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EXISTENCE AND GLOBAL ATTRACTIVITY

OF THE UNIQUE POSITIVE PERIODIC SOLUTION

FOR DISCRETE HEMATOPOIESIS MODEL

Zhijian Yao

Abstract. In this paper, a discrete Hematopoiesis model is studied. By
using fixed point theorem of decreasing operator, we obtain sufficient condi-

tions for the existence of unique positive periodic solution. Particularly,we

give iterative sequence which converges to the positive periodic solution.
In addition, the global attractivity of positive periodic solution is also in-

vestigated.

1. Introduction

Biological dynamic models are very important and hot research topics. In

1977, Mackey and Glass [14] investigated the Hematopoiesis model

(1.1) x′(t) = −ax(t) +
β

1 + xn(t− τ)

which described the production of blood cells. Gyori and Ladas [7] have inves-

tigated the global attractivity of positive equilibrium for the above model (1.1).

Moreover, the model (1.1) and some generalized models have been investigated

by many authors, see [3], [5], [9]–[11], [15]–[17].
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The assumption that the environment is constant is rarely the case in real

life. When the environmental fluctuation is taken into account, a model must be

nonautonomous. Due to the various seasonal effects of the environmental factors

in real life situation (e.g. seasonal effects of weather, food supplies, mating habits,

harvesting, etc.), the effects of periodically varying environment are important, it

is rational and practical to study the biological system with periodic coefficients.

Many authors [17], [16], [9] have studied nonautonomous differential equations

with periodic coefficients of the above model (1.1).

Though most models are described with differential equations, the discrete-

time models are more appropriate than the continuous ones when the size of the

population is rarely small or the population has non-overlapping generations [1].

However, the studies in the past literature [7], [5], [11], [15], [10], [3], [17], [16],

[9] were concerned with the continuous case of the above model (1.1). To our

knowledge, studies on the uniqueness and global attractivity of positive periodic

solution for discrete models are scarce.

Motivated by the above facts, in this paper, we investigate the following

Hematopoiesis difference equation

(1.2) ∆x(k) = −a(k)x(k) +
b(k)

1 + xn(k − τ(k))

where

∆x(k) = x(k + 1)− x(k), n > 0,

a(k) : Z → (0, 1), b(k) : Z → (0,+∞), τ(k) : Z → Z+.

a(k), b(k), τ(k) are ω-periodic functions, i.e.

a(k) = a(k + ω), b(k) = b(k + ω), τ(k) = τ(k + ω), ω ∈ Z+.

Let τ∗ = max
0≤k≤ω

τ(k), the initial condition of equation (1.2) is x(k) = φ(k) > 0

for −τ∗ ≤ k ≤ 0.

In the study of biological systems, an important ecological problem concerns

the existence of positive periodic solutions. Recently, many authors investigated

the existence of positive periodic solution by using Krasnosel’skĭı cone fixed point

theorem and Mawhin’s coincidence degree theory [2], [4], [8], [9], [12], [19]. Most

of the literature concerned the existence of at least one positive periodic solution

[2], [4], [8], [9], [12], [13], [19].

Few papers study the existence and global attractivity of unique positive

periodic solution for discrete models. For the existence and uniqueness of positive

periodic solution, the method used in most of the past literature is contraction

mapping fixed point theorem and Liapunov functionals.

In this paper, different from the past literature, we aim to obtain sufficient

conditions that guarantee the existence of unique positive periodic solution of



Unique Positive Periodic Solution for Discrete Hematopoiesis Model 425

discrete model (1.2) by using fixed point theorem of decreasing operator. Particu-

larly, we give iterative sequence which converges to the positive periodic solution.

We also obtain sufficient conditions for the global attractivity of unique positive

periodic solution by means of some analysis tools.

2. Preliminaries

Definition 2.1. Let X be a Banach space and P be a closed nonempty

subset of X, P is called a cone if

(a) x ∈ P , λ ≥ 0 implies λx ∈ P ;

(b) x ∈ P , −x ∈ P implies x = 0.

Every cone P ⊂ X induces an ordering in X, we define “≤”with respect to P

by x ≤ y if and only if y − x ∈ P .

Definition 2.2. A cone P of X is called normal cone if there exists a positive

constant σ, such that ||x+ y|| ≥ σ for any x, y ∈ P , ||x|| = ||y|| = 1.

