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Abstract. In this paper we study the nonlinear Schrödinger-Poisson sys-
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−∆u+ u+K(x)φu = |u|p−2u+ λf(x)|u|q−2u in R3,
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1. Introduction

In this paper we are concerned with the coupled system of Schrödinger–

Poisson equations of the form:

(SP)

−∆u+ u+K(x)φ(x)u = h(x, u) in R3,

−∆φ = K(x)u2 in R3,

where K is a nonnegative function and h : R3×R→ R is a Carathédory function.

Such a system, also known as the nonlinear Schrödinger–Maxwell equations,

have a strong physical meaning. It was first introduced in [8] as a model describ-

ing solitary waves for the nonlinear stationary Schrödinger equations interacting

with the electrostatic field, and also in semiconductor theory, in nonlinear optics

and in plasma physics. Indeed, in Problem (SP) the first equation is a nonlinear

stationary Schrödinger equation (where, as usual, the nonlinear term simulates

the interaction between many particles) that is coupled with a Poisson equation,

to be satisfied by φ, meaning that the potential is determined by the charge of

the wave function.

In recent years, problem (SP) has been studied widely via variational meth-

ods under the various hypotheses on K and f , see [3], [5], [6], [13], [14], [18], [20],

[24], [25] and the references therein. Now we recall some of them as follows.

If h(x, u) ≡ |u|p−2u and K(x) ≡ µ > 0, Ruiz [24] gave existence and nonex-

istence results on positive radial solutions of problem (SP), depending on the

parameters p and µ. It turned out that p = 3 is a critical value for the exis-

tence of solutions. Later, the results in [24] were further improved in Ambrosetti

and Ruiz [5] by showing the presence of multiple bound states when certain

conditions on the parameters are satisfied.

If h(x, u) ≡ a(x)|u|p−2u and K(x) ≡ µ > 0, Chen et al. [14] studied the mul-

tiplicity of positive solutions for problem (SP) with 4 ≤ p < 6. They showed that

the number of positive solutions are dependent on the profile of the function a.

If h(x, u) ≡ a(x)|u|p−2u and K is a nonnegative L2-function, Cerami and

Vaira [13] obtained the existence of positive ground state and bound state so-

lutions for problem (SP) with 4 < p < 6 under some suitable assumptions, but

not requiring any symmetry property on a and K.

Motivated by these findings, we now extend the analysis to the nonlinear

Schrödinger–Poisson system with a perturbation. Our intension here is to illus-

trate the difference in the solution behavior which arises from the consideration of

the perturbation. Here we consider the following Schrödinger–Poisson systems:

(SPλ)

−∆u+ u+K(x)φ(x)u = |u|p−2u+ λf(x)|u|q−2u in R3,

−∆φ = K(x)u2 in R3,
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where K and f are nonnegative functions, 2 < q ≤ p < 2∗ (2∗ := 2× 3/(3− 2) =

6) and p > 4, and λ ∈ R. We assume that the functions K and f satisfy the

following conditions:

(K) K ∈ L2(R3) and there exists a positive number rK > 1 such that

K(x) ≤ ĉ exp(−rK |x|) for some ĉ > 0 and for all x ∈ R3;

(D1) f ∈ C(R3) ∩ Lp/(p−q)(R3) and there exist positive numbers 1 < rf <

min {rK , 2} and R0 such that

f(x) ≥ c0 exp(−rf |x|) for some c0 > 0 and for all x ∈ R3 with |x| ≥ R0.

It is well known that problem (SPλ) can be easily transformed in the Schrö-

dinger equation with a non-local term (see [13], [24], [25] etc.). Briefly, the

Poisson equation is solved by using the Lax–Milgram theorem, so, for all u in

H1(R3), a unique φu ∈ D1,2(R3) is obtained, such that −∆φ = K(x)u2 and

that, inserted into the first equation, gives

(SP′λ) −∆u+ u+K(x)φu(x)u = |u|p−2u+ λf(x)|u|q−2u,

Moreover, wquation (SP′λ) is variational and its solutions are the critical points

of the functional defined in H1(R3) by

Jλ(u) =
1

2

∫
R3

(|∇u|2 + u2) dx+
1

4

∫
R3

K(x)φu(x)u2 dx

− 1

p

∫
R3

|u|p dx− λ

q

∫
R3

f |u|q dx.

Furthermore, it is known that Jλ is a C1 functional with derivative given by

〈J ′λ(u), v〉 =

∫
R3

(∇u∇v + uv +Kφuuv − |u|p−2uv − λf |u|q−2uv) dx.

Note that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of problem (SPλ) if and

only if u is a critical point of Jλ and φ = φu (see [9], [15]). It is clear that for

u ∈ H1(R3) \ {0}, lim
t→∞

Jλ(tu) = −∞ and so Jλ is not longer bounded below

on H1(R3). In order to obtain the existence results, we introduce the Nehari

manifold

Nλ = {u ∈ H1(R3) \ {0} | 〈J ′λ(u), u〉 = 0}.
Thus, u ∈ Nλ if and only if∫

R3

(|∇u|2 + u2) dx+

∫
R3

K(x)φu(x)u2 dx−
∫
R3

|u|p dx− λ
∫
R3

f |u|q dx = 0.

Clearly, Nλ contains every non-trivial critical point of Jλ on H1(R3).

Consider the following minimization problem

αλ = inf
u∈Nλ

Jλ(u),

and we have the following definition.
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Definition 1.1. (u, φ) ∈ H1(R3) × D1,2(R3) is a ground state of problem

(SPλ) we mean that (u, φ) is such a solution of problem (SPλ) which minimizes

the action functional Jλ on the Nehari manifold Nλ. If there exists a nontrivial

solution (u, φu) of problem (SPλ) such that Jλ(u) > αλ, then we called the

solution (u, φu) is a higher energy solution of of problem (SPλ).

Let

(1.1) η0 =
(p− 2)(p− 4)(q−2)/(p−2)

(4− q)(p− q)(p−q)/(p−2)(q − 2)(q−2)/(p−2)S
2(p−q)/(p−2)
p |f |p/(p−q)

> 0,

it is easy to see that η0 →∞ as q → 4−. Define

(1.2) λ(q) =

∞ if 4 ≤ q ≤ p,
λ̂ if 2 < q < 4,

where λ̂ = min{2(p−q)/(p−2)η0, qp
(2−q)/(p−2)η0}. Then our main result is the

following.

Theorem 1.2. Suppose that the functions K, f satisfy the conditions (K)

and (D1), and lim
|x|→∞

f(x) = 0. Then we have the following:

(a) Problem (SPλ) has a positive higher energy solution and no any ground

state solution for λ = 0;

(b) Problem (SPλ) has a positive ground state solution for 0 < λ < λ(q);

(c) there exists a positive number Λ∗ < λ(q) such that problem (SPλ) has at

least three positive solutions for 0 < λ < Λ∗.

Remark 1.3. (a) By a similar argument to that in the proof of [13, Propo-

sition 6.1], problem (SPλ) does not admit any ground state solutions for λ = 0.

Moreover, [13] showed that the existence of higher energy solution for problem

(SPλ) with λ = 0 and p = q.

(b) Regarding the existence of higher energy solution, the main difference is

the type of assumption on function K (see [13]) requires K being in L which is

restricted within certain value, but K decays exponentially in our study.

Our analysis also makes use of the following result.

Theorem 1.4. If in addition to the conditions (K) and (D1), we still have

(D2) there exists a positive number 1 < rf ≤ rf such that

f(x) ≤ c0 exp(−rf |x|) for some c0 > 0 and for all x ∈ R3,

then problem (SPλ) has a positive higher energy solution and no any ground state

solution for λ < 0.
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Proof. The proof is similar to that of Theorem 1.2(a) (see Sections 3 and 4),

so we leave the details to the reader. �

This paper is organized as follows. In Section 2, we give some notations and

preliminaries. In Section 3, we give some estimates of the energy. In Section 4,

we establish the existence of a positive solution. In Section 5, we establish the

existence of two positive solutions for λ sufficiently small. In Section 6, we prove

Theorem 1.2.

2. Notations and preliminaries

Hereafter we use the following notations:

• H1(R3) is the usual Sobolev space endowed withthe standard scalar

product and norm

〈u, v〉 =

∫
R3

(∇u∇v + uv) dx, |u|2 =

∫
R3

(|∇u|2 + u2) dx.

• D1,2(R3) is the completion of C∞0 (R3) with respect to the norm

|u|2D1,2 =

∫
R3

|∇u|2 dx.

• H−1 denotes the dual space of H1(R3).

• Ls(R3), 2 ≤ s ≤ +∞, a Lebesgue space, the norm in Ls(R3) is denoted

by | · |s.
• Ss is the best Sobolev constant for the embedding of H1(R3) in Ls(R3),

that is

Ss = inf
u∈H1(R3)\{0}

|u|
|u|s

.

• S is the best Sobolev constant for the embedding of D1,2(R3) in L6(R3),

that is

S = inf
u∈D1,2(R3)\{0}

|u|D1,2

|u|6
.

• C is various positive constants which may vary from line to line and are

not essential to the problem.

Let us now define the operator Φ: H1(R3)→ D1,2(R3) as Φ[u] = φu.

