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EQUATION WITH POSITIVE COEFFICIENT

IN THE QUASILINEAR TERM

AND VANISHING POTENTIAL

José F.L. Aires — Marco A.S. Souto

Abstract. In this paper we study the existence of nontrivial classical so-

lution for the quasilinear Schrödinger equation:

−∆u+ V (x)u+
κ

2
∆(u2)u = f(u),

in RN , where N ≥ 3, f has subcritical growth and V is a nonnegative

potential. For this purpose, we use variational methods combined with
perturbation arguments, penalization technics of Del Pino and Felmer and

Moser iteration. As a main novelty with respect to some previous results,

in our work we are able to deal with the case κ > 0 and the potential can
vanish at infinity.

1. Introduction

In this article, we consider the following quasilinear Schrödinger equations

(1.1) −∆u+ V (x)u+
κ

2
∆(u2)u = f(u), x ∈ RN

where V : RN → R and f : R→ R are continuous functions with V being a non-

negative function, f having a kind of subcritical growth at infinity and κ > 0 is

a parameter.
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This equation arises in various branches of mathematical physics and has

been the subject of extensive study in recent years. As it is well known, solutions

of (1.1) are related to the existence of a standing wave solutions for quasilinear

Schrödinger equation of the form:

(1.2) i∂tz = −∆z +W (x)z − l(|z|2)z +
κ

2
[∆ρ(|z|2)]ρ′(|z|2)z,

where z : R × RN → C, W : RN → R is a given potential and l, ρ are real

functions.

Quasilinear Schrödinger equations of the form (1.2) appear naturally in math-

ematical physics and have been derived as mathematical models of several phys-

ical phenomena corresponding to various types of the nonlinear term ρ. The

case ρ(s) = s was used for the superfluid film equation in plasma physics by

Kurihara in [21]. In the case ρ(s) = (1 + s)1/2, considering solutions of the

form z(t, x) = e−iξtu(x) where ξ is some real constant, equation (1.2) models

the self-channeling of a highpower ultra short laser in matter, see [13], [16] and

references in [18]. It is clear that z(t, x) solves (1.2) if and only if u(x) solves

(1.1) with V (x) = W (x)− ξ and f(u) = l(u2)u.

Taking into account the values of κ, we find in the literature several papers

devoted to the existence of solutions for equation (1.1) when the potential V

vanishes at infinity.

The semilinear case corresponding to κ = 0, that is,

(1.3) −∆u+ V (x)u = f(u), x ∈ RN ,

has been studied extensively. See for example [3]–[7], [9]–[12], [14], [20] and the

references therein. Among them, we recall the article due to Berestycki and

Lions [12] that showed the existence of a positive solution in the case V ≡ 0,

where the nonlinearity has a supercritical growth near the origin and subcritical

growth at infinity. In [20] Ghimenti and Micheletti established existence of sign

changing solutions. In [10] Benci, Grisanti and Micheletti established additional

conditions on V which provide existence or non existence of the ground state

solution. In the papers of Ambrosetti, Felli and Malchiodi [5], Ambrosetti and

Wang [7], the nonlinearity f(u) is replaced by a function f(x, u) of the type

k(x)|u|p where k(x) → 0 as |x| → ∞. In [3], Alves and Souto have introduced

a new set of hypotheses on the potential V to show the existence of positive

solution for (1.3) where f has a subcritical growth.

In the literature we also may cite the article due to Bastos, Miyagaki and

Vieira [8] that has established the existence of positive solution for the following

class of degenerate quasilinear elliptic problem

−Luap + V (x)|x|−ap
∗
|u|p−2u = f(u), in RN ,
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where Luap = −div(|x|−ap|∇u|p−2∇u), 1 < p < N,−∞ < a < (N − p)/p,
a ≤ e ≤ a + 1, d = 1 + a − e, and p∗ := p∗(a, e) = Np/(N − dp) denotes

the Hardy–Sobolev critical exponent, V is a bounded nonnegative vanishing

potential and f has subcritical growth at infinity.

When κ < 0, specifically κ = −2, we cite Aires and Souto [1]. Using the

change of variables introduced by Colin and Jeanjean in [17] and by Liu, Wang

and Wang in [24], jointly with some arguments of [3], [19], they proved the exis-

tence of nontrivial solution for equation (1.1) with f has a quasicritical growth

and V is a nonnegative potential, which can vanish at infinity.

Recently, Shen and Wang in [25] and Yang, Wang and Abdelgadir in [26]

introduced the changing of variables s = G−1(t) for t ∈ [0,+∞) and G−1(t) =

−G−1(−t) for t ∈ (−∞, 0), where

(1.4) G(s) =

∫ s

0

√
1− κt2 dt.

with κ < 0. Using variational methods they established the existence of non-

trivial solutions for (1.1) with subcritical or critical growth and among other

conditions on the potential V (x), assumed that inf
RN

V (x) > 0.

In a pioneering work, for κ > 0 and N ≥ 3, Alves, Wang and Shen in [2]

used the method of changing of variables and Morse L∞ estimates to show the

existence of nontrivial solutions for the model (1.1), where f(u) = |u|q−2u, 2 <

q < 2∗ or f(u) = [1−1/(1 + |u|2)3]u. Moreover, they assumed that the potential

V : RN → R is continuous and satisfies

0 < V0 ≤ V (x) ≤ V∞, for all x ∈ RN and lim
|x|→∞

V (x) = V∞.

In [15], Brüll, Lange and Köln studied the one-dimensional quasilinear Schrödin-

ger equations

(1.5) i∂tz = −∂2
xz − |z|2pz + κ∂2

x(|z|2)z, x ∈ R

and

(1.6) i∂tz = −∂2
xz −

[
µ+

A

(a+ |z|2)3

]
z + κ∂2

x(|z|2)z, x ∈ R,

where z = z(x, t) is the unknown wave function, κ is a real constant, p > 0, µ > 0

and A < 0. Under some conditions on p, µ and A, they proved that if 0 < κ < κ2

(or 0 < κ < κ3) with some κ2, κ3 > 0, then (1.5) (or (1.6)) has a standing

wave solution v(x) with v(x) > 0, v(−x) = v(x), v′(x) < 0 for x > 0 and

lim
|x|→∞

v(x) = 0. Moreover, this solution is unique up to translation.