Definition 2.3. Let P be a cone of X and A : P → P an operator. A is

called decreasing if 0 ≤ x ≤ y implies Ax ≥ Ay.

The following fixed point theorem of decreasing operator (see [6]) is an im-

portant tool in our proofs.

Lemma 2.4 ([6]). Suppose that:

(a) P is normal cone of Banach space X, operator A : P → P is decreasing;

(b) A(0) > 0, A2(0) ≥ ε0A(0), where ε0 > 0;

(c) For any 0 < a < c < 1, there exists η = η(a, c) > 0 such that A(λx) ≤
[λ(1 + η)]−1Ax for any a ≤ λ ≤ c and 0 < x ≤ A(0).

Then A has a unique positive fixed point x∗ > 0. Moreover, ‖xk − x∗‖ → 0,

(k →∞), where xk = Axk−1, (k = 1, 2, . . .) for any initial x0 ∈ P .

In this paper, we will use the above Lemma 2.4 to investigate the existence

of unique positive periodic solution of model (1.2).

Remark 2.5. In Lemma 2.4, the operator A needs neither continuity nor

compactness.

Let X = {x(k) | x(k)=x(k+ω)}, for x∈X, we define ‖x‖ = max
k∈Z, 0≤k≤ω

|x(k)|,
then X is Banach space.

Let a = max
0≤k≤ω−1

a(k), a = min
0≤k≤ω−1

a(k), b = max
0≤k≤ω−1

b(k),

m =

ω−1∏
r=0

(1−a(r))

1−
ω−1∏
r=0

(1−a(r))

, M =
1

1−
ω−1∏
r=0

(1−a(r))

, G(k, s) =

k+ω−1∏
r=s+1

(1−a(r))

1−
ω−1∏
r=0

(1−a(r))

,
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for k ≤ s ≤ k+ω−1. Then we know G(k, s) is ω-periodic in both variables, and

m =

ω−1∏
r=0

(1− a(r))

1−
ω−1∏
r=0

(1− a(r))

≤ G(k, s) ≤ 1

1−
ω−1∏
r=0

(1− a(r))

= M.

Lemma 2.6. x(k) is the ω-periodic solution of equation (1.2) if and only if

x(k) is the ω-periodic solution of the following equation

x(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))

)
.

Proof. It is easy to see that equation (1.2) is equivalent to

(2.1) x(k + 1)− (1− a(k))x(k) =
b(k)

1 + xn(k − τ(k))

Multiplying two sides of (2.1) by
k∏

r=0
1/(1− a(r)), we get

(2.2) ∆

(
x(k)

k−1∏
r=0

1

1− a(r)

)
=

b(k)

1 + xn(k − τ(k))

k∏
r=0

1

1− a(r)

Summing two sides of (2.2) from k to k + ω − 1, we get

x(k + ω)

k+ω−1∏
r=0

1

1− a(r)
− x(k)

k−1∏
r=0

1

1− a(r)

=

k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

s∏
r=0

1

1− a(r)

)
Since x(k + ω) = x(k), we have

x(k)

( k+ω−1∏
r=0

1

1− a(r)
−

k−1∏
r=0

1

1− a(r)

)
=

k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

s∏
r=0

1

1− a(r)

)
That is

x(k)

k−1∏
r=0

1

1− a(r)

( k+ω−1∏
r=k

1

1− a(r)
− 1

)

=

k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

s∏
r=0

1

1− a(r)

)
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Hence we get

x(k) =

k+ω−1∏
r=0

(1− a(r))

1−
k+ω−1∏
r=k

(1− a(r))

k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

s∏
r=0

1

1− a(r)

)

=

k+ω−1∏
r=0

(1− a(r))

1−
ω−1∏
r=0

(1− a(r))

k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

s∏
r=0

1

1− a(r)

)

=

k+ω−1∑
s=k


k+ω−1∏
r=0

(1− a(r))

1−
ω−1∏
r=0

(1− a(r))

b(s)

1 + xn(s− τ(s))

s∏
r=0

1

1− a(r)



=

k+ω−1∑
s=k


k+ω−1∏
r=s+1

(1− a(r))

1−
ω−1∏
r=0

(1− a(r))

b(s)

1 + xn(s− τ(s))


=

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))

)
.

The proof is complete. �

We define operator A : X → X,

(Ax)(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))

)
Obviously, x(k) ∈ X is the ω-periodic solution of equation (1.2) if and only if x

is the fixed point of operator A.

