
Topological Methods in Nonlinear Analysis
Volume 46, No. 1, 2015, 447–470

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

SET-VALUED PERTURBATION

FOR TIME DEPENDENT SUBDIFFERENTIAL OPERATOR

Soumia Säıdi — Mustapha Fateh Yarou

Abstract. In a separable Hilbert space, we consider an evolution inclusion

involving time-dependent subdifferential of a proper convex lower semicon-

tinuous function with a set-valued perturbation depending on both time
and state variable. We prove, under a compactness condition on the per-

turbation, that there exists at least one absolutely continuous solution.

1. Introduction

The present work deals with perturbations of evolution equations governed

by time dependent subdifferential operator of the form

(PF ( · , · ))

−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t)) for a.e. t ∈ I := [T0, T ],

x(T0) = x0 ∈ dom ϕ(T0, · ),

where for each t ∈ I, the (set-valued) operator ∂ϕ(t, · ) is the subdifferential of

a time-dependent proper lower semicontinuous (lsc) convex function ϕ(t, · ) of

a separable Hilbert space H into [0,+∞] and domϕ(t, · ) denotes the effective

domain of the function ϕ(t, · ). The set-valued mapping F : I × H ⇒ H takes

nonempty convex compact values. We are interested in the existence of a solution

when the perturbation F ( · , · ) satisfies for some compact subset K of the closed
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unit ball B of H and some non-negative function β( · ) ∈ L2
R(I), the linear growth

condition

F (t, x) ⊂ β(t)(1 + ‖x‖)K, for all t ∈ I and x ∈ H.

The existence and uniqueness results for the unperturbed problem

(P)

−ẋ(t) ∈ ∂ϕ(t, x(t)) for a.e. t ∈ I,
x(T0) = x0 ∈ dom ϕ(T0, · ),

were established by Peralba [24], [25] with an assumption expressed in terms

of the conjugate function ϕ∗(t, · ) of the convex function ϕ(t, · ), that is, there

exists a Lipschitz function k : H → R+ and an absolutely continuous function

a : I → R with ȧ ∈ L2
R(I) such that, for all x ∈ H and s, t ∈ I,

ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x)|a(t)− a(s)|.

Other results have been obtained using hypothesis required on ϕ or the

Moreau envelope ϕλ, see for instance [3], [21], [22], [28], [29], [31]. There are

also several works dealing with set-valued or single-valued perturbations of (P)

under, in general, some compactness assumptions concerning the sublevel sets of

ϕ(t, · ) (see, e.g. [2], [6], [9], [15], [23], [27], [30]). In the line of our previous paper

with single-valued Lipschitz perturbation [26], conditions on the Moreau enve-

lope ϕλ(t, · ) or the Yosida approximation of ∂ϕ(t, · ) which cannot be translated

to the new operator generated by the perturbed problem, along with compact-

ness assumptions on the sublevel sets of ϕ(t, · ) are not appropriate. At the

opposite, as we will see below, Peralba’s assumption above on the function ϕ∗ is

really suited for our study in the sense that it allows us, in the setting of Hilbert

space, through some ideas of Edmond and Thibault [18], [20] (see also [11]) to

prove existence of absolutely continuous solution for (PF ( · , · )) and to avoid any

compactness assumption.

For the autonomous case, that is, when ϕ : H → R ∪ {∞} is a proper lsc

convex function independent of time, we cite Attouch and Damlamian [3], Cellina

and Staicu [15] and Castaing and Marcellin [11]; all these papers consider some

compactness assumptions concerning the sublevel sets of ϕ(t, · ). This hypothesis

is also used in the nonautonomous case in Benabdellah and Faik [5] (see also [8]),

Benabdellah, Castaing and Salvatori [6], Otani [23] and Tolstonogov [27].

In the particular case of the so-called sweeping process, i.e., for ϕ(t, · ) taken

as the indicator function of a closed moving set C(t), the fixed point technique

is quite efficient, under convexity assumptions of the values of both C( · ) and

F ( · , · ). This is true under the additional usual assumption on F requiring

separate measurability with respect to t and upper semicontinuity (closed graph)

with respect to x. Results related to similar problems with nonconvex closed

moving sets C(t) in the finite dimensional setting for (PF ( · , · )), can be found on
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one hand in Castaing and Monteiro Marques [12] when C(t) is the complement of

an open set of H and on the other hand in Castaing, Salvadori and Thibault [13]

when the closed set C(t) is r-prox-regular. In the infinite dimensional setting,

recent existence theorems have been established in [19], [20], [7] and [10] when

in addition to the r-prox-regularity of the moving set C(t), a linear growth

compactness condition is assumed for the set-valued mapping F ( · , · ).
The paper is organized as follows. After recalling some concepts in the second

section, and useful results of [24] and [25] in the third section concerning the

nonautonomous case (P), in Section 4, we establish the existence theorem for the

considered problem (PF ( · , · )) for a globally upper hemicontinuous perturbation.

Finally, we extend this result in section 5, to the case when the perturbation F

is just measurable in t and upper semicontinuous in x.

2. Notation and preliminaries

Throughout the paper I := [T0, T ] (0 ≤ T0 < T < +∞) is an interval of R
and H is a real separable Hilbert space whose inner product is denoted by 〈 · , · 〉
and the associated norm by ‖ · ‖.

We use the following definitions and notations. We denote by B the closed

unit ball of H. On the space CH(I) of continuous maps x : I → H we con-

sider the norm of uniform convergence on I. By LpH(I) for p ∈ [1,+∞[ (resp.

p = +∞), we denote the space of measurable maps x : I → H such that∫
I
‖x(t)‖p dt < +∞ (resp. which are essentially bounded) endowed with the

usual norm ‖x‖Lp
H(I) = (

∫
I
‖x(t)‖p dt)1/p, 1 ≤ p < +∞ (resp. endowed with the

usual essential supremum norm ‖ · ‖). We recall that the topological dual of

L1
H(I) is L∞H (I).

Let ϕ be a lower semicontinuous (lsc) convex function from H into R∪{+∞}
which is proper in the sense that its effective domain domϕ defined by

domϕ := {x ∈ H : ϕ(x) < +∞}

is nonempty and, as usual, its Fenchel conjugate is defined by

ϕ∗(v) := sup
x∈H

[〈v, x〉 − ϕ(x)].

It is often useful to regularize ϕ via its Moreau envelope

ϕλ(x) := inf
y∈H

[
ϕ(y) +

1

2λ
‖x− y‖2

]
for λ > 0. The family (ϕλ)λ increases when λ ↓ 0 to the proper lsc convex

function ϕ and hence it epi-converges to ϕ (see e.g. [1]). This entails in particular

for any family (xλ)λ of H converging to x that

(2.1) ϕ(x) ≤ lim inf
λ↓0

ϕλ(xλ).
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The Moreau envelope function ϕλ is also known to have a Lipschitzian continuous

derivative ∇ϕλ.