Still for κ > 0, Lange, Poppenberg and Teisniann [22] studied the whole

space Cauchy problem for quasilinear Schrödinger equation (1.2) with W = 0

and ρ = 0. When N = 1 and z(0, x) = φ(x), they obtained L2- solutions for

(1.2) with κ|φ(x)| ≤ δ < 1. Moreover, for 2κ||φ||W 1,∞ < 1, they also proved
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the existence of H2-solutions for arbitrary space dimension. We refer to [22] for

more details.

The main purpose of the present article is to show that, using some ideas

of [1] jointly with some arguments of [2], it is possible to extend the results

proved in the aforementioned papers to the case where the parameter κ > 0 and

the potential V vanish at infinity.

Related to the function f , we assume that:

(f1) lim sup
s→0+

sf(s)/s2∗ < +∞, where 2∗ = 2N/(N − 2) and N ≥ 3.

(f2) lim
s→+∞

sf(s)/s2∗ = 0.

(f3) There exists θ > 2 such that θF (s) ≤ sf(s), for all s > 0.

The following theorem is our main result:

Theorem 1.1. Suppose that f satisfies (f1)–(f3) and V is a continuous non-

negative function that verifies the condition:

(VΛ) there are Λ > 0 and R > 1 such that

1

R4
inf
|x|≥R

|x|4V (x) ≥ Λ.

Then, there exist constants κ0 > 0 and Λ∗ = Λ∗(θ, c0) > 0 such that (1.1)

possesses a nontrivial solution for all κ ∈ [0, κ0) and Λ ≥ Λ∗.

Note that (1.1) is the Euler–Lagrange equation associated to the natural

energy functional

(1.7) I(u) =
1

2

∫
RN

(1− κu2)|∇u|2 dx+
1

2

∫
RN

V (x)u2 dx−
∫
RN

F (u(x)) dx.

It should be pointed out that we may not apply directly the variational

method to study (1.1) since the o functional I is not well defined in general,

because,
∫
RN κu

2|∇u|2 dx is not finite, for all u ∈ D1,2(RN ) and κ 6= 0. Beyond

this difficulty is overcome we face another one: to ensure the positiveness of the

term 1− κt2.

In order to prove our main result, we first establish a nontrivial solution for a

modified quasilinear Schrödinger equation. Precisely, we consider the existence

of nontrivial solutions for the following quasilinear Schrödinger equation

(1.8) −div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = f(u), x ∈ RN

with g(t) =
√

1− κt2 for |t| <
√

1/(3κ) and κ > 0. Clearly, when the function

g(t) =
√

1− κt2, equation (1.8) turns into (1.1).

The organization of this paper is as follows: In Section 2, using a change of

variable as in references [2], [25] and [26] we reformulate the problem obtaining

a semilinear one. In Section 3, we adapt a method explored by Del Pino and

Felmer in [19] (see also [3]) to modify the reformulated problem and we show the
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existence of nontrivial solutions of a modified semilinear Schrödinger equation

(3.6) via the mountain pass theorem. In Section 4, we provide an estimate

involving the L∞-norm of a solution of the modified equation. In Section 5 we

prove Theorem 1.1.

Notation. In this paper we make use of the following notation:

• C, C0, C1, . . . denote positive (possibly different) constants.

• BR denotes the open ball centered at origin with radius R > 0.

• C∞0 (RN ) denotes the functions infinitely differentiable with compact sup-

port.

• For 1 ≤ s ≤ ∞, we denote the usual norms in the space Ls(RN ) by

||u||Ls(RN ) :=

(∫
RN
|u|s dx

)1/s

.

• D1,2(RN ) = {u ∈ L2∗(RN ) : |∇u| ∈ L2(RN )} endowed with the norm

||∇u||L2(RN ).

• S denotes the best constant that verifies

‖u‖2L2∗ (RN ) ≤ S
∫
RN
|∇u|2 dx, for all u ∈ D1,2(RN ).

• We denote the weak convergence in E and E′ by ⇀ and the strong

convergence by →.

• ωN denotes the volume of the unitary ball in RN .

• [|x| ≤ a] := {x ∈ RN : |x| ≤ a}, a ∈ R.

2. Preliminaries

We start observing that V is nonnegative, we can introduce the subspace

E =

{
u ∈ D1,2(RN ) :

∫
RN

V (x)u2 dx < +∞
}

of D1,2(RN ) endowed with the norm

||u||2 =

∫
RN

(|∇u|2 + V (x)u2) dx.

Since V (x) is not suppose to be bounded from bellow by a positive constant,

we can not have a continuous imbedding E into Lq(RN ), for 2 ≤ q < 2∗. Indeed,

q = 2∗ is the unique Lq(RN ) space where it is possible to guarentee that E ↪→
Lq(RN ), continuously.

Let us consider the function g : [0,+∞)→ R given by

g(t) =


√

1− κt2 if 0 ≤ t <
√

1

3κ
,

1

3
√

2κt
+

√
1

6
if

√
1

3κ
≤ t,
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Setting g(t) = g(−t) for all t ≤ 0, it follows that g ∈ C1
(
R, (
√

1/6, 1]
)
, g is

an even function, increases in (−∞, 0) and decreases in [0,+∞).

Observe that (1.8) is the Euler–Lagrange equation associated to the natural

energy functional

(2.1) Iκ(u) =
1

2

∫
RN

g2(u)|∇u|2 dx+
1

2

∫
RN

V (x)u2 dx−
∫
RN

F (u(x)) dx.