Define cone Ω = {x | x ∈ X, x(k) ≥ 0, x(k) ≥ δ‖x‖}, δ = m/M .

Lemma 2.7. AΩ ⊂ Ω.

Proof. For any x ∈ Ω,

‖Ax‖ = max
k∈Z, 0≤k≤ω

|(Ax)(k)| = max
k∈Z, 0≤k≤ω

∣∣∣∣ k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))

)∣∣∣∣
≤M max

k∈Z, 0≤k≤ω

∣∣∣∣ k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

)∣∣∣∣
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=M max
k∈Z, 0≤k≤ω

∣∣∣∣ ω−1∑
s=0

(
b(s)

1 + xn(s− τ(s))

)∣∣∣∣ = M

ω−1∑
s=0

(
b(s)

1 + xn(s− τ(s))

)
On the other hand,

(Ax)(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))

)

≥m
k+ω−1∑
s=k

(
b(s)

1 + xn(s− τ(s))

)

=m

ω−1∑
s=0

(
b(s)

1 + xn(s− τ(s))

)
≥ m 1

M
‖Ax‖ = δ‖Ax‖

which implies Ax ∈ Ω, hence we have AΩ ⊂ Ω. �

Lemma 2.8. Every solution x(k) of equation (1.2) is positive.

Proof. Let x(k) be the solution of equation (1.2), then we have

x(k + 1)− [1− a(k)]x(k) =
b(k)

1 + xn(k − τ(k))
.

Hence we get

x(k)− [1− a(k − 1)]x(k − 1) =
b(k − 1)

1 + xn(k − 1− τ(k − 1))
,(E1)

x(k − 1)− [1− a(k − 2)]x(k − 2) =
b(k − 2)

1 + xn(k − 2− τ(k − 2))
,(E2)

x(k − 2)− [1− a(k − 3)]x(k − 3) =
b(k − 3)

1 + xn(k − 3− τ(k − 3))
,(E3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x(2)− [1− a(1)]x(1) =
b(1)

1 + xn(1− τ(1))
,(Ek−1)

x(1)− [1− a(0)]x(0) =
b(0)

1 + xn(0− τ(0))
.(Ek)

Multiplying two sides of (E2), . . ., (Ek) by 1−a(k−1), [1−a(k−1)][1−a(k−2)],

. . ., [1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)], [1− a(k − 1)][1− a(k − 2)] . . . [1−
a(2)][1− a(1)], respectively, we get

(E′2) [1− a(k − 1)]x(k − 1)− [1− a(k − 1)][1− a(k − 2)]x(k − 2)

=
b(k − 2)

1 + xn(k − 2− τ(k − 2))
[1− a(k − 1)],
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(E′3) [1− a(k − 1)][1− a(k − 2)]x(k − 2)

− [1− a(k − 1)][1− a(k − 2)][1− a(k − 3)]x(k − 3)

=
b(k − 3)

1 + xn(k − 3− τ(k − 3))
[1− a(k − 1)][1− a(k − 2)],

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(E′k−1) [1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)]x(2)

− [1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)][1− a(1)]x(1)

=
b(1)

1 + xn(1− τ(1))
[1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)],

(E′k) [1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)][1− a(1)]x(1)

− [1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)][1− a(1)][1− a(0)]x(0)

=
b(0)

1 + xn(0− τ(0))
[1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)][1− a(1)].

Summing (E1), (E′2), (E′3), . . . , (E′k−1), (E′k), we get

x(k)− [1− a(k − 1)][1− a(k − 2)] . . . [1− a(2)][1− a(1)][1− a(0)]x(0)

=
b(k − 1)

1 + xn(k − 1− τ(k − 1))
+

k−2∑
s=0

(
b(s)

1 + xn(s− τ(s))

k−1∏
i=s+1

(1− a(i))

)
.

That is

x(k) = x(0)

k−1∏
s=0

(1− a(s)) +
b(k − 1)

1 + xn(k − 1− τ(k − 1))

+

k−2∑
s=0

(
b(s)

1 + xn(s− τ(s))

k−1∏
i=s+1

(1− a(i))

)
.

Since x(k) = φ(k) > 0 for −τ∗ ≤ k ≤ 0, we can deduce that x(1) > 0, . . .

x(k) > 0 for all k ∈ Z+. �

Lemma 2.9. Every solution x(k) of equation (1.2) is bounded.