In the following lemma we summarize some properties of Φ, useful to study

our problem, the readers are referred to [13, Lemma 2.1] for a detailed proof.

Lemma 2.1. We have the following:

(a) Φ is continuous;

(b) Φ maps bounded sets into bounded sets;

(c) if un ⇀ u weakly in H1(R3), then Φ[un] ⇀ Φ[u] weakly in D1,2(R3);

(d) Φ[tu] = t2Φ[u] for all t ∈ R.
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Define

ψλ(u) = |u|2 +

∫
R3

K(x)φu(x)u2 dx−
∫
R3

|u|p dx− λ
∫
R3

f |u|q dx.

Then, for u ∈ Nλ, if 4 ≤ q ≤ p < 6,

〈ψ′λ(u), u〉 = 2|u|2 + 4

∫
R3

K(x)φu(x)u2 dx− p
∫
R3

|u|p dx− qλ
∫
R3

f |u|q dx

= (2− q)|u|2 + (4− q)
∫
R3

K(x)φu(x)u2 dx− (p− q)
∫
R3

|u|p dx < 0

for all λ ∈ R.

If 2 < q < 4 < p < 6,

〈ψ′λ(u), u〉 = 2|u|2 + 4

∫
R3

K(x)φu(x)u2 dx− p
∫
R3

|u|p dx− λq
∫
R3

f |u|q dx

= − 2|u|2 + (4− p)
∫
R3

|u|p dx+ λ(4− q)
∫
R3

f |u|q dx

<

0 if λ ≤ 0,

−2S−2
p |u|2p − (p− 4)|u|pp + λ(4− q)|f |p/(p−q)|u|qp if λ > 0.

We can prove that for any 0 < λ < 2(p−q)/(p−2)η0 and u ∈ Nλ,

−2S−2
p |u|2p − (p− 4)|u|pp + λ(4− q)|f |p/(p−q)|u|qp < 0,

(see Lemma A.1 in Appendix), where η0 > 0 is as in (1.1). Therefore, if 2 < q <

4 < p < 6, then 〈ψ′λ(u), u〉 < 0 for any λ < 2(p−q)/(p−2)η0. These show that Nλ

is a C1 manifold and so the Nehari manifold Nλ is a natural constraint for the

functional Nλ. Furthermore, we have the following results.

Lemma 2.2. The energy functional Jλ is coercive and bounded below on Nλ

for any λ < λ(q), where λ(q) is as in (1.2).

Proof. For any u ∈ Nλ. We consider two cases: Case 1. 4 ≤ q ≤ p < 6.

Since

Jλ(u) =
1

2
|u|2 +

1

4

∫
R3

K(x)φu(x)u2 dx− 1

p

∫
R3

|u|p dx− λ

q

∫
R3

f |u|q dx(2.1)

=
q − 2

2q
|u|2 +

q − 4

4q

∫
R3

K(x)φu(x)u2 dx+
p− q
pq

∫
R3

|u|p dx > 0

for all λ ∈ R. Then Jλ is coercive and bounded below on Nλ.

Case 2. 2 < q < 4 < p < 6. Since

Jλ(u) =
1

2
|u|2 +

1

4

∫
R3

K(x)φu(x)u2 dx− 1

p

∫
R3

|u|p dx− λ

q

∫
R3

f |u|q dx(2.2)

=
1

4
|u|2 +

p− 4

4p

∫
R3

|u|p dx− λ(4− q)
4q

∫
R3

f |u|q dx
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≥ 1

4
|u|2 +

p− 4

4p
|u|pp −

λ(4− q)
4q

|f |p/(p−q)|u|qp

≥
S2
p

4
|u|2p +

p− 4

4p
|u|pp −

λ(4− q)
4q

|f |p/(p−q)|u|qp > 0,

for all u ∈ Nλ and λ < qp(2−q)/(p−2)η0 (see Lemma A.1 in Appendix). Set

λ̂ = min{2(p−q)/(p−2)η0, qp
(2−q)/(p−2)η0}. Then, by (2.2), for any λ < λ̂, Jλ is

coercive and bounded below Nλ. �

Lemma 2.3. Suppose that u0 is a local minimizer for Jλ on Nλ. Then

J ′λ(u0) = 0 in H−1(R3).

Proof. The proof is essentially the same as that in Brown and Zhang [12,

Theorem 2.3] (or see Binding, Drábek and Huang [10]). �

To get a better understanding of the Nehari manifold, we consider the func-

tion mu : R+ → R defined by

mu(t) = t−2|u|2 − tp−4

∫
R3

|u|p dx for t > 0.

Clearly, tu ∈ N0 if and only if mu(t)+
∫
R3 K(x)φu(x)u2 dx = 0 and mu(t̂(u)) = 0,

where N0 = Nλ with λ = 0 and

(2.3) t̂(u) =

(
|u|2∫

R3 |u|p dx

)1/(p−2)

> 0.

Moreover,

m′u(t) = −2t−3|u|2 − (p− 4)tp−5

∫
R3

|u|p dx.

Thus, m′u(t) < 0 for all t > 0, which implies that mu is strictly decreasing on

(0,∞) with lim
t→0+

mu(t) =∞ and lim
t→∞

mu(t) = −∞. Then we have the following

lemma.

Lemma 2.4. Suppose that λ < λ(q). Then, for each u ∈ H1(R3) \ {0} we

have the following results:

(a) There exists a unique tλ(u) > 0 such that tλ(u)u ∈ Nλ, and

(2.4) Jλ(tλ(u)u) = sup
t≥0

Jλ(tu).

In particular, there exists a unique t0(u) ≥ t̂(u) such that t0(u)u ∈ N0,

and

(2.5) J0(t0(u)u) = sup
t≥0

J0(tu) = sup
t≥t̂(u)

J0(tu),

where J0 = Jλ with λ = 0.

(b) tλ(u) is a continuous function for u ∈ H1(R3) \ {0}.
(c) tλ(u) = (1/|u|)tλ(u/|u|).
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(d) Nλ = {u ∈ H1(R3) \ {0} | (1/|u|)tλ(u/|u|) = 1}.

Proof. (a) Fix u ∈ H1(R3) \ {0} and let

hu(t) = Jλ(tu)

=
t2

2
|u|2 +

t4

4

∫
R3

K(x)φu(x)u2 dx− tp

p

∫
R3

|u|p dx− λtq

q

∫
R3

f |u|q dx

for t > 0. Then

h′u(t) = t|u|2 + t3
∫
R3

K(x)φu(x)u2 dx− tp−1

∫
R3

|u|p dx− λtq−1

∫
R3

f |u|q dx.

We distinguish two cases:

Case 1. 4 ≤ q ≤ p < 6. Let

gu(t) = t2
∫
R3

K(x)φu(x)u2 dx− tp−2

∫
R3

|u|p dx− λtq−2

∫
R3

f |u|q dx

for t > 0. Clearly, tu ∈ Nλ if and only if gu(t) + ‖u‖2 = 0.

g′u(t) = 2t

∫
R3

K(x)φu(x)u2 dx− (p− 2)tp−3

∫
R3

|u|p dx

− λ(q − 2)tq−3

∫
R3

f |u|q dx.

If there exists t̃ > 0 such that g′u(t̃) = 0, that is

2

∫
R3

K(x)φu(x)u2 dx− (p− 2)t̃p−4

∫
R3

|u|p dx− λ(q − 2)t̃q−4

∫
R3

f |u|q dx = 0.

Then

g′′u(t̃) = 2

∫
R3

K(x)φu(x)u2 dx

− (p− 2)(p− 3)t̃p−4

∫
R3

|u|p dx− λ(q − 2)(q − 3)t̃q−4

∫
R3

f |u|q dx

= [2− 2(q − 3)]

∫
R3

K(x)φu(x)u2 dx

+ [(p− 2)(q − 3)− (p− 2)(p− 3)]t̃p−4

∫
R3

|u|p dx

= 2(4− q)
∫
R3

K(x)φu(x)u2 dx+ (p− 2)(q − p)t̃p−4

∫
R3

|u|p dx < 0.

Therefore, there exists a unique tλ(u) > 0 such that gu(tλ(u)) +‖u‖2 = 0, which

implies that h′u(tλ(u)) = 0 and tλ(u)u ∈ Nλ. Moreover, by the profile of gu, one

has hu is strictly increasing on (0, tλ(u)) and strictly decreasing on (tλ(u),∞).

Therefore, (2.4) holds.

Case 2. 2 < q < 4 < p < 6. Let

Gu(t) = t−2|u|2 − tp−4

∫
R3

|u|p dx− λtq−4

∫
R3

f |u|q dx
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for t > 0. Clearly, Gu(t) → +∞ as t → 0+ and Gu(t) → −∞ as t → +∞.

Furthermore, for any λ < λ∗ and t > 0, we have

G′u(t) = − 2t−3|u|2 − (p− 4)tp−5

∫
R3

|u|p dx+ λ(4− q)tq−5

∫
R3

f |u|q dx

= t−5(−2|tu|2 − (p− 4)

∫
R3

|tu|p dx+ λ(4− q)
∫
R3

f |tu|q dx) < 0,

(see Lemma A.1 in Appendix), which implies that Gu is decreasing on t for any

λ < λ(q). Therefore, there exists a unique tλ(u) > 0 such that

Gu(tλ(u)) +

∫
R3

K(x)φu(x)u2, dx = 0,

which implies that h′u(tλ(u)) = 0 and tλ(u)u ∈ Nλ. Moreover, it is easy to obtain

that hu is strictly increasing on (0, tλ(u)) and strictly decreasing on (tλ(u),∞).