In what follows, let us define

G(t) =

∫ t

0

g(s) ds

and we note that the inverse function G−1(t) exists and it is an odd function.

Moreover, G,G−1 ∈ C2(R).

In the following lemma we present some properties of the functions g and

G−1, which proofs can be found in [2].

Lemma 2.1. The functions g and G−1 satisfy the following properties:

(a) lim
t→0

G−1(t)

t
= 1;

(b) lim
t→∞

G−1(t)

t
=
√

6;

(c) t ≤ G−1(t) ≤
√

6t, for all t ≥ 0;

(d) −1

2
≤ t

g(t)
g′(t) ≤ 0, for all t ≥ 0.

At this moment, it is important to say that properties (a) and (b) of Lemma 2.1,

together with (f1) and (f2) imply that there exists c0 > 0 such that

(2.2) |G−1(s)f(G
−1

(s))| ≤ c0|s|2
∗

for all s ∈ R,

and from condition (g3) it follows that

(2.3) |F (G
−1

(s))| ≤ c0
θ
|s|2

∗
for all s ∈ R.

Now, setting the change of variables

v = G(u) =

∫ u

0

g(s) ds,

by Iκ(u) we obtain the following functional

(2.4) Jκ(v) =
1

2

∫
RN
|∇v|2 dx+

1

2

∫
RN

V (x)|G−1(v)|2 dx−
∫
RN

F (G−1(v)) dx,

which, due to Lemma 2.1 and the assumptions on the potential V (x) and on the

nonlinearity F (s), is well defined in E and Jκ ∈ C1(E,R) with

(2.5) J ′κ(v)ϕ =

∫
RN

[
∇v∇ϕ+ V (x)

G−1(v)

g(G−1(v))
ϕ− f(G−1(v))

g(G−1(v))
ϕ

]
dx,

for all v, ϕ ∈ E.
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Note that if v ∈ C2(RN ) ∩D1,2(RN ) is a critical point of the functional Jκ,

then u = G−1(v) is a classical solution of (1.8) (see Alves, Wang and Shen in [2]).

Therefore, in order to find a nontrivial solutions of (1.8), it suffices to study

the existence of nontrivial solutions of the following equation

(2.6) −∆v + V (x)
G−1(v)

g(G−1(v))
=
f(G−1(v))

g(G−1(v))
, x ∈ RN .

Remark 2.2. Once assured the existence of a non-trivial solution v for the

equation (2.6), then u = G−1(v) will be a nontrivial solution to (1.1) if the

estimate sup
RN
|u| <

√
1/(3κ) holds.

3. The modified equation

In this section, we adapt a method explored by Del Pino and Felmer in [19]

(see also [1], [3]) to modify the reformulated problem (2.6). Next, we show the

existence of nontrivial solutions of a modified semilinear Schrödinger equation

(3.6) via the mountain pass theorem.

To do this, we shall consider constants µ and R satisfying

µ >
θ

θ − 2
(µ > 1) and R > 1,

and the function

h(x, s) =


f(s) if |x| ≤ R,

f(s) if |x| > R and f(s) ≤ V (x)

µ
s,

V (x)

µ
s if |x| > R and f(s) >

V (x)

µ
s.

Set H(x, s) =
∫ s

0
h(x, t) dt. It is not difficulty to check that h(x, s) satisfies, for

all s ∈ R, the following properties:

h(x, s) ≤ f(s), for all x ∈ RN ,(3.1)

h(x, s) ≤ V (x)

µ
s, for all |x| ≥ R,(3.2)

H(x, s) = F (s), if |x| ≤ R,(3.3)

H(x, s) ≤ V (x)

2µ
s2, if |x| > R,(3.4)

and

(3.5) sh(x, s)− θH(x, s) ≥
(

2− θ
2

)
V (x)

µ
s2, for all x ∈ RN .

Now, we study the existence of nontrivial solutions for the modified problem, i.e.

(3.6) −∆v + V (x)
G−1(v)

g(G−1(v))
=
h(x,G−1(v))

g(G−1(v))
, x ∈ RN ,
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which corresponds to the critical points of the functional Φκ : E → R given by

(3.7) Φκ(v) =
1

2

∫
RN
|∇v|2 dx+

1

2

∫
RN

V (x)|G−1(v)|2 dx−
∫
RN

H(x,G−1(v)) dx.

Note that

(3.8) Φ′κ(vn)ϕ =

∫
RN

[
∇v∇ϕ+ V (x)

G−1(v)

g(G−1(v))
ϕ− h(x,G−1(v))

g(G−1(v))
ϕ

]
dx,

for all v, ϕ ∈ E.

Remark 3.1. If a nontrivial solution v of (3.6) satisfies

f(G−1(v)) ≤ V (x)

k
G−1(v) in |x| ≥ R,

then v also is an nontrivial solution of (2.6).

Now we prove that the functional Φκ has the mountain pass geometry.

Lemma 3.2. Suppose that (f1)–(f3) are satisfied and that V is nonnegative.

Then, there exist ρ, α > 0, such that Φκ(v) ≥ α for ||v|| = ρ. Moreover, there

exists e ∈ E such that Φκ(e) < 0.

Proof. From (3.1), (2.3), the Sobolev–Gagliardo–Nirenberg inequality and

being V nonnegative, we have

∫
RN

H(x,G−1(v))dx ≤ C1

(∫
RN

(|∇v|2 + V (x)|v|2) dx

)2∗/2

,

from which it follows, using also the propriety (3) of the Lemma 2.1, that

Φκ(v) ≥ 1

2
||v||2 − C1||v||2

∗
, for all w ∈ E.

Therefore, by choosing ρ small, we get Φκ(v) ≥ α > 0 when ||v|| = ρ.