Proof. Suppose that equation (1.2) has unbounded solution x(k). Then,

for sufficiently large L > 0, there exists K2 ∈ Z+ and x(K2) sufficiently large,

such that −ax(K2) + b < −L. Thus we have

x(K2 + 1)− x(K2) = − a(K2)x(K2) +
b(K2)

1 + xn(K2 − τ(K2))

≤ − a(K2)x(K2) + b(K2) ≤ −ax(K2) + b < −L < 0
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which implies x(K2 + 1) < x(K2).

Let µ = x(K2+1), K1 = max{k|x(k) < µ, k < K2}, then we have x(K1) < µ

and x(K1 + 1) ≥ µ. Thus there exists K3 ∈ Z+ and K1 + 1 ≤ K3 ≤ K2, such

that x(K3) = maxK1+1≤k≤K2
x(k). Hence

(2.3) x(K3 − 1) ≤ x(K3).

(2.3) can be divided into two cases:

Case 1. If x(K2) < x(K3 − 1) ≤ x(K3), then

x(K3)− x(K3 − 1) = − a(K3 − 1)x(K3 − 1) +
b(K3 − 1)

1 + xn(K3 − 1− τ(K3 − 1))

≤ − ax(K3 − 1) + b < −ax(K2) + b < −L < 0.

Thus x(K3) < x(K3 − 1), which contradicts with (2.3).

Case 2. If x(K3 − 1) ≤ x(K2) ≤ x(K3), then

x(K3)− x(K3 − 1) = − a(K3 − 1)x(K3 − 1) +
b(K3 − 1)

1 + xn(K3 − 1− τ(K3 − 1))

≤ − ax(K3 − 1) + b < −ax(K3 − 1) + ax(K2)− L

≤ − ax(K3 − 1) + ax(K3)− L = a[x(K3)− x(K3 − 1)]− L,

Hence we get

(1− a)[x(K3)− x(K3 − 1)] < −L,
which yields

x(K3)− x(K3 − 1) < − L

1− a
< 0.

Thus x(K3) < x(K3−1), which contradicts with (2.3). Therefore, every solution

of equation (1.2) is bounded. �

3. Existence of the unique positive periodic solution

Let b̃ =
ω−1∑
k=0

b(k), we make the following assumptions:

(H1) 0 < n ≤ 1,

(H2) n > 1, (n− 1)(Mb̃)n ≤ 1.

Theorem 3.1. Assume that (H1) or (H2) holds. Then equation (1.2) has

a unique ω-periodic positive solution x∗(k). Moreover, ‖xk−x∗‖ → 0, (k →∞),

where xk = Axk−1 (k = 1, 2, . . .) for any initial x0 ∈ Ω.

Proof. Firstly, we prove that Ω is normal cone, A : Ω → Ω is decreasing

operator.

For any x, y ∈ Ω, ||x|| = ||y|| = 1, we have x(k) ≥ 0, y(k) ≥ 0, x(k) ≥ δ‖x‖ =

δ, y(k) ≥ δ‖y‖ = δ, here δ = m/M . Hence we get

||x+ y|| ≥ x(k) + y(k) ≥ δ + δ = 2δ.
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Thus there exists a positive constant σ = 2δ, such that ||x + y|| ≥ σ for any

x, y ∈ Ω, ||x|| = ||y|| = 1. So Ω is normal cone.

For x, y ∈ Ω, x ≤ y, then we have

(Ax)(k)− (Ay)(k) =

k+ω−1∑
s=k

G(k, s)

(
b(s)

1 + xn(s− τ(s))
− b(s)

1 + yn(s− τ(s))

)
≥ 0,

which implies Ax ≥ Ay. So A : Ω→ Ω is decreasing operator.

Now, we will show that condition (b) of Lemma 2.4 is satisfied.

Mb̃ =M

ω−1∑
s=0

b(s) = M

k+ω−1∑
s=k

b(s) ≥ (A(0))(k)

=

k+ω−1∑
s=k

(G(k, s)b(s)) ≥ m
k+ω−1∑
s=k

b(s) = m

ω−1∑
s=0

b(s) = mb̃ > 0

which implies A(0) > 0. Again, we have

(A2(0))(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + (A(0))n(s− τ(s))

)

≥ 1

1 + (Mb̃)n

k+ω−1∑
s=k

(G(k, s)b(s)) =
1

1 + (Mb̃)n
(A(0))(k) = ε0(A(0))(k).

