
Topological Methods in Nonlinear Analysis
Volume 46, No. 2, 2015, 785–798

DOI: 10.12775/TMNA.2015.068

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

GROUND STATE SOLUTIONS

FOR A CLASS OF NONLINEAR MAXWELL–DIRAC SYSTEM

Jian Zhang — Xianhua Tang — Wen Zhang

Abstract. This paper is concerned with the following nonlinear Maxwell–

Dirac system
−i

3∑
k=1

αk∂ku+ aβu+ ωu− φu = Fu(x, u),

−∆φ = 4π|u|2,

for x ∈ R3. The Dirac operator is unbounded from below and above, so the

associated energy functional is strongly indefinite. We use the linking and
concentration compactness arguments to establish the existence of ground

state solutions for this system with asymptotically quadratic nonlinearity.

1. Introduction and main results

We study the following nonlinear Maxwell–Dirac system

(1.1)


−i

3∑
k=1

αk∂ku+ aβu+ ωu− φu = Fu(x, u),

−∆φ = 4π|u|2,
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where x = (x1, x2, x3) ∈ R3, u ∈ C4, ∂k = ∂/∂xk, a > 0, α1, α2, α3 and β are

the 4× 4 complex matrices:

β =

(
I 0

0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3,

with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,

φ is the electron field. In this paper, we are interested in the existence of ground

state solutions of system (1.1) with asymptotically quadratic nonlinearity, that

is, solutions corresponding to the least energy for the energy functional of sys-

tem (1.1).

The Maxwell–Dirac system, which describes the interaction of a particle with

its self-generated electromagnetic field, plays an important role in quantum elec-

trodynamics. Also it has been used as effective theories in atomic, nuclear and

gravitational physics (see [39]). In the past decade, system (1.1) has been studied

for a long time and many results are available concerning the Cauchy problem,

see for instance, [8], [9], [27], [29], [32], [30], [38] and the references therein. As

we known, the existence of stationary solutions of the Maxwell-Dirac system has

been an open problem for a long time, see [31, p. 235]. As far as the existence of

stationary solutions of system (1.1) is concerned by using variational methods,

there is a poineering work by Esteban et al. [23] in which a multiplicity result is

studied. After that, Abenda [1] obtained the existence result of solitary wave so-

lutions. And a strong localization result was obtained in [36]. On the other hand,

in [28], Garrett Lisi gave numerical evidence of the existence of bounded states

by using an axially symmetric ansatz. For more detailed descriptions for equa-

tions and systems related to Dirac equations, we refer to the recent review [24]

and the references therein.

We emphasize that the works mentioned above mainly concerned with the

autonomous system with null self-coupling (F ≡ 0). In [12], Chen and Zheng

studied system (1.1) with nonlinear self-coupling model (F 6= 0), and the exis-

tence of least energy stationary solutions of system (1.1) was obtained for the spe-

cial superquadratic power nonlinearity Fu(x, u) = a(x)|u|p−2u with 2 < p < 3.

Zhang et al. [46] considered the general superquadratic nonlinearity. Besides, for

other related topics including the superquadratic singular perturbation problem

and concentration phenomenon of semi-classical states, see, for instance [20]–[22]

and the references therein.

Inspired by the above works, the purpose of this paper is to consider system

(1.1) with non-autonomous asymptotically quadratic nonlinearity. To the best

of our knowledge, there has been no work concerning on this case up to now.
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We mainly study the existence of ground state solutions via variational methods.

Before stating our main result, we first make the following assumptions on the

nonlinearity:

(F1) F (x, u) ∈ C1(R3 × C4,R+) and F (x, u) is 1-periodic in xk, k = 1, 2, 3;

(F2) Fu(x, u) = o(|u|) as |u| → 0 uniformly in x;

(F3) there exists a bounded function F∞ ∈ C(R3,R+) such that |Fu(x, u) −
F∞(x)u|/|u| → 0 as |u| → ∞ uniformly in x, and inf

x∈R3
F∞(x) > a+ ω;

(F4) F̃ (x, u) ≥ 0 for all u, F̃ (x, u) → ∞ as |u| → ∞, where F̃ (x, u) =

(1/2)Fu(x, u)u− F (x, u).