In order to prove the existence of e ∈ E such that Φκ(e) < 0, consider

ϕ ∈ C∞0 (RN , [0, 1]) satisfying supp(ϕ) = B1. We will prove that Φκ(sϕ)→ −∞
as s → +∞, which suffices to prove the result if we take e = sϕ with s large

enough. Note, by property (c) of Lemma 2.1, that we get

Φκ(sϕ) ≤ 3s2

(∫
RN
|∇ϕ|2 dx+

∫
RN

V (x)ϕ2 dx

)
−
∫
B1

H(x,G−1(sϕ)) dx.

By (3.3), it follows that H(x, s) = F (s) in B1. By hypothesis (f3), there exist

positive constants C1 and C2 such that

F (s) ≥ C1|s|θ − C2, for all s ∈ R.

Therefore, it follows that

Φκ(sϕ) ≤ 1

2
s2

(∫
RN
|∇ϕ|2 dx+

∫
RN

V (x)ϕ2 dx

)
− C1

∫
B1

|G−1(sϕ)|θ dx+ C3.
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Using again property (c) of Lemma 2.1, we have

Φκ(sϕ) ≤ 1

2
s2

(∫
RN
|∇ϕ|2 dx+

∫
RN

V (x)ϕ2 dx

)
− C1s

θ

∫
B1

|ϕ|θ dx+ C3.

Since θ > 2, it follows that Φκ(sϕ)→ −∞ as s→ +∞ �

Consequently, using a version of the mountain pass theorem found in [27],

there is a Palais–Smale sequence (vn) ⊂ E ((PS)cκ sequence) such that

Φκ(vn)→ cκ and Φ′κ(vn)→ 0 as n→ +∞,

where

(3.9) cκ = inf
γ∈Γκ

sup
t∈[0,1]

Φκ(γ(t)) ≥ α > 0,

with

(3.10) Γκ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) 6= 0 and Φκ(γ(1)) < 0}.

Lemma 3.3. The Palais–Smale sequence (vn) for Φκ is bounded in E.

Proof. The sequence (vn) satisfies

(3.11) Φκ(vn) =
1

2

∫
RN

(|∇vn|2 + V (x)|G−1(vn)|2) dx

−
∫
RN

H(x,G−1(vn)) dx = cκ + on(1),

and, for every ϕ ∈ E, Φ′κ(v)ϕ = on(1)||ϕ||, that is

(3.12)

∫
RN

[
∇v∇ϕ+ V (x)

G−1(v)

g(G−1(v))
ϕ− h(x,G−1(v))

g(G−1(v))
ϕ

]
dx = on(1)||ϕ||.

Choosing ϕ = ϕn = G−1(vn)g(G−1vn), it follows from proprieties (c)–(d) of the

Lemma 2.1 that |ϕ| ≤
√

6|vn| and |∇ϕ| ≤ |∇vn|. So,

ϕ ∈ E and ||ϕ|| ≤
√

6||vn||.

Using ϕn = G−1(vn)g(G−1vn) as a test function in (3.12), we derive that

(3.13) o(1)||vn|| = Φ′κ(vn)ϕn =

∫
RN

(
1 +

G−1(vn)g′(G−1(vn))

g(G−1(vn))

)
|∇vn|2 dx

+

∫
RN

[V (x)|G−1(vn)|2 − h(x,G−1(vn))G−1(vn)] dx.

From property (d) of the Lemma 2.1, it follows that

(3.14) o(1)||vn|| ≤
∫
RN

[|∇vn|2+V (x)|G−1(vn)|2−h(x,G−1(vn))G−1(vn)] dx.
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Combining (3.11) and (3.14), we have

(3.15) θcκ + o(1) + o(1)||vn|| = θΦκ(vn)− Φ′κ(vn)ϕn

≥
(
θ − 2

2

)∫
RN

[|∇vn|2 + V (x)|G−1(vn)|2] dx

+

∫
RN

[h(x,G−1(vn))G−1(vn)− θH(x,G−1(vn))] dx.

Using (3.5) and the property (c) of the Lemma 2.1, it follows that

(3.16)

(
µ− 1

µ2

)
||vn||2 ≤ θcκ + o(1) + o(1)||vn||,

showing that (vn) is bounded. �

Since (vn) is a bounded sequence in E, there exists vκ ∈ E and a subsequence

of vn, still denoted by itself, such that vn ⇀ vκ in E, vn → vκ in Lsloc(RN ) for

s ∈ [1, 2∗), vn(x)→ vκ(x) almost everywhere on RN .

Lemma 3.4. Suppose (vn) is a (PS)cκ sequence. The following statements

hold:

(a) For each ε > 0 there exists r > R such that

lim sup
n→+∞

∫
|x|≥2r

[|∇vn|2 + V (x)|G−1(vn)|2] dx < ε.

(b) lim
n→+∞

∫
RN

V (x)|G−1(vn)|2 dx =

∫
RN

V (x)|G−1(vκ)|2 dx.

(c) lim
n→+∞

∫
RN

h(x,G−1(vn))G−1(vn) dx =

∫
RN

h(x,G−1(vκ))G−1(vκ) dx.

(d) lim
n→+∞

∫
RN

V (x)
G−1(vn)

g(G−1(vn))
vn dx =

∫
RN

V (x)
G−1(vκ)

g(G−1(vκ))
vκ dx.

(e) lim
n→+∞

∫
RN

h(x,G−1(vn))

g(G−1(vn))
vn dx =

∫
RN

h(x,G−1(vκ))

g(G−1(vκ))
vκ dx.

(f) lim
n→+∞

∫
RN

H(x,G−1(vn)) dx =

∫
RN

H(x,G−1(vκ)) dx.

