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COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES
OVER THE CIRCLE

JOAO PERES VIEIRA

ABSTRACT. The main purpose of this work is to study coincidences of fibre-
preserving self-maps over the circle S for spaces which are fibre bundles
over S! and the fibre is the torus 7. We classify all pairs of self-maps over
S1 which can be deformed fibrewise to a pair of coincidence free maps.

1. Introduction

Given a fibration M —2+ ST and fibre-preserving maps f, g: M — M over S*,
the question is if the pair (f, g) can be deformed by fibrewise homotopy over S!
to a coincidence free pair (f7,g’).

This problem was motivated by the case in that f = Id, and in this case,
the question is if the map g can be deformed by fibrewise homotopy over S to
a fixed point free map ¢’, which has been considered by many authors, among
them see [4], [6], [8] and [9].

Let us consider fibre-preserving maps f,g: M — M, where M is a fibre
bundle over the circle S and the fibre is a closed surface S. These fibre bundles
are obtained from the space S x [0,1] by identifying the points (z,0) with the
points (¢(z), 1), where ¢ is a homeomorphism of the surface S. The cases when
f = Id and the fibre S is either the torus 7" or the Klein bottle K, were completely
solved in [8] and [9], respectively.
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In this work, we consider the fibre S = 7. We denote the total space by
M(¢). We investigate when given fibre-preserving maps f,g: M(¢) — M (o)
over S1,i.e. po f =pand pog = p, the pair (f,g) can be deformed by fibrewise
homotopy over S! to a coincidence free pair (f’,g’).

The set of homotopy classes of the pairs (f,g) such that (f|r,g|r) can be
deformed to a coincidence free pair is given by Theorem 3.6.

This paper is organized into four sections. In Section 2 we prove that our
problem is equivalent to the existence of a section. This is given by Theorem 2.2.
We show that to find this section it is equivalent to find a lifting in an algebraic
diagram. This is the Proposition 2.10. We also present some results on the
torus T and fibre bundles over S* and fibre 7. These results include the Nielsen
number of a pair of maps of the torus and the fundamental group of the spaces
M(p), M(¢) xs1 M(¢p) and M(¢) xs1 M($) \ A where A is the diagonal in
M () x 51 M (¢), which is the pullback of p: M (¢) — M (¢) by p: M(¢) — M(¢).

In Section 3 we classify all T-bundles over S!. This is the Proposition 3.4. We
also obtain a presentation for the fundamental groups of M (¢), M (¢) x g1 M (o)
and M(6) x g1 M(6) \ A.

In Section 4, we present a necessary and sufficient condition for the existence
of the lifting in the diagram

m(M()) ——— m(M(9)

Gars g1 M(9))

with base points suitable. These conditions are related to existence of solutions
of a system of equations involving the presentation of the groups above.

In Section 5, we classify all the pairs of maps (f, g), which can be deformed,
by a fibrewise homotopy over S!, to a pair of coincidence free maps (f’,¢’),
which is Theorem 5.1.

2. Preliminary and general results

2.1. Coincidence theory. Let f,g: X — Y be maps between finite CW-
complexes. Denote by Coin(f,g) = {z € X | f(z) = g(z)}.

Suppose that x1, xo are in Coin(f, g). Then we say that x1, xo are Nielsen
equivalent according to f and g if there exists a path o: [0,1] — X such that
(0) = x1, (1) = 25 and f o o is homotopic to g o o relative to end points.
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We have that the above relation is an equivalence relation. So the set
Coin(f, g) is partioned in equivalence classes of this relation, called coincidence
classes.

A coincidence class F is called essential if given z in F and homotopies { f;},
{gt} of f = fo and g = go there exist 2’ in Coin(f1,g1) and a path v: [0,1] = X
with v(0) = z, v(1) = 2’ such that f; o is homotopic to g; o v relative to end
points.

The coincidence Nielsen number N(f,g) of f and g is defined as the number
of essential coincidence classes. We have that N(f,¢g) is a homotopic invariant,
finite, and is a lower bound for the set Coin(f’,¢’) of each pair maps f’, ¢’
homotopic to f and g, respectively. For more details see [7] and [18].

2.2. Presentation of groups. Let A and G be groups with presentations

given by A = (Y|S) and G = (X, R). Let
1—A-SaS 66—
be a fixed extension of G by A.

Let us denote Y = {I(y) | y € Y}. Let S = {3 | s € S} be the set of words
obtained of S by changing y to § = l(y). For each € X we choose T € G such
that (%) = 2. Take X = {Z | z € X}.

We also consider for each r € R the word 7 in X obtained from r substituting
x by Z. Now, each 7 is annulated by u, because by the hypothesis u(Z) = z.
Therefore, for each r € R we have 7 € ker (1) = Im{. Since Im! is generated
by the set }7, each 7 can be written as a word, namely .., in y. Let us denote

R= {7utr € R}. Since Im1 is a normal subgroup of é, each conjugate Tyz !,

where T € X and § € Y, belongs to Im!. Therefore Tyz "
Let us denote T' = {Zyz~'w,,' | + € X and y € Y}. With the above notation

we have

is a word wgy in y.

The proof of this theorem can be found in [11, Chapter 13].

2.3. The general problem. Let (F;, M;, B,p;) be fibre bundles and let
f,9: My — M> be fibre-preserving maps over B, i.e. pso f = p; and poog = p;.
When the pair (f,g) is deformable over B to a pair of coincidence free maps
(f',4¢") by a fibrewise homotopy over B?

We will give a formulation for the problem through a geometric diagram.
Now we define some spaces which are used in this work.

Let My xp My = {(z,y) € M x M | pa(x) = p2(y)} be the pullback of
p2: My — B by pa: My — B. By [4] the inclusion My x g My \ A «— My X g Ms,
where A is the diagonal in X = My xpg My, is replaced by the fibration F —
Eg(My) %5 M, x5 Ms, whose fibre is denoted by F, Ep(Ms) = {(z,w) €
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A x X! |i(x) = w(0)} has the same homotopy type from A = My x5 My \ A
and ¢ is given by ¢g(z,w) = w(1).
The next theorem gives an equivalent condition to our problem.

THEOREM 2.2. The pair of maps (f,g) over B can be deformed to a coinci-
dence free pair (f',g") by fibrewise homotopy over B if and only if there exists
a section o in the diagram

F F
J q(s.9) l

(2.1) EB(f, 9) — Ep(Ms)
/a// Jq(fvg) lq

M- M My x g M.

1 1 L 2 Xp My

where q : Eg(f,g9) — M is the induced fibration from q by (f, g).
(f,9)

PRrOOF. If exists o on the above diagram, then we have a map 6: M; —
Ep(Ms) given by 0 = Q(f,q) ©0- Hence the map H: My x I — My x5 M> given
by H(z,s) = 0(x)(s) gives a fibrewise homotopy over B between a coincidence
free pair and (f,g). Here 0(z) = (01(x), 62(x)).

Suppose that there exists a homotopy H: M; x [0,1] — My xp My such
that H; = (f,9) and Hy = (f’,g’) where f'(x) # ¢'(z), for all x € M;. We
have that Go(z) = (Ho(x), Cpy(x)) belongs to (Mz x5 My \ A) x (M x g M)*
where cp, () is the constant path in My xp My \ A C My xp My given by
CHo(z)(t) = Ho(z) and q o Go(z) = cpy()(1) = Ho(z). Since ¢ is a fibration,
then there exists a homotopy G: M; x [0,1] — Ep(Ms) which is the lifting
of H. We define o(z) = (x,G1(z)). Now o(x) belongs to Ep(f,g) because

qo Gi(x) = Hy(x) = (f(2),9(x)). O
The following proposition relates our problem with a geometric diagram.

ProprosITION 2.3. With the above motation we have that the pair of maps
(f,g) can be deformed to a coincidence free pair (f',g') by fibrewise homotopy
over B if and only if there exists a map h: My — My X5 Ms \ A which makes
the diagram

M2 XBMQ\A

h /Z )
e L
-
~

My —— My xg My
(f.9)

homotopy commutative.
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PROOF. Suppose that there exists a homotopy H: M; x [0,1] — My x g Ms
such that poo Hy(z) = pa(x), for all x € My, for all ¢ € [0,1]; Ho(z) = (f(x),g(z))
and Hq(z) = (f'(x),¢'(x)), where f'(z) # ¢'(z), for all x € M.

We define h: M7 — My xp My \ A by h(z) = (f'(x),¢'(x)). Since ps o
f'(x) = pi(x), p2 o g (x) = pi(x) and f'(z) # ¢'(x), for all x € M, then
h(z) € My xpg My \ A and ¢ o h is homotopic to (f,g), i.e. the diagram is
homotopy commutative.

Let H: My x [0,1] — My xp M3 be the homotopy making the diagram
homotopy commutative: Hy = (f,g), Hy = ih. Now H is a fibrewise homotopy
between (f,g) and a coincidence free pair. O

REMARK 2.4. (a) The fibre F has homotopy groups
7Tj,1(]:) = Fj(MgXBM27M2XBM2 \ A) = 7T‘j(X7A)

(see [5]).

(b) If the fibre F, and the spaces My and B are closed manifolds, m;_q (F) =
(X, A) = m;(Fy, Fo\x) where z is a point in F» (see [4, Proposition 2.1, p. 53]).

(c¢) Under conditions (b), if dim F» = k > 2, the classical obstruction the-
ory can be used to find obstructions. The primary obstruction occurs to extend
the section from (k — 1)-skeleton to the k-skeleton of My and this obstruction
Ogp(f,g) € H¥(My; {mx_1(F)}). There may be other obstructions and the es-
sential reason to apply the obstruction theory is that m (Msz) acts in mp_1(F)
independently of the base point of F, because 71 (F) = 0 (see [4, Proposition 2.2,
p. 54]).

(d) Under conditions (b), when the dimension of the fibre is 2 and F, # S2,
RP2, there exists a well defined coefficient local system given by the action of
m1(Mz) in Hy(F), and so we can define the abelianized obstruction Ag(f,g) €
H2(Mas {F(F)}) (see [15)).

(e) When the fibre is the sphere S?, then m3(S5?, 82 \ z) is isomorphic to
Z and the obstruction theory is applied because 71 (Mz) acts in 7 (F) ~ Z
independently of the base point of F.

2.4. Torus fibre bundle over S!. In this subsection M; = Ms = M is
a torus-bundle over S' and we will obtain types of torus-bundle over S! using
homeomorphism of T

Let ¢: T — T be a homeomorphism which has one fixed point denoted by z.
Without loss of generality we can assume this hypothesis because if ¢: T — T
is a homeomorphism with ¢(x1) = y;, then it follows from [16, Lemma 5.4,
chapter 5] that there exists a homeomorphism h: T' — T isotopic to the identity
Id such that h(y1) = 1.

Let H: T'x[0,1] — T be isotopy between h and Id with Hy = h and H; = Id.
Defining G: T x [0,1] — T by Gi(z) = Hi(¢(x)) we have that G is an isotopy
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between h o ¢ and ¢. We observe that h o ¢(x1) = h(y1) = 1. Therefore every
homeomorphism ¢: T — T is isotopic to a homeomorphism preserving base
point.

We denote by M(¢) the quotient space obtained from T x [0,1] where we
identify (x,0) with (¢(x),1). The elements of M (¢) we denote by (z,t).

We have that T — M(¢) -+ S' = I/y~; is a trivial locally fibre bundle
where p is the projection given by p({(z,t)) = (t).

PROPOSITION 2.5. Let ¢1,¢o: T — T be two homeomorphisms. Then M (¢1)
is homeomorphic to M (¢2) by a fibre-preserving homeomorphism over S* if and
only if ¢1 1is isotopic to a conjugate of ¢s.

PROOF. Suppose that ¢; and h o ¢ o h~! are isotopic. So we have a map
G: T x I — T such that G(-,0) = ¢1 and G(-,1) =hopaoh™t. Let G'(-,t) =
h=toG(-,t), t € {0,1}. We have

G'(-,1)opr=h"tohogaoh top=¢soh tops =¢r0G(-,0).