The main result of this paper is the following theorem.

Theorem 1.1. Assume that ω ∈ (−a, a) and (F1)–(F4) are satisfied. Then

system (1.1) has at least one ground state solutions.

As a motivation we recall that there is a large number of works on existence

of stationary solutions of nonlinear Schrödinger–Maxwell system arising in the

non-relativistic quantum mechanics, see, for example, [2], [5], [11], [37], [40], [41]

and so on. It is quite natural to ask if certain similar results can be obtain for

nonlinear Maxwell–Dirac system arising in the relativistic quantum mechanics,

we will give an answer for Maxwell–Dirac system in the present paper. From

a mathematical viewpoint, the two systems possess different variational struc-

tures. Note that, for the Schrödinger–Maxwell system, techniques based on the

mountain pass theorem are well applied to the investigation. However, for the

Maxwell–Dirac system, the mountain pass structure no longer be satisfied be-

cause the associated energy functional is strongly indefinite, the classical critical

point theory cannot be applied directly. On the other hand, one of the main dif-

ficulties of such problem is the lack of compactness of Sobolev embedding. Hence

our problem poses more challenges in the calculus of variation in nature. In or-

der to overcome these difficulties, we will turn to the linking and concentration

compactness arguments (see [6], [33] and [34]).

Very recently, there are some works focused on existence of stationary solu-

tions and concentration of semi-classical solutions for nonlinear Dirac equation

but not for Maxwell–Dirac system. See, for example [7], [10], [13], [15]–[19],

[25], [26], [35], [43]–[45], [47], [48] and the references therein. Compared to the

Dirac equations, the Maxwell–Dirac system becomes much more complicated

since the effects of nonlocal term. In order to overcome this obstacle, we need

more delicate estimates for nonlocal term (see Lemma 3.5).

The remainder of this paper is organized as follows. In Section 2, we for-

mulate the variational setting, and present a critical point theorem required. In

Section 3, we will use the linking and concentration compactness principle to

prove our main result.
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2. Variational setting and abstract theorem

Below by | · |q we denote the usual Lq- norm, ( · , · )2 denote the usual L2

inner product, c, Ci stand for different positive constants. For convenience, let

Dirac operator

A := −i
3∑

k=1

αk∂k + aβ + ω,

and let σ(A), σc(A) be the spectrum of A, the continuous spectrum of A, re-

spectively. It is well known that A is a selfadjoint operator on L2 := L2(R3,C4)

with D(A) ⊂ H1 := H1(R3,C4). A Fourier analysis shows that σ(A) = σc(A) =

R \ (−a + ω, a + ω). For ω ∈ (−a, a), the space L2 possesses the orthogonal

decomposition:

L2 = L− ⊕ L+, u = u− + u+

such that A is negative definite on L− and positive definite on L+. Let E :=

D(|A|1/2) = H1/2 be equipped with the inner product

〈u, v〉 = (|A|1/2u, |A|1/2v)2

and the induced norm ‖u‖ = 〈u, u〉1/2, where |A| and |A|1/2 denote respectively

the absolute value of A and the square root of |A|. Note that this norm is

equivalent to the usual H1/2-norm, hence E embeds continuously into Lp for all

q ∈ [2, 3] and compactly into Lq
loc for all p ∈ [1, 3). It is clear that E possesses

the following decomposition

E = E− ⊕ E+ and E± = E ∩ L±.

These two subspaces are orthogonal with respect to both ( · , · )2 and 〈 · , · 〉 inner

products.

Let D1,2 := D1,2(R3,R) be the completion of C∞0 (R3,R) with respect to the

norm

‖u‖2D =

∫
R3

|∇u|2dx.