The subdifferential ∂ϕ(x) of ϕ at x ∈ domϕ is

∂ϕ(x) = {v ∈ H : ϕ(y) ≥ 〈v, y − x〉+ ϕ(x) for all y ∈ dom ϕ}

and its effective domain is Dom ∂ϕ = {x ∈ H : ∂ϕ(x) 6= ∅}. It is well known

that if ϕ is a proper lsc convex function, then its subdifferential operator ∂ϕ is

a maximal monotone operator. Any maximal monotone operator A satisfies the

closure property, that is, if x = lim
n→∞

xn strongly in H and y = lim
n→∞

yn weakly

in H, where xn ∈ DomA and yn ∈ A(xn), then, x ∈ DomA and y ∈ A(x). For

any subset S of H, σ(S, · ) represents the support function of S, that is, for all

y ∈ H,

σ(S, y) := sup
x∈S
〈y, x〉.

A set-valued mapping F : E ⇒ H from a Hausdorff topological space E into H

is said to be upper semicontinuous (usc) if, for any open subset V ⊂ H, the

set {x ∈ E : F (x) ⊂ V } is open in E. The set-valued mapping F is said to

be scalarly upper semicontinuous or upper hemicontinuous if, for any y ∈ H,

the real-valued function x 7→ σ(F (x), y) is upper semicontinuous. We refer to

[4] and [14] for details concerning convex analysis and measurable set-valued

mappings. We will close this section of preliminaries by recalling the following

straightforward consequence of Gronwall’s lemma.

Lemma 2.1 ([20]). Let (xn( · )) be a sequence of absolutely continuous maps

from I to H. Assume that lim
n
xn(T0) = 0 and, for any n,

d

dt
(‖xn(t)‖2) ≤ βn(t)‖xn(t)‖2 + αn(t) for a.e. t ∈ I,

where αn( · ) and βn( · ) are non negative functions in L1
R(I). Assume moreover

that the sequence (βn( · )) is bounded in L1
R(I) and lim

n

∫ T
T0
αn(t) dt = 0. Then,

lim
n
‖xn( · )‖∞ = 0.

3. Single valued time-dependent perturbation

This section is devoted to the study of the perturbed problem

(Ph)

−ẋ(t) ∈ ∂ϕ(t, x(t)) + h(t),

x(T0) = x0 ∈ domϕ(T0, · ),

whose perturbation is a single-valued time-dependent map. Let us first recall

a result due to Peralba [24], [25].

Theorem 3.1. Let ϕ : I ×H → R+ ∪ {+∞} be such that:
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(H1) for each t ∈ I, the function x 7→ ϕ(t, x) is proper, lower semicontinuous,

and convex;

(H2) there exist a ρ-Lipschitzean function k : H → R+ and an absolutely con-

tinuous function a : I → R, with a non-negative derivative ȧ ∈ L2
R(I),

such that

(3.1) ϕ∗(t, x) ≤ ϕ∗(s, x) + k(x)|a(t)− a(s)|

for every (t, s, x) ∈ I × I ×H.

Let also x0 ∈ domϕ(T0, · ) be fixed. Then, the differential inclusion

(P)

−ẋ(t) ∈ ∂ϕ(t, x(t)) for a.e. t ∈ I,
x(T0) = x0 ∈ dom ϕ(T0, · ),

has a unique absolutely continuous solution x( · ) on I. Moreover, for all t∈I,

x(t) ∈ domϕ(t, · ) and the function t 7→ ϕ(t, x(t)) is absolutely continuous on I.

Let us start with the following estimate which is a consequence of Proposi-

tions 3.3 and 3.4 in [26]

Proposition 3.2.

(a) The unique absolutely continuous solution x( · ) of (P) satisfies

(3.2) ‖ẋ‖L2
H
≤ ρ

2
‖ȧ‖L2

R
+ [
√
T − T0k(0)‖ȧ‖L2

R

+
ρ2

4
‖ȧ‖2L2

R
+ ϕ(T0, x0)− ϕ(T, x(T ))]1/2.

(b) If h ∈ L2
H(I) and x0 ∈ domϕ(T0, · ), then the problem (Ph) admits

a unique absolutely continuous solution x( · ) that satisfies

(3.3)

∫ T

T0

‖ẋ(t)‖2 dt ≤ 2b0

∫ T

T0

ȧ2(t) dt+ σ

∫ T

T0

‖h(t)‖2 dt+ b1.

with

b0 =
1

2
(k2(0) + 3(ρ+ 1)2),

σ = k2(0) + 3(ρ+ 1)2 + 4,

b1 = 2[(T − T0) + ϕ(T0, x(T0))− ϕ(T, x(T ))].

Proof. Assertion (a) corresponds to Proposition 3.3 in [26]. Concerning

assertion (b), we know by Proposition 3.4 of [26] that (Ph) has a unique solution

satisfying

(3.4) ‖ẋ‖L2
H
≤ 1

2
(ρ+ 1)‖ȧ+ |h|‖L2

R
+ ‖h‖L2

H
+

[√
T − T0k(0)‖ȧ+ |h|‖L2

R

+
(ρ+ 1)2

4
‖ȧ+ |h|‖2L2

R
+ ϕ(T0, x0)− ϕ(T, x(T ))

]1/2
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where |h| is the function of I into R defined by |h|(t) := ‖h(t)‖ for all t ∈ I.

Hence, observing that√
T − T0k(0)‖ȧ+ |h|‖L2

R(I)
= 2
√
T − T0(

k(0)

2
‖ȧ+ |h|‖L2

R(I)
)

≤ (T − T0) +
k2(0)

4
‖ȧ+ |h|‖2L2

R(I)
,

we obtain

‖ẋ‖L2
H(I) ≤

(ρ+ 1)

2
‖ȧ+ |h|‖L2

R(I)
+ ‖h‖L2

H(I)

+

[
(T −T0) +

(k2(0) + (ρ+ 1)2)

4
‖ȧ+ |h|‖2L2

R(I)
+ϕ(T0, x(T0))−ϕ(T, x(T ))

]1/2
and hence

‖ẋ‖2L2
H(I) ≤ 2

[
(ρ+ 1)

2
‖ȧ+ |h|‖L2

R(I)
+ ‖h‖L2

H(I)

]2
+ 2

[
(T − T0) +

(k2(0) + (ρ+ 1)2)

4
‖ȧ+ |h|‖2L2

R(I)
+ϕ(T0, x(T0))−ϕ(T, x(T ))

]
.

We may also write

‖ẋ‖2L2
H(I) ≤ (ρ+ 1)2‖ȧ+ |h|‖2L2

R(I)
+ 4‖h‖2L2

H(I)

+ 2[(T − T0) + ϕ(T0, x(T0))− ϕ(T, x(T ))] +
(k2(0) + (ρ+ 1)2)

2
‖ȧ+ |h|‖2L2

R(I)
.

Setting

b0 =
1

2
(k2(0) + 3(ρ+ 1)2), b1 = 2[(T − T0) + ϕ(T0, x(T0))− ϕ(T, x(T ))],

one has

‖ẋ‖2L2
H(I) ≤ b0‖ȧ+ |h|‖2L2

R(I)
+ 4‖h‖2L2

H(I) + b1.

As ‖ȧ+ |h|‖2
L2

R(I)
≤ 2‖ȧ‖2

L2
R(I)

+ 2‖h‖2
L2

H(I)
, putting σ = 2(b0 + 2), we get

‖ẋ‖2L2
H(I) ≤ 2b0‖ȧ‖2L2

R(I)
+ σ‖h‖2L2

H(I) + b1.

