
Topological Methods in Nonlinear Analysis
Volume 45, No. 2, 2015, 655–697

c© 2015 Juliusz Schauder Centre for Nonlinear Studies
Nicolaus Copernicus University

EXISTENCE OF GLOBALLY ATTRACTING FIXED POINTS

OF VISCOUS BURGERS EQUATION

WITH CONSTANT FORCING.

A COMPUTER ASSISTED PROOF

Jacek Cyranka

Abstract. We present a computer assisted method for proving the exis-

tence of globally attracting fixed points of dissipative PDEs. An appli-
cation to the viscous Burgers equation with periodic boundary conditions

and a forcing function constant in time is presented as a case study. We

establish the existence of a locally attracting fixed point by using rigorous
numerics techniques. To prove that the fixed point is, in fact, globally at-

tracting we introduce a technique relying on a construction of an absorbing

set, capturing any sufficiently regular initial condition after a finite time.
Then the absorbing set is rigorously integrated forward in time to verify

that any sufficiently regular initial condition is in the basin of attraction of

the fixed point.

1. Introduction

The field of computer assisted proofs for ordinary differential equations (abbr.

ODEs) is a quite well established and analysed topic. Still, it seems to us that the

development of methods for investigating the dynamics of PDEs by performing

rigorous computer assisted proofs is at a pioneering stage.

2010 Mathematics Subject Classification. Primary 65M99, 35B40; Secondary 35B41.
Key words and phrases. Viscous Burgers equation, computer assisted proof, fixed point,

dissipative PDE, rigorous numerics, Galerkin projection.
Research has been supported by National Science Centre grant DEC-2011/01/N/ST6/

00995.

655

656 J. Cyranka

In the present paper we develop a computer aided method which is interesting

for two main reasons. First, it provides not only a local, but also a global

perspective on the dynamics. Second, it allows to establish results which have

not been achieved using known analytical techniques. As a case study we present

the forced viscous Burgers equation, where the forcing is constant in time and

periodic in space. More specifically, we consider the initial value problem with

periodic boundary conditions for the equation

(1.1) ut + u · ux − νuxx = f(x).

In the present paper we deal with the case of non-zero forcing, which is not

reducible to a linear PDE by the Hopf–Cole transform anymore.

To our knowledge, there exist two rigorous numerics methods for study-

ing the non-stationary PDE problem using the Fourier basis. The method of

self-consistent bounds, presented in the series of papers [25], [20]–[22], and the

method presented in [3]. Both of them have been applied to the Kuramoto-

Sivashinsky equation. In [10] authors obtained some rigorous numerics proto-

type results for a non-stationary PDE problem using the Finite Element basis.

Related work regarding a rigorous numerics study of the global dynamics of PDE

includes [6], and [15]. In [8] the viscous Burgers equation with zero forcing was

used as an illustration of a computer aided technique of proving existence of

stationary solutions.

It has been shown that (1.1) belongs to the class of dissipative PDEs (dPDEs)

possessing inertial manifolds [18]. Using our technique we demonstrate that the

global attractor exhibited by (1.1) is in fact a unique stable fixed point. In [9] it

was shown that for any viscosity and the time independent forcing the attractor

of (1.1) is a single point. This is a stronger than ours result, but the methods

in present paper have also some advantages. Contrary to the approach from [9]

we are not invoking any unconstructive functional analysis techniques, thus the

speed of convergence could be obtained from our construction. Moreover, we

are not using the maximum principle, so our method should apply to a class of

systems of PDEs.

To establish the existence of an attracting fixed point locally, we use the

computer techniques from [20]. We construct a small neighbourhood of a candi-

date for the fixed point and prove the existence and uniqueness of a fixed point

within said neighbourhood by calculating an explicit upper bound for the log-

arithmic norm. In case of the negative logarithmic norm, we claim that there

exists a locally attracting fixed point. On the other hand, we show the global

existence of solutions by constructing trapping regions inspired by the analogical

sets constructed for the Navier-Stokes equations [16], [7], see also [24].

We link those results by constructing an absorbing set, which captures any

initial condition after a finite time. Then we integrate the obtained absorbing

Viscous Burgers Equation with Constant Forcing 657

set forward in time rigorously until it is mapped into a small region with the

established existence of an attracting fixed point within. By doing so, we verify

that any initial condition is in the basin of attraction of the fixed point. The

aforementioned elements applied together give an original technique that allows

to extend the property of attractiveness obtained locally on a small region to

a global fact. We would like to stress that our method concerns the evolution of

dPDEs in time, not only the stationary problem. Moreover, it is worth point-

ing out that we do not restrict ourselves by assuming zero spatial average, i.e.∫
Q
u(t, x) dx = 0 on a domain Q, which was often assumed in related work, see

for instance [18] or [8]. Our theory can be applied when zero is replaced by any

number. We remark that exclusively in the case of non-zero spatial average the

equation (1.1) admits travelling wave-like solutions.

An example result obtained with the presented method is the following

Theorem 1.1. For any ν ∈ [2, 2.1] and

f ∈
{
x 7→ 1.6 cos 2x−2 sin 3x+

3∑
k=1

βk sin kx+ γk cos kx, βk, γk ∈ [−0.03, 0.03]

}
there exists a steady state solution of (1.1), which is unique and attracts globally

any initial data u0 satisfying u0 ∈ C4 and∫ 2π

0

u0(x) dx = π.

Other examples are given in Section 7. The function 1.6 cos 2x − 2 sin 3x,

added to the forcing was chosen as an example to show that our method is not

limited to the simpler case of low energy forcings. Note that Theorem 1.1 covers

a whole set of forcing functions within a “ball”
3∑
k=1

βk sin kx+ γk cos kx, βk, γk ∈

[−0.03, 0.03]. To achieve this we used the interval arithmetic in a way to be

explained later.

By using the presented algorithm we could prove a more general case, namely

replace in Theorem 1.1 βk, γk with arbitrary continuous functions βk(t), γk(t),

such that βk(t), γk(t) ∈ [−0.03, 0.03] for t ≥ 0. This will be exploited in the

next paper [5] where we prove existence of globally attracting periodic orbits for

viscous Burgers equation with nonautonomous forcing.

This paper is dependent on [22] and [20], we recall only crucial definitions

and results from the previous works and focus on the new elements. Proper

references are always provided whenever necessary. We are convinced that the

presented techniques are applicable to higher dimensional dPDEs, including the

Navier–Stokes equations, and we will address this problem in our forthcoming

papers.

658 J. Cyranka

We organize the paper as follows: the first part comprises the theory and

it is concluded by the proof of Theorem 1.1 in Section 7. A presentation and

discussions of the algorithms follows.

2. The viscous Burgers equation

As the viscous Burgers equation we consider the following PDE:

∂u

∂t
+ u · ∂u

∂x
− ν 4 u = 0 in Ω, t > 0,

where ν is a positive viscosity constant. The equation was proposed by Bur-

gers (1948) as a mathematical model of turbulence. Later on it was successfully

showed that the Burgers equation models certain gas dynamics (Lighthill (1956))

and acoustic (Blackstock (1966)) phenomena, see e.g. [19]. We consider the equa-

tion on the real line Ω := R with periodic boundary conditions and a constant

in time forcing f , i.e. u : R× [0, T)→ R, f : R→ R,

ut + u · ux − νuxx = f(x), x ∈ R, t ∈ [0, T),(2.1)

u(x, t) = u(x+ 2kπ, t), x ∈ R, t ∈ [0, T), k ∈ Z,(2.2)

f(x) = f(x+ 2kπ), x ∈ R, k ∈ Z,(2.3)

u(x, 0) = u0(x), x ∈ R.(2.4)

2.1. The viscous Burgers equation in the Fourier basis. In this sec-

tion we rewrite (2.1) using the Fourier basis of 2π periodic functions {eikx}k∈Z.

From now on we assume that all functions we use are sufficiently regular to be

expanded in the Fourier basis and all necessary Fourier series converge.

Definition 2.1. Let u : R→ R be a 2π periodic function. We call {ak}k∈Z
the Fourier modes of u, where ak ∈ C satisfies:

(2.5) ak =
1

2π

∫ 2π

0

u(x)e−ikx dx.

Moreover, the following equality holds:

(2.6) u(x) =
∑
k∈Z

ake
ikx, x ∈ R.

Definition 2.2. Let - · - : R→ R be given by

- a -:=

|a| if a 6= 0,

1 if a = 0.

Lemma 2.3. Let γ > 1. Assume that |ak| ≤ M/- k -γ for k ∈ Z. If n ∈ N
is such that γ − n > 1, then the function u(x) =

∑
k∈Z

ake
ikx belongs to Cn. The

series
∂su

∂xs
(x) =

∑
k∈Z

ak
∂s

∂xs
eikx

Viscous Burgers Equation with Constant Forcing 659

converges uniformly for 0 ≤ s ≤ n.

Lemma 2.4. Let u0 be an initial value for the problem (2.1)–(2.4) and f be

a forcing. Then (2.1)–(2.4) rewritten in the Fourier basis becomes:

dak
dt

= −i k
2

∑
k1∈Z

ak1 · ak−k1 + λkak + fk, k ∈ Z,(2.7)

ak(0) =
1

2π

∫ 2π

0

u0(x)e−ikx dx, k ∈ Z,(2.8)

fk =
1

2π

∫ 2π

0

f(x)e−ikx dx, k ∈ Z,(2.9)

λk = −νk2.(2.10)

For the proof refer [2].

Definition 2.5. For any given number m > 0 the m-th Galerkin projection

of (2.7) is

(2.11)
dak
dt

= −i k
2

∑
|k−k1|≤m
|k1|≤m

ak1 · ak−k1 + λkak + fk, |k| ≤ m.

Note that in our case {ak}k∈Z are not independent. The solution u of (2.1)–

(2.4) is real valued, which implies that

(2.12) ak = a−k.

Note that condition (2.12) is invariant under all Galerkin projections (2.11) as

long as fk = f−k.

In Section 3 and Section 4 we will assume that the initial condition for (2.7)–

(2.10) satisfies

(2.13)
1

2π

∫ 2π

0

u0(x) dx = α, for a fixed α ∈ R.

We will require additionally that f0 = 0, and then (2.13) implies that a0(t) is

constant in time, namely

(2.14) a0 = α.

Note that condition (2.14) is invariant under all Galerkin projections (2.11) as

long as f0 = 0.

3. Analytic arguments

In this section we provide some analytic arguments that we use in proving

the global existence and regularity results for solutions of (2.1)–(2.4).

660 J. Cyranka

3.1. Energy as Lyapunov function.

Definition 3.1. Energy of (2.7) is given by the formula

(3.1) E({ak}) =
∑
k∈Z
|ak|2.

Energy of (2.7) with a0 excluded is given by the formula

(3.2) E({ak}) =
∑

k∈Z\{0}

|ak|2.

The following lemma provides an argument for the statement that the energy

of (2.7) is being absorbed by a ball whose radius depends on the forcing and

the viscosity constant. Basing on this argument, later on, we will construct

a trapping region for any Galerkin projection of (2.7). In particular, any trapping

region constructed encloses the absorbing ball.

Lemma 3.2. For any solution of (2.7) or a Galerkin projection of (2.7) such

that a−k = ak the following equality holds

(3.3)
dE({ak})

dt
= −2ν

∑
k∈Z

k2|ak|2 +
∑
k∈Z

f−k · ak +
∑
k∈Z

fk · a−k.

Proof. Using the symmetry of the index in (3.1) we rewrite

dE

dt
=
∑
k∈Z

(
dak
dt
· a−k

)
+
∑
k∈Z

(
da−k
dt
· ak
)

=
∑
k∈Z
−ik

2

∑
k1∈Z

ak1 · ak−k1 · a−k

+
∑
k∈Z

i
k

2

∑
k1∈Z

ak1 · a−k−k1 · ak

− 2ν
∑
k∈Z

k2ak · a−k +
∑
k∈Z

f−k · ak +
∑
k∈Z

fk · a−k

=
∑
k∈Z
−ik

∑
k1∈Z

ak1 · ak−k1 · a−k

− 2ν
∑
k∈Z

k2ak · a−k +
∑
k∈Z

f−k · ak +
∑
k∈Z

fk · a−k.

We want to show that∑
|k|≤N

k
∑
|k1|≤N
|k−k1|≤N

ak1 · ak−k1 · a−k = 0.

In order to facilitate the proof explanation we denote

SN,k :=
∑
|l|≤N
|k−l|≤N

ak−l · al

Viscous Burgers Equation with Constant Forcing 661

and

SN :=
∑
|k|≤N

k
∑
|k1|≤N
|k−k1|≤N

ak1 · ak−k1 · a−k =
∑
|k|≤N

kSN,ka−k.