Hence we have a homeomorphism over S! between M (¢1) and M(¢s) given by
(x,t) = (G'(x,t),t). For the converse suppose that there exists a fibre-preserving
homeomorphism over S! which we will denote by h: M(¢1) — M(¢2). Then
h{z,t)y = (hi(x,t),t) and hi(-,1)op1 = ¢20hy(+,0). We define G: T xI — T by
G(x,t) = hy(xz,1)"topoohy(x,t). Then G(x,0) = hy(z,1) topah(x,0) = ¢1(x)
and G(z,1) = hy(z,1) L opohy(x,1) and so ¢; is isotopic to a conjugate of ¢y.00

COROLLARY 2.6. The classes of T-bundles over S* are classified by the con-
jugacy classes of isotopic classes of homeomorphism which preserve base point.

PROOF. As observed above we have that every homeomorphism ¢: T —
T is isotopic to a homeomorphism which is base point preserving. So from
Proposition 2.5 the result follows. O

We use some homeomorphisms of the torus to describe all T-bundles over S!.
We also use the group structure of the torus 7" in order to simplify the analysis
of our algebraic problem.

Let T be defined as the quotient space R x R/Z x Z ~ T and we denote by
() and [§] the elements of R x R and T, respectively.

Let ¢ be a homeomorphism of T induced by a linear operator in R? that
preserves Z x Z. We identify ¢ with the matrix of a linear operator with integer
coefficients and determinant either 1 or —1.

Then M (¢) is the quotient space of T'x [0, 1], where we are identifying ([2] , O)
with ([6(5)].1).

The class of the element ([3],t) in the quotient is denoted by ([y],¢).
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As observed above, the space M (¢) is a fibre bundle over the circle S!, where
the fibre is the torus T and the projection map p: M(¢) — S*, is given by

p<<{ ; }t>> — () €[0,1]/0 ~ 1~ S'.

2.5. The algebraic problem. In this subsection we will show that the
existence of a section over the 2-skeleton gives a deformation to a coincidence
free map. This will follow from the fact that the fibre (=torus) is a K(Z® Z,1)
space.

We have that M(¢) is a CW-complex because it is a quotient space of the
CW-complex, T x [0,1] by the CW-subcomplex, Q, given by Q = {(x,0) ~
(6(),1) | = € T},

If f: M(¢) — M(¢) is a map over S', we define fo: T — T by fo(z) = y if
f({z,0)) = (y,0). This map is well defined since (y;,0) = (y2,0) if and only if
Y1 = y2-

PROPOSITION 2.7. The map fy satisfies the condition that ¢ o fy o ¢~ 1 is
homotopic to fo. Conversely, if fo: T — T is a map which satisfies the condition
that ¢ o fo o ¢~1 is homotopic to fo, then there exists a map f: M(p) — M(p)
over S' such that f restricted to the fibre is fj.

PRrROOF. Define fi(z) = y if f({z,1)) = (y,1). Since (x,0) = (¢(z),1), it
follows that (fo(x),0) = (f1 o ¢(x),1), which implies that f; = ¢ o fyo ¢~ L.
Now we observe that if ¢t ¢ {0,1} then f((z,t)) = (g(z,t),t). Extending g to
amap g: T x I — T, by continuity, we have g(z,0) = fo(x) and g(z,1) = f1(x),
and the first part follows. For the converse, we define f: M(¢) — M(¢) by
f({x,t)) = (H(z,t),t), where H is the homotopy between fy and ¢ o foo ¢~ 1.0

PROPOSITION 2.8. If M = M(¢), then there exists a cross section o (see
diagram (2.1)) over M if and only if it exists over the 2-skeleton of M.

PRrROOF. Basically this follows from the fact that in these conditions the
theoretical fibre has homotopy groups equal to zero, except at level 1 (see Re-
marks 2.4(b)). Therefore, for the construction of the cross section according to
Theorem 2.2, once constructed in the 2-skeleton, all the other obstructions are
equal to zero. O

For the next proposition we are going to need Theorem 4.3.1 from [1, p. 265],
which says:

THEOREM 2.9 (Criterion for 2-extendability). Let (X, L) be a relative CW-
complex, and p: X — X a fibration with fibre F C X. Further, let X, L and F
be path-connected. A section u: L — L, where L = p~*(L), can be extended to
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a section u' over the 2-skeleton X2 = LU X? ezactly when iy: m (F) — T (X)
is injective and when there is a homomorphism 6 making the diagram

(L) — 71(X)

IR
7T1(L) *>7T1(X) T) 7T1(X)

commutative. We can take such u' that u;ﬁ =0.

Given gq: E — Y a fibration with fibre F' path-connected and a map f: X —
Y, then construct the geometric pullback E* = {(z,y) € X x E'| f(z) = q(y)}

E
|
Y

We also can construct the algebraic pullback

q2
B —
q1

X —
f

m (X) Um(E) = {(o, 8) € m(X) x m(E) | fg(a) = q4(8)}-

We observe that if i1, given in the homotopy exact sequence of the fibration ¢
i1 q#
oo —m(F) — m(E) — 7 (YY) — -

is injective, then 1 (E*) is isomorphic to 71 (X) U 71 (E) because we have the
following diagram

m(F) — s m(B*) —* 1 (X)

Idl (QI#ﬂQ#)J% Jld

7T1(F) T)ﬂ'l(X)U’]Tl(E) T)T('l(X)

commutative, where i2(8) = (1,41(8)) and p1(«, 8) = a.
The following proposition reduces our problem to the existence of a lifting in
the corresponding diagram of fundamental groups.

PROPOSITION 2.10. There is a cross section o (see diagram (2.1)) over the
2-skeleton of M(¢) if and only if the following diagram of fundamental groups,
admits a lifting :
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(2.2) m1(Es1(M(9))) = m1(M() x5 M(¢) \ A)

w1 (M(9)) > m(M(0)

ProOOF. First we observe that there exists a homomorphism v which makes
the diagram of fundamental groups commutative if and only if there exists a ho-
momorphism 6 which makes the diagram

q(s,0)#

T (Esi(f,9)) ——— m(Es:1(M(9)))

> o
0 _ - Y
_ af,g)# e a#
~ P
- -

m1(M(9)) Tﬂl(M(@) Wﬁ(M(@) x g1 1 (M())

commutative, because if there exists 6, then it is sufficient to define ¢ = g4 ;)00.
As observed before Proposition 2.10 we have that 71 (Eg:(f, g)) is isomorphic to
m(M(¢p))Um1(Esi(M(¢))) and therefore if there exists 1 it is sufficient to define
0(x) = (z,7(x)).

Now we suppose that there exists a cross section o in the diagram (2.1), so
there exists # = o in the diagram above and therefore there exists 1.

Now, if the diagram (2.2) of fundamental groups, admits a lifting v, by
the remark above there exists a homomorphism # which makes the diagram
commutative. So, from the theorem (criterion for 2-extendibility) there exists
a cross section o in the diagram (2.1). O

We remark that our problem is equivalent to an algebraic problem given
by Proposition 2.10. In this way, we should compute the homomorphisms and
groups in the diagram (2.2).

We consider M (¢) x g1 M (¢) the pullback of p: M(¢) — S* by p: M(¢) — S*
and p;: M(¢)xs1 M(¢) = M(p), s = 1,2, the projections on the first and second
coordinates, respectively.

It is easy to see that each element of M(¢) xg1 M(¢) is represented by
((z,t), (y,t)) where x,y € T.

For the calculation of the groups given in the diagram (2.2) we will reproduce
Propositions 1.7-1.9 from [8, pp. 5-6]:

PROPOSITION 2.11. The fundamental group m (M (¢), (x0,0)) is isomorphic
to the semi-direct product 71(T) % Z. Further the action Z AN Aut(T14, (7))
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which comes from the section so: S — M(¢) defined by so(t) = (xo,t), is given
by c-a = cac™t = ¢y(a), where ¢ = py(sg) is the generator of w (S1).

Proor. From the homotopy long exact sequence of the fibration, we have
a short exact sequence 1 — 1(T) — m1(M(¢), (z0,0)) = 71(S*) — 1, which
splits because Z is free. Hence (M (¢), (xo,0)) is isomorphic to the semi-
direct product 71(T) x Z. Further cac™ = ¢4 (a) because the class of the loop
s0(t) = (zo, 1) is projected by px in the generator ¢ of 71 (S*) and the juxtaposed
loop so{¢ o @, 1)s5 " is homotopic to the loop (¢ o a,0). In the quotient space
M (), this leads to ¢ - a = cac™ = ¢4(a), and the result follows. O

Let us denote 0 = <[8],0> and q = <[g},0> elements of M(¢). Then we
have the following

PROPOSITION 2.12. The fundamental group mi (M (¢)x g1 M (¢), (0,q)) is iso-
morphic to the semi-direct product m(T) x w1 (M(¢),q). Further, the action of
w1 (M (¢ ) on Aut(m(T)), which comes from the section s1: m1(M(¢),q) —

)s

1 (M(¢)x g1 M(), (0,q)), where s1 = (s0 0 p, Lar(g))#, is given by B - a =

Bap~t = (,B) «a. The last action is the one which comes from the bundle
),

p: (M(¢

) — S, d.e. the action is given by the following composition.:
P
1 (M(9), ) —— m1(S") —— Aut(my(T)
where if we denote by c the generator of 11;1(S1) then T'(c) = ¢4 , so that if
pu(B) =k then py(B) - a = (bi&(a).

PROOF. We have that 71 (M ()X g1 M(¢),(0,q)) is isomorphic to the semi-
direct product 71 (T) x 71 (M (), q), because the short exact sequence

il#

1 —— 1 (T) — 55 11 (M(9) x50 M(0), (0,) —s m(M(6),q) —— 1

splits and the homomorphism s; = (s0 © p, 1as(¢))# is a section and the iso-
morphism ¢1: w1 (M(6) x51 M(6), (0,q)) — m(T) x m(M(6),q) is given by
$1(7) = (h;ﬁ(v(sl op2y) (Y1) 2 (7)) U

To calculate 71 (M () x g1 M (@) \ A), define a fibre bundle homeomorphism
h: M(¢) xg1 M(¢p) — M(p) xg1 M(¢) over M(¢) by the formula

(G- B o) = CEL -Gl =)

The range of the subspace M(¢) Xg1 M($) \ A by the homeomorphism h is
M(p) xg1 (M(¢) \ S'). The last space is the total space of the pullback of
p: M(¢) — S* by Plasons: M)\ St — S1, and the circle S* in M(¢) is the
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image of ¢o(t) = <[8] , t> for all t € [0,1]. So, we have the commutative diagram:

/

TXT—-A — > Tx(T\1)
TxT TxT

(2.3) M($)x g1 M($)\A ——> M(¢)x 51 (M($)\S)
BN

M(¢) ;ﬂq)M(@xslM(@ —— M(9)x 51 M(9)

s

Therefore, the problem of existence of the section o in the diagram (2.1) is
equivalent to the existence of a lifting ~.

Let S* be the subset of M(¢) given by the elements ([§],£), 0 <t < 1. So
we have the fibre bundles p;: (M(¢) \ S*,q) — S*, where the fibre is T — [§].
Another useful space is the pullback (M (¢)x g1 (M (¢)\ S*)), which fundamental
group is given by

PROPOSITION 2.13. The fundamental group m (M (¢)x g1 (M(¢)\S'), (0,q))
is isomorphic to the semi-direct product 7 (T) x w (M (¢) \ S*,q). Further, the
action of w1 (M (¢)\ S, q) on Aut(my(T)) is given by B-a = BaB~™! = pu(B)-a,
where the last action is the one which comes from the bundle pj: M($)\S* — S*
as in Proposition 2.12.

PRrOOF. We proceed similarly to the proof of Proposition 2.12. In this situ-
ation the fibration provides the short exact sequence

i1#

0 — m(T) —55 w1 (M(6) x 2 (M(9) \ S1), (0, @) 5 71 (M(6) \ ST, q) — 0

and the homomorphism so = (sp 0 p|, 1ar(g)\51))# is a section, and we define an
isomorphism

Dy 1 (M(9)x 51 (M(9) \ 8Y),(0,@)) = mi(T) x m(M(¢) \ S*,q)

given by ®o(7y) = (i1;1(7(52 op2g (7)), P2y (7)) U

The above proposition points out the relevancy of knowing 1 (M (¢) \ S*).
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PROPOSITION 2.14. The existence of v in the diagram (2.3) is equivalent to
the existence of I' in the diagram

m(F(M(¢)\ §1)) = ma(T, T\ 1)

where the horizontal map is (p2 o h o (f,g))x: m(M(p)) — m(M(¢)). Here
pa: M(¢) xg1 M(¢p) — M(¢p) denotes the projection on the second factor.