Therefore, (2.4) holds. Let

h0
u(t) = J0(tu) =

t2

2
|u|2 +

t4

4

∫
R3

K(x)φu(x)u2 dx− tp

p

∫
R3

|u|p dx.

Thus

[h0
u(t)]′ = t|u|2 + t3

∫
R3

K(x)φu(x)u2 dx− tp−1

∫
R3

|u|p dx

= t3(t−2|u|2 − tp−4

∫
R3

|u|p dx+

∫
R3

K(x)φu(x)u2 dx)

= t3
(
mu(t) +

∫
R3

K(x)φu(x)u2 dx

)
.

Since
∫
R3 K(x)φu(x)u2 dx > 0 for any u ∈ H1(R3) \ {0}, then the equation

mu(t)+
∫
R3 K(x)φu(x)u2 dx = 0 has a unique solution t0(u) ≥ t̂(u), which implies

that [hu(t0(u))]′ = 0 and t0(u)u ∈ N0. Moreover, hu is strictly increasing on

(0, t0(u)) and strictly decreasing on (t0(u),∞). Therefore, (2.5) holds.

(b) By the uniqueness of tλ(u) and the extrema property of tλ(u), we have

tλ(u) is a continuous function for u ∈ H1(R3) \ {0}.
(c) Let v = u/|u|. Then, by parts (a) and (b), there is a unique tλ(v) > 0

such that tλ(v)v ∈ Nλ or tλ(u/|u|)u/|u| ∈ Nλ. Thus, by the uniqueness of tλ(v),

we can conclude that tλ(u) = (1/|u|)tλ(u/|u|).
(d) For u ∈ Nλ. By parts (a)–(c), tλ(u/|u|)u/|u| ∈ Nλ. Since u ∈ Nλ, we

have tλ(u/|u|)/|u| = 1, which implies that

Nλ ⊂
{
u ∈ H1(R3)

∣∣∣∣ 1

|u|
tλ

(
u

|u|

)
= 1

}
.

Conversely, let u ∈ H1(R3) such that (1/|u|)tλ(u/|u|) = 1. Then, by part (c),

tλ

(
u

|u|

)
u

|u|
∈ Nλ.
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Thus,

Nλ =

{
u ∈ H1(R3) \ {0}

∣∣∣∣ 1

|u|
tλ

(
u

|u|

)
= 1

}
.

This completes the proof. �

We define the Palais–Smale (or simply (PS)-) sequences, (PS)-values, and

(PS)-conditions in H1(R3) for Jλ as follows.

Definition 2.5. (a) For β ∈ R, a sequence {un} is a (PS)β-sequence in

H1(R3) for Jλ if Jλ(un) = β + o(1) and J ′λ(un) = o(1) strongly in H−1(R3) as

n→∞.

(b) Jλ satisfies the (PS)β-condition in H1(R3) if every (PS)β-sequence in

H1(R3) for Jλ contains a convergent subsequence.

Now we consider the following elliptic problem:

(E∞)

−∆u+ u = |u|p−2u in R3,

lim
|x|→∞

u = 0.

Associated with equation (E∞), we consider the energy functional J∞ in H1(R3)

J∞(u) =
1

2

∫
R3

[|∇u|2 + u2] dx− 1

p

∫
R3

|u|p dx.

Consider the minimizing problem:

inf
u∈N∞

J∞(u) = α∞,

where N∞ = {u ∈ H1(R3) \ {0} | 〈(J∞)′(u), u〉 = 0}.
It is known that equation (E∞) has a unique positive radially solution w(x)

such that J∞(w) = α∞ and w(0) = max
x∈R3

w(x) (see [19]). Then we have the

following results.

Proposition 2.6. Let {un} be a (PS)β-sequence in H1(R3) for Jλ. Then

there exist a subsequence {un}, m ∈ N, sequences {xin}∞n=1 in R3, and functions

v0 ∈ H1(R3), and 0 6= wi ∈ H1(R3), for 1 ≤ i ≤ m such that:

(a) |xin| → ∞ and |xin − xjn| → ∞ as n→∞, for 1 ≤ i 6= j ≤ m;

(b) −∆v0 + v0 +K(x)φv0(x)v0 = |v0|p−2v0 + λf(x)|v0|q−2v0 in R3;

(c) −∆wi + wi = |wi|p−2wi in R3;

(d) un = v0 +
m∑
i=1

wi( · − xin) + o(1) strongly in H1(R3);

(e) Jλ(un) = Jλ(v0) +
m∑
i=1

J∞(wi) + o(1).

In addition, if un ≥ 0, then v0 ≥ 0 and wi ≥ 0 for each 1 ≤ i ≤ m.

Proof. The proof is essentially the same as Lemma 4.1 in Cerami and

Vaira [13] (or see Lions [21], [22]), and so we omit it here. �
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Corollary 2.7. Suppose that {un} is a (PS)β-sequence in H1(R3) for Jλ
with 0 < β < α∞ + min{αλ, α∞} and β 6= α∞. Then there exists a subsequence

{un} and a non-zero u0 in H1(R3) such that un → u0 strongly in H1(R3) and

Jλ(u0) = β. Furthermore, (u0, φu0
) is a non-zero solution of problem (SPλ).

3. The estimate of energy

First, we let w(x) be a positive radially solution of Equation (E∞) such that

J∞(w) = α∞. Then by Gidas, Ni and Nirenberg [17], for any ε > 0, there exist

positive numbers Aε and B0 such that

(3.1) Aε exp(−(1 + ε)|x|) ≤ w(x) ≤ B0 exp(−|x|) for all x ∈ R3.

Let e ∈ S2 = {x ∈ R3 | |x| = 1} and let z0 = (δ0, 0, 0) ∈ R3, where

0 < δ0 =
rf − 1

2(rf + 1)
< 1.

Clearly,

(3.2) 1− δ0 ≤ |e− z0| ≤ 1 + δ0 for all e ∈ S2.

Define

(3.3) we,l(x) = w(x− le) for l ≥ 0 and e ∈ S2

and

wz0,l(x) = w(x− lz0) for l ≥ 0.

Note that we,l and wz0,l are also least energy positive solutions of equation (E∞)

for all l ≥ 0. Moreover, by Lemma 2.4 for each u ∈ H1(R3) \ {0} and λ < λ1(q),

there is a unique tλ(u) > 0 such that tλ(u)u ∈ Nλ. Let t̂ be as in (2.3). Then

we have the following results.

Lemma 3.1. For each s0 ∈ (0, 1) there exist l(s0) > 0 and σ(s0) > 1 such

that, for any l > l(s0), we have

t̂ p−2(swe,l + (1− s)wz0,l) >
σ(s0)

sp−2 + (1− s)p−2

for all e ∈ S2 and for all s ∈ (0, 1) with min{s, 1− s} ≥ s0.

Proof. Since

(3.4) t̂p−2(swe,l + (1− s)wz0,l) =
s2|w|2 + (1− s)2|w|2 + 2s(1− s)〈we,l, wz0,l〉∫

R3 |swe−z0,l + (1− s)w|pdx

for all s ∈ [0, 1] and for all e ∈ S2. Moreover, by

(3.5) 1− δ0 ≤ |e− z0| ≤ 1 + δ0 for all e ∈ S2,
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we have

〈we,l, wz0,l〉 =

∫
R3

wp−1we−z0,l dx

≤Bp0
∫
|x|<(1+δ0)l

exp(−(|x|+ |x− l(z0 − e)|)) dx

+Bp0

∫
|x|≥(1+δ0)l

exp(−(|x|+ |x− l(z0 − e)|)) dx

≤ c0Bp0 l3
∫
|x|<(1+δ0)

exp(−(1− δ0)l) dx+ C0B
p
0 exp(−(1 + δ0)l)

≤C0B
p
0 l

3 exp(−l(1− δ0))

for all l ≥ 1 and for all e ∈ S2, and implies that

(3.6) lim
l→∞
〈we,l, wz0,l〉 = 0 uniformly in e ∈ S2.

By (3.1), (3.5) and Brézis–Lieb lemma [11], for any s ∈ [0, 1] we also have

(3.7) lim
l→∞

∫
R3

|swe−z0,l + (1− s)w|p − |swe−z0,l|p dx =

∫
R3

|(1− s)w|p dx

uniformly in e ∈ S2.

Thus, by (3.4), (3.6) and (3.7), for any s ∈ [0, 1],

(3.8) lim
l→∞

t̂p−2(swe,l + (1− s)wz0,l) =
s2 + (1− s)2

sp + (1− s)p
uniformly in e ∈ S2.