We proceed by induction, firstly we check if for N = 1 the thesis is fulfilled

S1 = −1(a−1 · a0 · a1 + a0 · a−1 · a1) + 1(a1 · a0 · a−1 + a0 · a1 · a−1) = 0.

We verify the induction step SN−1 = 0⇒ SN = 0

SN = SN−1 +
∑

aN · a−N+k · a−k2k, 0 < k < N, (SI)

a−N · ak+N · a−k2k, −N < k < 0, (SII)

SN,−N · aN (−N), k = −N, (SIII)

SN,N · a−NN, k = N, (SIV)

we match elements with the same modes from (SI) and (SIII). Let e(N) = 1 for

N even and e(N) = 0 for N odd,∑
0<k<N

aN · ak−N · a−k(2k −N)

=
∑

0<k<N/2

aN · ak−N · a−k(2k −N +N − 2k) + e(N)aN · a2
−N/2(N −N) = 0.

When elements with the same modes from (SII) and (SIV) are matched analo-

gously as above the result is also zero. After substitution all that is left is

SN = SN−1 + 2NaN · a0 · a−N − 2Na−N · a0 · aN = 0. �

3.2. A trapping region for (2.7). In this section we provide a forward

invariant set for each Galerkin projection of (2.7), called the trapping region

. If we consider an arbitrary initial condition that is inside a trapping region,

then the corresponding trajectory remains in this set in the future. This is

an argument for the existence of solutions of each Galerkin projection of (2.7)

within a trapping region. Moreover, due to the existence of a trapping region, the

solution of (2.7), obtained by passing to the limit, conserves the initial regularity.

We use this fact to argue that a solution of (2.7)–(2.10) with sufficiently regular

initial data exists for all times, is unique, and is a classical solution of (2.1)–(2.4).

Calculations performed in this section were inspired by the trapping regions built

for the Navier–Stokes equations, see [16] and [7].

Notation. Let l2(Z) =
{
{ak}k∈Z :

∑
|ak|2 <∞

}
, where ak ∈ C for k ∈ Z.

In the sequel the space l2(Z) will be denoted by H. We equip H with the

standard scalar product. Let m > 0, we define Pm(H) to be C2m+1.

Formally an element of a Galerkin projection (2.11) is a finite sequence. In

the sequel we will use the following embedding, and with some abuse of notation

662 J. Cyranka

we will use the same symbol to denote the element of infinite dimensional spaceH

Pm(H) 3 {a−m, . . . , a0, . . . , am}

≡ {. . . , 0, . . . , 0, a−m, . . . , a0, . . . , am, 0, . . . , 0, . . .} ∈ H.

In consequence we assume the inclusion Pm(W) ⊂W , for all W ⊂ H.

Lemma 3.3. Let {ak}k∈Z ∈ H, Nk := −i(k/2)
∑
k1∈Z

ak1 · ak−k1 . Assume that

there exists C > 0 and s > 1/2 such that {ak}k∈Z satisfy |ak| ≤ C/- k -s, k ∈ Z.

Then

|Nk| ≤

√
E({ak})C

(
2s−1/2 +

2s−1

√
2s− 1

)
|k|s−3/2

, k ∈ Z \ {0}.

Proof. In order to prove the bound for Nk, we split Nk = N I
k + N II

k , and

bound N I
k and N II

k separately

Case 1. First, we bound the following sum N I
k = −i(k/2)

∑
k1

ak1 · ak−k1 ,

where |k1| ≤ |k|/2

|N I
k | ≤

∑
|k1|≤|k|/2

1

2
|k||ak1 ||ak−k1 | ≤

∑
|k1|≤|k|/2

1

2
|k| C

|k − k1|s
|ak1 |

≤ 2s−1C

|k|s−1

√ ∑
|k1|≤|k|/2

|ak1 |2
√ ∑
|k1|≤|k|/2

1 ≤
2s−1
√

2
√
E({ak})C

|k|s−3/2
.

Case 2. Second, we bound the remaining part N II
k = −i(k/2)

∑
k1

ak1 · ak−k1 ,

where |k1| > |k|/2

|N II
k | ≤

∑
|k1|>|k|/2

1

2
|k||ak1 ||ak−k1 | ≤

1

2
|k|C

∑
|k1|>|k|/2

1

|k1|s
|ak−k1 |

≤ 1

2
|k|C

√√√√ ∑
|k1|>|k|/2

1

|k1|2s

√ ∑
|k1|>|k|/2

|ak−k1 |2

≤ 1

2
|k|
√
E({ak})C

√
22s

(2s− 1)|k|2s−1
=

√
E({ak})C

2s−1

√
2s− 1

|k|s−3/2
.

We used the following estimation due to the convexity∑
|k1|>|k|/2

1

|k1|2s
< 2

∫ ∞
|k|/2

1

r2s
dr = 2

[
− 1

(2s− 1)r2s−1

]∞
|k|/2

=
22s

(2s− 1)|k|2s−1
.

After summing together Cases 1 and 2, for any k ∈ Z \ {0}, holds:

|Nk| ≤ |N I
k |+ |N II

k | =

√
E({ak})C

(
2s−1/2 +

2s−1

√
2s− 1

)
|k|s−3/2

. �

Viscous Burgers Equation with Constant Forcing 663

Theorem 3.4. Let {ak}k∈Z ∈ H, α ∈ R, J > 0, s > 1/2, E0 = E({fk})/ν2,

Ẽ > E0, D = 2s−1/2 + 2s−1/
√

2s− 1, C >
√
ẼNs and

N > max

{
J,

(√
Ẽ + α2D

ν

)2}
.

Assume that {fk} satisfies fk = f−k, fk = 0 for |k| > J and f0 = 0. Then

W0(Ẽ , N,C, s, α) =

{
{ak}

∣∣∣∣ E({ak}) ≤ Ẽ , |ak| ≤
C

|k|s
for |k| > N

}
is a trapping region for each Galerkin projection of (2.7) restricted to the inva-

riant subspace given by ak = a−k and a0 = α.

Proof. We first show that

(3.4) if E({ak}) > E0 =
E({fk})
ν2

then
dE({ak})

dt
< 0.

Under the assumption f0 = 0 we have∑
k∈Z
|f−k||ak|+

∑
k∈Z
|fk||a−k| =

∑
k∈Z\{0}

|f−k||ak|+
∑

k∈Z\{0}

|fk||a−k|

and da0/dt = 0, the latter implies that dE/dt = dE/dt.
Taking the square root of E({ak}) > E({fk})/ν2 gives

ν
√
E({ak}) >

√
E({fk}),

multiplying both of the sides by 2
√ ∑
k∈Z\{0}

|ak|2 gives

2ν
∑

k∈Z\{0}

|ak|2 > 2

√ ∑
k∈Z\{0}

|fk|2
√ ∑
k∈Z\{0}

|ak|2.

Moreover, the following inequalities are satisfied

2ν
∑
k∈Z

k2ak · a−k ≥ 2ν
∑

k∈Z\{0}

|ak|2 > 2

√ ∑
k∈Z\{0}

|fk|2
√ ∑
k∈Z\{0}

|ak|2

≥
∑

k∈Z\{0}

|f−k||ak|+
∑

k∈Z\{0}

|fk||a−k|.

Simply, the linear term dominates the forcing term in (3.3), i.e.

(3.5) 2ν
∑
k∈Z

k2ak · a−k >
∑

k∈Z\{0}

|f−k||ak|+
∑

k∈Z\{0}

|fk||a−k|.

The condition (3.5) is sufficient to satisfy (3.4).

Next observe that the condition |ak| ≤ C/|k|s is satisfied for all {ak} ∈ W0

and k ∈ Z\{0}. Since E({ak}) ≤ Ẽ and |ak| ≤
√
Ẽ for k 6= 0, |ak| ≤

√
Ẽ ≤ C/|k|s

because C >
√
ẼNs.

Now, we shall check if the vector field points inwards on ∂W0. For {ak} ∈
∂W0 such that E({ak}) = Ẽ and Ẽ > E({fk})/ν2 vector field points inwards

664 J. Cyranka

from (3.4). Let us pick a point {ak}k∈Z ∈ ∂W such that |ak| = C/|k|s for

some |k| > N , and perform calculations to check if the diminution condition

d|ak|/dt < 0 holds. Observe that E({ak}k∈Z) ≤ Ẽ+α2 and we apply Lemma 3.3

with E({ak}k∈Z) replaced by Ẽ + α2.

d|ak|
dt

< −ν|k|2 C

|k|s
+
D
√
Ẽ + α2C

|k|s− 3
2

< 0,

ν|k|2 C

|k|s
>
D
√
Ẽ + α2C

|k|s−3/2
, ν

√
|k| > D

√
Ẽ + α2, |k| >

(
D
√
Ẽ + α2

ν

)2

,

d|ak|/dt < 0 holds if |k| > D2(Ẽ + α2)/ν2. The proof is complete because

|k| > N > D2(Ẽ + α2)/ν2. �

4. Global results

Definition 4.1. The subspace H ⊂ H is defined by

H :=

{
{ak} ∈ H : there exists 0 ≤ C <∞ such that |ak| ≤

C

- k -4
for k ∈ Z

}
.

Notation. Let l > 0, we define Pl(H) to be C2l+1. From now on by ϕl(t, x)

we denote the solution of l-th Galerkin projection of (2.7) at a time t > 0,

with an initial value x ∈ Pl(H). By {ak}|k|≤l we denote an initial condition

x ∈ Pl(H). The operator Nk is the nonlinear part of (2.7), and is defined by

Nk({ak}k∈Z) := −i(k/2)
∑
k1∈Z

ak1 · ak−k1 for k ∈ Z. For a sequence of complex

numbers {ck}k∈Z let ck,j denotes the j-th component of ck for k ∈ Z and j = 1, 2,

complex numbers are considered as elements of R2 here.

Let Pl(H) 3 {alk(t)}|k|≤l := ϕl(t, {ak}|k|≤l), t > 0, l > 0. Observe that

{alk(t)}|k|≤l is well defined, as solutions for each Galerkin projection of (2.7)

exist for all times t > 0 due to Theorem 3.4 (existence of a trapping region) and

are unique due to the fact that (2.11) is a finite system of ODEs with a locally

Lipschitz right-hand side. We will drop the index l when it is known either from

the context or irrelevant in the context.

Lemma 4.2. Let α ∈ R, J > 0, M1 ≥ 0, E0 = E({fk})/ν2, Ẽ > E0. Assume

that {fk} satisfies fk = f−k, fk = 0 for |k| > J and f0 = 0. Let H ⊃ W be

a trapping region for l-th Galerkin projection of (2.7) restricted to the invariant

subspace given by ak = a−k and a0 = α for all l > M1. There exists a finite

time t1 = t1(W) ≥ 0 such that E(ϕl(t1, Pl({ak}k∈Z))) ≤ Ẽ holds uniformly for

all {ak}k∈Z ∈W and l > M1.

Proof. Let us take {âk}k∈Z from the boundary of W such that

E({ak}k∈Z) ≤ E({âk}k∈Z) for all {ak}k∈Z ∈W .

Viscous Burgers Equation with Constant Forcing 665

Let E({âk}k∈Z) = EI be the initial energy. It is enough to take either t1 = 0 if

EI ≤ Ẽ or

t1(W) =
1

2νε
ln
EI
Ẽ

if EI > Ẽ , where ε = (1−
√
E0/Ẽ).

To see this, we calculate in a similar fashion as in the proof of Theorem 3.4.

Let EI > Ẽ , by Lemma 3.2 and the assumption that f0 = 0 (observe that in this

case dE/dt = dE/dt, because a0 is a constant) we have

dE
dt
≤ −2νE + 2

√
E
√
E({f}) = −2νE

(
1−

√
E({f})
ν
√
E

)
≤ −2νE

(
1−

√
E0

Ẽ

)
,

therefore by Gronwall’s inequality

E(t) ≤ e−2νt(1−
√
E0/Ẽ)EI .

We set t1 = t, where t satisfies e−2νεtEI = Ẽ . The time t1 is uniform for

the trapping region W , because EI is the maximal energy within the trapping

region W . �

Lemma 4.3. Let M1 ≥ 0, k ∈ Z \ {0}, j = 1, 2, λk be the k-th eigenvalue

(2.10), H ⊃ W be a trapping region for l-th Galerkin projection of (2.7) for all

l > M1. The numbers fk ∈ C, Nk ∈ C and ak ∈ C are considered as elements

of R2. Assume that N±k,j ∈ R2 are bounds such that

(Nk,1({ak}k∈Z), Nk,2({ak}k∈Z)) ∈ [N−k,1, N
+
k,1]× [N−k,2, N

+
k,2]

for all {ak}k∈Z ∈ W . Then, for any ε > 0, there exists a finite time t̂ > 0

such that, for all l > max {M1, |k|} and t ≥ t̂ alk(t) with any initial condition in

Pl(W), satisfies

(alk,1(t), alk,2(t)) ∈ [b−k,1, b
+
k,1]× [b−k,2, b

+
k,2] + [−ε, ε]2,

where b±k,j = (N±k,j + fk,j)/−λk.