PROOF. By finding the same argument as in Proposition 2.10, the existence
of 7 is equivalent to find a certain homomorphism T at the level of the funda-
mental groups. Since M (@) xg1 (M(¢) \ S') is the total space of the pullback
of the map p by p, M(E)\S1 by the universal property of the pullback and us-
ing the isomorphisms ¢; and ¢- in Propositions 2.12 and 2.13 respectively, it
is easy to show the equivalence of the existence of the lifting homomorphism in
diagram (2.3) and the lifting homomorphism I" that makes the diagram (2.4)
commutative. In fact, given I, it is sufficient to define I'(§) = pg#(f((S))
and given T' defines I'(§) = @51(2'1;1(]72;1(1"(6))(32 oI'(671))),T(5)). We ob-
serve that once pa5!(T(9)), pas(pag (T(8))(s2 o T(61))) = 1 is choosen, then
il?;l (pg;#l(lj(d))(sz ol'(671))) is uniquely determined. Thus I'(8) is well defined.CJ

3. Reductions on the torus

3.1. The generators of 7;(T) and the Nielsen number of the pair
(f,9), where f,g: T — T. Let T = S* x S* be the torus. Let us consider in
R? the equivalence relation (x1,9;) ~ (22,y2) if 1 = 2 mod (Z) and y; = y»
mod (Z). The quotient space is T, the equivalence class of (z,y) € R? is denoted
by [?ﬂ € T and the projection p: R? — T is the universal covering.

We also know that 7 (T) = Z®Z and two maps f1, fo: T — T are homotopic
if and only if fi, = fay, i.e. the induced homomorphisms in 7 (7’) are equal.

Once we fix a point, say 1 € T, we have that 71(T,1) is a group with two
generators a and b under the relation aba='b~1 = 1.
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We remark that each element of 71 (7', 1) can be represented by a word a™b"
where m,n are in Z, because we have the equality ab = ba.

Suppose that f: T — T is a continuous map. Then fu: m(T) — m1(T) is
a homomorphism of the form fu(a) = a™b™ and fx(b) = aPb? and if we look at
m1(T) = Z & Z with generators a = (1,0) and b = (0,1), f4: ZSZ - Z S L is
a homomorphism whose matrix with respect to the canonic basis {(1,0), (0,1)}
of Z@®Z is given by (4 §).

We denote fu by f(m,n,p,q) where m,n,p,q are the entries of the above
matrix. With this notation, we have:

THEOREM 3.1. If f1, fo: T — T are continuous maps with

fi#:fi(miyni7pi7Qi)7 i:1a2a
then the Nielsen number
N(fl,fg):‘det(ml_nw p1 — P2 )‘
ny —ng a1 —q2

For the proof see [2, pp. 122-125]. We also have the following proposition:

PROPOSITION 3.2. If f1, fa: T — T are continuous maps such that N(f1, f2)
=0, then we can deform the pair (f1, f2) to a coincidence free pair (g1,92).

PROOF. Suppose that N(fi, f2) = 0. Then det ('Z7"2217F2) = 0. We

ni—m2 gi1—qz2
consider maps g;: R? — R?, i = 1,2, given by
gi(w,y) = (mix + piy + €i, i + qiy)

where ¢; = 0 and €3 is irrational. Then g¢; induces a map g,: T — T such that
g, is homotopic to f; because g, induces in 71(T") the same homomorphism that
fi induces.

Now, we are going to calculate the number of coincidences of the pair (g,7,).
For this, it is sufficient to solve the system

miT + p1y = max + pay +e2 mod (Z),
me + @y = n2x + g2y mod (Z),
or

(my —mao)x + (p1 —p2)y =2 + k1 for some k1 € Z,
(n1 —n2)x + (g1 — g2)y = ko for some ko € Z.

Since N(f1,f2) = 0 we have that the rows of the matrix ("!7"2 P17F2) are

proportional. Without loss generality, suppose that there exists r such that

r(n1 —na2,q1 — g2) = (M1 — ma,p1 — p2).



520 J.P. VIEIRA

Certainly r is a rational number. So r(n; — ng)z + r(¢1 — g2)y = rko and
€o + k1 = rko, which is a contradiction because €5 is irrational. Therefore
Coin(g,,g,) = 0. O

3.2. Reduction of bundles M(¢) and of maps M(¢) — M(¢). We
consider the question raised in Section 2: given fibre-preserving maps f;: M (¢)—
M(¢) over St ie. po f; =p, i = 1,2, when the pair (f1, f2) can be deformed to
a coincidence free pair, by a fibrewise homotopy over S'?

From Section 2 we know that our problem is equivalent to finding a lifting
to the following algebraic diagram:

T (F) = ma(T, T\ 1)

i
™
%
=

) = m (M(¢) x50 M(6)\ A)

™1 (M(¢)) 1(M(9) xs51 M(0))

— T
(f1,f2)#

with suitable base points. The base point of the domain of f;, i = 1,2, is 0 =
([8],0) and we can suppose that f1(0) =0 and f2(0) = q, where q = {[2],0).
Otherwise we can replace the map fo by a map go homotopic to fo which has
the property above.

We denote by B; = (/%) the matrix of the induced homomorphisms of
the restriction of the maps f; to the fibre T, on the fundamental group.

PROPOSITION 3.3. Let fi1, fa: M(¢) — M(¢) be maps such that (fij,)x =
fi|T(mi,ni,pi,qi), i =1,2. We suppose that the pair (f1, f2) can be deformed,
by fibrewise homotopy over S, to a pair of coincidence free maps (g1, g2). Then,
the Nielsen number N(fl‘T,fng) of f1 and fy restricted to fibre T is zero and
therefore the vectors (m1 —ma, p1 —p2), (R1 —n2,q1 — q2) are linearly dependent
over Q.

PROOF. If the pair (f1, f2) can be deformed, by fibrewise homotopy over
S1, to a pair of coincidence free maps (g1, ¢g2), then the pair (f1|T,f2‘T) can
be deformed, by fibrewise homotopy over S*, to a pair of coincidence free maps
(91\T792\T)'

If the Nielsen number N(f; \p» J2| ) is different of zero then (gl|T, 92|,,) must
have at least a coincidence point, once it is a deformation of ( fl\T’ fng). But
this is a contradiction. Therefore we must have N(f1,, f2|,) = 0.

By Theorem 3.1 we have

0= N(fuyp for,) = ‘det( my —mz  p1— P2 >’
ny—n2 q1—4q2



COINCIDENCE OF MAPS ON TORUS FIBRE BUNDLES OVER THE CIRCLE 521

Therefore the rows of the matrix (7, "2 o ) are proportional. So, the vectors

(myq — ma,p1 — p2), (N1 —na,q1 — g2) are linearly dependent over Q. O

With the notation of the above proposition we observe that if the Nielsen
number N ( fl|T’ fg‘T) is different of zero, then it is not possible to deform the
pair (f1, f2) to a pair of coincidence free maps (g1, ¢g2)-

The next proposition provides a relationship between the matrices ¢ =
(Z; Zi) and B; for i =1,2.

PROPOSITION 3.4.

(a) w1 (M(9),0) = {(a,b,co;[a,b] = 1,coaco™t = a® b, cobcy ™! = a®b®).

(b) B; commutes with ¢.

(¢) If N(fiirs f2jr) = 0 then Bz — By has the eigenvalue 0 and eigenvector
v = (v1,v2) € Z X Z associated to 0, such that ged(vy,vs) = 1.

(d) Ifv is an eigenvector of Bo— By associated to 0 then ¢(v) also is an eigen-
vector of Bo — By associated to 0.

(e) Let us denote w = ¢(v). We take the pair v, w if it generates 7 x Z,
otherwise let w be another vector such that v, w span Z X Z. Define the
linear operator P: R x R = R x R by P(v) = (}), P(w) = (). Con-
sider a homeomorphism of fibre bundles (also denoted by P) P: M(¢)
— M(¢1), given by

(1) {5} s rrenr

Then we have for B} = P o B; o P~! that:

(i) Ifv and w = ¢(v) span Z x Z then B} = ("W }) fori=1,2.

(i) Otherwise, ¢(v) = Av with X € Z. Then B} = (7 hi) fori=1,2
and ¢' = (g‘gj) with A = +1 and ay = £1.

(ili) B} commutes with ¢* and the conditions (i) and (ii) determine the

table below

ot [ (B8) (i) [emn] 7= (5 m=(3)
det ' =41 and ¢' B} =B} ¢* az(g; —m) = —2p;

Case II d)l:((l)?) B}:(:’LLZ:) Case V 4)1:(7(1) 70113) B}:(leq):)

az(gi —m) =0 and agn =0

Case 111 ¢1:((1)“13) Bg:(?}ﬁ;) Case VI ¢1:(7(1)‘113) B,}:(%lzz)
az Z0 az(qi —m) = 2p;

PROOF. (a) Let us consider the following loops in M (¢) with base point 0:

wo={[]3) 0= [2Ja) (8]
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for ¢t € [0,1]. From Proposition 2.11 it follows that m1 (M (¢)) = m1(T) x Z, and
a presentation is w1 (M(¢),0) = (a, b, co;[a,b] = 1,coaco™ = a®b®2, cobcy™ =
a%phy.

(b) Recall that B; = (' 5!) is the matrix of the induced homomorphism
of the restriction of the maps f; to the fibre T on the fundamental group of
the fibre T, and f; are maps over S'. Then the induced homomorphisms Jig
on w1 (M(¢),0) are given by fi,(a) = a™b™, fi,(b) = aPib? and fiy(co) =
a®ibicy. Since f; are maps over S' it follows from Proposition 2.7 that B;
commutes with ¢.

(¢) If N(f1r, f2jr) = 0 then we have that the rows of the matrix

( mg —Mmi1 P2 —P1 )

ng—n1 G2—4q

are proportional. Without loss generality, we shall to assume that there exists
r € Q such that r(ne —ni,q2 — ¢1) = (M2 —m1,p2 — p1). So

By B = ( r(ng —n1) (g2 —q1) )
n2 —m Q2 —q

and since 0 is a root of the characteristic polynomial det((By — By) —Al2) = 0, it
follows that A = 0 is an eigenvalue of By — By and v = ((q1 —g2)/L, (n2 —n1)/L)
where L = ged(q1 — g2, n2 — nq) is an eigenvector associated to the eigenvalue 0
such that ged((q1 — g2)/L, (n2 —n1)/L) = 1. Now (d) follows from (b).

To prove (e) we observe that:

(i) if the pair (v,w = ¢(v)) generates Z x Z, where v is an eigenvector of
Bs — B; associated to 0, then

(3 =r-pia=r-nuo-ai( 1

and

B%( (1) ) :PoBl(w):PoBQ(w):le< (1) )

So Bl = (W}h), fori=1,2.
(ii) Otherwise, if the pair (v, w) generates Z x Z with w # ¢(v) and v an
eigenvector of By — By associated to 0, then

5o )-2(0)-(7)
B}( ?):PoBioPl( (1) ) :PoBi(w)=(Z )

therefore B} = (3 4i), for i = 1,2. In this case, since the pair (v, ¢(v)) does not
generate Z x Z we have (21, 22) = ¢(v) = Av with X € Z.

and
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Indeed since v = (vy,v9) with ged (v1,v9) = 1 there exists (r,s) € Z X Z
such that rv; + svy = 1 and therefore A\rv; + Asva = X whence it follows that
rz1 + Sz = X\ € Z. Then

¢1( (1) ) =Po¢oP_1( (1) ) :Poqs(v):P(Av):AP(v):A( (1) ) = ( 3)

and ¢! = (6\ ZZ) with A = £+1 and a4 = +1.