It is well known that system (1.1) can be reduced to a single equation with non-

local term. Actually, for each u ∈ E, the linear functional Tu in D1,2 defined by

Tu(v) =

∫
R3

|u|2v dx, v ∈ D1,2,

is continuous. In fact, since u ∈ Lq for all q ∈ [2, 3], one has |u|2 ∈ L6/5 for all

u ∈ E, and Hölder inequality and Sobolev inequality imply that

|Tu(v)| =
∣∣∣∣ ∫

R3

|u|2v dx
∣∣∣∣(2.1)

≤
(∫

R3

||u|2|6/5 dx

)5/6(∫
R3

|v|6 dx
)1/6

≤ S−1/2||u|2|6/5‖v‖D.
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where S is the Sobolev embedding constant. It follows from the Lax–Milgram

theorem that there exists a unique φu ∈ D1,2 such that

(2.2)

∫
R3

∇φu · ∇v dx = 4π

∫
R3

|u|2v dx, for all v ∈ D1,2,

that is φu satisfies the Poisson equation −∆φu = 4π|u|2 and there holds

φu(x) =

∫
R3

|u(y)|2

|x− y|
dy =

1

|x|
∗ |u|2.

By (2.1), (2.2), it is easy to see that

(2.3) ‖φu‖2D =

∫
R3

φu|u|2 dx ≤ S−1/2||u|2|6/5‖φu‖D

and

(2.4)

∫
R3

φu|u|2 dx ≤ S−1/2||u|2|6/5‖φu‖D ≤ S−1|u|412/5.

Substituting φu in (1.1), we are led to the equation

(2.5) −i
3∑

k=1

αk∂ku+ aβu+ ωu− φuu = Fu(x, u).

Next, on E we define the following functional

(2.6) Φ(u) =
1

2
(‖u+‖2 − ‖u−‖2)− Γ(u)−Ψ(u)

for u = u+ + u− ∈ E, where

Γ(u) =
1

4

∫
R3

φu|u|2 dx =
1

4

∫
R3×R3

|u(y)|2|u(x)|2

|x− y|
dy dx

and

Ψ(u) =

∫
R3

F (x, u) dx.

Moreover, our hypotheses imply that Φ ∈ C1(E,R), and a standard argument

shows that critical points of Φ are solutions of system (1.1) (see [14], [42]).

In order to find critical points of Φ, we shall use the following abstract the-

orem which is taken from [6] and [14].

Let E be a Banach space with direct sum E = X ⊕ Y and corresponding

projections PX , PY onto X,Y . Let S ⊂ (X)∗ be a dense subset, for each s ∈ S
there is a semi-norm on E defined by

ps : E → R, ps(u) := |s(x)|+ ‖y‖ for u = x+ y ∈ E.

We denote by TS the topology induced by semi-norm family {ps}, w∗ denote

the weak∗-topology on E∗. Now, some notations are needed. For a functional

Φ ∈ C1(E,R) we write Φa = {u ∈ E | Φ(u) ≥ a}, Φb = {u ∈ E | Φ(u) ≤ b}
and Φb

a = Φa ∩ Φb. Recall that Φ is said to be weakly sequentially lower semi-

continuous if for any un ⇀ u in E one has Φ(u) ≤ lim inf
n→∞

Φ(un), and Φ′ is said
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to be weakly sequentially continuous if lim
n→∞

Φ′(un)w = Φ′(u)w for each w ∈ E.

Recall that a sequence {un} ⊂ E is said to be a (C)c-sequence if Φ(un)→ c and

(1 + ‖un‖)Φ′(un)→ 0.

Suppose:

(Φ0) for any c ∈ R, superlevel Φc is TS -closed, and Φ′ : (Φc, TS) → (E∗, w∗)

is continuous;

(Φ1) for any c > 0, there exists ξ > 0 such that ‖u‖ < ξ‖PY u‖ for all u ∈ Φc;

(Φ2) there exists r > 0 such that % := inf Φ(Sr ∩ Y ) > 0, where Sr := {u ∈
E : ‖u‖ = r}.

Now we state the following critical point theorem which will be used later

(see [6], [14]).

Theorem 2.1. Let (Φ0)− (Φ2) be satisfied and suppose there are R > r > 0

and e ∈ Y with ‖e‖ = 1 such that sup Φ(∂Q) ≤ % where Q := {u = x + te | x ∈
X, t ≥ 0, ‖u‖ < R}. Then Φ has a (C)c-sequence with % ≤ c ≤ sup Φ(Q).