Proof. (a) Consider r > R and a function η = ηr ∈ C∞0 (Bcr) such that

η ≡ 1 in Bc2r, eta ≡ 0 in Br, 0 ≤ η ≤ 1 and |∇η| ≤ 2/r, for all x ∈ RN . As

(vn) is bounded in E, the sequence (ηϕn), where ϕn = G−1(vn)g(G−1vn), is also
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bounded. Hence, Φ′(vn)ηϕn = on(1), that is∫
RN

(
1 +

G−1(vn)g′(G−1(vn))

g(G−1(vn))

)
|∇vn|2η dx+

∫
RN

V (x)|G−1(vn)|2η dx

= −
∫
RN
∇vn∇η(G−1(vn)g(G−1(vn))) dx

+

∫
RN

h(x,G−1(vn))G−1(vn)η dx+ on(1).

From properties (c) and (d) of the Lemma 2.1 it follows that

1

2

∫
RN
|∇vn|2η dx+

∫
RN

V (x)|G−1(vn)|2η dx

≤
√

6

∫
RN
|∇vn||∇η||vn| dx+

∫
RN

h(x,G−1(vn))G−1(vn)η dx+ on(1).

Once that η ≡ 0 in Br, the last inequality combined with (3.2) yields(
1− 1

µ

)∫
[|x|≥r]

[|∇vn|2 + V (x)G−1(vn)]η dx

≤
√

6

∫
[|x|≥r]

|wn||∇wn||∇η| dx+ on(1),

that is,

(3.17)

(
1− 1

µ

)∫
[|x|≥r]

[|∇vn|2 + V (x)G−1(vn)]η dx

≤ 2
√

6

r

∫
[r≤|x|≤2r]

|vn||∇vn| dx+ on(1).

By Hölder inequality,∫
[r≤|x|≤2r]

|vn||∇vn| dx ≤
(∫

RN
|∇vn|2 dx

)1/2(∫
[r≤|x|≤2r]

v2
n dx

)1/2

.

Since vn → vκ in L2(B2r \Br) and (vn) is bounded in E, it follows that

(3.18) lim sup
n→+∞

∫
[r≤|x|≤2r]

|vn||∇vn| dx ≤ C
(∫

[r≤|x|≤2r]

v2
κ dx

)1/2

,

for some constant C > 0. On the other hand, using again Hölder inequality,

(3.19)

(∫
[r≤|x|≤2r]

v2
κ dx

)1/2

≤
(∫

[r≤|x|≤2r]

|vκ|2
∗
dx

)1/2∗

|B2r \Br|1/N .

Noting that |B2r \Br| ≤ |B2r| = ωN (2r)N , from (3.18) and (3.19), we have

(3.20) lim sup
n→+∞

∫
[r≤|x|≤2r]

|vn||∇vn| dx ≤ 2rCω
1/N
N

(∫
[r≤|x|≤2r]

|vκ|2
∗
dx

)1/2∗

,



824 J.F.L. Aires — M.A.S. Souto

and from (3.17) and (3.20), it follows that

(3.21) lim sup
n→+∞

∫
[|x|≥2r]

[|∇vn|2 + V (x)|G−1(vn)|2] dx

≤ 4
√

6Cω
1/N
N

(
1− 1

µ

)−1(∫
[r≤|x|≤2r]

|vκ|2
∗
dx

)1/2∗

.

Thus, for every ε > 0, we choose r > R such that

4
√

6Cω
1/N
N

(
1− 1

µ

)−1(∫
[r≤|x|≤2r]

|vκ|2
∗
dx

)1/2∗

< ε,

and this concludes part (a) of the proof.

(b) Note first that from part (a), for each ε > 0, there exists r > R such that

lim sup
n→+∞

∫
[|x|≥2r]

V (x)|G−1(vn)|2 dx < ε

4

and consequently, ∫
[|x|≥2r]

V (x)|G−1(vκ)|2 dx ≤ ε

4
.

Hence,

(3.22)

∣∣∣∣ ∫
RN

V (x)[|G−1(vn)|2 − |G−1(vκ)|2] dx

∣∣∣∣
≤ ε

2
+

∣∣∣∣ ∫
[|x|≤2r]

V (x)[|G−1(vn)|2 − |G−1(vκ)|2] dx

∣∣∣∣.
Since vn → vκ in L2(B2r), using the Lebesgue Dominated Convergence Theorem,

it follows that

(3.23) lim
n→+∞

∫
[|x|≤2r]

V (x)|G−1(vn)|2 dx =

∫
[|x|≤2r]

V (x)|G−1(vκ)|2 dx.

From (3.22) and (3.23), we have

lim sup
n→+∞

∣∣∣∣ ∫
RN

V (x)[|G−1(vn)|2 − |G−1(vκ)|2] dx

∣∣∣∣ ≤ ε

2
,

for every ε > 0. Therefore,

lim
n→+∞

∫
RN

V (x)|G−1(vn)|2 dx =

∫
RN

V (x)|G−1(vκ)|2 dx.

(c) It follows from (3.2) and part (a) that, for each ε > 0, there exists r > R

such that

lim sup
n→+∞

∫
[|x|≥2r]

h(x,G−1(vn))G−1(vn) dx <
ε

4

and ∫
[|x|≥2r]

h(x,G−1(vκ))G−1(vκ) dx ≤ ε

4
.
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Therefore,

(3.24)

∣∣∣∣ ∫
RN

[h(x,G−1(vn))G−1(vn)− h(x,G−1(vκ))G−1(vκ)] dx

∣∣∣∣
≤ ε

2
+

∣∣∣∣ ∫
[|x|<2r]

[h(x,G−1(vn))G−1(vn)− h(x,G−1(vκ))G−1(vκ)] dx

∣∣∣∣.
Since

vn(x)→ vκ(x) a.e. on RN ,
h( · , G−1(s))G−1(s)

|G−1(s)|2∗
→ 0 as s→ +∞

and

sup
n

∫
RN
|G−1(vn)|2

∗
< +∞,

it follows from the Compactness Lemma of Strauss [12] that

(3.25) lim
n→+∞

∫
[|x|<2r]

h(x,G−1(vn))G−1(vn) dx

=

∫
[|x|<2r]

h(x,G−1(vκ))G−1(vκ) dx.