(iii) Since B} = Po B;o P!, ¢! = Po¢o P~ and B; commutes with ¢
it follows that B} commutes with ¢'. Now using the commutativity of B} with
¢! the table follows. We remark that the Case I occurs when v and ¢(v) span

7. x 7 and in this case we take

(o) ew=(1) mee=(0 )

and the remaining cases occur when the pair (v, w) generates Z x Z with w # ¢(v)
and v is an eigenvector of By — By associated to 0. O

We will assume from now on that the Nielsen number N ( fij s f2|T) is zero.
We denote by

Jig = filmi,n1,p1,qu,c11,001): m(M(9),0) — m1(M(9),0),
Jay = fa(ma,n2,p2, @2, c12, c22) : m1(M(9),0) — m1(M(9), q)
the homomorphisms that take a — a™ ™, b — aP*b?', ¢g — a®*1b*?1cy and
a— Eng’w, b— éma‘”, co — 501236226, respectively. We emphasize that €, d, ¢
are defined in Subsection 3.3.
According to relations on 71 (M(¢),0), m;, n;, pi, qi, C1i, C2; must satisfy
some equations. These equations are given by the

PROPOSITION 3.5. Let fi: M(¢) — M($) be maps over S, where ¢ belongs
to one of the cases from Proposition 3.4. If the Nielsen number N(fl‘T, f2|T) 18
zero, then:

(a) the vectors (m1 —ma,p1 —p2), (N1 — N2, q1 —q2) are proportional over Q.
(b) asn; = azp; and az(m; — q;) = (a1 — aa)n;.
(c) az(m; — q;) = (a1 — aa)p;.

Conversely, given homomorphisms

fi(mi, i, piy @iy 1y c2i) 2 m (M () — m1(M(9)),
where ¢ = (Z; Zi) belongs to one of the cases from the Proposition 3.4, with
(Mg, ni, iy Giy 01, Q2,a3,a4), © = 1,2, satisfying the above conditions (a)—(c), then
there exist maps f;: (M(¢),0) — (M(®), z;) over S* such that
fig = filmi,ni,pis Gis c1iy i), 1= 1,2,

and the Nielsen number N(f1,., f2),) is zero.
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PROOF. Since the Nielsen number N(f1,,, f2|,,) is zero, then (a) follows from
Proposition 3.3. The equations (b) and (c) follow from the commutativity of ¢
and B;.

Conversely, we consider the homomorphisms

filmi,ni, iy @i, C14, €24) 2 T (M ($),0) = 71 (M (), 2;)

where ¢ = (Z; o ) belongs to one of the cases of Proposition 3.4, with (m;, n;, p;,
Gi,a1,02,0a3,a4), 1 = 1,2 satisfying the equations (a)—(c). From the commutative
diagram

1 — 1 (T) —Z s 1y (M(6),0) —2%— 71 (S1) — 1

| l#

where the vertical arrows are deriving from f;(m;, n;, p;, gi, ¢14, C2;) we have that
P4 © fi(mi, Mg, iy @i, C1is C2i) = P

Since all spaces are K(m,1), then by [17, V, Theorem (4.3)], there exists
a bijection [(M(¢),0; M (¢), z;)] = Hom(71 (M (¢),0) — w1 (M (), 2;)) with z; =
0 and 22 = q. So, for each ¢ = 1, 2 there exists g;: (M (¢),0) — (M(¢), z;). Simi-
larly, from the bijection [M(¢),0;S*,(0)] — Hom(m (M (¢),0) — m1(S?), (0))
there exist homotopies H;: (M(¢) x I,0 x I) — (S*,(0)) such that

(3o -renl ;) (3 }o) (3]

and Gig = filmi, i, pis @i, c1iy c2i)-
Foreachi=1,2, G;: (M(¢)x0,0xI) — (M(¢), 2;) defined by G;(0xI) = z;,
where z; = 0 and 22 = q, makes the diagram below commutative:

(M(8) % 0,0 x T) — = (M(¢), )

(M(6) ¥ 1,0 x I) —— (81, (0) = (1)

i

Since p: (M(9), ;) — (S, (0) = (1)) is a fibration it follows that for each i = 1,2
there exists L;: (M(¢) x I,0 x I) = (M (), z;) a lifting of H;, i.e. po L; = H;.
Remark that f; = L;(-,1): (M(¢),0) — (M(¢), z;) is over S' and the in-
duced homomorphism on the fundamental groups coincides with f;(m;, n;, p;, g,
c14, C2;) because po f; = poL;(-,1) = Hi(-,1) =pand fiy = Li(+,1)y = iy =
fi(mi7niapi7Qiacli702i)-
Since (mj,nq, i, ¢, a1, a2, a3, ayq) satisfies the equations (a)—(c) and

fige = filmi, i, pi, gis 1, C2:)
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then the Nielsen number N(fl‘T, f2|T) is zero. O

To facilitate future computations, we will describe the homomorphisms
fi# : 7T1(M((,Z5), 0) - 7T1(M(¢), Zi)a

on the fundamental groups, where 21 = 0, 22 = q, f14, fay maps a — a™b",
— —n —po 34 — —C22_
b— aP1b?, and ¢y — a“1b?¢y and a — e"2d ~, b — eP?>d " and ¢y — €92d ¢,

respectively.

THEOREM 3.6. Let fi, foa: M(¢) — M(¢) be maps over S*, where ¢ belongs
to one of the cases of Proposition 3.4. If the Nielsen number N(fl‘T, f2|T) of f1
and fy restricted to the fibre T is zero then fiy: m1(M(¢),0) — w1 (M(9), 2;) is
given by the table:

Case 1 fi(m,n,p,q,c1i,c2;)

Case 11 fi(m, n,pi, qi,c1i, c2i), (P2 —P1,92 — q1) # (0,0) and p1 —p2,q1 — g2
are proportional over QQ

Case III fi(m,0,p;, m, c14, C2:), P1 # D2

Case IV

az = 2r fi(m,0,pi,qi,c1i,c2:), 1 # q2, (—r)(qi —m) =p;

az =2r+1 | fi(m,0,ps,qi,c1i,¢2i), q1 # q2, qi —m is even and — (2r + 1)[(¢: — m)/2] = p;

Case V fi(m,n,pi, qi, c1i, c2i), (P2 —P1,92 — q1) # (0,0) and p1 — p2,q1 — q2
az =0 are proportional over Q

az #0 fi(m,0,pi,m, c14,c2:), P1 # P2

Case VI

a3 =2r fi(m,0,pi,qi,c1i,c2i), q1 # q2 and r(qi —m) = p;

ag=2r+1 | fi(m,0,pi,qi,c1i,¢2i), q1 # q2, ¢i —m is even and (2r + 1)[(q: — m)/2] = p;

PROOF. The proof of this theorem follows from the relations (a)—(c) given
by Proposition 3.5. O

In the table above we have cy;, co;, m, n, P, q, Pi, i, v € Z. The table is given
for each 7 = 1,2. So the pairs (f1, f24) are combinations in each one of the
cases. By example, in the Case II we have 4 possibilities. Since Coin(f1, f2) =
Coin( fa, f1), then we can reduce the number of cases to be studied.

3.3. The generators from the fundamental groups in the diagram
(2.4). The next theorem describes the groups and the homomorphisms of dia-
gram (2.4). Let us consider the following loops in M(¢) with the base point 0O
and loops in M () \ S or M (¢) with the base point q with ¢ small positive and
[9] # [2]. For t € [0,1] we consider the following loops:

wo-{fJoh wo-{fle)  wo-{El)
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(7 w0

where y(t) is (1 —1t) - (&) +t(o(8)) if ¢(&) # (7,1); otherwise, it is an arc
which runs counterclockwise around the origin from () to (ZZ). Here, we
suppose that ¢(Z) belongs to the square centered at the origin (0,0) with side

two. Finally, let W(t) be the circle around the origin having (g, q) as the base

qijﬂ} ct) = (). 1),

point and oriented counterclockwise.

In w1 (M (¢),0) we denote the homotopy classes of the loops a(t), b(t), co(t)
by a, b, co, respectively. In 71 (M (¢)\ S*,q) we denote the homotopy classes of
the loops e(t), d(t), c(t) by e, d, ¢, respectively, and in m (M (¢),q) we denote
the homotopy classes of the loops e(t), d(t), c(t) by €, d, ¢, respectively.

THEOREM 3.7. Let ¢ and B; be one of the six cases given by Proposition 3.4
and let (f1, f2)x be the homomorphism induced by (f1, f2) on the fundamental
groups. Then we have:

(a) m(M(¢)xg1M(4),(0,q)) = (a,b,€,d,Ea,b] = 1 [ el = Lla,d] =
1,[b,e] =1, b, d] =1,[e,d =1,¢ac ' =a®b®,cbc ! = a%b% Cec
= *alaaz,cdc = 6“33‘14) where € is the homotopy class of the loop

given by the pair of loops (co(t),c(t)), d is the homotopy class of the loop
(0,d(t)), € is the homotopy class of the loop (0,e(t)), b is the homotopy
class of the loop (b(t),q) and a is the homotopy class of the loop (a(t),q).

m(M(¢)\ S, q)

Case 11 ¢:((1J(1)) Blz(?gf) with p1 # p2 or q1 # q2

(e,d, c; cec ™t =e,cdec™t = d)

Case III ¢ :(éals) Blz(%lfr:) with as # 0 and p1 # p2
(e,d,c;cec_1:e,cdc_1:e"’3 d)

Case IV ¢:(é f*l) Bl:(TgZZ) with az(q; — m) = —2p; and q1 # q2

if az > —1 then (e,d,c;cec™ ! = eW,cde™! = d~1e?3)

if az < —2 then (e, d, c; cec™t = We,ede ' = Wd_le"’3W_1)

—1 m p; .
Case V 4):( 0 f"*l) Bi:(ngi) with az(q; — m) =0, azn =0 and p1 # p2 or q1 # q2
if az > 1 then (e,d,c;cec ™ = W= te ™ cde™! =d te®3W)

if az < 0 then (e, d,c; cec b =e W ede™t = Wd_le“3>
— m pi .
Case VI 4):( 01 af’ ) B; :( 0 g ) with az(q; — m) = 2p; and q1 # q2

(e,d,c;cec™ =e 1, cde™! = e®BdW 1)

where W is homotopic to the loop e~ 'd ted.
(¢) The homomorphism (p2 o ho (f1, f2))x is given by

na2—ni

— — —542—q1 C22—C21 _
a—em2Tmg , b—eP27Pid , co —> 12T g C.
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(d) The homomorphism iy : mi(M(9) \ St q) = m(M(¢),q) is

given by

d—d,

c—C.

e — €,

if and only if we can

T)) su

15ts

(e) The homomorphism T' in the diagram (2.4) ex

ch that T'(a)

7T1<
(Co) = Z3ze®?

) —

(m(T'\ 1

find elements Z1,7Zy,Z3 € ker

—C11 dC22—C2lc

P12~ , T

Z26P2

Z1 em,2 —m1 d’n,g —nn1

s o 9

), (b) and (d) follows from [8, Theorem 2.2, p. 10].
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(e) Initially we observe that if I'(a)

On the other hand, i4(em2~ ™1 dn2—™
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where Z; € m (F(M(¢) \ SY)) ~ (T, T\ 1) = ker (m (T \ 1) — m(T)) and
I(a) = Zyem2—™d™~ ™ Similarly we prove for b and ¢y. Now the equations

[I'(a),T'(®)] =1,
T(co)T(a)T(co™t) = T(a™b2),
T(co)T ()T (co~ ") = T(a®b™),

follow from the relations on m (M (¢)).
Conversely, it is easy to show that if we can find elements 73,75, Z3 €
ker(m (T \ 1) = m1(T)) such that

I‘(a) — Zlem2_m1dn2_n1, ]_"(b) — Z26p2—1?1dl]2—1117 F(CO) — Z36612—011d022—6210

and the following equations hold:

[['(a),T'(0)] =1,
I'(co)T(a)T(co™t) = T'(a®b2),
F(CQ)F(b)F(CO_l) = F(a‘“b‘“).
then I' makes the diagram (2.4) commutative. O

PROPOSITION 3.8 (Case I). Let f;: M(¢) — M(¢) be maps over S* where f;
corresponds to the case I of the table in Theorem 3.6, where (p2 —p1,q2 — q1) =
(0,0). Then the pair (f1, f2) can always be deformed to a coincidence free pair
(g1,92) by a fibrewise homotopy over S*.

PRrROOF. Define a lifting for (p2 o ho (f1, f2))x by
I(a) =1, T(b)=1, T(eg)=e27 g2~ 21¢
and the result follows. O

Now we derive a necessary algebraic condition for (f1, f2) be deformable to
a pair of coincidence free maps.