3. Proof of the main result

First, let r > 0, set Br := {u ∈ E | ‖u‖ ≤ r}, Sr := {u ∈ E | ‖u‖ = r}. In

virtue of the assumptions (F1)–(F3), for any ε > 0, there exist positive constants

rε, Cε such that

(3.1)


|Fu(x, u)| ≤ ε|u| for all 0 ≤ |u| ≤ rε,
|Fu(x, u)| ≤ ε|u|+ Cε|u|p−1 for all (x, u),

|F (x, u)| ≤ ε|u|2 + Cε|u|p for all (x, u),

where p ∈ (2, 3).

Before proving our result, we need some preliminary results.

Lemma 3.1. Γ and Ψ are non-negative, weakly sequentially lower semi-

continuous, Γ′ and Ψ′ are weakly sequentially continuous.

Proof. The above Lemma is standard because E embeds continuously into

Lq for q ∈ [2, 3] and compactly into Lq
loc for q ∈ [1, 3) (see [14]). �

Lemma 3.2. Let (F1) − (F3) be satisfied, there exists r > 0 such that % :=

inf Φ(Sr ∩ E+) > 0.

Proof. Observe that |u|pp ≤ cp‖u‖p for all u ∈ E by Sobolev embedding.

For any u ∈ E+, by (2.4) and (3.1) we have

Φ(u) =
1

2
‖u‖2 − Γ(u)−Ψ(u) ≥ 1

2
‖u‖2 − C1‖u‖4 − c2ε‖u‖2 − Cεcp‖u‖p

=

(
1

2
− c2ε

)
‖u‖2 − C1‖u‖4 − Cεcp‖u‖p.
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Since p ∈ (2, 3), choosing suitable r > 0 we see that the desired conclusion

holds. �

Let Λ := inf
x∈R3

F∞(x). By virtue of (F3), we take a number µ satisfying

a+ ω < µ < Λ. Thus there exists e ∈ E+ with ‖e‖ = 1 such that

(3.2) (a+ ω)|e|22 < 1 < µ|e|22 < Λ|e|22.

Lemma 3.3. Let (F1)–(F3) be satisfied, there is R0 > r > 0, such that

Φ|∂Q ≤ 0, where Q := {u = u− + se | u− ∈ E−, s ≥ 0, ‖u‖ ≤ R0}.

Proof. Suppose to the contrary that there exist un = sne+u−n with ‖un‖ →
∞ such that

(3.3)
Φ(un)

‖un‖2
=

1

2
(δ2

n − ‖v−n ‖2)− 1

4

∫
R3

φun
|un|2

‖un‖2
−
∫
R3

F (x, un)

‖un‖2
≥ 0,

where δn = sn/‖un‖, vn = un/‖un‖ and v−n = u−n /‖un‖. Therefore, we know by

(F1) that δn ≥ ‖v−n ‖. Since δ2
n + ‖v−n ‖2 = 1, up to a subsequence, δn → δ and

v−n ⇀ v− in E. Set v = δe+ v−, it follows from (3.2) that

δ2 − ‖v−‖2 −
∫
R3

F∞(x)v2 ≤ δ2 − ‖v−‖2 − Λ|v|22

≤ δ2(µ− Λ)|e|22 − ‖v−‖2 − Λ|v−|22 < 0.

Then there exists a bounded set Ω ⊂ R3 such that

(3.4) δ2 − ‖v−‖2 −
∫

Ω

F∞(x)v2 < 0.

Letting R(x, u) := F (x, u) − (1/2)F∞(x)u2, then |R(x, u)| ≤ C2|u|2 for some

C2 > 0 and R(x, u)/|u|2 → 0 as |u| → ∞ uniformly in x. Hence, by Lebesgue’s

dominated convergence theorem, we have

(3.5) lim
n→∞

∫
Ω

R(x, un)

‖un‖2
= lim

n→∞

∫
Ω

R(x, un)

|un|2
|vn|2 = 0.