Equivalently,∫ T

T0

‖ẋ(t)‖2 dt ≤ 2b0

∫ T

T0

ȧ2(t) dt+ σ

∫ T

T0

‖h(t)‖2 dt+ b1. �

4. Set-valued perturbation

We study here the perturbed problem (PF ( · , · )) under an upper hemiconti-

nuity property for the set-valued perturbation F . In the development, we will

use some ideas from [11], [19], [20].
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Theorem 4.1. Let H be a real separable Hilbert space. Assume that ϕ : I ×
H → R+∪{+∞} is an extended-real-valued function satisfying (H1) and (H2) of

Theorem 3.1. Let F : I×H ⇒ H be a set-valued mapping with nonempty convex

compact values such that:

(a) F ( · , · ) is globally scalarly upper semicontinuous on I ×H;

(b) for some compact subset K ⊂ B and some non-negative function β( · ) ∈
L2
R(I), for all (t, x) ∈ I ×H, one has the growth type condition

F (t, x) ⊂ β(t)(1 + ‖x‖)K.

Then, for any x0 ∈ domϕ(T0, · ) the following problem

(P1)

−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t)) for a.e. t ∈ I,
x(T0) = x0,

has at least one absolutely continuous solution. More precisely, there exists an

absolutely continuous map x( · ) : I → H and an integrable map y( · ) : I → H

such that x(T0) = x0, x(t) ∈ domϕ(t, x(t)) for all t ∈ I and, for almost all

t ∈ I, y(t) ∈ F (t, x(t)) and −ẋ(t)− y(t) ∈ ∂ϕ(t, x(t)), with

‖y(t)‖ ≤ (β(t) + 1)(1 + ‖x(t)‖).

Moreover, the following inequalities hold true

(4.1)

∫ T

T0

‖ẋ(t)‖2 dt ≤ α+ σ

∫ T

T0

‖y(t)‖2 dt

and

(4.2)

∫ T

T0

‖ẋ(t)‖2 dt ≤ α+ σ

∫ T

T0

(β(s) + 1)2(1 + ‖x(s)‖)2 ds,

where

(4.3) α = (k2(0) + 3(ρ+ 1)2)

∫ T

T0

ȧ2(t) dt+ 2[T − T0 + ϕ(T0, x0)− ϕ(T, x(T ))],

(4.4) σ = k2(0) + 3(ρ+ 1)2 + 4.

Proof. We suppose, without loss of generality, that K is convex and con-

tains 0. If not so, we may replace K by co(K ∪{0}) which is compact according

to Dunford and Schwartz ([17, Theorem V.2.6]). Since the function (1 + β( · ))2

is λ-integrable on I = [T0, T ], for the real number

(4.5) m =
1

4(T − T0)(k2(0) + 3(ρ+ 1)2 + 4)
> 0

there exists a finite subdivision T0 < T1 < . . . < Tk = T such that for each

j = 1, . . . , k one has

(4.6)

∫ Tj

Tj−1

(β(s) + 1)2 ds < m.
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Let us start first by establishing a solution on the interval I1 := [T0, T1] by

constructing a sequence of maps (xn( · )) in CH(I1) which has a subsequence

converging uniformly on I1 to a solution of (P1).

(A) Construction of the sequence (xn( · )).
Define, for every n ∈ N, a partition of I1 := [T0, T1] with

tni := T0 + (i− 1)
T1 − T0

n
(1 ≤ i ≤ n+ 1),

and consider for i ∈ {1, . . . , n}, δni ∈ [tni , t
n
i+1] such that

(4.7) β(δni ) ≤ inf
t∈[tni ,tni+1[

β(t) + 1.

Then, fix any n ∈ N. Put xn1 (tn1 ) = x0 and choose yn1 ∈ F (δn1 , x0). Then, relying

on Proposition 3.2, denote by xn1 ( · ) : [tn1 , t
n
2 ] → H the absolutely continuous

solution on [tn1 , t
n
2 ] of the inclusion−ẋ(t) ∈ ∂ϕ(t, x(t)) + yn1 for a.e. t ∈ [tn1 , t

n
2 ],

x(tn1 ) = xn1 (tn1 ) = x0 ∈ domϕ(tn1 , · ).

Next, for each i ∈ {2, . . . , n}, choose yni ∈ F (δni , x
n
i−1(tni )), and let

xni ( · ) : [tni , t
n
i+1]→ H

be the absolutely continuous solution of−ẋ(t) ∈ ∂ϕ(t, x(t)) + yni for a.e. t ∈ [tni , t
n
i+1],

x(tni ) = xni−1(tni ) ∈ domϕ(tni , · ).

Recall that, in view of Proposition 3.2, inequality (3.3) holds true in each subin-

terval [tni , t
n
i+1] of I1, that is, for any i ∈ {1, . . . , n}, one has

(4.8)

∫ tni+1

tni

‖ẋni (t)‖2dt ≤ 2b0

∫ tni+1

tni

ȧ2(t)dt+ σ

∫ tni+1

tni

‖yni ‖2dt+ ci.

with

b0 =
1

2
(k2(0) + 3(ρ+ 1)2),

σ = k2(0) + 3(ρ+ 1)2 + 4,

ci = 2[(tni+1 − tni ) + ϕ(tni , x
n
i (tni ))− ϕ(tni+1, x

n
i (tni+1))].

Now, define xn : [T0, T1]→ H by

xn(t) =

xni (t) if t ∈ [tni , t
n
i+1[ for some i ∈ {1, . . . , n},

xnn(T1) if t = T1.
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Such a map xn( · ) is absolutely continuous on [T0, T1]. Consider the maps

θn,∆n : [T0, T1]→ [T0, T1] such that

θn(t) =

tni if t ∈ [tni , t
n
i+1[ for some i ∈ {1, . . . , n},

T1 if t = T1

and

∆n(t) =

δni if t ∈ [tni , t
n
i+1[ for some i ∈ {1, . . . , n},

δnn if t = T1

Next, define yn : [T0, T1]→ H by

yn(t) =

yni if t ∈ [tni , t
n
i+1[ for some i ∈ {1, . . . , n},

ynn if t = T1.

Then, for each n ∈ N, we have the following:

(1) yn(t) ∈ F (∆n(t), xn(θn(t))) ⊂ β(∆n(t))(1 + ‖xn(θn(t))‖)K, for all t ∈
[T0, T1],

(2) for all t ∈ [T0, T1], ‖yn(t)‖ ≤ β(∆n(t))(1 + ‖xn(θn(t))‖),
(3) xn(T0) = x0,

(4) −ẋn(t) ∈ ∂ϕ(t, xn(t)) + yn(t) for almost every t ∈ [T0, T1], and hence

−ẋn(t) ∈ ∂ϕ(t, xn(t)) + F (∆n(t), xn(θn(t))) for a.e. t ∈ [T0, T1].

Further, we may write (4.8), as follows

(4.9)

∫ tni+1

tni

‖ẋn(t)‖2 dt ≤ 2b0

∫ tni+1

tni

ȧ2(t) dt+ σ

∫ tni+1

tni

‖yn(t)‖2 dt+ ci.