PROPOSITION 3.9. If f;: M(¢) — M(¢) corresponds to the remaining cases
other than I of the table in Theorem 3.6, where (p2 — p1,92 — q1) # (0,0) and
(f1, f2) can be deformed to a coincidence free pair (g1, g2) by a fibrewise homotopy
over S1, then we must have that Z; = 1. In this case in order to have the
homomorphism T it is necessary and sufficient to solve the equation:

T(co)T(D)T(co™t) = T'(a®b) = T(a®)(b™) = T'(b™).

PROOF. In the remaining cases, since (mga — my,ne — ny) = (0,0) we have
that I'(a) = Z;. But by Theorem 3.7(e), [Z1,I'(b)] = 1. If Z; # 1 then we
must have Z; = u® and I'(b) = v, where u € mo(T, T \ 1) which is a free non
abelian group. But this is impossible, since iy o T'(b) = (p2 o ho (f1, f2))4(b) =
gr2—pg T # 1, because (p2 — p1,q2 — q1) # (0,0). On the other hand 4 o
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[(b) =iy (uf) = 1since u € mo(T, T\ 1). Therefore Z; = 1. So I'(a) = 1 and, as
in the remaining cases other than I, ay = 0, the equations [I'(a),I'(b)] = 1 and
[(co)T(a)T(co™t) = I'(a*1b%2) are always satisfied. Therefore by Theorem 3.7(e),
in order to have the homomorphism T, it is necessary and sufficient to solve the
equation I'(co)T'(b)T(co™t) = T'(a%b%) = T'(a%)T(b%) = ['(b™). O

We will call the equation
T(co)T(D)(co™t) = T(a®b*) = T'(a®)I'(b*) = I'(b™)

the main equation.

4. Generalities and properties of the main equation

In this section we first write in a more explicit form the main equation given
by Proposition 3.9, interpreted as an equation in the free non abelian group
w2 (T, T\1). We derive some general results which are useful to solve the equation.
Then we study the main equation in the abelianized of 7o(T,T \ 1). We derive

a necessary condition in order to have a solution.

4.1. Main equation. Let us consider the equation given by Proposition 3.9.
Let E, D be any elements such that ju(E) = jg(e27°11d®*7°1) and ju(D) =
Ju(eP27P1 d27 %) where jy: m (T \ 1) = m1(T) is the induced homomorphism
by the inclusion j: T'\ 1 — T'. Then we have:

PROPOSITION 4.1. Let E and D be as above. Then the main equation given
by Proposition 3.9 can be written in one of the forms:
(a) X3EcXyDc 'E71X ! = (XoD)%,
(b) X3-EcXoc 'E~V.E(cDc'D~%)E~1.[E, D%]. D% X ' D~ea. Dlaa=1)/2
X2—a4D(l—a4)/2 =1.
Furthermore, cDe™'D~% € ker jy and the existence of a solution of the above
equation is independent of the choices of E and D, for Xo, X3 € ker j4.

PROOF. (a) Since
]#(E) = j#<ec12—cud022—c21) and j#(D) _ j#(e;vz—mdtp—ql)

then there exist ag,ap € ker ju such that e27“11d°271 = qpF and eP2™ Pt
d2~% = qpD. Now the equation T'(co)'(b)T(co~1) = T'(b™) is

Zqef12—Crideaz—c21 7, pP2—P1 dqulhCfld021*6226011*612z3—1 — (226172*:01 dqulh)tu'

Substituting e®12~11d2271 = oy F and eP2 P11 = oap D we obtain
ZsapEcZyapDe 'E7 ay Zs 7! = (ZaapD)*.

We denote Zzap = X3 and Zsap = X3 and so we obtain the equation:

X3EcXoDe 'E7 X = (XoD)™.
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(b) The equation above is the same as
XsEcXoc 'E7'EcDc ' D™ ET'ED*E"' D™ D" X (X,D) " = 1
and therefore
X3 EcXoc 'E7 - E(cDe™'D™*)E~! . [E,D™]. D* X;*(XoD) ™ = 1.
Now it is sufficient to observe that
(XD)~" = D~ .D(a471)/2X2—a4D(17a4)/2

since a4 = *1.

To prove that cDe™' D% € ker jiy it suffices to see that ju(cDc™1D7%) =
cju (D)™ iy (D7) = 0, where the last equality is obtained using the action of
¢ and the fact that m1(T) is abelian.

For the last part observe that any two choices of either E’s or D’s differ by
elements of ker jux. So, the equation given by Proposition 4.1 has a solution for
one choice if and only if it has a solution for the other choice and the result
follows. O

Motivated by the above proposition we define:

DEFINITION 4.2. An input data for the main equation given by Proposi-
tion 3.9 consists in a quadruple (¢, B;, E, D) such that

J#(B) = jp(em e d=mn) and (D) = (e P dem),

From Proposition 4.1 we see that the existence of a solution of the main
equation depends only in the input. Also, observe that the input defines the
maps f;.

By |“les |“]a: m1(T\1) = Z we denote the homomorphisms which map a word
w € w1 (T \ 1) to the sum of the powers of the generator e and the sum of the
powers of d, respectively.

The next theorem shows, for a fixed group w1 (M(¢)), that the existence of
solution for one equation implies the existence of the solution for other equations.
More precisely:

THEOREM 4.3. Let ¢ and B; be fized.

(a) The equation given by Proposition 4.1 has a solution for a given E, D if

and only if it has a solution for wEcw ¢! -L

, wDw
(b) The equations given in part (a) have |E|. = ¢12 — c11, |E|qa = ¢22 — ¢21 of

the input related as follows:

lwEcw e = |E|, + |lwew e

e’

lwEcw™ e, = |E|, + |lwew™ e,

For the proof see [8, Theorem 3.3, p. 21].
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COROLLARY 4.4. Let H be the image of the homomorphism m (T \ 1) —
Z & 7 which maps a on the pair (|laca™ ™Y, |aca™te™ ). If two input data
(¢, Bi, E, D) and (¢, B;, E', D") have the property that the pairs (c12 — c11, Ca2 —
ca1) and (chy — iy, Chy — chy) belong to the same equivalence class in Z ® Z/H,
then there is a solution for the equation with one of the inputs if and only if there

s a solution for the other.

PROOF. Suppose that for the input data (¢, B;, E, D) there is a solution,
and (¢, B;, E',D’) is another input data such that (ci12 — ¢11,c00 — ¢21) and
(g — €)1, Chy — ch1) belong to the same equivalence class in Z & Z/H. Then
there exists w € w1 (7" \ 1) such that

1 —1|

(chy — hyy hy — ¢h1) — (c12 — c11, 22 — €21) = (Jwew ™ ¢, Jwew™ e 71 ).

Let E be such that (|E|.,|F|4) = (c12 — ¢11, 22 — c21). Then the equation has
a solution for a suitable D. Define E' = wEcw~'c™!. By Theorem 4.3(b),

(E'e|E'a) = (lwBew™ ™!, [wEcw™ ¢

Therefore, for the input (¢, By, E', D' = wDw™!) we also have a solution and
the result follows. O

REMARK 4.5. Let ¢ and B; be given and C be a set of representatives of
the equivalence classes of Z ® Z/H. In order to analyze all the cases it suffices
to analyze the equation for the set of inputs (¢, B;, E, D) such that (c12 — ¢11,
Coa — C21) Tuns over the set C.

4.2. Equation on the abelianized. Let mo = my(T,T \ 1) denote the
kernel of the map jx : (e,d) = m(T'\1) » mT = (e,d;[e,d] = 1) and B = [e, d].
We will study the equation given by Proposition 3.9 on the abelianized (m3)q, =
7o/ [ma, ma] of mo and also on some quotient of this group. Whenever the equation
in one of these quotient has no solution, we can infer that the original equation
has no solution. The group s is isomorphic to 7y (F), where F — E(T'\1) = T
is the fibration obtained by making the inclusion 7'\ 1 <X T into a fibration. So
the group m1(T') acts on Hy(F) = mo/[ma, ma).

In [8, Proposition 3.5, p. 22] we proved the following proposition:

PROPOSITION 4.6.

(a)
Hy(F) 2 Zm(T) = @ Beeav,
T, YL

where Bezgy = By = A(e"d[e,d]d™Ve™") is a generator of a copy
of Z. Here A: mo(T,T\1) = ma — ma/[ma, ma] = Zm1(T') is the projection
to the abelianized.
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(b) If, by means of this isomorphism, an element of Hy(F) corresponds to
the generator 1, of the copy Z, indexed by an element w € m(T), then
the action of a € m1(T) on B, is the generator of the copy of 7 indexed
by the product aw, namely B, -

We denote by &: Z(m1(T')) — Z the augmentation homomorphism, i.e.
E(By)=1€Z foralwem(T).
In [8, Theorem 3.6, p. 23] we proved the following theorem:

THEOREM 4.7. The homomorphism £ o A satisfies:
(a) EoA(aZa™t)=Eo0 A(Z) for alla € m (T \ 1) and Z € mo(T, T\ 1).

(b) £ o A([e™ d¥, e”>d¥2]) = det [”“ ””2].
Y1 Y2
(c) Eo A([Ze"rd¥r,We*2d¥2]) = £ o A([e™+d¥*, e®2d¥2])
for all ZZW € mo(T,T\ 1).
(d) If c e m(M(¢)\ SY) as in diagram (2.4) then

EoA(cZc™) = [sign of det (¢))E 0 A(Z), for all Z € mo(T, T\ 1).

REMARK 4.8. A(aZa™1) = ju(a).A(Z), where ju: m(T\1) — m1(T). So, if

J#(a) =e™b" and A(Z) = Bahyl) then the action ju (). A(Z) = B€;1+m7yl+n).

Now we consider the equation given by Proposition 3.9. We will look at this
equation in the abelianized of 7o(T, T\ 1), which is Zm (T'), and in a quotient of
Zﬂ'l (T), which is Z(H), where H = Z@Z/((Clz —C11,C22 —621)7 (pz —P1,92 —(]1)>.

Denote by A(z) the image of an element x € mo(T,T \ 1) in Z(H). Then by [8,
Proposition 3.7, p. 24] we have:

PRrOPOSITION 4.9. Let E and D as in Proposition 4.1. Then the main equa-
tion given in Proposition 3.9 is of the form

(a)
A(Z3) '.A(ECZQCilEfl) '.A(E(CDCilDfa‘*)E*l) - A([E, D™])
. A(Da4zg—lD7a4) . A(D(a4*1)/2Z2—a4D(17a4)/2) -1

in the abelianized Zmi(T), where Zo, Z3 € o(T, T\ 1), and
(b)

A(cZyc™) - A(eDe P D™%) - A([E, D™]) - A(Zy ™) =1
in ZH, where Zy € mo(T, T\ 1).

By applying the homomorphism &£ to the left-hand side of the equation given
in Proposition 4.9(a) we obtain:
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COROLLARY 4.10.

[sign of det (#)]E0A(Za)+E0A(cDe™ ' D) +E0 A([E, D)) +E0A(Z; *) = 0.

5. The main result: solutions of the main equation

In this section we prove the main result of this work. The result is given as
follows:

THEOREM 5.1. Given fibre-preserving maps fi: M(¢p) — M(¢) over St then
the pair (f1, f2) can be deformed to a coincidence free pair (f1, f5) by a fibrewise
homotopy over S* if and only if one of the cases below holds:

(a) M(®) is as in the case I and f; are arbitrary.
(b) M(¢) is as in one of the case 11, III, IV and

Clg —C —
det < 12 11 P2 —P1 ) —0.
Co2 —C21 Q2 — Q1

(¢) M(¢) is as in the case V and

(p1 —p2)[(c21 — c22) + (g2 — 1) + 1] + (g2 — q1)[L + (c11 — c12)] = 0 mod 2

except in the cases listed in the table below:

as (P2 —p1,92 — q1) (c12 — c11, 22 — C21) E D
2r>0 (2s,0) = (0,0) 1 e
2r <0 (2s,0) = (0,0) [d=t e e
2r +1>0 (2s,0) = (0,0) 1 e?s
2r+1<0 (2s,0) = (0,0) [d=1, e 1] e
0 (2s,2k) = (0,0) 1 d*e?s d*
(d) M(¢) is as in the Case VI and we have either
(I) ag = 2r is even,
(g2 — q1)[(c12 — c11) — 1 — (€22 — c21)7] = 0 mod 2
except in the case where qgo — q1 = 2™dy, where dy is odd, and

Cog — Co1 = 272dy, where dy is odd with 1 < r1 < ry and c19 — 11 —
r(ca2 —c21) =0 mod 2 or
(I1) a3 is odd and

(tz — tl)(l + Coo — 621) =0 mod 2

except in the case 2(ta —t1)/L = 2p + 1 and co2 — ca1 = 2q where
L = ged(2(ta — 1), coa — ¢21) 1is the greatest common divisor.
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The rest of the section is devoted to the proof of this result. We briefly
describe our approach to decide if an equation has a solution or not.