Thus (3.3)–(3.5) imply that

0 ≤ lim
n→∞

(
1

2
(δ2

n − ‖v−n ‖2)− 1

4

∫
R3

φun
|un|2

‖un‖2
−
∫
R3

F (x, un)

‖un‖2

)
≤ lim

n→∞

(
1

2
(δ2

n − ‖v−n ‖2)−
∫

Ω

F (x, un)

‖un‖2

)
≤ 1

2

(
‖δ‖2 − ‖v−‖2 −

∫
Ω

F∞(x)v2

)
< 0.

Now the desired conclusion is obtained from this contradiction. �

Combining Lemmas 3.1–3.3 and Theorem 2.1 we obtain

Lemma 3.4. Suppose that (F1)–(F3) are satisfied. Then for the functional

Φ, there exists a (C)c-sequence {un} with c > 0.
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Proof. With X = E− and Y = E+. Clearly, Φ satisfies (Φ1) because

Γ,Ψ ≥ 0. In virtue of Lemma 3.1, we see that (Φ0) is satisfied. Lemma 3.2

implies that (Φ2) holds. Lemma 3.3 shows that Φ possesses the linking structure

of Theorem 2.1. Therefore, there exists a sequence {un} satisfying

Φ(un)→ c > 0 and (1 + ‖un‖)Φ′(un)→ 0. �

In the following, we discuss the properties of the (C)c-sequences. Since the

effect of nonlocal term Γ(u), it is difficult to verify the boundedness of the (C)c-

sequence for the functional Φ. Motivated by Ackermann [3], we give a delicate

estimate for the norm of Γ′(u), it is very important in our arguments.

Lemma 3.5. For any u ∈ E \ {0}, there exists C > 0 such that

Γ′(u)u > 0 and ‖Γ′(u)‖E∗ ≤ C
(√

Γ′(u)u+ Γ′(u)u
)
,

where E∗ denotes the dual space of E.

Proof. Clearly, Γ′(u)u = 4Γ(u) > 0. Now we show the second conclusion.

Since Γ is the unique nonlocal term in Φ, from the argument in Ackermann [3]

(see also [4]), we have∫
R3

(
1

|x|
∗ |u|2

)
|v|2 dx ≤ C3

√∫
R3

(
1

|x|
∗ |u|2

)
|u|2 dx

∫
R3

(
1

|x|
∗ |v|2

)
|v|2 dx

for all u, v ∈ E and some C3 > 0. Hence using this, (2.4) and Hölder inequality,

we can obtain∫
R3

(
1

|x|
∗ |u|2

)
|uv| dx

≤
(∫

R3

(
1

|x|
∗ |u|2

)
|u|2 dx

)1/2(∫
R3

(
1

|x|
∗ |u|2)|v|2 dx

)1/2

≤C4

(∫
R3

(
1

|x|
∗ |u|2)|u|2 dx

)1/2(∫
R3

(
1

|x|
∗ |u|2)|u|2 dx

)1/4

×
(∫

R3

(
1

|x|
∗ |v|2

)
|v|2 dx

)1/4

≤C5

(∫
R3

(
1

|x|
∗ |u|2

)
|u|2 dx

)3/4

‖v‖,

which implies that

|Γ′(u)v| ≤ C5(Γ′(u)u)3/4‖v‖ ≤ C
(√

Γ′(u)u+ Γ′(u)u
)
‖v‖.

This shows the second conclusion. �

Lemma 3.6. Suppose that (F1)–(F4) are satisfied. Then any (C)c-sequence

of Φ is bounded.
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Proof. Let {un} ⊂ E be such that

(3.6) Φ(un)→ c and (1 + ‖un‖)Φ′(un)→ 0.

Then, there is constant C6 > 0 such that we have

(3.7) C6 ≥ Φ(un)− 1

2
Φ′(un)un = Γ(un) +

∫
R3

F̃ (x, un).

Suppose to the contrary that {un} is unbounded. Setting vn := un/‖un‖, then

‖vn‖ = 1 and |vn|s ≤ cs‖vn‖ = cs for all s ∈ [2, 3]. After passing to a subse-

quence, we can assume that vn ⇀ v in E. Observe that

Φ′(un)(u+
n − u−n ) = ‖un‖2

(
1− Γ′(un)(u+

n − u−n )

‖un‖2
−
∫
R3

Fu(x, un)(v+
n − v−n )

‖un‖

)
.