Taking (2) and (4.7) into account, it results that, for any i ∈ {1, . . . , n},∫ tni+1

tni

‖ẋn(t)‖2 dt

≤ 2b0

∫ tni+1

tni

ȧ2(t) dt+ σ

∫ tni+1

tni

(β(t) + 1)2(1 + ‖xn(θn(t))‖)2 dt+ ci

≤ 2b0

∫ tni+1

tni

ȧ2(t) dt+ σ(1 + ‖xn(tni )‖)2
∫ tni+1

tni

(β(t) + 1)2 dt+ ci

≤ 2b0

∫ tni+1

tni

ȧ2(t) dt+ σ(1 + max
1≤i≤n+1

‖xn(tni )‖)2
∫ tni+1

tni

(β(t) + 1)2 dt+ ci,

and, with this being true for any i ∈ {1, . . . , n}, we obtain

n∑
i=1

∫ tni+1

tni

‖ẋn(t)‖2 dt ≤ 2b0

∫ T1

T0

ȧ2(t) dt+σ(1+‖xn( · )‖∞)2
∫ T1

T0

(β(t)+1)2 dt+c′n
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where ‖ · ‖∞ denotes the supremum norm over the interval [T0, T1] and

c′n =

n∑
i=1

ci = 2[T1 − T0 + ϕ(T0, x0)− ϕ(T1, xn(T1))].

As −ϕ(T1, xn(T1)) ≤ 0, putting d = 2[T1 − T0 + ϕ(T0, x0)], we may write∫ T1

T0

‖ẋn(t)‖2 dt ≤ 2b0

∫ T1

T0

ȧ2(t) dt+ 2σ(1 + ‖xn( · )‖2∞)

∫ T1

T0

(β(t) + 1)2 dt+ d

and hence

(4.10)

∫ T1

T0

‖ẋn(t)‖2 dt ≤ b+ c‖xn( · )‖2∞,

where

b = 2b0

∫ T1

T0

ȧ2(t) dt+ 2σ

∫ T1

T0

(β(t) + 1)2 dt+ d and c = 2σ

∫ T1

T0

(β(t) + 1)2 dt.

Using the Cauchy–Schwartz inequality and (4.10), one has for all s ∈ I1

‖xn(s)− x0‖2 ≤ (s− T0)

(∫ s

T0

‖ẋn(t)‖2 dt
)
≤ (T1 − T0)(b+ c‖xn( · )‖2∞)

and hence

‖xn(s)‖2 ≤ 2‖x0‖2 + 2‖xn(s)− x0‖2 ≤ 2‖x0‖2 + 2(T1 − T0)(b+ c‖xn( · )‖2∞).

Consequently, for each n, we get

(1− 2(T1 − T0)c)‖xn( · )‖2∞ ≤ 2(‖x0‖2 + (T − T0)b).

According to (4.6), that is, 2(T1 − T0)c < 1, one has, for any t and for any n,

(4.11) ‖xn( · )‖∞ ≤M1

where

M1 :=

(
2(‖x0‖2 + (T1 − T0)b)

1− 2(T1 − T0)c

)1/2

.

For each n ∈ N and any t ∈ I1 := [T0, T1], define zn(t) :=
∫ t
T0
yn(s) ds. Then,

the map zn( · ) is absolutely continuous on [T0, T1]. By virtue of (2), (4.7) and

(4.11), for T0 ≤ r ≤ t ≤ T1, we have

(4.12) ‖yn(t)‖ ≤ (M1 + 1)(β(t) + 1)

and

(4.13) ‖zn(t)− zn(r)‖ ≤ (M1 + 1)

∫ t

r

(β(s) + 1) ds

so that the family (zn)n∈N is equicontinuous in CH(I1).

Furthermore, since K is convex with 0 ∈ K, it follows from (1), (4.7) and

(4.11) that

∀n ∈ N, ∀ t ∈ [T0, T1], yn(t) ∈ (M1 + 1)(β(t) + 1)K.
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Since K is closed and convex, this yields that for all n ≥ 1 and t ∈ [T0, T1]

(4.14) zn(t) ∈
[
(M1 + 1)

∫ t

T0

(β(s) + 1) ds

]
K

and once more, since K is convex with 0 ∈ K, we deduce that for any t ∈ [T0, T1]

the set {zn(t), n ∈ N} is included in the strongly compact set[
(M1 + 1)

∫ T1

T0

(β(s) + 1) ds

]
K.

(B) Uniform convergence of a subsequence of (xn( · )) to some map u1( · ).
Ascoli’s theorem ensures us that, up to a subsequence, (zn) converges uni-

formly on [T0, T1] to some continuous mapping z( · ). Further, (4.10) and (4.11)

entail that

(4.15) sup
n∈N
‖ẋn( · )‖L2

H(I1) < +∞.

Now, making use of the monotonicity of ∂ϕ(t, · ) for all t ∈ I1, we will show that

the corresponding subsequence (xn) converges uniformly on I1 to some solution

over I1 of the differential inclusion under consideration. For any n ∈ N and any

t ∈ [T0, T1], define Xn(t) := xn(t) + zn(t). The maps Xn are clearly absolutely

continuous and for any fixed p, q ∈ N, and for almost all t ∈ [T0, T1], one has

1

2

d

dt
‖Xp(t)−Xq(t)‖2 = 〈Ẋp(t)− Ẋq(t), Xp(t)−Xq(t)〉

= 〈Ẋp(t)− Ẋq(t), xp(t)− xq(t)〉+ 〈Ẋp(t)− Ẋq(t), zp(t)− zq(t)〉.

By definition, one has

−Ẋp(t) = −ẋp(t)− yp(t) ∈ ∂ϕ(t, xp(t)),

−Ẋq(t) = −ẋq(t)− yq(t) ∈ ∂ϕ(t, xq(t)),

and the monotonicity property of ∂ϕ(t, · ) entails that

〈Ẋp(t)− Ẋq(t), xp(t)− xq(t)〉 ≤ 0.

Therefore, one has

1

2

d

dt
‖Xp(t)−Xq(t)‖2 ≤ ‖Ẋp(t)− Ẋq(t)‖‖zp(t)− zq(t)‖.

Now, we deduce from (4.15) that the sequence (ẋn) is bounded in L2
H(I1), and

since via (4.12)

sup
n∈N
‖żn( · )‖2L2

H(I1)
≤ (M1 + 1)2

∫ T1

T0

(β(s) + 1)2 ds < +∞,

we conclude that

A := sup
n∈N
‖Ẋn( · )‖L2

H(I1) < +∞.
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The uniform convergence of the sequence (zn) ensures us that∫ T1

T0

‖zp(t)− zq(t)‖ dt→ 0

when p, q →∞. This, along with the fact that ‖Xp(T0)−Xq(T0)‖ = 0, entails

lim
p,q→∞

‖Xp( · )−Xq( · )‖∞ = 0.

Then, the uniform Cauchy’s criterion guarantees that the sequence (Xn( · )) con-

verges uniformly on I1 to some map X( · ) ∈ CH(I1). So, the sequence (xn) =

(Xn − zn) converges uniformly on I1 to some continuous map u1( · ) ∈ CH(I1),

with u1(T0) = x0 according to (3). By (4.15) the sequence (ẋn) is bounded in

L∞H (I1) and hence also in L2
H(I1). We may then extract a subsequence converg-

ing weakly in L2
H(I1) to some map v( · ). The equality

xn(t) = xn(T0) +

∫ t

T0

ẋn(s) ds for all t ∈ I1

then yields

(4.16) u1(t) = u1(T0) +

∫ t

T0

v(s) ds for all t ∈ I1

and hence the map u1( · ) is absolutely continuous on I1 with u̇1( · ) = v( · ) on I1.