(1) First we compute the necessary condition given by Corollary 4.10 and
the set of equivalence classes as defined by Corollary 4.4

(2) Then we choose a set C of representatives of the equivalence classes in
Z @ Z/H given by Corollary 4.4. For some (c12 — ¢11,¢22 — ¢21) € C we find
elements F, D which correspond to the input data (¢, B;, E, D) and satisfies the
equation:

EcDc 'E7'D™% = 1.
This tells us that the equation given by Proposition 4.9(a), with E, D chosen as
above, admits the trivial solution Z, = Z3 = 1, and allows us to write a sufficient
condition, in terms of the data, which guarantees to have a solution.

(3) For some classes (¢12 —c11, caa —c21) € C we show that there is no solution
by the main equation in Zm (T), which is the abelianized of mo(T,7T \ 1), or in
Zﬁ, where H is Z & 7Z/H such that H contains the subgroup ((c12 — ¢11, 22 —
1), (p2 — p1,q2 — q1)). Then we will use Corollary 4.4 and Proposition 4.9.

Cask I. It was solved in Proposition 3.8.

Case Il ¢! = ( é (1) ) and B; = ( 7: zz ) The equation to be solved is
X3-EcXoc 'E7Y - E(cDc'D™YET . [E,D]- DX;'D7t . X5t = 1.
The condition given by Corollary 4.10, called the necessary condition, is
EoA(ecDe™ ' DY) + E0 A([E, D)) = 0.

But for every D we have cDc=1D~! = 1, because ¢ acts as identity. So

60A([E,D])=0:det( czTan p2ein )
Co2 —C21 QG2 — (1

The sufficient condition is
det< Ci12 —C11 P2 —P1 ) —0.
C2 —C21 G2 —q1

We consider L = ged (p2 — p1,92 — ¢1) and let (k1,k2) be such that (ps —
p1,92—q1) = L(k1, ko). If the above determinant is 0 then there exists ¢ € Z that
(c12 —c11,C22 — c21) = t(k1, ko). We take E = v and D = v, where v = ef1dk2,
and it is easy to verify that [E, D] = 1 and ¢cDc™!D~! = 1, so the equation
admits the trivial solution Xy = X3 = 1.

1 .
CasE II1. ¢! = (0 “f’) with az # 0 and B; = (T; p’) with p1 # pa. The
m

equation to be solved is

X3EcXoc 'E7 E(cDc ' D™Y)ETYE, D|IDX; ' D71 X, = 1.
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The necessary condition is
EoA(cDc*D™Y) + E0 A([E, D]) = 0.

To compute € o A(cDc 1D71), we take D = eP27Pt and for this D we have
cDc 'D~! = 1. So, the above relation becomes:

c12 — ¢ -
E0A([E,D]) =0= det ( 12T P p1> = —(ca2—c21)(p2—p1), P2 # p1,
Co2 — C21 0

which implies cos = co1.

The sufficient condition is coo = c91. If this condition is satisfied we take
E =e27c11 and D = eP27Pt and so [F, D] = 1. Therefore, the equation admits
the trivial solution Xy = X35 = 1.

Case IV. ¢! = ((1) fsl), B}l = (TS 2:) and az(g; — m) = —2p; with ¢ # ¢o.

The equation to be solved is
X3 EcXoc 'E7Y - E(cDc*D)E™ - [E,D7']-D'X;'D - D' X,D = 1.
The necessary condition is
EoA(cDc™ D) +E0 A([E,D7']) = 0.

In order to calculate this condition, first we consider as > —1. Since ps — p1 =
—a3(q2 — q1)/2 then 2 divides either ag or go — ¢1. If 2 divides a3 consider
v = e~ /24 otherwise it must divide (g2 — ¢1) and consider v = de~?3d. From
the presentation group for asz > —1 we have cvc™! = v~

Therefore, if either D = v~ or D = v(2=%)/2 then ¢De *D = 1 and so
EoA(cDc™1D) = 0.

Let as < —2 and consider the presentation which corresponds to this case.
Denoting by 8 = e~'d~'e, then the presentation is given by

(e,d,c:cec™ = et cde™! = Be®*d 1571).
Take v as in the previous case; similar calculation shows:
coc ™t = Bdv BT = [et d e .
So, if we take either D = v®~9 or D = v(4279)/2 then cDc™'D = [[e~!,d ], D]
and therefore £o A(cDc1D) = 0. Since [E, D™Y|D~![E, D]D = 1 it follows that

€0 A(IE,D™']) = ~€ 0 A(IE, D]) = —det( cx-cn P2 p )
Co2 —C21 (2 — (1
So, the necessary condition is

é'oA([E,Dl])—O—det( Gz b >
C2 —C21 G2 —(q1
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To prove that

SoA([E7D_1]):O:det< Gz o b )
Co2 —C21 (G2 — (1

is also a sufficient condition, first we will reduce the cases of E using the Corol-
lary 4.4 and finally we will find the solution of the equation for each reduced
case.
The image of the map 71 (T'\ 1) = (e, d) — Z ® Z given by
a — (Jaca e Y., |aca™ e y)
is denoted by im(] - |¢, | - |a). We have e — (0,0) d — (—as,2), so
YA/ YASY/

im([ e, [+ 1a) — {(as, =2))"

This quotient is
=2),(—r,1
<(Cl3, )a ( ) )> ~7

~ ifag =2r+1,
ZOL ((a3,-2)) ’
<(a3772)> B <(—1,0)7(T,—1)> .
-~ L@ Ly ifag=2r.
((2r,-2))
If a3 = 2r + 1 then a complete set of representatives of E is given by ele-

ments of the form (0,y), where these are the coordinates relative to the basis
((ag,—2),(—r,1)) and so (c12 — c11,¢22 — ¢21) = (—yr,y). These values must
satisfy the necessary condition:

Y Q2 —q
So y[r(g2—q1)+ (p2—p1)] = 0. From the condition (2r4+1)(g2—¢q1) = —2(p2—p1)
it follows that:

(a) If g2 — g1 = 0 then ps — p; = 0 and the result follows from the case I.

(b) If g2 — q1 # 0, follows that (g2 — q1) + (p2 —p1) # 0 and therefore y = 0.

For as > —1, take E = 1 and D = v(©2=9)/2 where v = de~*d, and for
az < =2 take F = [d™',e7 '] and D = v(©2=9)/2 wwhere v = de~d, so in each
case we have EcDc 'E~'D = 1 and therefore the equation admits the trivial
solution.

If a3 = 2r then a complete set of representatives for E is given by ele-
ments of the form (z,y), where (x,y) are the coordinates relative to the basis
{(-1,0),(r,—1)} and ¥ means y module 2. So a set of representatives are the
elements of the form either (c12—c11, o0 —co1) = (—2,0) or (¢12—c11,C20—C21) =
(—x+r,—1).

From the necessary condition det (¢2Z¢!! P27h

C22—C21 42—q1

) = 0 and since 2r(g2 —q1) =
—2(pa — p1) we have:

(a) If g2 = ¢1 then p; = po and the result follows from Case I.
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(b) If g1 # ¢q, substituting the representatives in the necessary condition we
conclude that = 0.

So, for E and D below, we have EcDc ' E~'D = 1 and therefore the equation
admits the trivial solution.

as (c12 — c11, C22 — C21) E D
o > —1 0,0) 1 (e 7d)®—a
2r > -1 (—n,1) e "d (de~T)e2—n
2r < =2 (0,0) [d= el (e7"d)z—a
2r < -2 (=r,1) e Telde (de T)2T%

For the table above we observe that (—r,1) and (r,—1) are in the same class in
((=1,0), (r, =1))/((2r, =2)) ~ Z & Zs.

Case V. ¢! = (79 %), Bl = (W %) with as(q; —m) = 0, agn = 0 and
(p2 — p1,92 — q1) # (0,0). The equation to be solved is
X3 EcXoc 'E7Y - E(cDc™*D)E~ - [E,D7']-D'X;'D - D' X,D = 1.
The necessary condition is
28 0 A(X3) + E o0 A(eDc D)+ E 0 A([E,D™']) = 0.

Observe that € o A(cDc™1D) depends on the choice of D, but £ o A([E, D71])
does not, since if D; = aD and E; = SE with «, 8 € mo(T, T\ 1), then
EoA(cDyc™ D) =28 0 A(a) + £ o A(cDe™' D),
€0 A([E1, DTY] = € 0 A(IE, D).

From the above we conclude that the augmentation mod 2, denoted by (€ o A)a,
is independent of D and in order to calculate this condition module 2, we can
take D = eP2 P12~ 9 and so (€ o A)2(cDc D) + (€0 A)2([E, D)) =0 or

(1 — p2)[(ca1 — c22) + (g2 — q1) + 1] + (g2 — q1)[1 + (e11 — c12)] = 0 mod 2.
Since [E, D"Y1D~![E, D]D = 1 follows that

EoA(E, DY) = E0 A(D, E]) = det( pr—p1 a2 en )
G2 —q1 C22 —C21

If as # 0,
e Hd= 1 err2le if a3 <0,

[d-1, erir2] if ag > 1.

e¢Dc D =

If az = 0,

cDe™ 1D = e_l[d_l, em—pz]e eP1—P2 [e_l, dQ1—Q2]eP2—P1 [em—pz7dq1—qz]
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and therefore

O —
det( pr—p ) if ag # 0,
~1 0
0 — -1 0
€0 A(cDe D) = det( pr—pe >+det< )
-1 0 0 ¢1—q
- 0
+det(p1 b2 ) if ag = 0.
0 q1 — G2
So
(p1 — p2) if az # 0,

EoA(cDc D) =
(pr —p2)[1+ (¢1 — @2)] + (g2 — q1) if a3z =0.

Therefore £ o A(cDc D) = (p1 — p2)[1 + (1 — g2)] + (g2 — ¢1) for all a3 (note
that a3 # 0 implies g2 — g1 = 0). So (€0 A)2(cDc D)+ (E0 A)o([E,D71]) =0
is equivalent to
(p1 —p2)[(ca1 —caa) + (@2 —q1) + 1]+ (¢2 — q1)[1 + (c11 — ¢12)] = 0 mod 2.
The image of the map II;(T'\ 1) = (e,d) — Z & Z given by

1 —1|

a— (Jaca e, laca e g)

is denoted by im(] - |¢, | - |a). We have e — (2,0), d — (—as, 2).
If a3 = 2r, where r > 0, then

~ Zio ® Zs.

YASY/ - <(170)=(_T71)>
(|- e, | -[a) — (2(1,0),2(=r,1))

Let (|Ele, |Ela) = (c12—c11, caa—ca1). If caa—coy is 0dd, a set of representatives of
E is given by {(—r, 1), (—r+1,1)} and if co2 — ¢o1 is even, a set of representatives
of E is either {(—2r + 1,2),(0,0)} or {(1,0),(0,0)}.
If a3 = 2r + 1 then
YAV 7Z®Z ((1,2),(0,1))

- = = ~0P Zy.

Zm(' ' |67| : |d) <2<1,0),(—2T— 1’2)> <(172)’(074)>
Let (|E|e, |Elq) = (c12 — 11, 22 — ¢21). If cog —c21 is 0dd, a set of representatives
of E is either {(0,3),(0,1)} or {(1,1),(0,1)} and if coo — co1 is even, a set of
representatives of E is given by {(0,0), (0,2)}.

