣∣∣∂F∂x (t, z)− ∂F

∂x
(t, w)

∣∣∣∣ ≤ LF |z − w|
for all z, w ∈ R and every t ∈ [0, a], ηi(t, 0) = 0 for every t ∈ (ti, si] and all

i = 1, . . . , N and x0 ∈ D(A). Then u( · ) is a classical solution.
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