From (3.24) and (3.25), the result follows. This completes the proof of part (c).

Using similar arguments we prove (d), (e) and (f). �

As a consequence of Lemma 3.4, we conclude that

Corollary 3.5. We have that vκ is non-trivial critical point of Φκ and

Φκ(vκ) = cκ. Moreover, the functional Φκ satisfies the (PS)cκ condition.

Proof. Our first goal is proving that vκ is critical point of Φκ. To this end,

it suffices to show that

Φ′κ(vκ)φ = 0, for all φ ∈ C∞0 (RN ).

As in the proof of previous lemma, it is easy to deduct that∫
RN

V (x)

[
G−1(vn)

g(G−1(vn))
− G−1(vκ)

g(G−1(vκ))

]
φdx → 0 as n→ +∞,(3.26)

and ∫
RN

[
h(x,G−1(vn))

g(G−1(vn))
− h(x,G−1(vκ))

g(G−1(vκ))

]
φdx → 0 as n→ +∞,(3.27)

for all φ ∈ C∞0 (RN ). Moreover, since vn ⇀ vκ we have

(3.28)

∫
RN
∇(vn − vκ)∇φdx→ 0 as n→ +∞.

Combining (3.26)–(3.28) it is proved that

lim
n→+∞

Φ′κ(vn)φ = Φ′κ(vκ)φ, for all φ ∈ C∞0 (RN ).



826 J.F.L. Aires — M.A.S. Souto

Since Φ′κ(vn)φ = on(1), the last limit yields Φ′κ(vκ)φ = 0, for all φ ∈ C∞0 (RN ).

Let us show that vκ 6= 0. To prove this, we argue by contradiction supposing

that vκ = 0. From Lemma 3.4(b), it follows that

(3.29) lim
n→∞

∫
RN

V (x)|G−1(vn)|2 dx = 0,

which implies in

(3.30) lim
n→∞

∫
RN

V (x)|vn|2 dx = 0,

and consequently,

(3.31) lim
n→∞

∫
RN

V (x)
G−1(vn)vn
g(G−1(vn))

dx = 0.

Since g(0) 6= 0 and H(x, 0) = 0, using conditions (e) and (f) of Lemma 3.4, it

follows that

(3.32) lim
n→∞

∫
RN

h(x,G−1(vn))vn
g(G−1(vn))

dx = 0.

and

(3.33) lim
n→∞

∫
RN

H(x,G−1(vn)) dx = 0.

Using (3.31) and (3.32) we have, from Φ′κ(vn).vn = 0, that

(3.34)

∫
RN
|∇vn|2 dx→ 0,

and thus we obtain

Φκ(vn) =
1

2

∫
RN

(|∇vn|2 + V (x)|G−1(vn)|2 dx−
∫
RN

H(x,G−1(vn)) dx→ 0,

but this is a contradiction with Φκ(vn)→ cκ > 0. Hence, vκ 6= 0.

Now, we will show that Φκ(vκ) = cκ. Once Φ′(vn)vn = o(1) and using the

limits (d)–(e) of Lemma 3.4, together with Φ′(vκ)vκ = 0, we have

(3.35) lim
n→+∞

∫
RN
|∇vn|2 dx =

∫
RN
|∇vκ|2 dx.

The last limits combined with (b) and (f) of the Lemma 3.4, imply

Φκ(vn) =

∫
RN

[
1

2
(|∇vn|2 + V (x)|G−1(vn)|2)−H(x,G−1(vn))

]
dx→ Φκ(vκ).

Hence, Φκ(vκ) = cκ.

To show that the functional Φκ satisfies (PS)cκ condition, it remains to show

that ||vn− vκ|| → 0. Proceeding as in the proof of Lemma 3.4(b), it follows that

lim
n→+∞

∫
RN

V (x)v2
n dx =

∫
RN

V (x)v2
κ dx.
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Using this limit and (3.35), we conclude that

||vn − vκ||2 =

∫
RN

[|∇vn −∇vκ|2 + V (x)(v2
n − v2

κ)] dx→ 0.

Consequently, Φκ satisfies the Palais–Smale condition. �

4. L∞ estimate of the solution of the modified equation

In this section, we will establish an L∞ estimate for solution vκ obtained in

Corollary 3.5.

Lemma 4.1. For R > 1, any solution vκ of the equation (3.6)

‖vκ‖2 ≤
θµ2cκ
µ− 1

.

Proof. We know that Φκ(vκ) = cκ. Then

θcκ = θΦκ(vκ)− Φ′κ(vκ)G−1(vκ)g(G−1(vκ))

=
θ

2

∫
RN

(|∇vκ|2 + V (x)|G−1(vκ)|2 dx− θ
∫
RN

H(x,G−1(vκ)) dx

−
∫
RN

(
1 +

G−1(vn)g′(G−1(vn))

g(G−1(vn))

)
|∇vn|2 dx

+

∫
RN

[V (x)|G−1(vn)|2 − h(x,G−1(vn))G−1(vn)] dx

From property (d) of the Lemma 2.1, we have

θcκ ≥
(
θ − 2

2

)∫
RN

(|∇vκ|2 + V (x)|G−1(vκ)|2) dx

+

∫
RN

[h(x,G−1(vn))G−1(vn)− θH(x,G−1(vκ)) dx] dx.

Due to (3.5), it follows that

(4.1) θcκ ≥
(
θ − 2

2

)∫
RN

(|∇vκ|2 + V (x)|G−1(vκ)|2) dx

+

(
2− θ

2

)
1

µ

∫
RN

V (x)|G−1(vκ)|2 dx.