For az = 2r, where r € Z, the sufficient condition is (¢12 — ¢11, 22 — C21) Z
(0,0), that is ¢12 — 11 # 0 mod 2 or ca3 — o1 #Z 0 mod 2. For ag = 2r+ 1, where
r €7, it is (c12 — €11, 22 — c21) Z (0,0), that is cag — 21 #Z 0 mod 4.
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For E and D specified below we have EcDc ' E~'D = 1, so the main equa-
tion admits trivial solution X5 = X3 = 1:

a3 =2r >0 cax—co1 (p2 —p1,92 —q1) (ci12 —ci1,ca0 — C21) E D

r even odd (p2 — p1,0) (=r,1) =(0,1) d eP27P1

r even odd (p2 — p1,0) (-r+1,1)=(1,1) ed eP2=P1

r odd odd (p2 — p1,0) (=r+1,1) =(0,1) d eP27P1

r odd odd (p2 — p1,0) (=r, 1) =(1,1) ed eP27P1
even (2s,0) (=2r +1,2) =(1,0) de ?""'d ede’d™!

a3 =2r <0 ca2—co1  (p2—p1,92 —q1) (c12 —ci1,¢c22 —c21) E D

r even odd (p2 — p1,0) (=r,1) = (0,1) e de eP2—P1

r even odd (p2 — p1,0) (=r+1,1) =(1,1) de eP27P1

r odd odd (p2 — p1,0) (-r+1,1) =(0,1) e lde eP27P1

r odd odd (p2 — p1,0) (-r,1) =(1,1) de eP27P1
even (2s,0) (—2r+1,2) = (1,0) de ?"de e’de’d”!

az3=2r+1>0 caz—co (p2 —p1,92—q1) (c12 — c11, c22 — €21) E D
odd (p2 — p1,0) 0,3) =(1,1) ed eP27P1
odd (p2 — p1,0) 0,1) d eP27P1L
even (2s,0) (0,2) = (—2r,2) de=2"d e‘de®d™?!
a3=2r+1<0 ca2—ca1 (p2 —P1,92 —q1) (c12 —c11,c22 — C21) E D

odd (p2 — p1,0) 0,3) =(1,1) de eP27P1L
odd (p2 — p1,0) (0,1) e lde eP27P1
even (2s,0) 0,2) = (—2r,2) de 2" "lde e®de®d™?!

az=0 (c12 —c11,ca2 — c21)

(p2 — P1,92 — q1)

E

D

=(0,1) p2 — p1 odd, or P2 P1 23, P2 Pl 1gd2—di,
g2 — q1 = 2k and p2 — p1 even eP1—p2+1 e dFedker2—p1—1
=(1,0) g2 —q1 =2k+1, or d2ke d2ker2—rig
g2 — q1 = 2k and p2 — p1 = 2s dai—a2+2¢ eSdesd2k—1
(1,1) p2 — p1 = 2s or de 6921 ¢*
q2 — q1 = 2k de dkeP2—r1 gk

There is no solution for the remaining cases. To see this, let us consider F,

D as given below:

az (P2 —p1,92 — q1) (c12 — c11, 22 — C21) E D
2r>0 (2s,0) = (0,0) 1 e
2r <0 (2s,0) = (0,0) [d=1 e e

2 + 150 (25,0) = (0,0) 1 25
2r +1<0 (25,0) = (0,0) [d=1 e 1] e
0 (2s,2k) = (0,0) 1 d*e?s d*

In order to prove that there is no solution for the cases above, we write the

term

EcDc 'DEYE,D™'| = EcDc'E~'D

on the generators B, , of the abelianized group Zm(T').

For az # 0 we have EcDc 'E~'D =

A(EcDc'E™'D) = A([d™*, (e 7)) =

[d717 6728]a SO

B B!

(71171)

(72771)

(

371

3,

1y

—1
B o 1y
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If A(X2) contains By,  as a summand then

A(EcXoc*E™1)  contains B€;$+a3y+a372’,y,2)

and

.A(D_leD) contains BZLw72s,y)'
(25,0)) be the subgroup of 7 = m(T) ~ Z @& Z. Now look the
w/H). In Z(w/H) it reduces to:

Let H =
equation in Z

T~

A(BEcXoc ' E"YA(EcDc *E*D)A(D ' X,D) = 1
and
= —17—1 T(1-1 (.—1\2s -1 -1 —1
A(EcDc™*E™'D) = A([d” ", (e”)*°]) = B(2871’71)B(2572771) . "B(0,71)
In order to cancel the term B(;il’fl) or Béiflﬁl), we must have B,_1_1)

or B(as—1,-1) as a summand in A(X3). Then

Z(ECXQCilEil) contains B(s—l,—l) or B(25_17_1),
A(D~1X,D) contains B(s_1,_1) or Bas_1_1).
So, the total exponent in B(,_1 _1) or Ba,_1,_1) is even, therefore it is impossible

to cancel with B(fslfl’fl) or B(zi&,&)‘

For a3 = 0, we have EcDc 'E~'D = cDc™'D = [e7'd~!,d Fe=2d7¥], so
(eDc™ D)™t =[d *e %" e~ a1
— [ Fe2d e Ve [dFe2dF, d Ve,
and hence
cDe'D =e Hd Y d *e 2 d Flefe !, d Fe 2 dH]

— el e 2 d ele !, dFe ) d e 2 e, d K]  dF
— e 1A e ele ), dMd e 2 e, d Ve dF.

Using the formula [z,y"] = [z,y]y[z,yly~' ... y" Yz, yly "1, for the commu-

tators [d—1, (e=1)*"] and [e~1, (d~1)"] (here we suppose that s > 0 and k > 0)
we have

[d~1, (6_1)25] =[d e e td e e a7 [d7 e e
In Z7 we have A([d~t,e7]) = A(d~te tded te ted) = B(__11,_1) and therefore,
Alld™ (™)) = By 1y B 1B s 1)+ B _1)-
Next,
el (@) =[et,d d e !, d Ydd e, d"1]d? ... d T e L, 4]k

In Z7 we have

A(le™,d™"]) = A(e"'d 'ede'd"'de) = B(_y 1)
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and therefore,

Ale™, (d7)

k
) =B1,-1)B-1,-2yB—1,-3) - - - B—1,—-1)-

Finally,
—1 -1 -1 -1
AleDe™ D) =(BZy 1B s -1k Blasm1,-1-8)
“(B-1,-1)B(-1,-2)B(~1,-3) - - - B(~1,-1))
“(B—i—2s,—1-k) B(—1-2s,—2-k) B(—1-2s,—3—k) - - - B(—1-26,—k—k))-
Let H = ((2s,0), (0,2k)) be the subgroup of 7 ~ Z @ Z. Now look the equation

in Z(7/H). The equivalence classes admit B, , as a set of representatives for
0<z<2s—1and0<y<2k—1. After projecting it on Z(w/H), we get

= -1 -1 -1 -1 -1

A(cDc™ " D) = (3(2572,#1)3(2573,1@71) : "B(o,k71)B(2371,k71))
“(B2s—1,26-1)B(2s—1,2k-2)B(2s-1,26—3) - - - B(2s-1,2k—k))
“(Bas—1,k-1)Bs—1,k-2)B@s—1,k-3) - - - B2s—1,0))-

The term B@il kil)B(Qs_uk_l) is different from 1 since in this case s # 0 or

k # 0 and it is impossible to be cancelled using the variable X5 (certainly also

using the variable X3). In Z(7/H) it reduces to

A(cXoc™ ) A(cDe ' D)A(D™ ' X,D) = 1.

If A(X3) has the term B(s_17k_1)B(72i7172k71) then

A(cXsc™!) has the term B(—s—l,—k—l)B(ilgs,l’,gk,l)-

In Z(7/H): A(cX2c™') has the term B(sfl,kfl)B(_zi—sz—U and

A(D'X,D) has the term B(_S_l,_k_l)B(‘_ll’_l) = B(S_Lk_l)B(_Qi_L%_l),

which shows that we cannot make powers of B,_1 ;1) and B(,_1 2r—1) to be

Zero.

CAseE VI. ¢ = (7(1) af), B; = (7321) and az(q; —m) = 2p; with ¢1 # go. The

equation to be solved is
X3-EcXoc 'E7Y - E(cDe'DYE! - [E,D]- DX;'D7' - X5t =1,
The augmentation homomorphism £ o A on the equation provides the condition
—2E 0 A(X5) + Eo0 A(eDe™*D™Y) + £ 0 A([E, D]) = 0.

This condition module 2 is (€ o A)a(cDc DY) + (€ 0 A)o([E, D]) = 0 mod 2.
We divide in two subcases: a3 even and as odd.
Subcase ag = 2r. Then 2r(¢x — ¢1) = 2(p2 — p1), ¢ = (*01 2{), B, =
(75 "™ with go — g # 0.
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We summarize the data of this case by:
-1 2r m (g —m
(¢, Biy | Ele, |Ela) = , @ ) ;C12 — €11, C22 — C21 .
0 1 0 Qi
To compute the necessary condition module 2, take v = e"d and so cvc™! =
e lve. Now, if D = 99279 then cDec D! = [e7!},02~ %] = [e7!, D] and
therefore
(€ 0 A)a(cDe™ DY) + (€ 0 A)a([E, D))
= det( -1 rle—a) ) +det( co=en rie—aq) ) = (0 mod 2
0 42— q1 €2 —C21 G2 — (1
and so
(QQ — q1)[<c12 — 011) -1 (022 — 021)7“] = 0 mod 2.
To solve the equation for the input data
-1 2r m r(g —m
(¢, Bi, |Ele, |Ela) = ) (4 ) yC12 — €11, C22 — C21
0 1 0 Qi

is equivalent to solve for the input data

(¢/a B:7 |El|6’7 |El|d)

= -1 m 0 (c12 —c11) — r(cog — c21),Co0 — C
= 0 1)\ o 4 plzm 22 — C21),C22 — C21 .

To see this, it is sufficient to consider the isomorphism ¢: G; — G given by

e—e, d—e"d, c¢c—ec,

1

where G = (e,d,c : cec™ e 1 cde™! = e7te?de) is the group for the first

data and Gy = (e,d,c: cec™t = e71, cde™ = e~ lde) is the group for the second
data.
Now we consider the input data

-1 0 m 0
(¢/7B£»|E/e,|E/|d)=<( ), ( >7(612—611)—7”(622—621),022—Cz1>
0 1 0 ¢

satisfying the necessary condition
(QQ — (]1)[(012 — 011) —-1- (622 — 821)7’] = O mod 2.
In this case the map 1 (T'\1)) — Z®Z given by a — (Jaca™tc7 L, aca™tc™1y)

maps ¢ — (2,0) and d — (0,0).
We consider the quotient group

7.6 7)((2,0) = W ~ Ty @ Z.

So, it suffices to take E’ such that (|E'|¢, |E’|a) = (0, co2 — ca1), (|E'|e, | E'|a) =

(1, co2 — ca1).



544 J.P. VIEIRA

If |E'|e = (c12—c11)—7(ca2—c21) = 1 mod 2, then the problem has a solution.
Take D' = ¢(D) = d%2=%) and E' = d°*~°, so E'¢D'c¢ 'E'"'D'"! = 1 and
the result follows.

If |E'|e = (12 — c11) — r(ca2 — ¢21) = 0 mod 2, it follows from the necessary
condition that go — ¢1 is even, i.e. g2 — g1 = 2k. Let L = ged(ge — g1, 22 — ¢21)
be the greatest common divisor. If (g2 — q1)/L = 2p, then cos — ¢ca1/L =2¢ — 1
and in this case the equation has solution. Take v = cdc™' = e 'de and note
that cvc™! = d. Now, if D’ = (d*vL)? and E' = v~ L (vLd")? then

E/CD/c—lE/—lD/—l _ E/(deL)pE/—lD/—l _ ,U—L(ULdL)pULD/—l =1
and the result follows.