Proof. In the calculations we drop the index l denoting the Galerkin pro-

jection dimension and the index j denoting the coordinate for better clarifi-

cation, for instance instead of alk,j we write ak. We perform the calculations

for the first and the second component simultaneously; thus, we finally obtain

two values tk,1 > 0 and tk,2 > 0. For any Galerkin projection of (2.7), from

dak/dt ≤ λkak +N+
k + f+

k , dak/dt ≥ λkak +N−k + f−k it follows that

ak(t) ≥ (a−k − b
−
k)eλkt + b−k , ak(t) ≤ (a+

k − b
+
k)eλkt + b+k ,

where a±k are bounds such that (ak,1, ak,2) ∈ [a−k,1, a
+
k,1]× [a−k,2, a

+
k,2], which exist

as the initial condition is contained in a compact trapping region.

666 J. Cyranka

Because λkt = −νk2t < 0 for any t > 0 (k ∈ Z\{0} by assumption) it follows

that for a sufficiently large time tk > 0 we have (|a+
k − b

+
k |+ |a

−
k − b

−
k |)eλkt ≤ ε

for any t ≥ tk. It is enough to take

tk = − ln
ε

(|a+
k − b

+
k |+ |a

−
k − b

−
k |)

/
νk2.

Finally t̂ := max{tk,1, tk,2}. �

Lemma 4.4. Let J > 0, M1 ≥ 0, H ⊃ W be a trapping region for l-th

Galerkin projection of (2.7) for all l > M1. Assume that Ca, sa are numbers

such that

|ak| ≤
Ca
|k|sa

for |k| > M1, and for all {ak} ∈W.

Assume that {fk} satisfies fk = 0 for |k| > J , f0 = 0, and CN , sN are numbers

such that

|Nk({ak}k∈Z)| ≤ CN
|k|sN

for |k| > M1.

Then for any ε > 0 there exists a finite time t̂ ≥ 0 such that for all l > M1 and

t ≥ t̂ {alk(t)}|k|≤l with any initial condition in Pl(W) satisfy

|alk(t)| ≤ Cb + ε

|k|sb
for |k| > M1,

where Cb =
(
CN + max

0<|k|≤J
{|fk||k|sN }

)/
ν, sb = sN + 2.

Proof. We will use the same notation as in Lemma 4.3. For any Galerkin

projection of (2.7) from the fact that

dalk
dt
≤ λk

(
alk +

N+
k + f+

k

λk

)
and

dalk
dt
≥ λk

(
alk +

N−k + f−k
λk

)
,

it follows

alk(t) ≤
(
Ca
|k|sa

− Cb
|k|sb

)
eλkt +

Cb
|k|sb

,

alk(t) ≥
(
− Ca
|k|sa

+
Cb
|k|sb

)
eλkt − Cb

|k|sb
,

for |k| > M1. Due to the fact that sb > sa

|alk(t)| ≤ Ca(kmax(t))sb−saeλkmax(t)t + Cb
|k|sb

, |k| > M1

for all l > M1 and t > 0, where Cb =
(
CN + max

0<|k|≤J
{|fk||k|sN }

)/
ν, sb = sN +2,

kmax(t) is the value at which the maximum of ft(k) = Cak
sb−saeλkt is attained.

Analogically, for a sufficiently large time tF > 0

Ca(kmax(t))sb−saeλkmax(t)t ≤ ε, t ≥ tF ,

Viscous Burgers Equation with Constant Forcing 667

therefore

|alk(t)| ≤ Cb + ε

|k|sb
, t ≥ tF , l > M1.

Finally, the obtained time tF is uniform with respect to the projection dimen-

sion l. �

Lemma 4.5. Let Ê > 0. The following estimate holds

|Nk({ak}k∈Z)| ≤ 1

2
|k|Ê

for all {ak}k∈Z ∈ {{ak}k∈Z ∈ H | E({ak}k∈Z) ≤ Ê}.

Proof. Let {ak}k∈Z ∈ {{ak}k∈Z ∈ H | E({ak}k∈Z) ≤ Ê}. We start with the

easy estimate |Nk({ak}k∈Z)| ≤ (|k|/2)
∑
k1∈Z
|ak−k1 ||ak1 |, by the Cauchy–Schwarz

inequality

|Nk({ak}k∈Z)| ≤ 1

2
|k|
√∑
k1∈Z
|ak1 |2

√∑
k1∈Z
|ak−k1 |2,

which is the following energy estimate |Nk({ak}k∈Z)| ≤ |k|Ê/2. �

Now, we shall introduce the absorbing sets. For any initial condition there

exists a finite time after which the solutions of Galerkin projections are trapped

in an absorbing set. We use absorbing sets as a tool for studying the global

dynamics of (2.7).

Definition 4.6. Let M1 > 0. A set A ⊂ H is called the absorbing set for

large Galerkin projections of (2.7), if for any initial condition {ak}k∈Z ∈ H there

exists a finite time t1 ≥ 0 such that for all l > M1 and t ≥ t1

ϕl(t, Pl({ak}k∈Z)) ∈ Pl(A).

In what follows we will often call the absorbing set for large Galerkin projec-

tions of (2.7) simply the absorbing set.

In the next result, to show the existence of an absorbing set, we construct

analytically an absorbing set. Furthermore, we construct absorbing sets with

any order of polynomial decay. Later on, in the context of a computer assisted

proof of the main theorem, we will construct an absorbing set using the interval

arithmetic. Accomplishing this task requires the established existence of an

absorbing set with a sufficiently large order of polynomial decay.

668 J. Cyranka

Lemma 4.7. Let α ∈ R, ε > 0, J > 0, M1 ≥ 0, E0 = E({fk})/ν2, Ẽ > E0.

Assume that {fk} satisfies fk = f−k, fk = 0 for |k| > J and f0 = 0. Put

si =
i

2
for i ≥ 2,

Di = 2si−1/2 +
2si−1

√
2si − 1

for i ≥ 2,

C2 = ε+

(
1

2
(Ẽ + α2) + max

0<|k|≤J

|fk|
|k|

)/
ν,

Ci = ε+

(
Ci−1

√
Ẽ + α2Di−1 + max

0<|k|≤J
|k|si−2|fk|

)/
ν for i > 2.

Then, for all i ≥ 2,

H ⊃Wi(Ẽ ,M1, ε, α)

:=

{
{ak}k∈Z

∣∣∣∣ E({ak}k∈Z) ≤ Ẽ , |ak| ≤
Ci
|k|si

for |k| > M1

}
is an absorbing set for large Galerkin projections of (2.7) restricted to the inva-

riant subspace given by ak = a−k and a0 = α.

Proof. Let Ẽ > E0, {âk}k∈Z be an arbitrary initial condition for (2.7)–

(2.10), Emax := max{E({âk}k∈Z), Ẽ}. Let C0 ≥ 0 and s0 > 0 be constants such

that

(4.1) W0 :=

{
{ak}k∈Z

∣∣∣∣ E({ak}k∈Z) ≤ Emax, |ak| ≤
C0

- k -s0

}
is a trapping region for each Galerkin projection of (2.7) enclosing {âk}k∈Z. This

trapping region exists due to Theorem 3.4. Note that a trapping region can be

scaled to make it enclose an arbitrary sufficiently smooth initial condition. It

follows from Lemma 4.2 that there exists a finite time t1 ≥ 0 such that for all

{ak}k∈Z ∈W0 and l > M1

(4.2) E(ϕl(t1, Pl({ak}k∈Z))) ≤ Ẽ .

We define W1 := W0 ∩ {{ak}k∈Z | E({ak}k∈Z) ≤ Ẽ}. From (4.2) and that W0,

W1 are trapping regions we immediately have that ϕl(t, Pl({ak}k∈Z) ∈ W1 for

all {ak}k∈Z ∈W0, t ≥ t1 and l > M1. Using Lemma 4.5 we bound the nonlinear

part

(4.3) |Nk({ak}k∈Z)| ≤ 1

2
|k|(Ẽ + α2) for all {ak}k∈Z ∈W1.

It follows from Lemma 4.4 that there exists a finite time t2 ≥ t1 such that for

all t ≥ t2 and l > M1, {alk(t)}|k|≤l with any initial condition in Pl(W1) satisfy

(4.4) |alk(t)| ≤ C2

|k|
for |k| > M1.

Viscous Burgers Equation with Constant Forcing 669

It is important to start with the energy estimate (4.3) to bound the nonlinear

part Nk because the goal is to estimate |ak| uniformly with respect to C0 and

s0 (4.1). We emphasize that C2 from (4.4) does not depend on C0 and s0. Having

the bound (4.4), we construct the following absorbing set

W2 :=

{
{ak}k∈Z

∣∣∣∣ E({ak}k∈Z) ≤ Ẽ , |ak| ≤
C2

|k|
, for |k| > M1

}
.

Due to Lemma 3.3 the following estimate holds

|Nk({ak}k∈Z)| ≤ C2

√
Ẽ + α2D2

|k|−1/2
,

for all {ak}k∈Z ∈W2. Due to Lemma 4.4 again there exists a finite time t3 ≥ t2
such that for all t ≥ t3 and l > M1, {alk(t)}|k|≤l with any initial condition in

Pl(W2) satisfy

|alk(t)| ≤ C3

|k|3/2
for |k| > M1,

where

C3 = ε+

(
C2

√
Ẽ + α2D2 + max

0<|k|≤J

|fk|
|k|1/2

)/
ν.

Having this bound, we construct the following absorbing set

W3 :=

{
{ak}k∈Z

∣∣∣∣ E({ak}k∈Z) ≤ Ẽ , |ak| ≤
C3

|k|3/2
for |k| > M1

}
.

Note the gain of 1/2 in the order of polynomial decay of {ak}k∈Z in W3 compared

to W2. From applying Lemmas 3.3 and 4.4 further we obtain a sequence of times

t3 < t4 < . . . < tn < . . . such that

|alk(t3)| ≤ C3

|k|s3
, . . . , |alk(tn)| ≤ Cn

|k|sn
, . . . , for |k| > M1,

with si = i/2, Ci = ε +
(
Ci−1

√
Ẽ + α2Di−1 + max

0<|k|≤J
|k|si−2|fk|

)/
ν. The

obtained Wi, i ≥ 2 are absorbing sets for large Galerkin projections of (2.7),

which follows from the construction and that Ci for all i ≥ 2 depend on the

energy Ẽ and α only. �

Remark 4.8. Assume the same as in Lemma 4.7. The inclusion Wi ⊂ H

holds for all i ≥ 8, where Wi is an absorbing set proved to exist in Lemma 4.7.

Lemma 4.9. Let k ∈ Z \ {0}, ε > 0, λk denotes the k-th eigenvalue (2.10).

Let H ⊃ A be an absorbing set for large Galerkin projections of (2.7). The

numbers fk ∈ C, Nk ∈ C and ak ∈ C are considered as elements of R2. Assume

that N±k ∈ R2 are bounds such that

(Nk,1({ak}k∈Z), Nk,2({ak}k∈Z)) ∈ [N−k,1, N
+
k,1]× [N−k,2, N

+
k,2]

670 J. Cyranka

for all {ak}k∈Z ∈ A. Then A∩{{ak}k∈Z | ak ∈ [b−k,1, b
+
k,1]× [b−k,2, b

+
k,2] + [−ε, ε]2}

is also an absorbing set for large Galerkin projections of (2.7), where b±k,j =

(N±k,j + fk,j)/−λk, for j = 1, 2.

Proof. Immediate consequence of Lemma 4.3. �

5. General method of self-consistent bounds

The same symbols as in the preceding part are used in a more general context.

For the purpose of the presented work we call a dissipative PDE a PDE of the

following type

(5.1)
du

dt
= Lu+N(u,Du, . . . ,Dru) + f = F (u),

where u(x, t) ∈ Rn, x ∈ Td, (Td = (R/2π)d is a d-dimensional torus), L is a

linear operator, N a polynomial and by Dsu we denote the collection of s-th

order partial derivatives of u. The right-hand side contains a constant in time

forcing function f . We require that L is diagonal in the Fourier basis {eikx}k∈Zd

Leikx = λke
ikx

and the eigenvalues λk satisfy

λk = −ν(|k|)|k|p,(5.2)

0 < ν0 ≤ ν(|k|) ≤ ν1, for |k| > K−,(5.3)

p > r,(5.4)

for some v0 > 0, v1 ≥ v0 and K− ≥ 0, r is the maximal order of derivatives

appearing in the nonlinear part (5.1), | · | is the Euclidean norm.