Picking µ > θ/(θ − 2), we obtain

(4.2)

(
µ− 1

µ2

)∫
RN

(|∇vκ|2 + V (x)|G−1(vκ)|2) dx ≤ θcκ,

that is,

(4.3) ‖vκ‖2 ≤
θµ2cκ
µ− 1

. �

Remark 4.2. In the previous lemma, ‖vκ‖ is bounded by a constant that

does not depend on R > 1. However, this constant depends on κ > 0.
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To obtain, for vκ, an uniform boundedness of the Sobolev norm independent

on κ > 0, we denote by B the unitary ball in RN , that is, B = B1(0) and we

consider the functional Φ0 : H1
0 (B)→ R given by

(4.4) Φ0(v) = 3

∫
B

(|∇v|2 dx+ V (x)v2) dx−
∫
B

F (v) dx

and the set

(4.5) Γ0 = {γ ∈ C([0, 1], H1
0 (B)); γ(0) = 0, γ(1) 6= 0 and Φ0(γ(1)) < 0},

Since the function F is non-decreasing, using the Lemma 2.1(c) we have Φκ(v) ≤
Φ0(v) and thereby Γ0 ⊂ Γκ. Hence,

cκ = inf
γ∈Γκ

sup
t∈[0,1]

Φκ(γ(t)) ≤ inf
γ∈Γ0

sup
t∈[0,1]

Φκ(γ(t)) ≤ inf
γ∈Γ0

sup
t∈[0,1]

Φ0(γ(t)) := d,

where d is a constant independent on κ. Consequently, by Lemma 4.1, the

solution vκ must satisfy the estimate

(4.6) ‖vκ‖2 ≤
θµ2d

µ− 1
.

Now, following the same ideas present in Aires and Souto [1], we will es-

tablish an important estimate involving L∞(RN ) norm for a solution vκ of the

equation (3.6). We will use the following estimate result which proof follows

from Proposition 5.3 and Corollary 5.4 in [1] (see also Proposition 2.6 in Alves

and Souto [3]).

Proposition 4.3. Let N > 2, r > 2∗ and v ∈ E∩Lr(RN ) be a weak solution

of the problem

(4.7) −4v + b(x)v = L(x, v) in RN ,

where L : RN × R→ R is a continuous function verifying

|L(x, s)| ≤ C0|s|2
∗−1, for all s ∈ R, x ∈ RN

and b is a nonnegative function in RN . Then there exists a constant C =

C(C0, ||v||Lr(RN )) > 0 such that ‖v‖L∞(RN ) ≤ C‖v‖.

In order to obtain the boundedness in the L∞ norm, we consider for a solution

vκ of the equation (3.6), the following function

(4.8) L(x, t) =


f(G−1(t))

g(G−1(t))
if |x| < R or f(G−1(t)) ≤ V (x)

µ
G−1(t),

0 if |x| ≥ R and f(G−1(t)) >
V (x)

µ
G−1(t),

and the following non-negative mensurable function

b(x) =


1

vκ
V (x)

G−1(vκ)

g(G−1(vκ))
, if |x| < R or f(G−1(vκ)) ≤ V (x)

µ
G−1(vκ),(

1− 1

µ

)
1

vκ

G−1(vκ)

g(G−1(vκ))
if |x| ≥ R and f(G−1(vκ)) >

V (x)

µ
G−1(vκ).
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Note that vκ satisfies an equation such as (4.7). From Lemma 2.1 and (2.2), we derive

that |L(x, t)| ≤ C1|t|2
∗−1, for some constant C1 > 0.

To apply Proposition 4.3, it remains to show the boundedness Lr(RN ) norm, for

some r > 2∗.

Lemma 4.4. Let N > 2 and β = N/(N − 2). There exists a constant C = Cε > 0,

such that

‖vκ‖L2∗β(RN ) ≤ C‖vκ‖L2∗ (RN ).

Proof. In proof of this Lemma, we denote vκ by v. Proceeding as in the proof of

the Lemma 5.5 (see Aires and Souto [1]); let v a positive solution of (4.7), and for each

m ∈ N, consider the sets Am = {x ∈ RN : |v|β−1 ≤ m} and Bm = RN \ Am. Let us

define

vm =

v|v|2(β−1) in Am,

m2v in Bm,
and zm =

v|v|β−1 in Am,

mv in Bm.

Using vm as a test function and since 0 ≤ b(x)z2
m = b(x)vvm in RN and β > 1, we

deduce that

(4.9)

∫
RN

(|∇zm|2 + b(x)z2
m) dx ≤ β2

∫
RN

L(x, v)vm dx.

Note that the function L defined in (4.8) verifies the following conditions:

(L1) |L(x, t)| ≤ c0|t|2
∗−1, for t sufficiently small,

(L2) lim
s→+∞

L(x, t)/|t|2
∗−1 = 0.

Observe that the conditions (L1) and (L2) imply that, for each ε > 0, there is C =

Cε(ε, c0) > 0 such that

|L(x, t)| ≤ ε|t|2
∗−1 + Cε|t|, for all x ∈ RN , t ∈ R.

Using this inequality in (4.9), we have

(4.10)

∫
RN

(|∇zm|2 + b(x)z2
m) dx ≤ β2ε

∫
RN
|v|2

∗−1|vm| dx+ Cβ2

∫
RN

z2
m dx.

Observe that∫
RN
|v|2

∗−1|vm| dx ≤
∫
RN
|v|2

∗−2z2
n dx ≤ ||zm||2L2∗ (RN )

(∫
RN
|v|2

∗
dx

)2∗−2

,

that is, ∫
RN
|v|2

∗−1|vn| dx ≤ S||v||2
∗−2

L2∗ (RN )

∫
RN
|∇zm|2 dx,

which combined with (4.10) results in

(4.11)

∫
RN

(|∇zm|2 + b(x)z2
m) dx ≤ β2εS||v||2

∗−2

L2∗ (RN )

∫
RN
|∇zm|2 dx+ Cβ2

∫
RN

z2
m dx.

By estimate (4.6), we can choose ε > 0 such that εβ2||v||2
∗−2

L2∗ (RN )
S < 1/2, from which

it follows that, ∫
RN

(|∇zm|2 + b(x)z2
m) dx ≤ 2Cβ2

∫
RN

z2
m dx.