Now suppose q2 — q1 = 2"dy, where d;y is odd and coy — co1 = 272dy, where
do is odd with 1 < 7 < rg and (c12 — ¢11) — 7(c22 — ¢21) = 0 mod 2 where the
last condition is equivalent to c12 — ¢11 = 0 mod 2, since cog — ¢o1 is even. Let

us show that in this case we have no solution.
Let D' = d9%27% and E’ = d°2~°2t. Then

E/(Cchlelfl)Elfl[E/’ D/]
—E'eD ¢ YE"ID/m1 — ge22—c21pgd2—q1 o1 ge21—c22 ja1—q2

Co2—C -1 — C21—C — Cao2—C -1 — ca1—C
=221 27N pdC217C22 91792 — €22 21[6 ’dLI2 Q1]d21 22

But, since A(le™!,d]) = B(_—11,0) and A([e™!,d™']) = B(_1,_1) we have

-1 -1 -1 —1 .
A(le™t, dea)) = BloBanBiy - Blg-a-y  HTe-a

B 1, -1)yB-1,-2)B-1,-3)-- - B—1,q1-¢2) f@2—q1 < -1

v
—_

Therefore,

A(EICDIC—IEI—lD/—l)

-1 —1 -1

— B(—17C22—C21)B(—171+C22—621) e B(—LQ2—111—1+022—021) if g2 —q1 21,

B_1,—14es—ca1) B(=1,~24¢22—c21) - - B 1,q1—qatezn—ear) 2 —qn <—1.

The equation is
A(X3)A(E cXoc ' B AE D' BT DY AD' XTI DT AXG ) = 1.
If we denote A(X2) = B

and A(X3) = B™ . we have A(cXac™!) =

(z,9) (zw)
—n : - ~1 a B (s
B(—x—va)v sﬂllce cBo,0)¢ L B(—z,o). So, A(E'c¢Xc ' E 1):B(—w—27y+022—°‘21)
/ — /—1\ _ —m
and A(D X3 D ) - B(z,w-&-qz—‘h).

In fact, consider the subgroup H = ((0, L)) of Z & Z where L = ged (g2 — ¢1,
Coo — c21) and (g2 — q1)/L = 2u+ 1. Now, we look at the equation in Z(xw/H).
In Z= the equation

A(X3)A(E cXoc ' E'"YA(E ¢D' ¢ ' E-ID'"YAD' X' D' AX; ) =1
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is given by

_ m —n —1 —1 —1
= B(va)B(—ﬂf—Z,y-i-sz—021)B(—LCQQ—Czl)B(—171+C22—C21)B(—172+C22—C21) U

—1 —m —-n
B(*1,Q2*Q1*1+622*621)B(z’w+QQ*Q1)B(I,y)

After projecting it on Z(w/H) we get

—n —2u—1np—2u—1 —2u—1 -n  __
B ooy B o) By - By Bay =1

In Z(mw/H) we have that A(E'cXac 1E'~1) = B, _, ) Therefore, the sum of
the powers of all B(_; ;),% =0,..., L—1, which appears in A(E' eXoc ' E'1XS
is even. On the other hand, this sum is —2u — 1 which is odd. So, there is no

solution.
Subcase az = 2r + 1. Then g2 — g1 = 2(t2 — t1) # 0 and therefore

1 2 +1 m (2r + 1)t;
pe—p1 = 2r+1)(ta—t1), ¢ (O 1 ) an (0 2ti+m>

We summarize the input data of this case by

-1 2r+1\ (m 2r+1)
Bi,|El., |E|q) = , ,C12 — €11, €22 — C21 ).
(¢, Bi, | Ele, |Ea) ((0 ) ) (0 2ti+m> C12 — €11, C22 021>

To compute the necessary condition module 2, take v = de?"T'd and so
cve=! = e~'d~lvde. Now, if D = v'>~* then cDe—'D = [eld=1 vi2=h] =
[e=1d~1, D] and therefore

(€0 A)2(cDe™ D) + (€ 0 A)a([E, D))

— det (‘1 (2r +1)(t2 — tl)) +det (612 —eci1 (2r4+1)(ty — tl))

-1 2(t2 - tl) Coo2 — C921 2(t2 — tl)
=0 mod 2

and so (t2 — t1)[1 + (ca2 — ¢21)] = 0 mod 2.
To solve the equation for the input data

-1 2r+1 m (2r+1)t;
Bi7 E e E = ) ) - 9 -
(¢, ‘ | | \d) (( 0 1 ) (0 %, +m ) C12 — C11,C22 021)

is equivalent to solve for the input data

(¢, B, | E'le, |E']a)

-1 1 m t; ( ) ( )
= , ,(c12 —c11) — (o2 — €21),Co0 — C21 .
0 1 0 2 +m 12 11 22 21), C22 21

To see this it is sufficient to consider the isomorphism ¢: G; — G2 given by

e—e d—e"d c—ec,
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where G1 = (e,d,c;,cec™ = e71 cdc™! = e 1e?tlde) is the group for the first
data and Gy = (e,d,c;cec™! = e !, ede™! = e tede) is the group for the second
data.

Now, we consider the input data

(¢/a B7{7 |El|67 |El|d)

(-t} m i (c12 — c11) — r(cog — c21), o0 — €
= o 1) \o ot 4m)pl2T 0 22 — C21),C22 — Ca1

satisfying the necessary condition (t3 — t1)[1 + (ca2 — ¢21)] = 0 mod 2. In this
case the image of the map 71 (T'\ 1)) = Z ® Z given by

a — (Jaca e Y., |aca™ e y)
maps e — (2,0) and d — (—1,0).

We consider the quotient group
ZeZ  _Z&Z _((1L0.0.1) ..

So, it suffices to take E’ such that (|E'|c, |E’|4) = (a,c22 — ¢21), where a € Z is
fixed and coy — o1 € Z.

If |E'|g = co2 — 21 = 1 mod 2, i.e. cog — ¢o1 = 2u — 1, then the problem has
a solution. Take D’ = (ded)*>~" and E’ = (ded)"d~! and so E'c¢D'c 'E'~1 D'~}
=1 and the result follows.

If |[E'|g = ca2—c21 = 0 mod 2, i.e., caa—co1 = 2u it follows from the necessary
condition that to — ¢; is even. Let L = ged(2(t2 — ¢1), caa — co1) be the greatest
common divisor. Since cgg — ¢a1 = 2u then L is even. If 2(ty —t1)/L = 2d; then
(co2 — ¢21)/L = 21 + 1, and in this case the equation has a solution.

Indeed, first we observe that if w; = ded and wy = cwic™! = dde = dwi;d~!

1 z,.—1

then cwyc™ = wy and so c(wiws)®e™t = (wawq)*.
Now, if D' = (wf/zw;‘m)dl and B’ = wlL/2(wQL/2w1L/2)l then

E'c¢D'¢c'E D=1

and the result follows.

If (g2—q1)/L = 2u+1 e caa — co1 = 2l we are going to prove that the equation
has no solution.

It is sufficient to prove that it has no solution for D’ = w!*~"* and E’ = w},

where wy, = ded and wy = dde. We have

EeD e YE-1D-1 = wéw?_tl (wé)—lwfiﬁ—tz — [d, (ded)tz_tl],

where
—1 —1 —1
A((d, (dedy=—]) = 3 PonPay  Bniaeon-y - for =21,
B! B! ..B ! for ty —t; < —1.

(-1,-1)7(-2,-3) * (ta—t1,2(ta—t1)+1)
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The equation to be solved is
AX3)A(E cXoc ' E"YA(EcDe ' ET' D Y ADX; ' D HAXS ) = 1.

If A(X2) =B , and A(X3) = B7? | we obtain the following calculation for

(z,y) (z,w)
the terms of the above equation:
A(X) Bl o)
—1 —1 -n
A<(EICX2C E ) B(*:E71+y+(022*021)/27y+022*021)
A(EcDc *E-1D™1) A([d, (ded)*2—1)])
1N _
A(DX3 D 1) B(ZT(tQ—t1),U}+2(t2—t1))
AXg ) B(_fﬂtly)

We consider the subgroup H = ((1,0),(0,L)) of Z & Z, where L = ged(g2 —
q1,C22 — 021) = ng(Q(tQ — tl),Ql) and 2(t2 — tl)/L = (q2 — ql)/L = 2u + 1.
Now, we look at the equation in Z(w/H). So, for (t2 —t;) > 1, in terms of
representatives classes, the equation in Z is
m Bfn 371 B71 371
(z,w) 7 (—z—1+y+(caz—c21)/2,y+caa—c21) " (0,1)7(1,3) " 7 ((ta—t1)—1,2(t2—t1)—1)
B (ta—towr2(ta—t) Bloy) = 1

After projecting it on Z(w/H) we get

—n —(2u+1) p—(2u+1) —(2u+1) -n
BawBon Bas o Bup-itare-nBey =
In Z(r/H) we have that E'cXoc™'E'"! = B" . Therefore, the sum of the

powers of all B(;_1 9;_1), fori = 1,..., L/2, which appears in E'cXoc 1 E'~1 X5 !,
is —2u, which is even. On the other hand, this sum is —(2u + 1), which is odd.
So, there is no solution.

We note that, if to —; > 1 then, for all i = 1,2,...L/2, the B(;_; 9;_1) are
different classes in Z(w/H). In fact, if 1 <i < j < L/2then (j—1,2j—1)—(i—1,
2i—1) = a(1,0) + B(0, L) and we have no solution in Z because 1 < j —i < L/2
and so L [ 2(j — ).

If to — t; < —1, the computation is the same, because in Z(7/H) we have

BL B!

—1 _ —1 —1 —1
" ..B y=By'yBiY - B

(72,73) : (t27t1,2(t27t1)+1 (0,1) (1,3) : (t17t271,2(t17t2)71)'
Acknowledgments. I would like to thank the referee for careful reading
and comments, which helped to improve the manuscript.

REFERENCES

[1] H.J. BAUES, Obstruction Theory — on Homotopy Classification of Maps, Lecture Notes
in Math., vol. 628, Springer, 1977.

[2] R. Brooks, Coincidences, roots and fized points, Doctoral Dissertation, University of
California, Los Angeles, California, 1967.

[3] A. DoLp, The fized point index of fiber-preserving maps, Invent. Math. 25 (1974), 281—
297.



548
(4]
(5]

[6]
[7]

(8]
(9]
[10]
(11]
(12]

(13]

(14]
(15]
(16]

(17]
(18]

J.P. VIEIRA

E. FADELL AND S. HUSSEINI, A fized point theory for fiber-preserving maps, Lecture Notes
in Mathematics, vol. 886, Springer, (1981), 49-72.

, Fized point theory for mon simply connected manifolds, Topology, vol. 20,
Springer, (1981), 53-92.

D.L. GONGALVES, Fized Point of S*-Fibrations, Pacific J. Math. 129 (1987), 297-306.

, Coincidence theory, Handbook of Topological Fixed Point Theory, Springer,
(2005), 3—42.

D.L. GONGALVES, D. PENTEADO AND J.P. VIEIRA, Fized Points on Torus Fiber Bundles
over the Circle, Fund. Math. 183 (1) (2004), 1-38.

, Fized points on Klein bottle fiber bundles over the circle, Fund. Math. 203 (3)
(2009), 263-292.

, Abelianized Obstruction for fized points of fiber-preserving maps of Surface bun-
dles, Topol. Methods Nonlinear Anal. 33 (2) (2009), 293-305.

D.L. JOHNSON, Presentation of Groups, LMS Lecture Notes 22, Cambridge University
Press (1976).

M.R. KELLY, Minimizing the number of fized points for self-maps of compact surfaces,
Pacific J. Math. 126 (1987), 81-123.

J. NIELSEN, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flichen, Acta
Math. 50 (1927), 189-358; English transl. in: Jakob Nielsen Collected Mathematical Pa-
pers, Birkhauser (1986), 223-341.

D. PENTEADO, Sobre Pontos Fizos de Aplicagées entre Fibrados com Fibra Superficie,
ICMSC-USP Sao Carlos- Sao Paulo (1988).

, Fized points on surface fiber bundles, in: 10th Brazilian Topology Meeting, Mat.
Contemp. 13 (1997), 251-267.

J.W. Vick, Homology Theory: An Introduction to Algebraic Topology, Academic Press
(1973).

G.W. WHITEHEAD, Elements of Homotopy Theory, Springer (1918).

P. Wong, Coincidence Theory for spaces which Fiber Over Nilmanifold, Hindawi Pub-
lishing Corporation Fixed Point theory and Applications (2004), 89-95.

Manuscript received June 24, 2012
accepted May 20, 2014

JOAO PERES VIEIRA

Instituto de Geociéncias e Ciéncias Exatas
Departamento de Matemaética

UNESP — Univ. Estadual Paulista

Rio Claro, BRAZIL

E-mail address: jpvieira@rc.unesp.br

TMNA : VOLUME 46 — 2015 — N©2