5.1. Self-consistent bounds. We recall, in the context of dPDEs, the def-

inition of self-consistent bounds from [22]. Let H be a Hilbert space, actually L2

or one of its subspaces in the context of dPDEs. We assume that a domain of F ,

the right hand side of (5.1), is dense in H. By a solution of (5.1) we understand

a function u : [0, T)→ dom(F) such that u is differentiable and (5.1) is satisfied

for all t ∈ [0, T) and T is a maximal time of the existence of solution. We assume

that there is a set I ⊂ Zd and a sequence of subspaces Hk ⊂ H for k ∈ I such

that dimHk = d1 < ∞, Hk and Hk′ are mutually orthogonal for k 6= k′ and

H =
⊕
k∈I

Hk. Let Ak : H → Hk be the orthogonal projection onto Hk, for each

u ∈ H holds u =
∑
k∈I

uk =
∑
k∈I

Aku. Analogously if B is a function with the

range in H, then Bk(u) = AkB(u).

We assume that a a metric space (T, ρ) is provided, for X ⊂ T by X we

denote the closure of X, by ∂X we denote the boundary of X. For n > 0 we

set Xn =
⊕

|k|≤n, k∈I
Hk, Yn = X⊥n . By Pn : H → Xn and Qn : H → Yn we

Viscous Burgers Equation with Constant Forcing 671

denote the orthogonal projections onto Xn and Yn respectively, T ⊃ B(c, r) =

{x ∈ T : ρ(c, x) < r} denotes a ball with the centre at c and the radius r.

Definition 5.1 ([22, Definition 2.1]). We say that F : H ⊃ dom(F)→ H is

admissible if, for any n > 0 such that dimXn > 0, the following conditions are

satisfied:

(a) Xn ⊂ dom(F),

(b) PnF : Xn → Xn is a C1 function.

Definition 5.2. ([22, Definition 2.3]) Assume F is an admissible function.

Let m,M ∈ R with m ≤ M . Consider an object consisting of: a compact set

W ⊂ Xm and a sequence of compact sets Bk ⊂ Hk for |k| > m, k ∈ I. We define

the conditions C1, C2, C3, C4a as follows:

(C1) For |k| > M , k ∈ I holds 0 ∈ Bk.

(C2) Let âk : = max
a∈Bk

‖a‖ for |k| > m, k ∈ I and then
∑

|k|>m, k∈I
â2
k < ∞. In

particular

W ⊕
∏
|k|>m

Bk ⊂ H

and for every u ∈W ⊕
∏

k∈I, |k|>m
Bk holds, ‖Qnu‖2 ≤

∑
|k|>n, k∈I

â2
k.

(C3) The function u 7→ F (u) is continuous on W ⊕
∏

k∈I, |k|>m
Bk ⊂ H.

Moreover, if for k ∈ I, we define

f̂k = max
u∈W⊕

∏
k∈I, |k|>m

Bk

|Fk(u)|,

then
∑
f̂2
k <∞.

(C4a) For |k| > m, k ∈ I Bk is given by (5.5) or (5.6)

Bk = B(ck, rk), rk > 0,(5.5)

Bk =

d1∏
s=1

[a−k,s, a
+
k,s], a−k,s < a+

k,s.(5.6)

Let u ∈ W ⊕
∏
|k|>m

Bk, Fk,s be the s-th component of Fk. Then for |k| > m

holds:

(a) if Bk is given by (5.5) then

uk ∈ ∂Hk
Bk ⇒ (uk − ck|Fk(u)) < 0.

(b) if Bk is given by (5.6) then

uk,s = a−k,s ⇒ Fk,s(u) > 0, uk,s = a+
k,s ⇒ Fk,s(u) < 0.

672 J. Cyranka

Definition 5.3 ([22, Definition 2.4]). Assume F is an admissible function.

Let m,M ∈ R with m ≤ M . Consider an object consisting of: a compact set

W ⊂ Xm and a sequence of compacts Bk ⊂ Hk for |k| > m, k ∈ I. We say

that set W ⊕
∏

k∈I, |k|>m
Bk forms self-consistent bounds for F if conditions (C1),

(C2), (C3) are satisfied. If additionally condition (C4a) holds, then we say that

W ⊕
∏

k∈I, |k|>m
Bk forms topologically self-consistent bounds for F .

We start our approach by replacing a sufficiently regular u and f in (5.1)

by the Fourier series, i.e. u(x, t) =
∑
k∈Zd

ak(t)eikx and f(x) =
∑
k∈Zd

fke
ikx. We

obtain a system of ODEs describing the evolution of the coefficients {ak}k∈Zd ,

where ak is the coefficient corresponding to eikx

(5.7)
dak
dt

= Fk(a) = Lk(a) +Nk(a) + fk = λkak +Nk(a) + fk, k ∈ Zd.

The method works for dPDEs only. The Burgers equation on the real line with

forcing, which is the subject of the case study given in this paper is in fact

a dPDE.

Lemma 5.4. Let ν be the viscosity constant in (2.1), then (2.1) satisfies the

conditions (5.2) with d = 1, r = 1, p = 2, ν(k) = ν, λk = −νk2.

In our approach we solve the system of equations (5.7) instead of (5.1). (5.7)

is defined on l2 =
{
{ak} :

∑
|ak|2 <∞

}
space or one of its subspaces. We

associate ak with the coefficient corresponding to eikx in the Fourier expansion

of u. Assuming that the initial condition u0 ∈ H is sufficiently regular, then (5.1)

and (5.7) are equivalent. In our approach we expand u0 in the Fourier basis to

get the initial value for all the variables {ak(0)}k∈Z . We argue that the solution

of (5.7) is defined for all times t > 0. Moreover, the solution conserves its initial

regularity due to the existence of trapping regions and is, in fact, a classical

solution of (5.1). For the details refer to Section 6 and Section 7.

To establish the notation in the next sections we provide

Definition 5.5. Given an object W ⊕
∏
|k|>m

Bk, W ⊂ Xm and a sequence

of compact sets Bk ⊂ Hk for |k| > m, m,M ∈ R+, m ≤M .

(a) W is called the finite part,

(b)
∏
|k|>m

Bk is called the tail and denoted by T ,

(c)
∏

m<|k|≤M
Bk is called the near tail and denoted by TN ,

(d)
∏
|k|>M

Bk is called the far tail and denoted by TF .

Viscous Burgers Equation with Constant Forcing 673

TN is the finite part of a tail, whereas TF is the infinite part of a tail. In fact

in our approach we use TF of the form

(5.8) TF :=
∏
|k|>M

B(0, C/|k|s), C ∈ R+, s ≥ d+ p+ 1.

First of all, any F in (5.7) is admissible, because any finite truncation of

a l2 series is in the domain of F , and the Galerkin projection of the right-hand

side, being a smooth function, is a polynomial. W ⊕ T ⊂ H with TF defined

in (5.8) satisfies conditions (C1), (C2) and (C3) of Definition 5.2 with I = Zd,
in particular F in (5.7) is a continuous function on W ⊕ T . This property was

proved in [22, Theorem 3.6], i.e. W⊕T forms self-consistent bounds for (5.7) and

equivalently forms a self-consistent bounds for (5.1). It is allowable to associate

the finite part W with the near tail TN , but we keep the distinction because of

the different treatment of both in the algorithm.

We do not address here the question if solutions of a general dPDE (5.1) exist

and are unique as it was thoroughly answered in [22], see [22, Theorem 3.7].

6. Local existence and uniqueness

Regarding local existence and uniqueness we rely on results from [20]. For

the sake of completeness we recall the main theorems. The same symbols as in

the preceding part are used in a more general context.

Definition 6.1. [20, Definition 3.1] A decomposition of H, into into a sum

of subspaces is called a block decomposition of H if the following conditions are

satisfied.

(a) H =
⊕
i

Hi,

(b) for every i hi = dimHi ≤ hmax <∞,

(c) for every i Hi = 〈ei1 , . . . , eihi
〉,

(d) if dimH =∞, then there exists k such that for i > k hi = 1.

Notation. In this section we adopt the notation from [20], namely, we make

a distinction between blocks and one dimensional spaces spanned by 〈ei〉. For

the blocks we use H(i) = 〈ei1 , . . . , eik〉, where (i) = (i1, . . . , ik). The symbol Hi

will always mean the subspace generated by ei. For a block decomposition of H

and block (i), we set dim (i) = dimH(i). For any x ∈ H by x(i) we will denote a

projection of x onto H(i), by P(i) we will denote an orthogonal projection onto

H(i). For x ∈ Rn we set |x| to be the Euclidean norm. We define the norm (the

block-infinity norm) by |x|b,∞ = max
(i)
|P(i)x|.

For any norm || · || on Rn we use the notion of the logarithmic norm of

a matrix.

674 J. Cyranka

Definition 6.2 ([20, Definition 3.4]). Let Q be a square matrix, then we

call

µ(Q) = lim sup
h>0
h→0

||I + hQ|| − 1

h

the logarithmic norm of Q.

Definition 6.3. Let R ⊂ H, R is convex, l > 0, x ∈ Xl, ϕ
l(t, x) be the local

flow inducted by the l-th Galerkin projection of (5.7). We call Pl(R) a trapping

region for the l-th Galerkin projection of (5.7) if ϕl(t, Pl(R)) ⊂ Pl(R) for all

t > 0 or equivalently the vector field on the boundary of Pl(R) points inwards.

Theorem 6.4 ([20, Theorem 3.7]). Assume that R ⊂ H, R is convex and F

satisfies conditions (C1), (C2), (C3). Assume that we have a block decomposition

of H, such that following condition holds:

(Db) there exists l ∈ R such that, for any (i) and x ∈ R,

(6.1) µ

(
∂F(i)

∂x(i)
(x)

)
+

∑
(k), (k)6=(i)

∣∣∣∣ ∂F(i)

∂x(k)
(x)

∣∣∣∣ ≤ l.
Assume that Pn(R) is a trapping region for the n-dimensional Galerkin projection

of (5.7) for all n > M1. Then

(a) (Uniform convergence and existence) For a fixed x0 ∈ R, let xn : [0,∞]→
Pn(R) be a solution of x′ = Pn(F (x)), x(0) = Pnx0. Then xn converges

uniformly in a max-infinity norm on compact intervals to a function

x∗ : [0,∞] → R, which is a solution of (5.7) and x∗(0) = x0. The

convergence of xn on compact time intervals is uniform with respect to

x0 ∈ R.

(b) (Uniqueness within R) There exists only one solution of the initial value

problem (5.7), x(0) = x0 for any x0 ∈ R such that x(t) ∈ R for t > 0.

(c) (Lipschitz constant) Let x : [0,∞] → R and y : [0,∞] → R be solutions

of (5.7), then

|y(t)− x(t)|b,∞ ≤ elt|x(0)− y(0)|b,∞

(d) (Semidynamical system) The map ϕ : R+ × R → R, where ϕ(· , x0) is

a unique solution of the equation (5.7) such that ϕ(0, x0) = x0 defines

a semidynamical system on R, namely:

• ϕ is continuous,

• ϕ(0, x) = x,

• ϕ(t, ϕ(s, x)) = ϕ(t+ s, x).

The following theorem is the main tool used to prove the existence of a locally

attracting fixed point.

Viscous Burgers Equation with Constant Forcing 675

Theorem 6.5 ([20, Theorem 3.8]). The same assumptions on R,F and a

block decomposition H as in Theorem 6.4. Assume that l < 0. Then there exists

a fixed point for (5.7) x∗ ∈ R, unique in R, such that, for every y ∈ R,

|ϕ(t, y)− x∗|b,∞ ≤ elt|y − x∗|b,∞, for t ≥ 0, and lim
t→∞

ϕ(t, y) = x∗.

7. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. The complete algorithm that we

used to prove Theorem 1.1 and other results (7) are demonstrated in Section 10.

This proof is a prototype for any other result that is obtained using the algorithm,

however each case requires construction of different sets. The sets and all the

relevant numbers used in the proof of Theorem 1.1 are presented in Appendix A.

Proof of Theorem 1.1. Let u0 ∈ C4 be an arbitrary initial condition

satisfying
∫ 2π

0
u0(x) dx = π, {ak}k∈Z be the Fourier coefficients of u0, i.e. u0 =∑

ake
ikx. Let A ⊂ H be an absorbing set for large Galerkin projections of

(2.7), which exists due to Lemma 4.7 (for instance W8). Firstly, the existence

of a locally attracting fixed point for (2.7)–(2.10) is established by constructing

a set W̃ ⊕ T ⊂ H satisfying the assumptions of Theorem 6.5, using the interval

arithmetic. This is constructed in step 6 of Algorithm from Section 10. Observe

that W̃ ⊕ T is a trapping region for m-th Galerkin projection of (2.7) for all

m > m̂ and the logarithmic norm (6.1) is bounded from above by l < 0. The

purpose of the notation W̃ ⊕ T is to keep the consistency with the description of

the algorithm used for proving this theorem in Section 10. W̃ ⊕ T satisfies the

conditions (C1), (C2) and (C3) of Definition 5.2, i.e. forms self-consistent bounds

for (2.7), the conditions (C1) and (C2) are satisfied trivially, because H ⊂ H.