Since

(3.9)
(s2 + (1− s)2)(sp−2 + (1− s)p−2)

sp + (1− s)p
≥ 1 +

s2
0(1− s0)p−2 + (1− s0)2sp−2

0

2(1− s0)p

for all s ∈ (0, 1) with min{s, 1− s} ≥ s0, by (3.8) and (3.9), there exist l(s0) > 0

and σ(s0) > 1 such that for any l > l(s0), we have

t̂p−2(swe,l + (1− s)wz0,l) >
σ(s0)

sp−2 + (1− s)p−2

for all e ∈ S2 and for all s ∈ (0, 1) with min{s, 1− s} ≥ s0. �

Proposition 3.2. (a) For each 0 < λ < λ(q), there exists l̂1 = l̂1(λ) > 0

such that, for any l ≥ l̂1, sup
t≥0

Jλ(twe,l) < α∞ for all e ∈ S2. Furthermore, there

is a unique tλ(we,l) > 0 such that tλ(we,l)we,l ∈ Nλ.

(b) If λ = 0, then there exists l1 > 0 such that for any l ≥ l1

sup
t≥0

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all e ∈ S2.

Furthermore, there is a unique t0(swe,l + (1− s)wz0,l) > 0 such that

t0(swe,l + (1− s)wz0,l)[swe,l + (1− s)wz0,l] ∈ N0.
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Proof. (a) Since

Jλ(twe,l) =
t2

2
|we,l|2 +

t4

4

∫
R3

K(x)φwe,l(x)w2
e,l dx(3.10)

− tp

p

∫
R3

|we,l|p dx−
λtq

q

∫
R3

f |we,l|q dx

=
t2

2
|w|2 − tp

p

∫
R3

wp dx

+
t4

4

∫
R3

K(x)φwe,l(x)w2
e,l dx−

λtq

q

∫
R3

f |we,l|q dx

≤ t2

2
|w|2 − tp

p

∫
R3

wp dx

+
t4

4
S
−2
S−4|K|22‖w‖4 −

λtq

q

∫
R3

f |we,l|q dx,

for all 0 < λ < λ(q), it implies that Jλ(twe,l) → −∞ as t → ∞ for all e ∈ S2.

Thus, there exists t1 > 0 such that, for any l ≥ 0,

(3.11) Jλ(twe,l) < α∞ for all t ≥ t1 and for all e ∈ S2.

Moreover, it is easy to obtain that Jλ(0) = 0 < α∞, Jλ ∈ C1(H1(R3),R) and

|we,l|2 = 2pα∞/(p− 2) for all l ≥ 0, which implies that there exists t2 > 0 such

that, for any l ≥ 0,

(3.12) Jλ(twe,l) < α∞ for all 0 ≤ t ≤ t2 and for all e ∈ S2.

By Brown and Zhang [12] and Willem [27], we also know that

(3.13) J∞(tw) =
t2

2
|w|2 − tp

p

∫
R3

wp dx ≤ α∞ for all t > 0.

Thus, by (3.10),

(3.14) Jλ(twe,l) ≤ α∞ +
t4

4

∫
R3

K(x)φwe,l(x)w2
e,l dx−

λtq

q

∫
R3

fwqe,l dx

for all t > 0. By (3.11) and (3.12), we only need to show that there exists l̂1 > 0

such that, for any l > l̂1,

sup
t2≤t≤t1

Jλ(twe,l) < α∞ for all e ∈ S2.

We set C0 = min
x∈B3(0,1)

wq(x) > 0, where B3(0, 1) = {x ∈ R3 | |x| < 1}. Then, by

the condition (D1),

(3.15) λ

∫
R3

fwqe,l dx ≥ λ
∫
|x|≥R0

fwqe,l dx = λ

∫
|x+le|≥R0

f(x+ le)wq(x) dx

≥ λC0

∫
B3(0,1)

f(x+ le) dx ≥ λC0 exp(−rf l)
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for all l ≥ 2 max{1, R0}. Moreover, by (3.1) and the condition (K), we have∫
R3

K(x)φwe,l(x)w2
e,l dx(3.16)

≤
(∫

R3

K6/5(x)w
12/5
e,l dx

)5/6(∫
R3

φ6
we,l

(x) dx

)1/6

≤B2
0S
−2
S−2|K|2

2p

p− 2
α∞
[
C exp

(
−min

{
6

5
rK ,

12

5

}
l

)]5/6

≤C exp(−min{rK , 2}l).

Since rf < min{rK , 2} and t2 ≤ t ≤ t1, we can find l̂1 > 2 max{1, R0} such that,

for any l > l̂1,

(3.17)
t4

4

∫
R3

K(x)φwe,l(x)w2
e,l dx <

λtq

q

∫
R3

fwqe,l dx

for all e ∈ S2 and for all t ∈ [t2, t1]. Thus, by (3.11)–(3.14) and (3.17), we obtain

that, for any l > l̂1, sup
t≥0

Jλ(twe,l) < α∞ for all e ∈ S2. Moreover, by Lemma 2.4,

there is a unique tλ(we,l) > 0 such that tλ(we,l)we,l ∈ Nλ.

(b) When s = 0 or 1, by a similar argument in part (a), there exists t̃1 > 0

such that

(3.18) max

{
sup
t≥0

J0(twe,l), sup
t≥0

J0(twz0,l)

}
≤ α∞ +

t̃1C0

q
exp(−rf l)

for all e ∈ S2, this implies that there exists l̃1 > 0 such that, for any l > l̃1,

max

{
sup
t≥0

J0(twe,l), sup
t≥0

J0(twz0,l)

}
≤ 3

2
α∞ for all e ∈ S2.

Therefore, by J0 ∈ C2(H1(R3),R), there exist positive constants s0 and l̃ such

that, for any l > l̃, sup
t≥0

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all e ∈ S2 and for all

min{s, 1− s} ≤ s0. In the following we always assume that min{s, 1− s} ≥ s0.

By Lemma 2.4(a) and Lemma 3.1, we may show that there exists l1 ≥ l̃ such

that, for any l > l1,

(3.19) sup
t≤(σ(s0)/(sp−2+(1−s)p−2)1/(p−2))

J0(t[swe,l + (1− s)wz0,l]) < 2α∞

for all e ∈ S2, where σ(s0) > 1 is as in Lemma 3.1. Since

J0(t[swe,l + (1− s)wz0,l])(3.20)

=
t2

2
[s2|w|2 + (1− s)2|w|2 + 2s(1− s)〈we,l, wz0,l〉]

+
t4

4

∫
R3

K(x)φswe,l+(1−s)wz0,l(x)(swe,l + (1− s)wz0,l)2 dx

− tp

p

∫
R3

[swe,l + (1− s)wz0,l]p dx
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≤ t2

2
[s2 + 2s(1− s) + (1− s)2]|w|2

+
t4

4
S
−2
S−4|K|22|swe,l + (1− s)wz0,l|4

− tp

p
max{sp, (1− s)p}

∫
R3

wp dx

≤ t2

2
|w|2 +

t4

4
S
−2
S−4|K|22|w|4 −

tp

p2p

∫
R3

wp dx

for all 0 ≤ s ≤ 1 and e ∈ S2, there exists t1 > 0 such that, for any t ≥ t1,

(3.21) J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all 0 ≤ s ≤ 1 and for all e ∈ S2.

By (3.19) and (3.21), we only need to show that there exists l1 ≥ l̃ such that,

for any l > l1,

(3.22) sup
(σ(s0)/(sp−2+(1−s)p−2))1/(p−2)≤t≤t1

J0(t[swe,l + (1− s)wz0,l]) < 2α∞

for all e ∈ S2. By Lemma 2.1 in Bahri-Li [7], there exists Cp > 0, such that, for

any nonnegative real numbers c, d,

(c+ d)p ≥ cp + dp + p(cp−1d+ cdp−1)− Cpcp/2dp/2.

Then, by (3.13), (3.20) and Lemma 3.1,

J0(t[swe,l + (1− s)wz0,l])(3.23)

≤ t2

2
[s2|w|2 + (1− s)2|w|2 + 2s(1− s)〈we,l, wz0,l〉]

+
t4

4

∫
R3

K(x)φswe,l+(1−s)wz0,l(x)(swe,l + (1− s)wz0,l)2 dx

− tp

p

∫
R3

(swe,l)
p + [(1− s)wz0,l]p + p(swe,l)

p−1((1− s)wz0,l)

+ p(swe,l)[(1− s)wz0,l]p−1 − Cp(swe,l)p/2[(1− s)wz0,l]p/2 dx

≤ 2α∞ +
t41
4
S
−2
S−2|K|2‖w‖2

×
(∫

R3

K6/5(x)(swe,l + (1− s)wz0,l)12/5 dx

)5/6

− s(1− s)t2[tp−2(sp−2 + (1− s)p−2)− 1]

∫
R3

wp−1
e,l wz0,l dx

+
tp1Cp
p

∫
R3

w
p/2
e,l w

p/2
z0,l

dx

≤ 2α∞ +
t41
4
S
−2
S−2|K|2‖w‖2
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×
(∫

R3

K6/5(x)(swe,l + (1− s)wz0,l)12/5 dx

)5/6

− C2
0 [σ(s0)− 1]

∫
R3

wp−1
e,l wz0,l dx+

tp1Cp
p

∫
R3

w
p/2
e,l w

p/2
z0,l

dx

for all e ∈ S2, where we have used the result∫
R3

wp−1
e,l wz0,l dx = 〈we,l, wz0,l〉 =

∫
R3

we,lw
p−1
z0,l

dx.