Hence

(3.8)
Γ′(un)(u+

n − u−n )

‖un‖2
+

∫
R3

Fu(x, un)(v+
n − v−n )

‖un‖
→ 1.

Set h(r) := inf{F̃ (x, u) | x ∈ R3 and u ∈ C4 with |u| ≥ r} for r ≥ 0. By (F4),

h(r) → ∞ as r → ∞. For 0 ≤ a < b, let Ωn(a,b) := {x ∈ R3 | a ≤ |un(x)| < b}
and

Cb
a := inf

{
F̃ (x, u)

|u|2

∣∣∣∣ x ∈ R3 and u ∈ C4 with a ≤ |u(x)| < b

}
.

By (3.7), it is easy to prove that

(3.9) |Ωn(b,∞)| ≤
C6

h(b)
→ 0

as b→∞ uniformly in n, and for any fixed 0 < a < b,

(3.10)

∫
Ωn(a,b)

|vn|2 =
1

‖un‖2

∫
Ωn(a,b)

|un|2 ≤
C6

Cb
a‖un‖2

→ 0

as n→∞.

Now, let 0 < ε < 1/4. By (3.1), for any ε > 0, there exists aε > 0 such that

|Fu(x, un)| ≤ ε|un|, for all |un| ≤ aε. Consequently,

(3.11)

∫
Ωn(0,aε)

Fu(x, un)(v+
n − v−n )

‖un‖
≤
∫

Ωn(0,aε)

ε|v+
n − v−n ||vn| ≤ ε|vn|22 ≤ ε

for all n. From (F3), we can deduce that there is c > 0 such that |Fu(x, u)| ≤ c|u|
for all (x, u). Hence, by (3.9) and Hölder inequality, we can take large bε such

that

(3.12)

∫
Ωn(bε,∞)

Fu(x, un)(v+
n − v−n )|vn|
|un|

≤ c
∫

Ωn(bε,∞)

|v+
n − v−n ||vn|

≤ |Ωn(bε,∞)|1/6

(∫
Ωn(bε,∞)

|v+
n − v−n |2

)1/2(∫
Ωn(bε,∞)

|vn|3
)1/3

≤ ε
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for all n. By (3.10), there is n0 > 0 such that, for all n ≥ n0,

(3.13)

∫
Ωn(aε,bε)

Fu(x, un)(v+
n − v−n )

‖un‖

≤ c
∫

Ωn(aε,bε)

|v+
n − v−n ||vn| ≤ c|vn|2

(∫
Ωn(aε,bε)

|vn|2
)1/2

≤ ε.

Next we deal with the nonlocal term. From (3.7) we easily know

Γ(un)

‖un‖
→ 0, as n→∞.

Moreover, by Lemma 3.5, we have∣∣∣∣Γ′(un)(u+
n − u−n )

‖un‖2

∣∣∣∣ ≤ ‖Γ′(un)‖E∗‖u+
n − u−n ‖

‖un‖2
(3.14)

≤ C7

∣∣∣∣
(√

Γ′(un)un + Γ′(un)un

)
‖u+

n − u−n ‖

‖un‖2

∣∣∣∣
≤ C8

∣∣∣∣
√

Γ′(un)un + Γ′(un)un
‖un‖

∣∣∣∣
= C9

(
1√
‖un‖

√
4Γ(un)

‖un‖
+

4Γ(un)

‖un‖

)
≤ ε

for all n ≥ n0. Now the combination of (3.11)–(3.14) shows that

lim sup
n→∞

(
Γ′(un)(u+

n − u−n )

‖un‖2
+

∫
R3

Fu(x, un)(v+
n − v−n )

‖un‖

)
≤ 4ε < 1,

which contradicts (3.8). Therefore, {un} is bounded in E. �

Let K := {u ∈ E | Φ′(u) = 0, u 6= 0} be the set of nontrivial critical points

of Φ.