The condition (C3) is also satisfied, the right-hand side of (2.7), denoted here

by F , is continuous on W̃ ⊕ T . First, notice that W̃ ⊕ T ⊂ dom(F) because of

the following inequality, let u ∈ W̃ ⊕ T

(7.1) |F (u)k| ≤
D1

|k|5/2
+
νD2

|k|2
≤ D̃

|k|2
, |k| > m̂,

therefore F (u) ∈ H. The continuity of F on W̃ ⊕ T follows from the general

theorem [22, Theorem 3.7]. All the assumptions of [22, Theorem 3.7] are satisfied

here, i.e. (2.7) belongs to the proper class, see Lemma 5.4, and the order of decay

of W̃ ⊕ T is sufficient, see (7.1).

By Theorem 6.5 within W̃ ⊕ T there exists a locally attracting fixed point

for (2.7).

Then, V ⊕ Θ ⊂ H, an absorbing set for large Galerkin projections of (2.7)

satisfying

(7.2) ϕm(t, Pm(V ⊕Θ)) ⊂ Pm
(
W̃ ⊕ T

)
,

676 J. Cyranka

for all t ≥ t̂ and m > m̂, is constructed. This is constructed in Algorithm from

Section 8. The absorbing set V ⊕ Θ forms self-consistent bounds for (2.7) and

thus (7.2) is verified by rigorous integration of V ⊕ Θ forward in time using

Algorithm 9.1 presented hereafter. From (7.2) and the fact that V ⊕ Θ is an

absorbing set for large Galerkin projections of (2.7) it follows that

ϕm(t, Pm({ak}k∈Z)) ∈ Pm
(
W̃ ⊕ T

)
.

after a finite time and for all m > m̂. Therefore {ak}k∈Z is located in the basin of

attraction of the fixed point for (2.7). The sets W̃ ⊕ T and V ⊕Θ are presented

in Appendix A.

To close the proof we will argue that the fixed point for (2.7) is the steady

state solution of (2.1). There exists C > 0 such that the Fourier coefficients

{ak}k∈Z of u0 satisfy

(7.3) |ak| ≤
C

- k -4
.

Let W0 ⊂ H be a trapping region enclosing {ak}k∈Z, and let {ak(t)}k∈Z be

the unique solution of (2.7)–(2.10) existing for all times t > 0, {ak}k∈Z ∈ W0

due to Theorem 6.4. The solution is unique, as the logarithmic norm on W0

is bounded, see e.g. [24]. Moreover, the solution conserves the initial regularity

(7.3). The sequence {ak(t)}k∈Z for t > 0 is a classical solution of (2.7)–(2.10),

as from Lemma 2.3, the condition (7.3) suffices to
∑
ake

ikx and every term

that appears in (2.1) converge uniformly. Therefore, the solution of (2.7)–(2.10)

within W̃ ⊕ T is in fact the classical solution of (2.1)–(2.4), in particular, the

fixed point of (2.7) is the steady state solution of (2.1). �

In the table below we present example results which we obtained using our

algorithm.

ν
∫ 2π

0
u0(x) dx E0 ε m (6.1) l < 1 2 3 4 5

[10,10.1] 14π 0.5 0.001 5 −9.94489 20.06 1041 X X X

[4,4.1] 4π 0.5 0.001 7 −2.65147 61.41 1305 X X X

[2,2.1] π 0.82 0.03 3 −0.162445 3.135 627 X X X

1 0.4π 0.25 0.0001 20 −0.0442416 452.23 452 X X X

0.5 0.1π 0.08 0.0001 20 −0.0456 556.73 629 X X X

0.15 0 0.22 0 40 1340.95 26.19 − X

Table 1. Data from example results

The meaning of the labels in Table 1 is the following: 1 – total execution

time in seconds, 2 – number of integration steps, 3 – if existence of a fixed point

was proved, 4 – if the fixed point is locally attracting, 5 – if the fixed point is

Viscous Burgers Equation with Constant Forcing 677

attracting globally. Order of the Taylor method was 6, time step length was

0.005 in all cases.

For each case we fixed the radius of the energy absorbing ball E0 and chose

at random a forcing f(x) which satisfies E({fk})/ν2 = E0. The forcing f(x)

was defined by a finite number of modes {fk}|k|≤m. We added to each forcing

mode fk the uniform perturbation [fε] := [−ε, ε] × [−ε, ε] (the parameter ε is

also provided in Table 1) in order to perform simultaneously a proof for a ball

of functions.

We would like to stress the fact that the provided cases are only examples

and our program can attempt to prove any case. The package with the program

along with the instruction and all the data from the proofs is available [1].

8. Algorithm for constructing an absorbing set

for large Galerkin projections of (2.7)

The goal of this section is to present an algorithm for constructing a set

V ⊕ Θ ⊂ H, forming self-consistent bounds for (2.7) such that V ⊕ Θ is an

absorbing set for large Galerkin projections of (2.7). It is important to require

that V ⊕Θ forms self-consistent bounds for (2.7) because in Algorithm 9.1 V ⊕Θ
is integrated forward in time to verify that any solution in V ⊕ Θ after a finite

time enters a trapping region.

To support our claim that the constructed V ⊕Θ is in fact an absorbing set,

in the following description we argue each estimate. We drop the indication of

Galerkin projections and times. For the precise meaning, the reader is referred

to the proof of Lemma 4.7.

Notation. Sq(r) := [−r, r]× [−r, r] ⊂ R2, B(r) := B(0, r) ⊂ R2.

Input data:

• ν > 0, M > m > 0 defining the dimensions of self-consistent bounds as

in Definition 5.5, α ∈ R,

• {[fk]}0<|k|≤m set of forcing modes perturbed by a uniform and constant

perturbation [fε], i.e. [fk] = fk + [fε] for 0 < |k| ≤ m and [fk] = 0 for

|k| > m, [f0] = 0,

• E0, where E0 = max
{fk}∈{[fk]}

E({fk})/ν2.

Output data: V ⊕Θ ⊂ H forming self-consistent bounds for (2.7).

begin

Initialization: Ê := 1.01 · (E0 + α2), ε̂ := 10−15.

Step I.

• For 0 < |k| ≤M set

(V ⊕Θ)k := Sq

(
1

|k|

(
ε̂+

(
1

2
Ê + max

0<|k|≤m

|[fk]|
|k|

)/
ν

))
.

678 J. Cyranka

• For |k| > M set

(V ⊕Θ)k := B

(
1

|k|

(
ε̂+

(
1

2
Ê + max

0<|k|≤m

|[fk]|
|k|

)/
ν

)
.

Initial data is the absorbing ball of radius Ê, then by Lemma 4.4 combined

with Lemma 4.5 after a finite time the coefficients {ak} satisfy

|ak| ≤
1

|k|

(
ε̂+

(
1

2
Ê + max

0<|k|≤m

|fk|
|k|

)/
ν

)
=:

C

|k|
, |k| > M.

Step II.

• For 0 < |k| ≤M calculate

b−k,j :=

(
− C

√
ÊD +

f−k,j
|k|1/2

)/
ν

|k|3/2
, b+k,j :=

(
C
√
ÊD +

f+
k,j

|k|1/2

)/
ν

|k|3/2
,

for j = 1, 2. Initial data is the set V ⊕Θ from Step I, then the following

estimate due to Lemma 3.3 is used

|Nk(V ⊕Θ)| ≤ C
√
ÊD

|k|−1/2
,

where C is defined in Step I.

• For 0 < |k| ≤M set

(V ⊕Θ)k := [b−k,1, b
+
k,1]× [b−k,2, b

+
k,2] + [−ε̂, ε̂]2.

This is a refinement step. Using the data from Step I, a new value of

V ⊕Θ is defined. By Lemma 4.3 and Lemma 4.9 after a finite time the

coefficients {ak} satisfy

ak ∈ [b−k,1, b
+
k,1]× [b−k,2, b

+
k,2] + [−ε̂, ε̂]2, 0 < |k| ≤M.

• For |k| > M set

(V ⊕Θ)k := B

(
ε̂+

(
C
√
ÊD

)/
ν

|k|3/2

)
.

This is a refinement step. Using the data from Step I, a new value of

V ⊕Θ is defined. By Lemma 4.4 after a finite time the coefficients {ak}
satisfy

|ak| ≤
ε̂+

(
C
√
ÊD

)/
ν

|k|3/2
, |k| > M.

Observe that [fk] = 0 for |k| > M and Lemma 4.4 is used with M1 = M .

Step III. Iterate the refinement, until V ⊕ Θ forms self-consistent bounds

for (2.7), as the stopping criterion use the condition s(Θ) > d + p, where d

and p are from (5.2) and s(Θ) is the order of polynomial decay of the ail Θ =∏
|k|>M

B(0, C(Θ)/|k|s(Θ)). To calculate [b−k,1, b
+
k,1] × [b−k,2, b

+
k,2] and C(b) use the

Viscous Burgers Equation with Constant Forcing 679

estimates derived in [2], in principle giving much sharper bounds than energy-like

estimates used in the previous steps.

Every such refinement generates bounds that are reached by the solutions

after a finite time. Moreover, to see that the procedure will stop, note that at

each iteration the order of polynomial decay s(Θ) is increased by 1. Using the

formulas derived in [2] a bound such that |Nk| ≤ D/|k|s(N) is received, where

s(N) = s(Θ)− 1 and, therefore, snew(Θ) = s(b) = s(N) + 2 = s(Θ) + 1. Finally,

as soon as snew(Θ) > d+ p, stop.

end

9. Rigorous integration forward in time

By rigorous numerics we mean algorithms for estimating solutions of differ-

ential equations that operate on sets and produce sets that always contain an

exact solution. Rigorous numerics for ODEs is a well established and analysed

topic. There are a few algorithms that offer reliable computations of the solution

trajectories for ODEs which are based on interval arithmetic. The approach used

in this paper is based on the Lohner algorithm, presented in [14] , see also [23]. It

has made possible to prove many facts concerning the dynamics of certain ODEs,

e.g. the Rossler equation, the Lorenz equation or the restricted n-body problem

(see [23], [12] and references therein). In the context of rigorous integration of

ODEs we consider an abstract Cauchy problem

(9.1)

ẋ(t) = f(x(t)),

x(0) = x0.

x : [0, T)→ Rn, f : Rn → Rn, f ∈ C∞. The goal of a rigorous ODEs solver is to

find a set xk ⊂ Rn compact and connected such that

(9.2) ϕ(tk,x0) ⊂ xk,

tk ∈ [0, T), x0 ⊂ Rn. By ϕ(tk, x0) we denote the solution of (9.1) at the time

tk with initial condition x0 ∈ Rn, and therefore ϕ(tk,x0) denotes the set of all

the values which are attained at the time tk by any solution of (9.1) with the

initial condition in x0.

Notation. We denote by [x] an interval set [x] ⊂ Rn,

[x] =

n∏
k=1

[x−k , x
+
k], [x−k , x

+
k] ⊂ R, −∞ < x−k ≤ x

+
k <∞, mid([x])

is the middle of an interval set [x] and r([x]) is the rest, i.e. [x] = mid([x])+r([x]).

There are some subtle issues regarding intervals and set representation in the

Lohner algorithm, which are discussed e.g. in [23]. Let us only mention that it

is highly ineffective to use the interval set representation explicitly
∏

[a−k , a
+
k]

680 J. Cyranka

because it leads to the so-called wrapping effect [23], large over-estimates appear

and prevents us from integrating over a longer time interval. In order to avoid

those problems we do not use interval sets explicitly, but to represent sets in

a suitable coordinate system we use the doubleton representation of sets [23]

(9.3) [xk] +Bk · [rk] + Ck · [r0],

where Bk and Ck are matrices representing a coordinate systems, [xk] is an

interval set, likely a single point, [rk] is an interval set that represents local

errors that arise during integration, [r0] is an interval set that represents the

error at the beginning (the diameter of a set at the beginning).

We stress the fact that we are interested in rigorous numerics for dPDEs, we

develop main ideas in the following sections.

9.1. Algorithm for integrating rigorously dPDEs. In context of dPDEs

we have to solve the following infinite system of ODEs

(9.4)

dx

dt
= PmF (x+ y),

dy

dt
= QmF (x+ y),

x ∈ Xm, y ∈ Ym.