(C) Let us prove that u1( · ) is a solution of (P1) on I1.

Recall that, for almost all t ∈ [T0, T1], for all n ∈ N one has

−Ẋn(t) ∈ ∂ϕ(t, xn(t)) and yn(t) ∈ F (∆n(t), xn(θn(t)))

where lim
n→∞

max{|4n(t)− t|; |θn(t)− t|} = 0 and that by (4.12) one also has

sup
n∈N
‖yn( · )‖2L2

H(I1)
≤ (M1 + 1)2

∫ T1

T0

(β(s) + 1)2ds < +∞.

We may assume that the sequences (yn) and (ẋn) converge weakly in L2
H([T0, T1])

to y1 and u̇1 respectively (see (4.16)). Then, the corresponding subsequence

(Ẋn) converges weakly in L2
H([T0, T1]) to y1 + u̇1. Classically, following the

corresponding arguments of the proof of Theorem 1 in [20], one has

(4.17) −u̇1(t) ∈ ∂ϕ(t, u1(t)) + y1(t) for a.e. t ∈ [T0, T1].

It remains to show that y1(t) ∈ F (t, u1(t)) for almost every t ∈ [T0, T1]. By

construction, we have yn(t) ∈ F (∆n(t), xn(θn(t))) for almost every t ∈ [T0, T1].

As (4n(t), xn(θn(t))) converges to (t, u1(t)) for each t ∈ [T0, T1] and (yn) con-

verges weakly in L2
H([T0, T1]) to y1, and F is scalarly upper semicontinuous on

[T0, T1] × H, invoking the closure theorem in [4, Theorem 1.4.1], we get the

required inclusion. Combining this with (4.17), we conclude that u1( · ) is an
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absolutely continuous solution of −u̇1(t) ∈ ∂ϕ(t, u1(t)) + F (t, u1(t)) for almost

every t ∈ [T0, T1], u1(T0) = x0 over I1. Summing (4.9) it follows that

n∑
i=1

∫ tni+1

tni

‖ẋn(t)‖2 dt ≤ 2b0

n∑
i=1

∫ tni+1

tni

ȧ2(t) dt+ σ

n∑
i=1

∫ tni+1

tni

‖yn(t)‖2 dt+

n∑
i=1

ci

and hence, for all n, we have

(4.18)

∫ T1

T0

‖ẋn(t)‖2 dt ≤ 2b0

∫ T1

T0

ȧ2(t) dt+ σ

∫ T1

T0

‖yn(t)‖2 dt+ c′n.

Taking (4.7) and (1) into account we obtain

(4.19)

∫ T1

T0

‖ẋn(t)‖2 dt

≤ 2b0

∫ T1

T0

ȧ2(t) dt+ σ

∫ T1

T0

(β(t) + 1)2(1 + ‖xn(θn(t))‖)2 dt+ c′n.

As an estimate on the velocity, let us underline that, taking the superior limit

on n in (4.18) and using the preceding convergence results yield∫ T1

T0

‖u̇1(t)‖2 dt ≤ 2b0

∫ T1

T0

ȧ2(t) dt+ σ

∫ T1

T0

‖y1(t)‖2 dt+ lim sup
n

c′n.

Since xn(t)→ u1(t), by the lower semicontinuity of ϕ(t, · ), we have

lim sup
n

c′n = 2[T1 − T0 + ϕ(T0, x0)− lim inf
n

ϕ(T1, xn(T1))]

≤ 2[T1 − T0 + ϕ(T0, x0)− ϕ(T1, u1(T1))].

Hence, we obtain

(4.20)

∫ T1

T0

‖u̇1(t)‖2 dt ≤ α1 + σ

∫ T1

T0

‖y1(t)‖2 dt

where

α1 = (k2(0) + 3(ρ+ 1)2)

∫ T1

T0

ȧ2(t) dt+ 2[T1 − T0 + ϕ(T0, x0)− ϕ(T1, u1(T1))].

Similarly, taking the superior limit on n in (4.19) and using the preceding con-

vergence results again yield

(4.21)

∫ T1

T0

‖u̇1(t)‖2 dt ≤ α1 + σ

∫ T1

T0

(β(t) + 1)2(1 + ‖u1(t)‖)2 dt.

The analysis above also yields a solution u2( · ) to the differential inclusion (P1)

on the interval I2 := [T1, T2] with the initial condition u2(T1) = u1(T1) and by

(4.20) and (4.21) the solution satisfies for

α2 = (k2(0) + 3(ρ+ 1)2)

∫ T2

T1

ȧ2(t) dt+ 2[T2−T1 +ϕ(T1, u1(T1))−ϕ(T2, u2(T2))]
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and for some L2(I2)-selection y2( · ) of F ( · , u2( · )) we have the inequalities∫ T2

T1

‖u̇2(t)‖2 dt ≤ α2 + σ

∫ T2

T1

‖y2(t)‖2 dt

and ∫ T2

T1

‖u̇2(t)‖2 dt ≤ α2 + σ

∫ T2

T1

(β(t) + 1)2(1 + ‖u2(t)‖)2 dt.

Proceeding in a similar way we obtain u3( · ) on [T2, T3], . . ., uk( · ) on [Tk−1, Tk].

Putting x(t) = uj(t) and y(t) = yj(t) if t ∈ [Tj−1, Tj ], we see that x( · ) is an

absolutely continuous solution of (P1) on the whole interval I = [T0, T ] and the

estimations (4.1) and (4.2) of the theorem hold because

α :=

k∑
j=1

αj = (k2(0)+3(ρ+1)2)

∫ T

T0

ȧ2(t) dt+2[T −T0 +ϕ(T0, x0)−ϕ(T, x(T ))].

The proof of the theorem is then complete. �

As a consequence, we have the following properties

Proposition 4.2. The absolutely continuous solution x( · ) of (P1) satisfies∫ T

T0

‖ẋ(t)‖2dt ≤ α+ σ(1 + l)2
∫ T

T0

(β(t) + 1)2 dt,

and y(t) ∈ (1+ l)(β(t)+1)co(K∪{0}), ‖y(t)‖ ≤ (β(t)+1)(1+ l) for almost every

t ∈ I with l := ‖x0‖ + [ξ(T )]1/2 and where ξ( · ) is the increasing, continuous,

and non-negative function defined on [T0, T ] by

ξ(s) = b(s) + 2σ(s− T0)

∫ s

T0

b(τ)(β(τ) + 1)2 exp

(
2σ

∫ s

τ

θ(β(θ) + 1)2 dθ

)
dτ,

and, for each t ∈ [T0, T ],

b(t) = (t− T0)

[
α+ 2σ(1 + ‖x0‖)2

∫ t

T0

(β(τ) + 1)2 dτ

]
.

The constants α and σ are defined as in Theorem 4.1.