We first estimate
∫
R3 w

p−1
e,l wz0,l dx. Setting C0 = min

x∈B3(0,1)
wp−1(x) > 0, by (3.1)

and (3.2), for any ε > 0, we have∫
R3

wp−1
e,l wz0,l dx =

∫
R3

wp−1(x)w(x− l(z0 − e)) dx(3.24)

≥C0Aε

∫
B3(0,1)

exp(−(1 + ε)|x− l(z0 − e)|) dx

≥C0Aε exp(−l(1 + ε)(1 + δ0)).

From (3.2) we have∫
R3

w
p/2
e,l w

p/2
z0,l

dx ≤ Bp0
∫
|x|<(1+δ0)l

exp

(
− p

2
(|x|+ |x− l(z0 − e)|)

)
dx(3.25)

+Bp0

∫
|x|≥(1+δ0)l

exp

(
− p

2
(|x|+ |x− l(z0 − e)|)

)
dx

≤CBp0 l3
∫
|x|<(1+δ0)

exp

(
− pl

2
|e− z0|

)
dx

+ CBp0 exp

(
− pl

2
|e− z0|

)
≤CBp0 l3 exp(−rf (1− δ0)l)

for l sufficiently large. By (3.16) and the condition (K), one has(∫
R3

K6/5(x)(swe,l + (1− s)wz0,l)12/5 dx

)5/6

(3.26)

≤ 27/6

(∫
R3

K6/5(x)w
12/5
e,l dx+

∫
R3

K6/5(x)w
12/5
z0,l

dx

)5/6

≤CB2
0 l

3 exp(−min{rK , 2}l) ≤ CB2
0 l

3 exp(−rf (1− δ0)l)

for l ≥ 1. Since

1 + δ0 = 1 +
rf − 1

2(rf + 1)
< rf

(
1− rf − 1

2(rf + 1)

)
= rf (1− δ0),

we may take 0 < ε << 1 such that (1 + ε)(1 + δ0) < rf (1 − δ0). Then, by

(3.23)–(3.26), there exists l1 ≥ max{l̃, 1} such that (3.22) holds. Thus, we can
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conclude that, for any l > l1,

sup
t≥0

J0(t[swe,l + (1− s)wz0,l]) < 2α∞ for all 0 ≤ s ≤ 1 and for all e ∈ S2.

Moreover, by Lemma 2.4(a), there is a unique t0(swe,l + (1 − s)wz0,l) > 0 such

that t0(swe,l + (1− s)wz0,l) [swe,l + (1− s)wz0,l] ∈ N0. �

Remark 3.3. Using (3.15), (3.16) and rf < min{rK , 2}, it is not difficult to

obtain that l̂1 →∞ as λ→ 0.

4. Existence of a positive solution

First, we establish the existence of positive ground state solutions for problem

(SPλ) for 0 < λ < λ(q).

Theorem 4.1. For each 0 < λ < λ(q), problem (SPλ) has a positive ground

state solution (û0, φû0
).

Proof. By analogy with the proof of Ni and Takagi [23], one can show that

by the Ekeland variational principle (see [16]), there exists a minimizing sequence

{un} ⊂ Nλ such that

Jλ(un) = αλ + o(1) and J ′λ|Nλ
(un) = o(1) in H−1(R3).

Moreover, by a similar argument to that in the proof of [13, Lemma 4.1 ],

J ′λ(un) = o(1) in H−1(R3).

Since αλ < α∞ from Proposition 3.2(a), by Lemma 2.2 and Corollary 2.7 there

exists a subsequence {un} and û0 ∈ Nλ such that

un → û0 strongly in H1(R3) and Jλ(û0) = αλ.

Since Jλ(û0) = Jλ(|û0|) and |û0| ∈ Nλ, by Lemma 2.3, we obtain that (û0, φû0
)

is a positive solution of problem (SPλ). �

Set α0 = infu∈N0 J0(u). Then by a similar argument to that in the proof of

[13, Proposition 6.1], we have

(4.1) α0 = inf
u∈N0

J0(u) = inf
u∈N∞

J∞(u) = α∞,

and α0 is not attained. Moreover, we have the following result.

Lemma 4.2. Suppose that {un} is a minimizing sequence for J0 in N0. Then∫
R3

K(x)φun(x)u2
n dx = o(1).

Furthermore, {un} is a (PS)α∞-sequence for J∞ in H1(R3).
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Proof. For each n, there is a unique tn > 0 such that tnun ∈ N∞, that is

t2n|un|2 = tpn

∫
R3

|un|p dx.

Then, by Lemma 2.4(a),

J0(un) ≥ J0(tnun) = J∞(tnun) +
t4n
4

∫
R3

K(x)φun(x)u2
n dx

≥α∞ +
t4n
4

∫
R3

K(x)φun(x)u2
n dx.

Since J0(un) = α∞ + o(1) from (4.1), we have

t4n
4

∫
R3

K(x)φun(x)u2
n dx = o(1).

We will show that there exists c1 > 0 such that tn > c1 for all n. Suppose the

contrary. Then we may assume tn → 0 as n→∞. Since J0(un) = α∞+o(1), by

Lemma 2.2, we have |un| is uniformly bounded and so |tnun| → 0 or J∞(tnun)→
0, and this contradicts the fact that J∞(tnun) ≥ α∞ > 0. Thus,∫

R3

K(x)φun(x)u2
n dx = o(1),

which implies that

|un|2 =

∫
R3

|un|p dx+ o(1) and J∞(un) = α∞ + o(1).

Moreover, by Wang and Wu [26, Lemma 7], we have {un} is a (PS)α∞-sequence

for J∞ in H1(R3). �

For u ∈ H1(R3), we define the center mass function from Nλ to the unit ball

B3(0, 1) in R3,

m(u) =
1

|u|pp

∫
R3

x

|x|
|u(x)|p dx.

Clearly, m is continuous from Nλ to B3(0, 1) and |m(u)| < 1. Let

θλ = inf{Jλ(u) | u ∈ Nλ, u ≥ 0, m(u) = 0}.

Then we have the following result.

Lemma 4.3. There exists ξ0 > 0 such that α∞ < ξ0 ≤ θ0, where θ0 = θλ
with λ = 0.

Proof. Suppose the contrary. Then there exists a sequence {un} ⊂ N0

and m(un) = 0 for each n, such that J0(un) = α∞ + o(1). By Lemma 4.2,

{un} is a (PS)α∞ -sequence in H1(R3) for J∞. Moreover, by the concentration–

compactness principle (see Lions [21], [22]) and the fact that α∞ > 0, there exist
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a subsequence {un}, a sequence {xn} ⊂ R3, and a positive solution w0 ∈ H1(R3)

of equation (E∞) such that

(4.2) |un(x)− w0(x− xn)| → 0 as n→∞.

Now we will show that |xn| → ∞ as n → ∞. Suppose the contrary. Then we

may assume that {xn} is bounded and xn → x0 for some x0 ∈ R3. Thus, by

(4.2), ∫
R3

K(x)φun(x)u2
ndx =

∫
R3

K(x+ x0)φw0
(x+ x0)w2

0(x) dx+ o(1),

this contradicts the result of Lemma 4.2:
∫
R3 K(x)φun(x)u2

n dx = o(1). Hence

we may assume xn/|xn| → e as n → ∞, where e ∈ S2. Then, by (4.2) and the

Lebesgue dominated convergence theorem, we have

0 = m(un) = |w0|−pp
∫
R3

x+ xn
|x+ xn|

|w0(x)|p dx+ o(1) = e+ o(1) as n→∞,

which is a contradiction. Therefore, there exists ξ0 > 0 such that α∞<ξ0≤ θ0.�

By Lemma 2.4 and Proposition 3.2, for each e ∈ S2 and l > l1 there exists

t0(we,l) > 0 such that t0(we,l)we,l ∈ N0. Moreover, we have the following result.

Lemma 4.4. There exists l0 ≥ l1 such that, for any l ≥ l0,
(a) α∞ < J0(t0(we,l)we,l) < ξ0 for all e ∈ S2;

(b) 〈m(t0(we,l)we,l), e〉 > 0, for all e ∈ S2.

Proof. (a) Follows from (3.13)–(3.16) and (4.1).

(b) For x ∈ R3 with x+ le 6= 0, we have(
x+ le

|x+ le|
, le

)
= |x+ le| − 1

|x+ le|
(x+ le, x)

≥ |x+ le| − |x| ≥ l|e| − 2|x| = l − 2|x|.

Then

〈m(t0(we,l)we,l), e〉 =
1

l|w|pp

∫
R3

(
x+ le

|x+ le|
, le

)
|w|p dx

≥ 1

l|w|pp

(
l

∫
R3

|w|p dx− 2

∫
R3

|x||w|p dx
)

= 1− 2c2
l
,

where c2 = |w|−pp
∫
R3 |x||w|p dx. Thus, there exists l0 ≥ l1 such that, for any

l ≥ l0,

〈m(t0(we,l)we,l), e〉 ≥ 1− 2c0
l
> 0 for all e ∈ S2. �

In the following, we will use Bahri–Li’s minimax argument [7]. Let

B = {u ∈ H1(R3) \ {0} | u ≥ 0 and |u| = 1}.
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We define I0(u) = sup
t≥0

J0(tu) : B → R. Then, by Lemma 2.4(c), for each u ∈

H1(R3) \ {0} there exists

t0(u) =
1

|u|
t0

(
u

|u|

)
> 0

such that t0(u)u ∈ N0 and

(4.3) I0

(
u

|u|

)
= J0(t0

(
u

|u|

)
u

|u|
) = J0(t0(u)u).