Following [12], [22] we will get estimates for (9.4) by considering the following

differential inclusion

(9.5)
dx

dt
(t) ∈ PmF (x(t)) + δ,

where δ ⊂ Xm describes influence of y onto PmF (x+ y). We call

(9.6)
dx

dt
= PmF (x)

the m dimensional Galerkin projection of (9.4), where m > 0.

We also consider a Cauchy problem, with a ∈ Xm, x0 ∈ Xm

(9.7)

dx

dt
(t) = PmF (x(t)) + a,

x(0) = x0.

Let dXm
, dYm

dimensions associated with Xm and Ym respectively. From

now on we switch to a more concrete setting, which is

Xm := RdXm and Ym := RdYm , dXm <∞, dYm =∞.

In this section we assume that the solutions of problems (9.4), (9.6) and (9.7)

are defined and unique and later we will prove it.

Viscous Burgers Equation with Constant Forcing 681

Notation. T, T (0), T (t1), T ([0, h]) ⊂ Ym are tails satisfying (5.8), in the

context of tails, for notational purposes, the symbol T (·) is not used to denote

a function of time, but an enclosure for a tail at the provided time. By

• ϕm(t, x0, a) we denote the solution of (9.7) at a time t > 0 with a ∈ Xm

and an initial condition x0 ∈ Xm,

• ϕXm(t, x0, y0) we denote the solution of (9.4) at a time t > 0, projected

onto Xm with an initial condition x0 ∈ Xm and y0 ∈ Ym,

• ϕm([0, h], x0, T) denotes a collection of all possible values of the solution

of the inclusion dx/dt ∈ PmF (x + T) on the time interval [0, h] with

T ⊂ Ym and an initial condition x0 ∈ Xm.

Below we present all steps of the algorithm needed to rigorously integrate

(9.4). Whereas [12], [22] algorithm is given in an abstract setting, here we provide

a detailed description of an algorithm designed for dPDEs exclusively.

In Algorithm 9.1 we present steps needed to calculate rigorous bounds for the

solutions of (9.4) at t1 = h. The main idea is to get estimates for the solutions

of each Galerkin projection of (9.4) simultaneously. For the correctness proof

of Algorithm 9.1 we refer the reader to [12] or [22]. Note that Algorithm 9.1

is a subcase of a general algorithm, with the set [Wy] ⊂ Xm chosen to be the

Galerkin projection error.

Algorithm 9.1. The main algorithm.

Input:

• a time step h,

• [fε] ⊂ Xm, a constant forcing perturbation,

• [x0] ⊂ Xm, an initial finite part,

• T (0) ⊂ Ym, an initial tail, [x0]⊕ T (0) ⊂ H forms self-consistent bounds

for (5.7).

Output:

• [xt1] ⊂ Xm such that ϕXm(t1, [x0], T (0)) ⊂ [xt1], enclosure for the finite

part of the solutions at the time t1.

• T (t1) ⊂ Ym, an enclosure for the tail at the time t1, [xt1] ⊕ T (t1) ⊂ H

forms self-consistent bounds for (5.7).

begin

(1) find T ⊂ Ym such that T ([0, h]) ⊂ T and [W2] ⊂ Xm such that

ϕm([0, h], [x0], T) ⊂ [W2].

Enclosure for the tail on the whole time interval [0, h] and the enclosure

for the collection of solutions of the differential inclusion respectively.

[W2]⊕ T forms self-consistent bounds for (5.7),

682 J. Cyranka

(2) calculate the Galerkin projection error

Xm ⊃ [Wy] := {PmF (x+ T)− PmF (x) | x ∈ [W2]}I ,

(3) do the selection [Wy] 3 yc := mid([Wy]),

(4) apply the C0 Lohner algorithm to solve the system of autonomous ODEs

(9.7) with a = yc. The result is a rigorous enclosure for the solution

[xt1] ⊂ Xm : ϕm(t1, [x0], yc) ⊂ [xt1].

As a mid-step the enclosure [W1] such that

ϕm([0, h], [x0], yc) ⊂ [W1]

is calculated and returned. Refer to [23] for the details,

(5) calculate the perturbations vector Xm ⊃ [δ] := [yc − [Wy] + [fε]]I ,

(6) initialize the single valued vector Xm 3 Ci := sup |[δi]|,
(7) compute the “Jacobian” matrix

RdXm×dXm 3 J : Jij ≥

sup

∂Fi
∂xj

([W2], yc) if i = j,∣∣∣∣ sup
∂Fi
∂xj

([W2], yc)

∣∣∣∣ if i 6= j,

(8) perform component-wise estimates in order to calculate the set

[∆] ⊂ Xm, D :=

∫ h

0

eJ(t1−s)C ds, [∆i] := [−Di, Di] for i = 1, . . . , dXm
,

(9) obtain the final rigorous bound [xt1] ⊂ Xm for the solution of a differ-

ential inclusion by combining results from the previous steps

ϕXm(t1, [x0], T (0)) ⊂ [xt1] = [xt1] + [∆], [x0] ⊂ Xm, T (0) ⊂ Ym,

(10) perform rearrangements into the doubleton representation,

(11) compute T (t1) ⊂ Ym such that ϕYm(t1, [x0], T (0)) ⊂ T (t1).

end

Remark 9.2. Basing on the framework of Algorithm 9.1 we have developed

an algorithm which apparently has been better in tests, the improvement con-

cerns Step 1 and Step 11 of Algorithm 9.1. As the details are very technical we

do not present them here. The interested reader can find a detailed presentation

in Appendix B, whereas in Appendix C we included the pseudo-codes. We omit-

ted all the remaining steps of Algorithm 9.1 that have already been described in

previous works. To realize some of the elements we used the [4] package.

Viscous Burgers Equation with Constant Forcing 683

10. Algorithm for proving Theorem 1.1

Notation. By a capital letter we denote a single valued matrix, e.g. A, by [A]

we denote an interval matrix. The inverse matrix of A is denoted by A−1, we

use the symbol [A−1] to denote an interval matrix such that [A−1] 3 A−1. [M]I
denotes an interval hull of a matrix M , we also use this notation in the context

of vectors.

Figure 1. Flow diagram presenting steps of Algorithm for proving Theorem 1.1

Input:

• m > 0, an integer, the Galerkin projection (2.11) dimension,

• [ν1, ν2] > 0, an interval of the viscosity constant values,

• α ∈ R, a constant value, equal to

2

π

∫ 2π

0

u0(x) dx,

• s, the order of polynomial decay of coefficients that is required from the

constructed bounds and trapping regions, have to be an integer satisfying

s ≥ 4,

• order and the time step of the Taylor method used by the C0 Lohner

algorithm,

• set of 2π periodic forcing functions f(x) for (2.1)–(2.4) defined by a finite

number of modes {fk}0<|k|≤m and a uniform and constant perturbation

[fε] = [−ε, ε]× [−ε, ε].

684 J. Cyranka

Output:

• x, an approximate fixed point for (2.7),

• J ≈ dPmF (x), an approximate Jacobian matrix at x,

• [A] and [A−1] interval matrices reducing [dPmF (x)]I to an almost diag-

onal matrix [D] - with dominating blocks on the diagonal,

• [D] = [[A] · [dPmF (x)]I · [A−1]]I , almost diagonal form of the Jacobian

matrix used to estimate the eigenvalues of dPmF (x),

• W⊕T ⊂ H and W̃ ⊕ T ⊂ H, trapping regions for (2.7) W⊕T ⊂ W̃ ⊕ T ,

• l, upper bound of the logarithmic norm (6.1) on W̃ ⊕ T ,

• V ⊕Θ ⊂ H, an absorbing set forming self-consistent bounds for (2.7),

• a rigorous bounds for the fixed point location,

• total time and integration steps needed to complete the proof.

begin

(1) find an approximate fixed point location x by non-rigorous integration of

ẋ = PmF (x). Refine the provided candidate x using the Newton method

iterations,

(2) calculate non-rigorously the Jacobian matrix, J ≈ dPmF (x) (use ν1 as

the viscosity constant in both steps),

(3) calculate non-rigorously an approximate orthogonal matrix S used for

reducing J to an approximate upper triangular matrix T (with 1 × 1

and 2× 2 blocks on the diagonal). Use the QR algorithm with multiple

shifts to find S. Then find a rigorous inverse [S−1] : S−1 ∈ [S−1] using

the Krawczyk operator [17],

(4) calculate the eigenvectors of T to form a block upper triangular ma-

trix E that is used to further reduce T to an almost diagonal matrix,

then calculate a rigorous inverse matrix [E−1] : E−1 ∈ [E−1] using the

Krawczyk operator again,

(5) calculate

[A] := [E · S]I ,

[A−1] := [[S−1] · [E−1]]I ,

[D] := [[A] · [dPmF (x)]I · [A−1]]I ,

where [D] is in an almost diagonal form, having blocks on the diago-

nal and negligible intervals as non-diagonal elements, suitable form to

estimate the eigenvalues,

(6) find W ⊕ T ⊂ H a trapping region in block coordinates that encloses

x. This step requires [A] and [A−1], the change of coordinates matrices

calculated in the previous step. A detailed description of an algorithm

performing this task is provided by [20],

Viscous Burgers Equation with Constant Forcing 685

(7) calculate l an upper bound for the logarithmic norm on the set

[[A−1] ·W]I ⊕ T,

for the details refer to [20]. In case l < 0 by Theorem 6.5 claim that

there exists a locally attracting fixed point. Observe that in this case

W ⊕ T is the basin of attraction of the fixed point found. One may be

tempted to use the “analytical” trapping region, calculated in Section 3.2

for that purpose, but this is an unfeasible goal in general as an analytical

trapping region may simply be too large to include it into the calculation

process,

(8) enlarge W ⊕ T and return the largest calculated self-consistent bounds

W̃ ⊕ T ⊂ H such that W̃ ⊕ T is a trapping region, l < 0 and W ⊕ T ⊂
W̃ ⊕ T . By Theorem 6.5 claim that the basin of attraction of the fixed

point found is W̃ ⊕ T ,

(9) using the procedure from Section 8 calculate the absorbing set V⊕Θ⊂H,

(10) integrate V ⊕Θ rigorously forward in time until

ϕ(t, [[A] · V]I ⊕Θ) ⊂ W̃ ⊕ T .

If this step finishes successfully conclude that W̃ ⊕ T after a finite time

contains any solution of the problem (2.7)–(2.10) with sufficiently smooth

initial data and claim the existence of a globally attracting fixed point,

(11) translate [[A−1] ·W]I ⊕ T into the doubleton representation (9.3) and

integrate it forward in time in order to estimate the fixed point location

with a relatively high accuracy.

end

Remark 10.1. All the trapping regions constructed in the main algorithm

presented above are expressed in block coordinates. Where the block decom-

position of H is given by H =
⊕
(i)

H(i), where for (i) > m blocks are given by

H(i) = 〈ei〉, and (i) = i in this case. Whereas for (i) ≤ m each block H(i) is a two-

dimensional eigenspace of J . In case of two dimensional blocks (i) = (i1, i2) ∈ Z2,

the expression (i) < m means that ij < m for j = 1, 2. Therefore given a trap-

ping region W ⊕ T ⊂ H the finite part W has the following form

W =
∏
(i)

B(0, ri) for (i) ∈ I,
[a−i , a

+
i] for (i) /∈ I,

where I = {(i) : H(i) is two dimensional eigenspace of J}.

686 J. Cyranka

Remark 10.2. In all the proofs presented in Table 1 from Section 7 we have

I =

∅ when

∫ 2π

0

u0(x) dx = 0,

{(i) : (i) ≤ m} when

∫ 2π

0

u0(x) dx 6= 0.

We have not been able to prove this rigorously.

11. Conclusion

A method of proving the existence of globally attracting fixed points for

a class of dissipative PDEs has been presented. A detailed case study of the

viscous Burgers equation with a constant in time forcing function has been pro-

vided. All the computer program sources used are available online [1]. There are

several paths for the future development of the presented method we would like

to suggest. An option is, for instance, to apply a technique for splitting of sets

in order to see what the largest domain approachable by this technique is. One

may also consider working on proving the statement given in Remark 10.2. An-

other very interesting possibility is application of the presented method to higher

dimensional PDEs, such as the Navier–Stokes equation, and we will address this

topic in our forthcoming papers.

Appendix A. Data from the example proof

The parameters were as follows ν ∈ [2, 2.1] (the whole interval was inserted),

m̂ = 3, a0 = 0.5. To present the following data all the numbers were truncated,

for more precise data we refer the reader to the package with data from proofs

available [1].