Proof. Owing to (4.2) and making use of the absolute continuity of x( · )
on [T0, T ], we may write, for T0 ≤ s < T ,

‖x(s)− x0‖2 ≤ (s− T0)

∫ s

T0

‖ẋ(τ)‖2 dτ

≤ (s− T0)

[
α+ σ

∫ s

T0

(β(τ) + 1)2(1 + ‖x(τ)‖)2 dτ
]
.
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Hence, for any s ∈ [T0, T ],

‖x(s)− x0‖2 ≤ (s− T0)

[
α+ 2σ(1 + ‖x0‖)2

∫ s

T0

(β(τ) + 1)2dτ

+ 2σ

∫ s

T0

(β(τ) + 1)2‖x(τ)− x0‖2 dτ
]
.

Applying Gronwall’s inequality entails that given s ∈ [T0, T ], one has

(4.22) ‖x(s)− x0‖2 ≤ ξ(s),

where

ξ(s) = b(s) + c(s)

∫ s

T0

b(τ)(β(τ) + 1)2 exp

(∫ s

τ

(β(θ) + 1)2c(θ) dθ

)
dτ

with

b(t) = (t− T0)

[
α+ 2σ(1 + ‖x0‖)2

∫ t

T0

(β(τ) + 1)2dτ

]
,

c(t) = 2σ(t− T0).

Clearly such functions b( · ), c( · ) and ξ( · ) are increasing and continuous on

[T0, T ]. Indeed, as a straight consequence of (4.22) and the finiteness of T , one

has ‖x( · )‖∞ ≤ l, where l := ‖x0‖+ [ξ(T )]1/2. Consequently,

‖y(t)‖ ≤ (β(t) + 1)(1 + l) for a.e. t ∈ I. �

5. Separately scalarly u.s.c. perturbation

In this section we weaken the assumption of Theorem 4.1 concerning the set-

valued map F. Here, it is assumed to be separately scalarly upper semicontinuous

on H and to have measurable selection with respect to the first variable. The

development is for a large an adaptation of [19], [20]. In the remaining of the

paper, we will denote by α, σ, and m the constants defined in Section 4, by (4.3),

(4.4) and (4.5), respectively.

To begin with, we suppose that the function β( · ) in the growth condition is

constant.

Theorem 5.1. Under assumptions of Theorem 4.1 on ϕ, let F : I ×H ⇒ H

be a set-valued mapping with nonempty convex compact values such that

(a) for any x ∈ H, F ( · , x) has a λ-measurable selection;

(b) for all t ∈ I, F (t, · ) is scalarly upper semicontinuous on H;

(c) for some compact subset K ⊂ B and some real number β > 0, for all

(t, x) ∈ I ×H, one has

F (t, x) ⊂ β(1 + ‖x‖)K.
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Then, for any x0 ∈ domϕ(T0, · ) the following problem

(P2)

−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t)) for a.e. t ∈ I,
x(T0) = x0,

has at least one absolutely continuous solution. More precisely, there exist an

absolutely continuous map x( · ) : I → H and an integrable map z( · ) : I → H

such that x(T0) = x0, x(t) ∈ domϕ(t, x(t)) for all t ∈ I and for almost all t ∈ I,

z(t) ∈ F (t, x(t)) and −ẋ(t)− z(t) ∈ ∂ϕ(t, x(t)) and

(5.1) z(t) ∈ (β + 1)(1 + ‖x(t)‖) co(K ∪ {0}).

Moreover, the following inequalities hold true

(5.2)

∫ T

T0

‖ẋ(t)‖2 dt ≤ α+ σ

∫ T

T0

‖z(t)‖2 dt

and

(5.3)

∫ T

T0

‖ẋ(t)‖2 dt ≤ α+ σ(β + 1)2
∫ T

T0

(1 + ‖x(t)‖)2 dt.

Proof. We will reduce the problem to the previous case, via set-valued

versions of Scorza–Dragoni’s theorem and Dugundji’s extension theorem, and

construct a sequence of absolutely continuous maps (xn( · )). Next, it will be

proved that this sequence has a subsequence converging uniformly in CH(I) to

a solution of (P2).

We suppose without loss of generality, that K is convex and contains 0. If

not so, we may replace K by co(K ∪ {0}). Dividing, if necessary I into intervals

of a same suitable length, we may suppose also that,

(5.4) (β + 1)2(T − T0) < m.

(A) Existence of the sequence (xn( · )).
Set for the real number

α0 = (k2(0) + 3(ρ+ 1)2)

∫ T

T0

ȧ2(t) dt+ 2[T − T0 + ϕ(T0, x0)],

M2 :=

(
2(‖x0‖2 + (T − T0)[α0 + 2σ(β + 1)2(T − T0)])

1− 4(T − T0)2σ(β + 1)2

)1/2

,

and fix a continuous function φ : R+ → [0, 1] such that

(5.5) φ(τ) =

1 if τ ≤M2,

0 if τ ≥M2 + 1.

Let us consider the compact convex metric space Y : = β(2 + M2)K, which is

a Borel subset of H, and let us define a set-valued map F̂ : I ×H ⇒ Y by

F̂ (t, x) := φ(‖x‖)F (t, x).
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Obviously, F̂ ( · , x) has a measurable selection for all x ∈ H and, for each

t ∈ [T0, T ], the graph of F̂ (t, · ) is closed in H × Y . Therefore, according to

the set-valued version of Scorza–Dragoni’s theorem from Castaing and Monteiro

Marques [12], there exists a set-valued map F̃ : I×H ⇒ Y with convex compact

(possibly empty) values such that:

• for some λ-negligible subset N0 ⊂ I, for all t ∈ I \N0 and for all x ∈ H,

(5.6) F̃ (t, x) ⊂ F̂ (t, x);

• there exists an increasing sequence (In)n≥1 of compact subsets of I such

that, for each n ≥ 1, λ(I \ In) ≤ 1/n and the restriction of F̃ to In ×H,

denoted by F̃ |In×H , is (globally) upper semicontinuous with nonempty

convex compact values.

By the set-valued version of Dugundji’s extension theorem from Benabdellah

and Faik [5], for each n ≥ 1, there exists some upper semicontinuous extension

F̃n of F̃ |In×H to I × H that takes on nonempty convex compact values and

satisfies, like F̂ ,

F̃n(t, x) ⊂ β(1 + ‖x‖)K for all (t, x) ∈ I ×H.

Since (β + 1)2(T − T0) < m, due to Theorem 4.1, for each n ≥ 1, there exist an

absolutely continuous map xn( · ) : I → H and an integrable map zn( · ) : I → H

such that xn(T0) = x0, and for almost all t ∈ I,

zn(t) ∈ F̃n(t, xn(t)),(5.7)

−ẋn(t)− zn(t) ∈ ∂ϕ(t, xn(t)),(5.8)

‖zn(t)‖ ≤ (M2 + 1)(β + 1) and zn(t) ∈ (M2 + 1)(β + 1)K,(5.9)

and

(5.10)

∫ T

T0

‖ẋn(t)‖2 dt ≤ α0 + σ(T − T0)(β + 1)2(1 +M2)2.

In view of (4.2), we may also write

(5.11)

∫ T

T0

‖ẋn(t)‖2 dt ≤ αn + σ(β + 1)2
∫ T

T0

(1 + ‖xn(t)‖)2 dt,

with

αn = (k2(0) + 3(ρ+ 1)2)

∫ T

T0

ȧ2(t)dt+ 2[T − T0 + ϕ(T0, x0)− ϕ(T, xn(T ))].