Lemma 3.7. Suppose that (F1)–(F4) are satisfied. Then system (1.1) has

a nontrivial solution, i.e. K 6= ∅.

Proof. Lemma 3.4 implies that the existence of a (C)c-sequence {un}, where

c > 0. By Lemma 3.6, {un} is bounded in E. Let

(3.15) δ := lim
n→∞

sup
y∈R3

∫
B(y,1)

|un|2dx.

If δ = 0, by Lions’ concentration compactness principle in [34] or [42, Lem-

ma 1.21], then un → 0 in Lp for any p ∈ (2, 3). Therefore, it follows from (2.4)

and (3.1) that∫
R3

F (x, un)dx→ 0,

∫
R3

Fu(x, un)undx→ 0 and Γ(un)→ 0
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as n→∞. Consequently,

c = lim
n→∞

(
Φ(un)− 1

2
Φ′(un)un

)
= lim

n→∞

(
Γ(un) +

∫
R3

(
1

2
Fu(x, un)un − F (x, un)

)
dx

)
= 0.

This is a contradiction. Hence δ > 0.

Going if necessary to a subsequence, we may assume the existence of kn ∈ Z3

such that ∫
B(kn,1+

√
3)

|un|2 dx >
δ

2
.

Let us define vn(x) = un(x+ kn) so that

(3.16)

∫
B(0,1+

√
3)

|vn|2 dx >
δ

2
.

Since Φ and Φ′ are Z3-translation invariant, we obtain ‖vn‖ = ‖un‖ and

(3.17) Φ(vn)→ c and (1 + ‖vn‖)Φ′(vn)→ 0.

Passing to a subsequence, we have vn ⇀ v in E, vn → v in Ls
loc, for all 2 ≤ s < 3

and vn → v almost everywhere in R3. Hence it follow from (3.16) and (3.17) that

Φ′(v) = 0 and v 6= 0. This shows that v ∈ K is a nontrivial of system (1.1). �

Proof of Theorem 1.1. Lemma 3.7 shows that K is not an empty set.

Let m := inf{Φ(u) | u ∈ K \ {0}} be the least energy of Φ. First of all, we claim

that

(3.18) θ := inf{‖u‖ | u ∈ K} > 0.

Indeed, for any u ∈ K, it holds

0 = Φ′(u)(u+ − u−) = ‖u‖2 − Γ′(u)(u+ − u−)−Ψ′(u)(u+ − u−)

jointly with (2.4), (3.1) which implies that

‖u‖2 ≤ ε‖u‖2 + C10‖u‖4 + Cε‖u‖p.

Choosing ε small enough, we see easily that ‖u‖ > 0 for each u ∈ K. Therefore,

θ > 0.

Suppose that {un} ⊂ K such that Φ(un) → m as n → ∞. Then {un} is

a (C)m-sequence. By Lemma 3.6, {un} is bounded. For this sequence {un}, we

denote δ as in (3.15). If δ = 0, then un → 0 Lp for all p ∈ (2, 3). Now, for any

ε > 0, using (2.4) and (3.1) we have∫
R3

Fu(x, un)(u+
n − u−n ) dx→ 0 and Γ′(un)(u+

n − u−n )→ 0

as n→∞. Consequently,

‖un‖2 = Φ′(un)(u+
n − u−n ) + Γ′(un)(u+

n − u−n ) +

∫
R3

Fu(x, un)(u+
n − u−n ) dx→ 0
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as n → ∞. This contradicts with (3.18). Therefore, δ > 0. After a suitable

Z3-translation, a subsequence of {un} converges weakly to some u0 ∈ K. By

Fatou’s lemma and (F4), we have

Φ(u0) = Φ(u0)− 1

2
Φ′(u0)u0 = Γ(u0) +

∫
R3

F̃ (x, u0) dx

≤ lim
n→∞

(
Γ(un) +

∫
R3

F̃ (x, un) dx

)
= lim

n→∞

(
Φ(un)− 1

2
Φ′(un)un

)
= m.

Hence u0 ∈ K with Φ(u0) = m, and Theorem 1.1 is proved. �
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