The change of coordinates

mid([A]) =

−0.998 0.0623 −8.86 · 10−3−2.28 · 10−3−7.28 · 10−4−6.15 · 10−3

0.0509 0.816 1.39 · 10−3 −7.02 · 10−3−5.02 · 10−3 6.59 · 10−4

6.35 · 10−3 0.0175 1.83 · 10−4 8.79 · 10−4 −0.863 0.505

0.0175 −6.12 · 10−3 6.8 · 10−4 −1.86 · 10−4 0.505 0.863

0.0114 0.0153 −0.288 0.957 −6.9 · 10−4 4.41 · 10−5

−0.0139 9.46 · 10−3 0.957 0.288 −1.21 · 10−4 3.88 · 10−4

.

The Jacobian matrix in almost diagonal form

mid([[A] · [dF (x)]I · [A−1]]I)

=

−2.06 0.402 0.0558 −1.98 · 10−3 0.0123 0.0985

−0.598 −2.04 −7.17 · 10−3 −0.0545 −0.0985 0.0123

0.109 −3.97 · 10−3 −8.2 1 1.33 · 10−3 5.19 · 10−3

−0.0143 −0.112 −1 −8.2 −5.19 · 10−3 1.33 · 10−3

−0.0369 0.295 −2 · 10−3 7.78 · 10−3 −18.4 1.5

−0.295 −0.0369 −7.78 · 10−3 −2 · 10−3 −1.5 −18.4

 .
Note that the matrix [[A] · [dF (x)]I · [A−1]]I does not have negligible elements

beyond the diagonal blocks. This is because we have performed the calculations

Viscous Burgers Equation with Constant Forcing 687

for all the values ν ∈ [2, 2.1] simultaneously. If we perform the same calculations

for one particular value of ν we would get a thin matrix with intervals of diameter

∼ 10−15.

The approximate eigenvalues

spect(J) ≈ (−2.00088 + 0.489685i,−2.00088− 0.489685i,−17.9982 + 1.50012i,

− 17.9982− 1.50012i,−8.00096 + 0.999759i,−8.00096− 0.999759i).

The logarithmic norm upper bound (6.1) l = −0.162445.

The trapping region expressed in canonical coordinates [[A−1] · W̃]I ⊕ T =

k Re(ak) Im(ak)

1 2.59365 · 10−3 + [−0.144158, 0.144158] −6.66462 · 10−4 + [−0.171969, 0.171969]

2 0.0984977 + [−9.55661, 9.55661]10−2 −0.0123068 + [−9.64073, 9.64073]10−2

3 4.57814 · 10−3 + [−5.7441, 5.7441]10−2 0.0551328 + [−5.7053, 5.7053]10−2

4 −2.88994 · 10−4 + [−5.90827, 5.90827]10−3 −1.14901 · 10−3 + [−5.57297, 5.57297]10−3

5 1.01516 · 10−3 + [−1.99265, 1.99265]10−3 −2.33225 · 10−4 + [−2.46885, 2.46885]10−3

6 2.22928 · 10−5 + [−7.83055, 7.83055]10−4 2.53646 · 10−4 + [−6.63366, 6.63366]10−4

7 −1.08421 · 10−5 + [−1.60583, 1.60583]10−4 −2.06754 · 10−5 + [−1.48048, 1.48048]10−4

8 9.3526 · 10−6 + [−5.09454, 5.09454]10−5 −3.26429 · 10−6 + [−5.69385, 5.69385]10−5

≥ 9 |ak| ≤ 0.970056/k4

The absorbing set V ⊕Θ =

k Re(ak) Im(ak)

1 4.96368 · 10−3 + [−0.142913, 0.142913] −2.33252 · 10−3 + [−0.144686, 0.144686]

2 0.0971252 + [−5.3667, 5.3667]10−2 −0.0125347 + [−5.2554, 5.2554]10−2

3 4.25602 · 10−3 + [−2.65075, 2.65075]10−2 0.0542654 + [−2.71581, 2.71581]10−2

4 −2.69437 · 10−4 + [−1.41625, 1.41625]10−2 −1.31697 · 10−3 + [−1.35799, 1.35799]10−2

5 1.06171 · 10−3 + [−7.40709, 7.40709]10−3 −2.2071 · 10−4 + [−7.931, 7.931]10−3

6 −4.23977 · 10−6 + [−5.02386, 5.02386]10−3 2.65357 · 10−4 + [−4.90303, 4.90303]10−3

7 −2.23332 · 10−5 + [−3.434, 3.434]10−3 −3.58771 · 10−5 + [−3.42765, 3.42765]10−3

8 1.33681 · 10−5 + [−2.49967, 2.49967]10−3 −7.06016 · 10−6 + [−2.50257, 2.50257]10−3

≥ 9 |ak| ≤ 147.297/k4

The absorbing set is apparently larger than the trapping region, it has been

necessary to integrate it rigorously forward in time. The Taylor method used in

the C0 Lohner algorithm was of order 6 with time step 0.005. Total execution

time was 4.36 seconds, total number of integration steps needed to verify that

ϕ(V ⊕ Θ) ⊂ W̃ ⊕ T (having in mind that the sets are expressed in different

coordinates) was 627, therefore t̂ = 3.135.

Appendix B. Improvement of Algorithm 9.1

B.1. Step 1 of Algorithm 9.1. The main loop.

Definition B.1. Let W ⊂ H, W convex. We call W the polynomial bound

if there exist numbers M > 0, C > 0, s ≥ 0 such that

(B.1) max
x∈Wk

||x|| ≤ C

|k|s
, |k| > M.

To denote the polynomial bound we use the quadruple (W,M,C, s).

688 J. Cyranka

Basically, during step 1 of Algorithm 9.1 we have to calculate T ⊂ Ym a good

enclosure for the tail during the whole time interval [0, h], i.e. T has to satisfy

T ([0, h]) ⊂ T . Apparently, the bounds for T ([0, h]) can be calculated explicitly,

due to the following monotonicity of the bounds formula

(B.2) T ([0, h])k ⊂ T (0)k ∪ gk, k ∈ Z \ {0},

where gk is the linear approximation of the solution defined in Definition B.2, see

[22, Lemma 6.1]. T (0) in the formula (B.2) is known as it is the initial condition,

and the polynomial bounds enclosing g can be calculated in a finite number of

steps. We describe an appropriate procedure in the following part.

Definition B.2. Let W ⊕ T ⊂ H forms a self-consistent bounds for (5.7),

m > 0 be the Galerkin projection dimension, Nk, fk and λk appear on the right-

hand side of (5.7), f0 = 0, fk = 0 for |k| > m. For k ∈ Z \ {0} and i = 1, . . . , d1

we define

N±k,i : N
−
k,i ≤ Nk,i(W ⊕ T) ≤ N+

k,i,(B.3)

b±k,i :=
N±k,i + fk,i

−λk
,(B.4)

g±k,i := (T (0)±k,i − b
±
k,i)e

λkh + b±k,i,(B.5)

Nk :=

d1∏
i=1

[N−k,i, N
+
k,i], bk :=

d1∏
i=1

[b−k,i, b
+
k,i], gk :=

d1∏
i=1

[g−k,i, g
+
k,i].

Now the question is how to verify the relations (B.2) in a finite number of

steps. In general, it is impossible. Apparently, in the setting studied here, when

sets are represented by polynomial bounds defined in Definition B.1 the relations

(B.2) can be verified in a finite number of steps. Observe that the self-consistent

bounds introduced in Section 5 are in particular polynomial bounds.

We present procedures dealing with TN and TF in Algorithms C.1 and C.2,

to be found in Appendix C, separately for better clarification. For the exact

meaning of the symbols refer to Definition 5.5. The crucial part in Step 1 of

Algorithm 9.1 is to verify if TF ([0, h]) ⊂ TF in a finite number of steps, where

TF is a candidate for the far tail.

Now, let us present the procedure. Our goal is to enclose the interval sets

gk by a uniform polynomial bound. Once we have a uniform polynomial bound,

denoted by g, the verification of TF ([0, h]) ⊂ TF is straightforward, because of

the property (B.2). Firstly, given a polynomial bound

(B.6) (W ⊕ T,MT , CT , sT)

a polynomial bound (N,MT , CN , sN) such that
∏
k∈Z

Nk ⊂ N is found. This task

requires performing some tedious estimates and we do not present them here.

Viscous Burgers Equation with Constant Forcing 689

We derived the required estimates for a class of dPDEs including the viscous

Burgers equation in [2]. Generally, a polynomial bound satisfying sN = sT − r
is found. Then we immediately obtain a polynomial bound

(B.7) (b,MT , Cb, sb) such that
∏
k∈Z

bk ⊂ b,

with Cb = CN/V (M), V (M) = inf {ν(|k|) : |k| > M} and sb = sN + p. Finally,

a polynomial bound

(B.8) (g,MT , Cg, sg) such that
∏
k∈Z

gk ⊂ g

is obtained using the formulas as follows

Lemma B.3. If |k| > M then

(B.9) |gk| ≤
CT (0)e

λkh · |k|sb−sT (0) − Cb(eλkh − 1)

|k|sb

and

(B.10) |gk| ≤
CT (0) · eλkmaxh(kmax)sb−sT (0) + Cb

|k|sb
=:

Cg
|k|sg

,

where kmax is the k for which function eλkh · kr attains its maximum.

Proof. Maximum of f(k) = eλkhkr, with dom f = {k : |k| > M} is reached

at kmax, therefore (B.9) is estimated by (B.10) for any |k| ≥M . �

Note that

(B.11) sg > sT

because sN = sT − r, sg = sb = sT − r + p and p > r.

The main loop.

Input: ([x0] ⊕ T (0),MT (0), CT (0), sT (0)) a polynomial bound, [x0] ⊕ T (0) ⊂ H

forms self-consistent bounds for (5.7).

Output: ([W2] ⊕ T,MT , CT , sT) a polynomial bound such that T ([0, h]) ⊂ T ,

ϕm([0, h], [x0], T) ⊂ [W2] and [W2]⊕T ⊂ H forms self-consistent bounds for (5.7).

begin

(1) Initialize T := T (0).

(2) Update TF using findS function.

(3) while not validated

• [W2] := enclosure([x0],T), calculate a rough-enclosure [W2] for

the differential inclusion (9.5) using a current candidate for a tail

enclosure T , after this step ϕm([0, h], [x0], T) ⊂ [W2] holds,

• calculate the polynomial bounds (b,MT , Cb, sb) and (g,MT , Cg, sg),

690 J. Cyranka

• validated := validateTail(T (0), T , b, g, [W2]) (if T was changed

during this step validated=false).

end while

end

Remark B.4. In our algorithm the number MT in (B.6) is chosen adaptively

in validateFarTail and changes from step to step.

enclosure is the rough enclosure algorithm based on isolation, designed for

dPDEs presented in [22].

We present a correctness proof of the validateNearTail and validateFar-

Tail functions in the comments within the code listings from Appendix C. By

a correctness proof we show that a polynomial bound T , such that the condition

T ([0, h])k ⊂ Tk holds for all k ∈ Z, is returned by the algorithm whenever the

algorithm stops.

Now, we shall focus on explaining the main idea behind validateFarTail

and explain why we consider it an improvement of the existing algorithm. Basi-

cally, when a −λk in (5.7) is small, the nonlinear part Nk dominates the linear

term. However, there exists an index k̃ ∈ N such that −λk for |k| > k̃ becomes

large enough to make the linear part overtake the nonlinear part. The position

of the threshold k̃ depends on the maximum order of the “Laplacian” that ap-

pears in the linear part L of (5.7), as well as on the order of the polynomial

that appears in the nonlinear part. We remark that the solution of the m-th

Galerkin projection of (5.7) with m < k̃ greatly differs from the solution of the

whole system (5.7).

The aforementioned effects show that a proper choice of the Galerkin projec-

tion dimension m (in our algorithm taken only once at the beginning) and the

number MT of the polynomial bound (B.6) (in our algorithm taken at each time

step) is of critical importance and has to be performed carefully. The application

of a too small value may result in blow-ups and may prevent the completion of

the calculations. In the original algorithm from [22] the number MT was fixed

in advance. Then heuristic formulas were derived for the KS equation in order

to predict if the tail validation function would finish successfully for a given MT ,

sT and to guess the initial values of CT and sT in (B.6), see [22, Section 8].

We found the original approach insufficient for the purpose of rigorously inte-

grating PDEs that are the subject of our research (for example the Burgers or

the Navier–Stokes equations). A similar approach for the mentioned dPDEs is

problematic and, especially in the case of lower viscosities, heuristic formulas

cause performance issues and sometimes offer infeasible values, mainly due to

the lower order of the “Laplacian” in the linear part.

Viscous Burgers Equation with Constant Forcing 691

B.2. Step 11 of Algorithm 9.1.

Input: ([W2]⊕ T,MT , CT , sT), a polynomial bound such that

T ([0, h]) ⊂ T, ϕm([0, h], [x0], T) ⊂ [W2] [W2]⊕ T ⊂ H

forms self-consistent bounds for (5.7).