(B) Uniform convergence of a subsequence of (xn( · )) to some map (x( · )).
In order to prove this, consider the map

Zn(t) :=

∫ t

T0

zn(s) ds.
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As in the proof of Theorem 4.1, thanks to (5.9), via Arzela–Ascoli’s theorem, we

may suppose that the sequence (Zn( · )) converges uniformly in CH(I) to some

map Z( · ) : I → H. Now, let us set

Xn(t) := xn(t) + Zn(t).

We aim at proving that (Xn( · )) is a Cauchy sequence in (CH(I), ‖ · ‖∞). The

maps Xn( · ) are clearly absolutely continuous and for any fixed p, q ∈ N, and for

almost all t ∈ [T0, T ], one has

1

2

d

dt
‖Xp(t)−Xq(t)‖2 = 〈Ẋp(t)− Ẋq(t), Xp(t)−Xq(t)〉

= 〈Ẋp(t)− Ẋq(t), xp(t)− xq(t)〉+ 〈Ẋp(t)− Ẋq(t), Zp(t)− Zq(t)〉.

By definition, one has

−Ẋp(t) = −ẋp(t)− zp(t) ∈ ∂ϕ(t, xp(t)),

−Ẋq(t) = −ẋq(t)− zq(t) ∈ ∂ϕ(t, xq(t)),

and the monotonicity property of ∂ϕ(t, · ) entails that

〈Ẋp(t)− Ẋq(t), xp(t)− xq(t)〉 ≤ 0.

Therefore, one has

1

2

d

dt
‖Xp(t)−Xq(t)‖2 ≤ ‖Ẋp(t)− Ẋq(t)‖‖Zp(t)− Zq(t)‖.

Now, we deduce from (5.10) that the sequence (ẋn) is bounded in L2
H(I) and

since via (5.9)

sup
n∈N
‖Żn( · )‖2L2

H(I) ≤ (T − T0)(M2 + 1)2(β + 1)2 < +∞,

we conclude that A := sup
n∈N
‖Ẋn( · )‖L2

H(I) < +∞. The uniform convergence of

the sequence (Zn) assures us that∫ T

T0

‖Zp(t)− Zq(t)‖ dt→ 0

when p, q →∞. This, along with the fact that ‖Xp(T0)−Xq(T0)‖ = 0, entails,

via Lemma 2.1,

lim
p,q→∞

‖Xp( · )−Xq( · )‖∞ = 0.

Then, the uniform Cauchy’s criterion guarantees that the sequence (Xn( · )) con-

verges uniformly on I to some map X( · ) ∈ CH(I). So, the sequence (xn) =

(Xn−Zn) converges uniformly on I to some continuous map x( · ) ∈ CH(I), with

x(T0) = x0, that is,

(5.12) xn( · )→ x( · ) strongly in L2
H(I).
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By (5.10) the sequence (ẋn) is bounded in L∞H (I) and hence also in L2
H(I). We

may then, extract a subsequence converging weakly in L2
H(I) to some map v( · ).

The equality

xn(t) = xn(T0) +

∫ t

T0

ẋn(s) ds for all t ∈ I

then yields,

(5.13) x(t) = x(T0) +

∫ t

T0

v(s) ds for all t ∈ I

and hence the map x( · ) is absolutely continuous on I with ẋ( · ) = v( · ) for

almost all t ∈ I and

(5.14) ẋn( · )→ ẋ( · ) weakly in L2
H(I).

Due to (5.9), we may also suppose that, for some map z( · ) ∈ L2
H(I), one has

(5.15) zn( · )→ z( · ) weakly in L2
H(I).

(C) Now, we proceed to prove that x( · ) is a solution of (P2).

Taking (5.12), (5.14) and (5.15) into account, as in the proof of Theorem 4.1,

we have, via the closure property of the subdifferential operator ∂ϕ(t, · ), for

almost all t ∈ I the required inclusion, that is,

(5.16) ẋ(t) + z(t) ∈ −∂ϕ(t, x(t)) for a.e. t ∈ I.

It remains to prove that z(t) ∈ F (t, x(t)) for almost every t ∈ I. Due to (5.15),

by Mazur’s lemma, there exists a sequence (ζn( · )) in L1
H(I) such that

(5.17) ζn( · ) ∈ co{zk( · ) : k ≥ n} for all n ≥ 1

which converges strongly in L1
H(I) to z( · ). Thus, extracting a subsequence, we

may suppose that ζn(t) → z(t) for almost every t ∈ I. This, along with (5.17),

implies that, for some negligible subset N1 ⊂ I,

(5.18) z(t) ∈
⋂
n

co{zk(t) : k ≥ n} for all t ∈ I \N1.

Taking (5.7) into account, we may also suppose that, for all n ≥ 1 and for all

t ∈ I \N1,

(5.19) zn(t) ∈ F̃n(t, xn(t)).

Consider the λ-negligible subset N :=
(
I \
⋃
n
In
)
∪ N0 ∪ N1. We are going to

prove that z(t) ∈ F (t, x(t)) for all t ∈ I \N . Fix any τ ∈ I \N . From (5.18) and

(5.19), it follows that, for any ξ ∈ H,

(5.20) 〈ξ, z(τ)〉 ≤ lim sup
n

σ(F̃n(τ, xn(τ)), ξ).



466 S. Säıdi — M.F. Yarou

On the other hand, by definition of N, there exists an integer n(τ) such that

τ ∈ In(τ) \ N0 and, (In) being increasing, one has τ ∈ In for all n ≥ n(τ).

Consequently, for all n ≥ n(τ),

(5.21) F̃n(τ, xn(τ)) = F̃ (τ, xn(τ)) ⊂ F̂ (τ, xn(τ)),

the inclusion coming from (5.6). Note that, by (5.10), and taking (5.4) into

account, one has, for all n ≥ 1 and for almost all t ∈ I, ‖xn(t)‖ ≤ M2, and

hence, thanks to (5.5), for all n ≥ 1,

(5.22) F̂ (τ, xn(τ)) = F (τ, xn(τ)).

Therefore, due to (5.20)–(5.22) and the fact that F (τ, · ) is scalarly upper semi-

continuous, we have

〈ξ, z(τ)〉 ≤ σ(F (τ, x(τ)), ξ).

This being true for any ξ ∈ H, and F (τ, x(τ)) being closed and convex, it results

that z(τ) ∈ F (τ, x(τ)). Since the latter is satisfied for any τ ∈ I \N , one has

z(t) ∈ F (τ, x(t)) for a.e. t ∈ I.

This, along with (5.16) and the fact that x(T0) = lim
n
xn(T0) = x0, proves that

x( · ) is a solution of (P2). Finally, taking the superior limit on n in (5.11), as in

the proof of Theorem 4.1, we get the required inequality. �

Actually, we have the following more general result. Here, the growth con-

dition involves an L1
R(I) function instead of a constant.