Next, we define a map h0 from S2 to B by

h0(e) =
w(x− le)
|w(x− le)|

=
we,l
|we,l|

,

where e ∈ S2. Then, by (3.18) and (4.3), for l > l0 very large, we have

I0(h0(e)) = J0(t0(we,l)we,l) < θ0 for all e ∈ S2.

We define another map h∗ from B3(0, 1) to B by

h∗(se+ (1− s)z0) =
swe,l + (1− s)wz0,l
|swe,l + (1− s)wz0,l|

,

where 0 ≤ s ≤ 1 and e ∈ S2. It is clear that h∗|S2 = h0. It follows from

Proposition 3.2(b) and (4.3) that

(4.4) I0(h0(e)) = J0(t0(swe,l + (1− s)wz0,l) [swe,l + (1− s)wz0,l]) < 2α∞

for all e ∈ S2. We next define a min-max value. Let

(4.5) β0 = inf
γ∈Γ

max
x∈B3(0,1)

I0(γ(x)),

where

(4.6) Γ =
{
γ ∈ C(B3(0, 1),B) | γ|S2 = h0

}
.

Note that S2 = ∂B3(0, 1). Then we have the following result.

Lemma 4.5. We have α∞ < ξ0 ≤ θ0 ≤ β0 < 2α∞.

Proof. By Lemmas 4.3 and 4.4, (4.4) and (4.3), we only need to show

θ0 ≤ β0. For any γ ∈ Γ, there exists t0(γ(x)) > 0 such that t0(γ(x))γ(x) ∈
N0 and t0(γ(x))γ(x) = t0(wx,l)wx,l for all x ∈ S2. Consider the homotopy

H(s, x) : [0, 1]×B3(0, 1)→ R3 defined by

H(s, x) = (1− s)m(t0(γ(x))γ(x)) + sI(x),

where I denotes the identity map. Note that m(t0(γ(x))γ(x)) = m(t0(wx,l)wx,l)

for all x ∈ S2. By Lemma 4.4(b), H(s, x) 6= 0 for x ∈ S2 and s ∈ [0, 1]. Therefore,

deg(m(t0(γ)γ), B3(0, 1), 0) = deg(I,B3(0, 1), 0) = 1.
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There exists x0 ∈ B3(0, 1) such that m(t0(γ(x0))γ(x0)) = 0. Hence, for each

γ ∈ Γ, we have

θ0 = inf{J0(u) | u ∈ N0, u ≥ 0, m(u) = 0} ≤ max
x∈B3(0,1)

I0(γ(x)).

This shows that θ0 ≤ β0. �

Now, we are going to assert that problem (SPλ) has a positive higher energy

solution for λ ≤ 0.

Theorem 4.6. Problem (SPλ) with λ = 0 has a positive solution (ũ0, φũ0
)

such that J0(ũ0) = β0 > α∞.

Proof. By Lemma 4.5 and the minimax principle (see Ambrosetti and Ra-

binowitz [4]), there exists a sequence {un} ⊂ B such thatI0(un) = β0 + o(1),

|I ′0(un)|T∗unB ≡ sup{I ′0(un)ω | ω ∈ TunB, |ω| = 1} = o(1) as n→∞,

where α∞ < β0 < 2α∞ and TunB = {ω ∈ H1(R3) | 〈ω, un〉 = 0}. By an

argument similar to the proof of Proposition 1.7 in Adachi and Tanaka [1], there

exists t0(un) > 0 such that t0(un)un ∈ N0 andJ0(t0(un)un) = β0 + o(1),

J ′0(t0(un)un) = o(1) in H−1(R3) as n→∞.

Thus, by Corollary 2.7, we can conclude that Problem (SPλ) with λ = 0 has

a positive solution (ũ0, φũ0
) and such that J0(ũ0) = β0. �

5. Existence of two positive solutions

First, we need the following result.

Lemma 5.1. There exists d0 > 0 such that if u ∈ N0 and J0(u) ≤ α∞ + d0,

then ∫
R3

x

|x|
(|∇u|2 + u2)dx 6= 0.

Proof. Suppose the contrary. Then there exists a sequence {un} ⊂ N0 such

that J0(un) = α∞ + o(1) and∫
R3

x

|x|
(|∇un|2 + u2

n) dx = 0.

Moreover, by Lemma 4.2, {un} is a (PS)α∞ -sequence in H1(R3) for J∞. By

the concentration–compactness principle (see Lions [21], [22]) and the fact that

α∞ > 0, there exist a subsequence {un}, a sequence {xn} ⊂ R3, and a positive

solution w ∈ H1(R3) of equation (E∞) such that

(5.1) |un(x)− w(x− xn)| → 0 as n→∞.
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Now we will show that |xn| → ∞ as n → ∞. Suppose the contrary. Then

we may assume that {xn} is bounded and xn → x0 for some x0 ∈ R3. Thus,

by (5.1),∫
R3

K(x)φun(x)u2
n dx =

∫
R3

K(x+ x0)φw(x+ x0)w2(x) dx+ o(1),

which contradicts the result of Lemma 4.2:
∫
R3 K(x)φun(x)u2

n dx = o(1). Hence

we may assume xn/|xn| → e0 as n→∞, where e0 ∈ S2. Then, by the Lebesgue

dominated convergence theorem, we have

0 =

∫
R3

x

|x|
(|∇un|2 + u2

n) dx

=

∫
R3

x+ xn
|x+ xn|

(|∇w|2 + w2) dx+ o(1) =
2p

p− 2
α∞e0 + o(1),

which is a contradiction. �

For u ∈ Nλ, by Lemma 2.4, there is a unique t0(u) > 0 such that t0(u)u ∈ N0.

Moreover, we have the following result.

Lemma 5.2. There exists a continuous function Λ: [0,∞) → [0, S
p/(p−2)
p )

with Λ(0) = 0 such that

t0(u) ≤
[
1 + λ|f |p/(p−q)(Sp/(p−2)

p − Λ(λ))(q−p)/p]1/(p−q0)

for all 0 < λ < λ(q) and u ∈ Nλ, where q0 = max{q, 4}.

Proof. Let u ∈ Nλ. Then we have

Sp

(∫
R3

|u|p dx
)2/p

≤ |u|2 =

∫
R3

|u|p dx+λ

∫
R3

f |u|q dx−
∫
R3

K(x)φu(x)u2 dx

≤
∫
R3

|u|p dx+ λ

∫
R3

f |u|q dx ≤
∫
R3

|u|p dx+ λ|f |p/(p−q)
(∫

R3

|u|p dx
)q/p

,

which implies that there exists a continuous function Λ: [0,∞) → [0, S
p/(p−2)
p )

with Λ(0) = 0 such that

(5.2)

∫
R3

|u|p dx ≥ Sp/(p−2)
p − Λ(λ) > 0.

We distinguish two cases.

Case 1. t0(u) < 1. Since

1 + λ|f |p/(p−q)(Sp/(p−2)
p − Λ(λ))(q−p)/p ≥ 1

for all λ ≥ 0 and p− q > 0, we have

t0(u) < 1 ≤
[
1 + λ|f |p/(p−q)(Sp/(p−2)

p − Λ(λ))(q−p)/p]1/(p−q0)
.



Schrödinger–Poisson System with a Perturbation 989

Case 2. t0(u) ≥ 1. Since t0(u)u ∈ N0 for u ∈ Nλ,

[t0(u)]p
∫
R3

|u|p dx = [t0(u)]2|u|2 + [t0(u)]4
∫
R3

K(x)φu(x)u2 dx

≤ [t0(u)]q0
(
|u|2 +

∫
R3

K(x)φu(x)u2 dx

)
,

and using (5.2), we have

[t0(u)]p−q0 ≤
|u|2 +

∫
R3

K(x)φu(x)u2 dx∫
R3

|u|p dx
= 1 + λ

∫
R3

f |u|q dx∫
R3

|u|p dx

≤ 1 + λ|f |p/(p−q)
(∫

R3

|u|p dx
)(q−p)/p

≤ 1 + λ|f |p/(p−q)(Sp/(p−2)
p − Λ(λ))(q−p)/p.

This completes the proof. �

By the proof of Proposition 3.2, there exist positive numbers tλ(we,l) and l̂1
such that t(we,l)we,l ∈ Nλ and Jλ(tλ(we,l)we,l) < α∞ for all l > l̂1.

Let Λ(λ) be as in Lemma 5.2. Then we have the following result.

Lemma 5.3. There exists a positive number λ̃(q) such that for every λ ∈
(0, λ̃(q)), we have ∫

R3

x

|x|
(|∇u|2 + u2) dx 6= 0

for all u ∈ Nλ with Jλ(u) < α∞, where

λ̃(q) =

λ0 if 4 ≤ q ≤ p,
min{λ̂, λ0} if 2 < q < 4,

and λ0 > 0 is defined in the proof.