Output: (T (h),MT (h), CT (h), sT (h)), a polynomial bound.

begin

(1) MT (h) := MT , T (h) inherits M from the enclosure T ,

(2) calculate the polynomial bound (g,MT , Cg, sg),

(3) T (h) := g, CT (h) := Cg, sT (h) := sg.

end

Appendix C. Validate tail function in pseudo-code

Here we present a pseudo-code of the functions validateNearTail and

validateFarTail used in Section B.1. First, we present the internal repre-

sentation of sets that was used in actual program, written in C++ programming

language and available at [1].

Data representation.

• double is a floating point number of double precision in C++ program-

ming language,

• interval is [a−, a+] ⊂ R where a−, a+ are double numbers. All arith-

metic operations on such intervals are rigorous and are performed using

implementation of the CAPD library [4]. It is verified that the interval

arithmetic provides proper in mathematical sense results [17],

• Vector represents an interval set, a vector composed of intervals,

• PolyBd is a structure used for representing a polynomial bound (W,M,

C, s). A given PolyBd V contains a Vector representing the finite part of

W ⊂ H, an integer representing M denoted by M(V) and two intervals

representing C and s denoted by C(V) and s(V), respectively.

Below, in Algorithms C.1 and C.2, we present functions validateNearTail

and validateFarTail respectively along with correlated functions. Wherever

previous keyword appear the value from the previous step is used.

Function: predictM

Input: PolyBd T , PolyBd g

L :=

(
C(T)

C(g)

)s(T)−s(g)

;

return L;

692 J. Cyranka

Function: correctM

Input: PolyBd T , PolyBd T (0), double L

// function corrects current dimension M of tails in two cases: value of L is

increasing

if L > previous L then

if L is sufficiently small then M(T) := M(T (0)) := Ld;

;

else M(T) := M(T (0)) := M ;

;

/∗ and test if M can be decreased, by checking if L have established, by com-

paring approximation of current and previous L up to the order 102 ∗/
if truncate(L, 2) = truncate(previous L, 2) then

M(T) := M(T (0)) := L;

end

Function: findS

Input: PolyBd T (0), PolyBd T , Vector W2

/∗ heuristic function, tries to find optimal s(T) at each iteration of the main

loop. By optimal s(T) we mean largest possible value such that a predicted M

is within desired range. We recall that we start with s(T) = s(T (0)) ∗/
PolyBd g := g(T (0), T,W2);

currentM := predictM(T, g);

potentialM := predictM(T, g with decreased s);

while currentM out of desired range and s(T) > p+ d

and potentialM > 2m do

currentM := predictM(T, g);

potentialM := predictM(T, g with decreased s);

C(T) := C(previous T) · (M + 1)s(T)−s(previousT);

s(T) := s(T)− 1;

end

if s(T) != previous s(T) then

correctM(currentM);

;

Function: update

Input: PolyBd T , PolyBd T ′, set I
for i : i ∈ I do

if T ′i * Ti then

calculate new Ti : T
′
i ⊂ new Ti;

Ti := new Ti;

end

end

Viscous Burgers Equation with Constant Forcing 693

Algorithm C.1. validateNearTail function.

Input: PolyBd T (0), PolyBd T , PolyBd g, Vector W2

Output: bool

/∗ individually verify condition T (0)i
⋃
gi ⊂ Ti ∗/

vector 〈bool〉 inflatesRe;
vector 〈bool〉 inflatesIm;

for k := m+ 1, . . . ,M do

if !(Re(bk)+ ≤ Re(T (0)k)+) and !(Re(Tk)+ > Re(gk)+) then

Re(T+
k) := Re(g+

k);

inflateRe := true;

end

if !(Re(bk)− ≥ Re(T (0)k)−) and !(Re(Tk)− < Re(gk)−) then

Re(T−k) := Re(g−k);

inflateRe := true;

end

if !(Im(bk)+ ≤ Im(T (0)k)+) and !(Im(Tk)+ > Im(gk)+) then

Im(T+
k) := Im(g+

k);

inflateIm := true;

end

if !(Im(bk)− ≥ Im(T (0)k)−) and !(Im(Tk)− < Im(gk)−) then

Im(Tk)− := Im(gk)−;

inflateIm := true;

end

if inflateRe then

inflate(Re(Tk), 1 + cinflate);

for j := −cradius, . . . , cradius do

inflatesRe[k + j] := inflatesRe[k + j] + 1 + cinflate/|j|;
end

end

if inflateIm then

inflate(Im(Tk), 1 + cinflate);

for j := −cradius, . . . , cradius do

inflatesIm[k + j] := inflatesIm[k + j] + 1 + cinflate/|j|;
end

end

end

for k := m+ 1, . . . ,M do

if inflatesRe[k] > 0 then

inflate(Re(Tk), inflatesRe[k]);

end

694 J. Cyranka

if inflatesIm[k] > 0 then

inflate(Im(Tk), inflatesIm[k]);

end

end

Algorithm C.2. validateFarTail function.

Input: PolyBd T (0), PolyBd T , PolyBd b, PolyBd g, Vector W2

Output: bool

L :=

(
C(T)

C(g)

)1/(s(T)−s(g))

; L2 :=

⌈(
C(b)

C(T (0))

)1/(s(b)−s(T0))⌉
;

Case 1. s(b) > s(T (0))

if T (0)M+1 ⊂ bM+1 then // in particular T (0)M+1 ⊂ gM+1 ⊂ bM+1)

if L2 < M + 1 then throw(exception);

;

if TM+1 gM+1 then update(T, g, {M + 1,M + 2, . . .});
;

if L2 <∞ then

if TL2
 T (0)L2

then update(T, T (0), {L2, L2 + 1, . . .});
;

end

/∗ If L2 =∞ it is enough to validate TM+1 only, because sg > sT , see (B.11). If

L2 <∞, TM+1 is validated to cover the finite number of indices {M +1, . . . , L2}
and then validating TL2

covers the infinite rest {L2, L2 + 1, . . .} due to s(T) ≤
s(T (0)), see findS function. ∗/

if T was updated then correctM(T ,T (0),L);

;

else // bM+1 T (0)M+1, in particular bM+1 gM+1 T (0)M+1)

if TM+1 T (0)M+1 then update(T, T (0), {M + 1,M + 2, . . .});
;

/∗ It is enough to validate TM+1 only, because s(T) ≤ s(T (0)) and bi T (0)i
for all i > M . ∗/
end

Case 2. s(b) = s(T (0))

if bM+1 ⊆ T (0)M+1 then

if TM+1 T (0)M+1 then update(T, T (0), {M + 1,M + 2, . . .});
;

else // T (0)M+1 bM+1

if TM+1 gM+1 then

update(T, g, {M + 1,M + 2, . . .});
correctM(T , T (0), L);

Viscous Burgers Equation with Constant Forcing 695

end

end

/∗ In both cases it is enough to validate TM+1 because either bi ⊂ T (0)i for

all i > M or T (0)i ⊂ bi for all i > M and s(T (0)) = s(b) = s(g) ≥ s(T),

see (B.11). ∗/

Case 3. s(b) < s(T (0))

if bM+1 ⊂ T (0)M+1 then

if L2 < M + 1 then throw(exception);

;

if TM+1 T (0)M+1 then update(T, T (0), {M + 1,M + 2, . . .});
;

if L2 <∞ then

if TL2 gL2 then update(T, g, {L2, L2 + 1, . . .});
;

end

/∗ If L2 = ∞ it is enough to validate TM+1 only, because s(T) ≤ s(T (0)). If

L2 <∞, TM+1 is validated to cover the finite number of indices {M +1, . . . , L2}
and validating TL2 covers the infinite rest {L2, L2 + 1, . . .} due to sg > sT , see

(B.11). ∗/
if T was updated then correctM(T , T (0), L);

;

else // T (0)M+1 bM+1)

if TM+1 gM+1 then

update(T, g, {M + 1,M + 2, . . .}); correctM(T , T (0), L);

end

/∗ It is enough to validate TM+1 only, because T (0)i bi for all i > M and

sg > sT , see (B.11). ∗/
end

if T was updated return false;

;

else return true;

;

References

[1] Program package, http://ww2.ii.uj.edu.pl/∼cyranka/Burgers.

[2] Supplementary material with detailed computations, http://ww2.ii.uj.edu.pl/

∼cyranka/Burgers.

[3] G. Arioli and H. Koch, Integration of dissipative partial differential equations: A case

study, SIAM J. Appl. Dyn. Syst. 9 (2010), 1119–1133.

[4] CAPD – Computer Assisted Proofs in Dynamics, a package for rigorous numeric,

http://capd.ii.uj.edu.pl.

696 J. Cyranka

[5] J. Cyranka and P. Zgliczyński, Existence of globally attracting solutions for one-

dimensional viscous Burgers equation with nonautonomous forcing – a computer assisted

proof,, SIAM J. Appl. Dyn Syst. (to appear).

[6] S. Day and Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global

dynamics: a study of Swift–Hohenberg equation, SIAM J. Appl. Dyn. Syst. 4 (2005), 1–31.

[7] W. E and Y. Sinai, New results in mathematical and statistical hydrodynamics, Uspekhi

Mat. Nauk 55, 4(334) (2000), 25–58.

[8] O. Fogelklou, W. Tucker, G. Kreiss and M. Siklosi, A computer-assisted proof of the

existence of solutions to a boundary value problem with an integral boundary condition,

Commun. Nonlinear Sci. 16 (2011), 1227–1243.

[9] H.R. Jauslin, H.O. Kreiss and J. Moser, On the Forced Burgers Equation with Periodic

Boundary Condition, Proc. Sympos. Pure Math. 65 (1999), 133–153.

[10] T. Kinoshita, T. Kimura and M.T. Nakao, On the a posteriori estimates for inverse

operators of linear parabolic equations with applications to the numerical enclosure of

solutions for nonlinear problems, Numer. Math. 126 (2014), 679–701.

[11] T. Kapela and P. Zgliczyński, The existence of simple choreographies for the N-body

problem – a computer assisted proof, Nonlinearity 16 (2003), 1899–1918.

[12] , A Lohner-type algorithm for control systems and ordinary differential inclusions,

Discrete Cont. Dyn. Sys. Ser. B 11 (2009), 365–385.

[13] R.J. Lohner, Einschliessung der Lösung gewonhnlicher Anfangs – and Randwertaufgaben

und Anwendungen, Universität Karlsruhe (TH), 1988.

[14] , Computation of Guaranteed Enclosures for the Solutions of Ordinary Initial and

Boundary Value Problems, Computational Ordinary Differential Equations (J.R. Cash

and I. Gladwell, eds.), Clarendon Press, Oxford, 1992.

[15] S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the

Cahn–Hillard equation on a square, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 17 (2007),

1221–1263.

[16] J. Mattingly and Y. Sinai, An elementary proof of the existence and uniqueness theorem

for Navier–Stokes equations, Comm. Contemp. Math. 1 (1999), 497–516.

[17] A. Neumeier, Interval Methods for System of Equations, Cambridge University Press,

1990.

[18] J. Vukadinovic, Global dissipativity and inertial manifolds for diffusive Burgers equa-

tions with low-wavenumber instability, Discrete Contin. Dyn. Syst. 29 (2011), 327–341.

[19] G.B. Whitham, Linear and Nonlinear Waves, John Wiley & Sons, 1975.

[20] P. Zgliczyński, Attracting fixed points for the Kuramoto–Sivashinsky equation – a com-

puter assisted proof, SIAM J. Appl. Dyn. Syst. 1 (2002), 215–288.

[21] , Rigorous numerics for dissipative Partial Differential Equations II. Periodic orbit

for the Kuramoto–Sivashinsky PDE – a computer assisted proof, Found. Comput. Math.

4 (2004), 157–185.

[22] , Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous

integration of dissipative PDEs, Topol. Methods Nonlinear Anal. 36 (2010), 197–262.

[23] , C1-Lohner algorithm, Found. Comput. Math. 2 (2002), 429-465.

[24] , Trapping regions and an ODE-type proof of an existence and uniqueness for

Navier–Stokes equations with periodic boundary conditions on the plane, Univ. Iag. Acta

Math. 41 (2003), 89–113.

Viscous Burgers Equation with Constant Forcing 697

[25] P. Zgliczyński and K. Mischaikow, Rigorous numerics for Partial Differential Equa-

tions: the Kuramoto–Sivashinsky equation, Found. Comput. Math 1 (2001), 255–288.

Manuscript received December 23, 2013

Jacek Cyranka
Institute of Computer Science

Jagiellonian University

prof. Stanis lawa Lojasiewicza 6
30-348 Kraków, POLAND

E-mail address: jacek.cyranka@ii.uj.edu.pl

TMNA : Volume 45 – 2015 – No 2