Theorem 5.2. Under assumptions of Theorem 4.1 on H and ϕ, let F : I ×
H ⇒ H be a set-valued mapping with nonempty convex compact values such that

(a) for any x ∈ H, F ( · , x) has a λ-measurable selection;

(b) for all t ∈ I, F (t, · ) is scalarly upper semicontinuous on H;

(c) for some compact subset K ⊂ B and for some non-negative function

β( · ) ∈ L1
R(I), for all (t, x) ∈ I ×H, one has

F (t, x) ⊂ β(t)(1 + ‖x‖)K.

Then, for any x0 ∈ domϕ(T0, · ) the following problem

(P3)

−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t)) for a.e. t ∈ I,
x(T0) = x0,

has at least one absolutely continuous solution. More precisely, there exist an

absolutely continuous map x( · ) : I → H and an integrable map z( · ) : I → H

such that x(T0) = x0, x(t) ∈ domϕ(t, x(t)) for all t ∈ I, and for almost all

t ∈ I, z(t) ∈ F (t, x(t)) and −ẋ(t)− z(t) ∈ ∂ϕ(t, x(t)) and

z(t) ∈ 2(β(t) + 1)(‖x(t)‖+ 1) co(K ∪ {0}).
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Proof. We suppose without loss of generality, that K is convex and con-

tains 0. If not so, we may replace K by co(K ∪ {0}). Suppose further,

(5.23)

∫ T

T0

(β(s) + 1) ds <
1

2
(T − T0)1/2m1/2.

(A) Following an idea from Deimling [16], let us set T̂ :=
∫ T
T0

(β(s) + 1) ds

and let us define an absolutely continuous function β̂( · ) : [T0, T ]→ [0, T̂ ] by

(5.24) β̂(t) :=

∫ t

T0

(β(s) + 1) ds.

Thanks to the fact that β(t) + 1 > 0 for almost all t ∈ I, the absolutely con-

tinuous function β̂( · ) is increasing and hence has a continuous inverse function

β̂−1( · ) : [0, T̂ ] → [T0, T ]. Notice that β̂−1( · ) is Lipschitz on [0, T̂ ]. Indeed, for

t̂, ŝ ∈ [0, T̂ ] with ŝ ≤ t̂ there exist t, s ∈ [T0, T ] with s ≤ t such that t̂ = β̂(t) and

ŝ = β̂(s), and then, using (5.24), one has

β̂−1(t̂)− β̂−1(ŝ) = t− s ≤
∫ t

s

(β(τ) + 1) dτ = β̂(t)− β̂(s) = t̂− ŝ.

This yields that, for any t̂, ŝ ∈ [0, T̂ ], β̂−1(t̂)− β̂−1(ŝ) ≤ t̂− ŝ, which means that

β̂−1( · ) is Lipschitz on [0, T̂ ].

Now, consider the set-valued map F̂ : [0, T̂ ]×H ⇒ H defined by

(5.25) F̂ (t, x) :=
1

β(β̂−1(t)) + 1
F (β̂−1(t), x).

Clearly, like F, the set-valued map F̂ satisfies the conditions (a) and (b) of

Theorem 5.1 and, by (c), for all (t, x) ∈ [0, T̂ ]×H,

(5.26) F̂ (t, x) ⊂ (1 + ‖x‖)K.

Consider also the single valued map ϕ̂ : [0, T̂ ]×H → [0,+∞] defined by

ϕ̂(t, x) := ϕ(β̂−1(t), x).

Obviously, ϕ̂ satisfies assumptions (H1) and (H2). Therefore, from the previous

result, there exist an absolutely continuous map X( · ) : [0, T̂ ]→ H and an inte-

grable map ẑ( · ) : [0, T̂ ]→ H such that X(0) = x0 and, for almost all t ∈ [0, T̂ ],

(5.27)

ẑ(t) ∈ F̂ (t,X(t));

−Ẋ(t) ∈ ∂ϕ̂(t,X(t)) + ẑ(t).

By inequality (5.3), along with (5.26), one has

(5.28)

∫ T̂

0

‖Ẋ(t)‖2 dt ≤ α+ 4σ

∫ T̂

0

(1 + ‖X(t)‖)2 dt.
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Then∫ T̂

0

‖Ẋ(t)‖2 dt ≤α+ 4σ(1 + ‖X( · )‖∞)2
∫ T̂

0

dt

≤α+ 4σ(1 + ‖X( · )‖∞)2T̂ ≤ α+ 8σ(1 + ‖X( · )‖2∞)T̂ ,

where ‖ · ‖∞ denotes the supremum norm over the interval [0, T̂ ].

Using the Cauchy–Schwarz inequality, one has, for all s ∈ [0, T̂ ],

‖X(s)−X(0)‖2 ≤ s
(∫ s

0

‖Ẋ(t)‖2 dt
)
≤ T̂ (α+ 8σ(1 + ‖X( · )‖2∞)T̂ )

‖X(s)‖2 ≤ 2‖x0‖2 + 2‖X(s)− x0‖2

≤ 2‖x0‖2 + 2T̂ (α+ 8σ(1 + ‖X( · )‖2∞)T̂ ).

Then (1− 16σT̂ 2)‖X( · )‖2∞ ≤ 2(‖x0‖2 + T̂ (α+ 8σT̂ )). Therefore, taking (5.23)

into account, that is, 16σT̂ 2 < 1, one has ‖X( · )‖∞ ≤M3, where

M3 :=

(
2(‖x0‖2 + T̂ (α+ 8σT̂ ))

1− 16σT̂ 2

)1/2

.

Consequently, inclusion (5.1) of Theorem 5.1 yields (β = 1), ẑ(t) ∈ 2(1 +M3)K.

(B) Let us prove that the absolutely continuous map x( · ) : [T0, T ] → H

defined, for any t ∈ [T0, T ], by x(t) = X(β̂(t)) is a solution of (P3).

Let us set I1 := {t ∈ [T0, T ] :
˙̂
β(t) exists} and I2 := {t̂ ∈ [0, T̂ ] : Ẋ(t̂) exists

and (5.27) holds at t̂}. Consider the subsets N1 := [T0, T ]\I1 and N̂2 := [0, T̂ ]\I2,
which are λ-negligible, and put

N2 := {t ∈ [T0, T ] : β̂(t) ∈ N̂2} = β̂−1(N̂2).

As β̂−1( · ) is Lipschitz on [0, T̂ ], the set N2 is also λ-negligible. So, N := N1∪N2

is λ-negligible and, for any t ∈ [T0, T ] \N,

(5.29) ẋ(t) =
˙̂
β(t)Ẋ(β̂(t)) = (β(t) + 1)Ẋ(β̂(t)).

The definitions of the negligible sets above, along with (5.25) and (5.27), entail

that, for all t ∈ [T0, T ] \N ,ẑ(β̂(t)) ∈ 1

β(t) + 1
F (t, x(t)),

−Ẋ(β̂(t)) ∈ ∂ϕ(t, x(t)) + ẑ(β̂(t)).

Hence, defining z( · ) : [T0, T ] → H by z(t) := (β(t) + 1)ẑ(β̂(t)), we obtain, by

(5.29), for any t ∈ [T0, T ] \N , andz(t) ∈ F (t, x(t)),

−ẋ(t) ∈ ∂ϕ(t, x(t)) + z(t),

which ends the proof. �
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Remark 5.3. Under conditions of Theorem 5.1 or Theorem 5.2, estimates

and inclusions in Proposition 4.2 hold true.
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