830 J.F.L. Aires — M.A.S. Souto

Using Sobolev embedding, we have(∫
Am

|zm|2
∗
dx

)2/2∗

≤ S
∫
RN
|∇zm|2 dx ≤ 2SCβ2

∫
RN

z2
m dx.

Since |zm| = |v|β in Am and |zm| ≤ |v|β in RN , it follows that[ ∫
Am

|v|2
∗β dx

]1/2∗β

≤ (2SCβ2)1/2β

[ ∫
RN
|v|2β dx

]1/2β

.

By the Monotone Convergence Theorem, letting m→ +∞, we have

||v||L2∗β(RN ) ≤ (2SCβ2)1/2β ||v||L2∗ (RN ). �

It follows from Lemma 4.4 that vκ is bounded in Lr(RN ), with r=2∗β>2∗. Apply-

ing the Proposition 4.3, we conclude that there exists a constant C = C(Cε, ||vκ||Lr(RN ))

> 0 such that ‖vκ‖L∞(RN ) ≤ C‖vκ‖, for any vκ ∈ E ∩ Lr(RN ) weak solution of the

problem (4.7). Hence, any weak solution vκ of the equation (3.6) satisfies the estimate

(4.12) ‖vκ‖L∞(RN ) ≤M,

where M = C(θµ2d/(µ− 1))1/2 > 0 is independent of κ > 0.

Lemma 4.5. For R > 1, any positive solution vκ of the equation (3.6) satisfies

vκ(x) ≤
RN−2‖vκ‖L∞(RN )

|x|N−2
≤ RN−2M

|x|N−2
, for all |x| ≥ R.

Proof. Let u be the C∞(RN \ {0}) harmonic function given by

u(x) = RN−2M/|x|N−2.

By estimate (4.12), we have vκ(x) ≤ u(x) for |x| = R. It follows that (vκ−u)+ = 0 for

|x| = R, and the function given by

φ =

(vκ − u)+ if |x| ≥ R,
0 if |x| < R,

belongs to D1,2(RN ). Moreover, φ ∈ E. Employing φ as a test function and using the

fact that vκ is a solution of (3.6), we have

(4.13)

∫
RN
∇vκ∇φdx+

∫
RN

V (x)
G−1(vκ)

g(G−1(vκ))
φdx =

∫
RN

h(x,G−1(vκ))

g(G−1(vκ))
φdx.

On the other hand, by definition of φ it follows that

(4.14)

∫
RN
|∇φ|2 dx =

∫
A

∇vκ∇φdx−
∫
A

∇u∇φdx,

where A = {x ∈ RN : |x| ≥ R and vκ(x) > u(x)}.
Since ∆u = 0 in RN \BR(0), φ = 0 for |x| = R and φ ≥ 0, we have∫

A

∇u∇φdx = 0.

Thus using (4.13) and (4.14) it follows that∫
RN
|∇φ|2 dx =

∫
A

h(x,G−1(vκ))

g(G−1(vκ))
φdx−

∫
A

V (x)
G−1(vκ)

g(G−1(vκ))
φdx,
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and from (3.2), we conclude that∫
RN
|∇φ|2 dx ≤

(
1

µ
− 1

)∫
A

V (x)
G−1(vκ)

g(G−1(vκ))
φdx ≤ 0.

Hence, we have φ = 0, in RN , which implies that (vκ − u)+ = 0, in |x| ≥ R. From this

we conclude that vκ ≤ u in |x| ≥ R and the lemma is proved. �

5. Proof of the main result

Proof of Theorem 1.1. By Remark 3.1, to show that vκ is also solution of the

equation (2.6), it is sufficient to show that

f(G−1(vκ)) ≤ V (x)

µ
G−1(vκ) in |x| ≥ R.

By (2.2) and Lemma 2.1(c), we have

f(G−1(vκ))

G−1(vκ)
≤ c0|vκ|4/(N−2), for all x ∈ RN .

Using Lemma 4.5, it follows that,

f(G−1(vκ))

G−1(vκ)
≤ c0

R4M4/(N−2)

|x|4 , in |x| ≥ R.

Fixing Λ∗ = µc0M
4/(N−2) and Λ ≥ Λ∗, it implies that

f(G−1(vκ))

G−1(vκ)
≤ 1

µ
Λ∗

R4

|x|4 ≤
1

µ
Λ
R4

|x|4 .

It follows from hypothesis (VΛ) that

f(G−1(vκ))

G−1(vκ)
≤ V (x)

µ
in |x| ≥ R,

which implies that vκ is a solution for the equation (2.6), that is,

−∆vκ + V (x)
G−1(vκ)

g(G−1(vκ))
=
f(G−1(vκ))

g(G−1(vκ))
, x ∈ RN .

On the other hand, vκ satisfies ‖vκ‖L∞(RN ) ≤ C(θµ2d/(µ− 1))1/2. Thus,

‖G−1(vκ)‖L∞(RN ) ≤
√

6‖vκ‖L∞(RN ) ≤
√

6C

(
θµ2d

µ− 1

)1/2

.

Choosing κ0 ≤ (µ− 1)/(18C2θµ2d), it follows that

‖G−1(vκ)‖L∞(RN ) <

√
1

3κ
, for all κ ∈ [0, κ0).

From Remark 2.2 it implies that u = g(G−1(vκ)) is a classical solution of (1.1). �
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109–145, 223–283.

[24] J. Liu, Y. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations II,

J. Differential Equations 187 (2003), 473–493.

[25] Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equa-

tions, Nonlinear Anal. 80 (2013), 194–201.

[26] J. Yang, Y. Wang and A.A. Abdelgadir, Soliton solutions for quasilinear Schrödinger

equations, J. Math. Phys. 54 (2013), doi: 10.1063/1.4811394.

[27] M. Willem, Minimax Theorems, Birkhäuser, (1986).
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