Proof. For u ∈ Nλ with Jλ(u) < α∞, by Lemma 2.4, there exists t0(u) > 0

such that t0(u)u ∈ N0. Moreover,

Jλ(u) = sup
t≥0

Jλ(tu) ≥ Jλ(t0(u)u) = J0(t0(u)u)− λ[t0(u)]q
∫
R3

f |u|q dx.

Thus, by Lemma 5.2 and the Sobolev inequality,

(5.3) J0(t0(u)u) ≤ Jλ(u) + λ[t0(u)]q
∫
R3

f |u|q dx

< α∞ + λC[1 + λ|f |p/(p−q)(Sp/(p−2)
p − Λ(λ))(q−p)/p]q/(p−q0)|u|q.

Moreover, by (2.1), we obtain there exists M > 0 such that

(5.4) |u| ≤M
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for all u ∈ Nλ with Jλ(u) < α∞. Therefore, by (5.3) and (5.4),

J0(t0(u)u) < α∞ + λCMq[1 + λ|f |p/(p−q)(Sp/(p−2)
p − Λ(λ))(q−p)/p]q/(p−q0).

Let d0 > 0 be as in Lemma 5.1. Then there exists a positive number λ0 such

that for λ ∈ (0, λ0),

(5.5) J0(t0(u)u) < α∞ + d0.

Since t0(u)u ∈ N0 and t0(u) > 0, by Lemma 5.1 and (5.5),∫
R3

x

|x|
(|∇(t0(u)u)|2 + (t0(u)u)2) dx 6= 0,

which implies that there exists a positive number λ̃(q) such that, for every λ ∈
(0, λ̃(q)), ∫

R3

x

|x|
(|∇u|2 + u2) dx 6= 0

for all u ∈ Nλ with Jλ(u) < α∞. �

In the following, we use an idea of Adachi and Tanaka [1]. For c ∈ R+, we

define[Jλ ≤ c] = {u ∈ Nλ | u ≥ 0, J λ(u) ≤ c}. We then try to show that for

a sufficiently small σ > 0,

(5.6) cat([Jλ ≤ α∞ − σ]) ≥ 2.

To prove (5.6), we need some preliminaries. Recall the definition of the Luster-

nik–Schnirelmann category.

Definition 5.4. (a) For a topological space X, we say that a non-empty,

closed subset Y ⊂ X is contractible to a point in X if and only if there exists

a continuous mapping ξ : [0, 1]× Y → X such that, for some x0 ∈ X and for all

x ∈ Y ,

ξ(0, x) = x and ξ(1, x) = x0.

(b) We define:

cat(X) = min

{
k ∈ N

∣∣∣∣ there exist closed subsets Y1, . . . , Yk ⊂ X

such that Yj is contractible to a point in X for all j and

k⋃
j=1

Yj = X

}
.

When there do not exist finitely many closed subsets Y1, . . . , Yk ⊂ X such

that Yj is contractible to a point in X for all j and
k⋃
j=1

Yj = X, we say that

cat(X) =∞.

We need the following two lemmas.

Lemma 5.5. Suppose that X is a Hilbert manifold and F ∈ C1(X,R). As-

sume that there exist c ∈ R and k ∈ N such that:
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(a) F (x) satisfies the Palais–Smale condition for energy levels c ≤ c;
(b) cat({x ∈ X | F (x) ≤ c}) ≥ k.

Then F (x) has at least k critical points in {x ∈ X; F (x) ≤ c}.

Proof. See Ambrosetti [2, Theorem 2.3]. �

Lemma 5.6. Let X be a topological space. Suppose that there are two con-

tinuous maps Φ: S2 → X and Ψ: X → S2 such that Ψ ◦ Φ is homotopic to the

identity map of S2, that is, there exists a continuous map ζ : [0, 1] × S2 → S2

such that,

ζ(0, x) = (Ψ ◦ Φ)(x), ζ(1, x) = x for each x ∈ S2.

Then cat(X) ≥ 2.

Proof. See Adachi and Tanaka [1, Lemma 2.5]. �

For l > l̂1, we may define a map Φλ,l : S2 → H1(R3) by

Φλ,l(e)(x) = tλ(w(x− le))w(x− le) for e ∈ S2,

where tλ(w(x− le))w(x− le) is as in the proof of Proposition 3.2. Then we have

the following result.

Lemma 5.7. There exists a sequence {σl} ⊂ R+ with σl → 0 as l→∞ such

that

Φλ,l(S2) ⊂ [Jλ ≤ α∞ − σl] .

Proof. By Proposition 3.2, for each l > l̂1 we have tλ(w(x− le))w(x− le) ∈
Nλ and sup

l>l̂1

Jλ(tλ(w(x − le))w(x − le)) < α∞ for all e ∈ S2. Since Φλ,l(S2) is

compact, Jλ(tλ(w(x− le))w(x− le)) ≤ α∞ − σl, so that conclusion holds. �

From Lemma 5.3, we define Ψλ : [Jλ < α∞]→ S2 by

Ψλ(u) =

∫
R3

x

|x|
(|∇u|2 + u2) dx∣∣∣∣ ∫

R3

x

|x|
(|∇u|2 + u2) dx

∣∣∣∣ .
Then we have the following results.

Lemma 5.8. There exists λ ∈ (0, λ̂(q)] and l̂0 ≥ l̂1 such that for λ ∈ (0, λ)

and l > l̂0, the mapΨλ ◦ Φλ,l : S2 → S2 is homotopic to the identity.

Proof. Let

Σ =

{
u ∈ H1(R3) \ {0}

∣∣∣∣ ∫
R3

x

|x|
(|∇u|2 + u2) dx 6= 0

}
.
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We define Ψλ : Σ→ S2 by

Ψλ(u) =

∫
R3

x

|x|
(|∇u|2 + u2) dx∣∣∣∣ ∫

R3

x

|x|
(|∇u|2 + u2) dx

∣∣∣∣ ,
an extension of Ψλ. By Remark 3.3 for [0, 1/2),

(1− 2θ)Φλ,l(e) + 2θw(x− le) = w(x− le) + o(1) in H1(R3) as λ→ 0.

By an argument similar to that in Lemma 5.1, there exist λ ∈ (0, λ̃(q)] and

l̂0 ∈ [l̂1,∞) such that for λ ∈ (0, λ) and l ∈ (l̂0,∞),

(1− 2θ)Φλ,l(e) + 2θw(x− le) ∈ Σ for all e ∈ S2 and θ ∈ [1/2, 1)

and

w

(
x− le

2(1− θ)

)
∈ Σ for all e ∈ S2 and θ ∈ [1/2, 1).

Now we define ζl(θ, e) : [0, 1]× S2 → S2 by

ζl(θ, e) =


Ψλ((1− 2θ)Φλ,l(e) + 2θw(x− le)) for θ ∈ [0, 1/2);

Ψλ

(
w

(
x− le

2(1− θ)

))
for θ ∈ [1/2, 1);

e for θ = 1.

Then ζl(0, e) = Ψλ(Φλ,l(e)) = Ψλ(Φλ,l(e)) and ζl(1, e) = e.

First, we claim that lim
theta→1−

ζl(θ, e) = e and lim
θ→1/2−

ζl(θ, e) = Ψλ(w(x− le)).

(a) lim
θ→1−

ζl(θ, e) = e. Since

∫
R3

x

|x|

(∣∣∣∣∇[w(x− le

2(1− θ)

)]∣∣∣∣2 +

[
w

(
x− le

2(1− θ)

)]2)
dx

=

∫
R3

x+ le/(2(1− θ))
|x+ le/(2(1− θ))|

(|∇[w(x)]|2 + [w(x)]2) dx =

(
2p

p− 2

)
α∞e+ o(1),

as θ → 1−, it follows that lim
θ→1−

ζl(θ, e) = e.

(b) lim
θ→1/2−

ζl(θ, e) = Ψλ(w(x− le)).

Since Ψλ ∈ C(Σ,S2), we obtain lim
θ→1/2−

ζl(θ, e) = Ψλ(w(x − le)). Thus,

ζl(θ, e) ∈ C([0, 1]× S2,S2) and

ζl(0, e) = Ψλ(Φλ,l(e)) for all e ∈ S2,

ζl(1, e) = e for all e ∈ S2,

provided l > l̂0. �
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Theorem 5.9. For each λ ∈ (0, λ̃(q)), Jλ has at least two critical points in

[Jλ < α∞]. In particular, problem (SPλ) has two positive solutions (u
(1)
0 , φ

u
(1)
0

)

and (u
(2)
0 , φ

u
(2)
0

) such that u
(i)
0 ∈ Nλ for i = 1, 2.

Proof. Applying Lemmas 5.6 and 5.8, we have for λ ∈ (0, λ̃(q)),

cat([Jλ ≤ α∞ − σl]) ≥ 2.

By Corollary 2.7 and Lemma 5.5, Jλ(u) has at least two critical points in [Jλ <

α∞]. This implies that problem (SPλ) has two positive solutions (u
(1)
0 , φ

u
(1)
0

)

and (u
(2)
0 , φ

u
(2)
0

) such that u
(i)
0 ∈ Nλ for i = 1, 2. �

6. Proof of Theorem 1.2

Given a positive real number r0 > q/(p− q). Let

Λ0 = min

{(
r0p

q(r0 + 1)
− 1

)
, λ̃(q)

}
> 0,

where λ̃(q) > 0 is as in Lemma 5.3. Then we have the following results.

Lemma 6.1. We have

1

2
(1 + λ)r0 − 1

p
(1 + λ)r0+1 − p− 2

2p
> 0

and
1

q
(1 + λ)r0 − 1

p
(1 + λ)r0+1 − p− q

pq
> 0

for all λ ∈ (0,Λ0).

Proof. Let

k(λ) =
1

q
(1 + λ)r0 − 1

p
(1 + λ)r0+1 − p− q

pq
.

Then k(0) = 0 and

k′(λ) =
r0

q
(1 +λ)r0−1− r0 + 1

p
(1 +λ)r0 = (1 +λ)r0−1

(
r0

q
− r0 + 1

p
(1 +λ)

)
> 0

for all λ ∈ (0,Λ0). This implies that k(λ) > 0 or

1

2
(1 + λ)r0 − 1

p
(1 + λ)r0+1 − p− q

pq
> 0 for all λ ∈ (0,Λ0).

Similar to the argument we also have

1

2
(1 + λ)r0 − 1

p
(1 + λ)r0+1 − p− 2

2p
> 0 for all λ ∈ (0,Λ0).

This completes the proof. �

We define Iλ(u) = sup
t≥0

Jλ(tu) : B→ R. Then we have the following result.
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Lemma 6.2. For each λ ∈ (0,Λ0) and u ∈ B we have

(1 + λ)−r0I0(u)− λ(p− q)
pq

|f |p/(p−q) ≤ Iλ(u) ≤ I0(u).

Proof. Let u ∈ B. Using Lemma A.2 in Appendix, we obtain

(6.1)
λ

q

(∫
R3

|f |p/(p−q) dx
)1−q/p(∫

R3

|t0(u)u|p
)q/p

≤ λ(p− q)
pq

|f |p/(p−q) +
λtp0(u)

p

∫
R3

|u|p dx.

Then, by Lemma 2.4, the Hölder inequality, Lemma 6.1 and (6.1), (4.3), we have

Iλ(u) = sup
t≥0

Jλ(tu) ≥ Jλ(t0(u)u)

=
t20(u)

2

∫
R3

(|∇u|2 + u2)dx+
t40(u)

4

∫
R3

K(x)φu(x)u2 dx

− λtq0(u)

q

∫
R3

f |u|qdx− tp0(u)

p

∫
R3

|u|p dx

≥ t20(u)

2

∫
R3

(|∇u|2 + u2) dx+
t40(u)

4

∫
R3

K(x)φu(x)u2 dx

− λ

q

(∫
R3

|f |p/(p−q) dx
)1−q/p(∫

R3

|t0(u)u|p
)q/p

− tp0(u)

p

∫
R3

|u|p dx

≥ t20(u)

2

∫
R3

(|∇u|2 + u2) dx+
t40(u)

4

∫
R3

K(x)φu(x)u2 dx

− λtp0(u)

p

∫
R3

|u|p dx− λ(p− q)
pq

|f |p/(p−q) −
tp0(u)

p

∫
R3

|u|p dx

=
t20(u)

2

∫
R3

(|∇u|2 + u2) dx+
t40(u)

4

∫
R3

K(x)φu(x)u2 dx

− (1 + λ)tp0(u)

p

∫
R3

|u|p dx− λ(p− q)
pq

|f |p/(p−q)

=
t20(u)

2

∫
R3

(|∇u|2 + u2) dx

+
t40(u)

4

∫
R3

K(x)φu(x)u2 dx− λ(p− q)
pq

|f |p/(p−q)

− 1 + λ

p

[
t20(u)

∫
R3

(|∇u|2 + u2) dx+ t40(u)

∫
R3

K(x)φu(x)u2 dx

]
=

(
1

2
− 1 + λ

p

)
t20(u)

∫
R3

(|∇u|2 + u2) dx

+

(
1

q
− 1 + λ

p

)
tq0(u)

∫
R3

K(x)φu(x)u2 dx− λ(p− q)
pq

|f |p/(p−q)
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≥ (1 + λ)−r0J0(t0(u)u)− λ(p− q)
pq

|f |p/(p−q)

= (1 + λ)−r0I0(u)− λ(p− q)
pq

|f |p/(p−q).

Moreover, Jλ(tu) ≤ J0(tu) ≤ I0(u) for all t > 0. Then Iλ(u) ≤ I0(u). �

We observe that if λ is sufficiently small, the minimax argument in Section 4

also works for Jλ. Let l > max{l0, l̂0} be very large and let

βλ = inf
γ∈Γ

max
x∈B3(0,1)

Iλ(γ(x)),

where Γ is as in (4.6). Then by (4.5) and Lemma 6.2, for λ ∈ (0,Λ0), we have

(6.2) (1 + λ)−r0β0 −
λ(p− q)
pq

|f |p/(p−q) ≤ βλ ≤ β0.

Moreover, we have the following result.

Theorem 6.3. There exists a positive number Λ∗ ≤ Λ0 such that

α∞ < βλ < 2α∞ for λ ∈ (0,Λ∗).

Furthermore, problem (SPλ) has a positive solution (u
(3)
0 , φ

u
(3)
0

) such that

Jλ(u
(3)
0 ) = βλ.

Proof. By (4.1), Theorem 4.1 and Lemma 6.2, we have

(1 + λ)−r0α∞ − λ(p− q)
pq

|f |p/(p−q) ≤ αλ < α∞.

For any ε > 0, there exists a positive number λ1 ≤ Λ0 such that, for λ ∈ (0, λ1),

α∞ − ε < αλ < α∞. Thus, 2α∞ − ε < α∞ + αλ < 2α∞.

Applying (6.2) for any δ > 0 there exists a positive number λ2 ≤ Λ0 such that,

for λ ∈ (0, λ2), β0 − δ < βλ ≤ β0. Moreover, by Theorem 4.6, α∞ < β0 < 2α∞.

Fix a small 0 < ε < 2α∞ − β0, choosing a δ > 0 such that, for λ ∈ (0,Λ∗),

we get

α∞ < βλ < 2α∞ − ε < α∞ + αλ < 2α∞,

where Λ∗ = min{λ1, λ2}. Similar to the argument in the proof of Theorem 4.6,

we can conclude that the problem (SPλ) has a positive solution (u
(3)
0 , φ

u
(3)
0

) such

that Jλ(u
(3)
0 ) = βλ. This completes the proof. �

We can now complete the proof of Theorem 1.2.

(a) and (b). By Theorems 4.1 and 4.6, the results (a) and (b) hold.

(c) By Theorems 5.9 and 6.3, there exists a positive number Λ∗ such that for

λ ∈ (0,Λ∗), problem (SPλ) has three positive solutions (u
(1)
0 , φ

u
(1)
0

), (u
(2)
0 , φ

u
(2)
0

)

and (u
(3)
0 , φ

u
(3)
0

) with

0 < Jλ(u
(i)
0 ) < α∞ < Jλ(u

(3)
0 ) < 2α∞ for i = 1, 2.
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This completes the proof of Theorem 1.2. �

Appendix A

Lemma A.1. Suppose that a, b, c are positive constants and 2 < q ≤ 4 <

p < 6. Then there exists a positive number

λ =
a

c

[
a(q − 2)

b(p− q)

](2−q)/(p−2)

+
b

c

[
a(q − 2)

b(p− q)

](p−q)/(p−2)

such that for any λ < λ, the function

y(x) = −ax2 − bxp + λcxq < 0 for all x > 0.

Proof. Let

Y (x) =
a

c
x2−q +

b

c
xp−q for x > 0.

Clearly, Y (x)→ +∞ as x→ 0+ and Y (x)→ +∞ as x→ +∞, and

Y ′(x) =
a

c
(2− q)x1−q +

b

c
(p− q)xp−q−1.

Thus, Y has an absolute minimum at point x0 = [a(q − 2)/(b(p− q))]1/(p−2) and

Y ′(x0) = 0. Take

λ = Y (x0) =
a

c

[
a(q − 2)

b(p− q)

](2−q)/(p−2)

+
b

c

[
a(q − 2)

b(p− q)

](p−q)/(p−2)

> 0,

then for any λ < λ, we obtain

y(x) = −cxq(Y (x)− λ) < 0 for all x > 0. �

Lemma A.2. Suppose that a, b are positive constants. Then the function

y(x) = a1−xbx − (1− x)a− bx ≤ 0 for all x ∈ [0, 1].

Proof. Clearly, y(x) is a differentiable function on x ∈ [0, 1], and y(0) =

y(1) = 0. It is easy to obtain that

y′(x) =

(
b

a

)x
a ln

b

a
+ a− b.

Thus, y has an absolute minimum at point x0 = log
(b−a)/(a ln(b−a))
b/a ∈ (0, 1)

satisfying y′(x0) = 0 and y′′(x0) > 0, which implies that

y(x) ≤ 0 for all x ∈ [0, 1]. �



Schrödinger–Poisson System with a Perturbation 997

References

[1] S. Adachi and K. Tanaka, Four positive solutions for the semilinear elliptic equation:

−4u + u = a(x)up + f(x) in RN , Calc. Var. Partial Differential Equations 11 (2000),

63–95.

[2] A. Ambrosetti, Critical points and nonlinear variational problems, Bulletin Soc. Math.
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