This implies A2(0) ≥ ε0A(0), here ε0 = 1/(1 + (Mb̃)n).

Finally, we show that condition (c) of Lemma 2.4 is satisfied.

Let for any 0 < a < c < 1, for any a ≤ λ ≤ c and 0 < x ≤ A(0), we have

0 < ||x|| ≤ ||A(0)|| ≤Mb̃.

A(λx)(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + λnxn(s− τ(s))

)

=

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))
· 1 + xn(s− τ(s))

1 + λnxn(s− τ(s))

)
.

Notice that

1 + xn(s− τ(s))

1 + λnxn(s− τ(s))
=λ−n

(
1 +

λn − 1

1 + λnxn(s− τ(s))

)
≤λ−n

(
1 +

λn − 1

1 + λn(Mb̃)n

)
=

1 + (Mb̃)n

1 + λn(Mb̃)n
.

So we have

A(λx)(k) ≤
k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))
· 1 + (Mb̃)n

1 + λn(Mb̃)n

)

=
1

λ

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))
· λ[1 + (Mb̃)n]

1 + λn(Mb̃)n

)
.
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Let

f(x) =
[1 + (Mb̃)n]x

1 + xn(Mb̃)n
.

We have

f ′(x) =
[1 + (Mb̃)n][1 + (1− n)xn(Mb̃)n]

[1 + xn(Mb̃)n]2
.

Since (H1) or (H2) holds, we know thatf ′(x) > 0 for 0 < x < 1, so we have

0 = f(0) < f(a) ≤ f(λ) ≤ f(c) < f(1) = 1. Hence we have

A(λx)(k) ≤ 1

λ

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))
f(λ)

)

≤ 1

λ

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))
f(c)

)

=
1

λ
f(c)

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + xn(s− τ(s))

)
=

1

λ
f(c)(Ax)(k) =

1

λ
· 1

1 + η(c)
(Ax)(k),

here η = η(c) = 1/f(c)− 1 > 0.

By Lemma 2.4, we know operator A has a unique positive fixed point x∗ > 0,

‖xk − x∗‖ → 0, (k →∞), xk = Axk−1 (k = 1, 2, . . .) for any initial x0 ∈ Ω. �

Remark 3.2. The Theorem 3.1 of this paper not only gives sufficient con-

ditions for existence of unique positive periodic solution,but also gives iterative

sequence {xk}which converges to x∗.

Remark 3.3. From the above proof, we have

x∗(k) = (Ax∗)(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + x∗n(s− τ(s))

)

≤M
k+ω−1∑
s=k

b(s) = M

ω−1∑
s=0

b(s) = Mb̃.

We also have

x∗(k) = (Ax∗)(k) =

k+ω−1∑
s=k

(
G(k, s)

b(s)

1 + x∗n(s− τ(s))

)

≥m
k+ω−1∑
s=k

(
b(s)

1 + (Mb̃)n

)
=

m

1 + (Mb̃)n

k+ω−1∑
s=k

b(s)

=
m

1 + (Mb̃)n

ω−1∑
s=0

b(s) =
mb̃

1 + (Mb̃)n
.

So we get mb̃/(1 + (Mb̃)n) ≤ x∗(k) ≤Mb̃.
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4. Global attractivity of positive periodic solution

In this section, we study the global attractivity of positive periodic solution.

Theorem 4.1. Assume that (H2) holds, and (n − 1)n−1(Mb̃)n ≤ 1, then

equation (1.2) has a unique globally attractive ω-periodic positive solution.

Proof. Since (H2) holds, by Theorem 3.1 we know equation (1.2) has

a unique ω-periodic positive solution x∗(k). Now we prove that x∗(k) is globally

attractive.

Suppose x(k) is arbitrary solution of equation (1.2). Let y(k) = x(k)−x∗(k),

then we get

∆y(k) = ∆x(k)−∆x∗(k)(4.1)

= − a(k)y(k) +
b(k)

1 + x∗n(k − τ(k))

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))
− 1

]
.

Now we prove lim
k→+∞

y(k) = 0 in three cases.

Case 1. Suppose y(k) is eventually positive, then we have y(k) = x(k) −
x∗(k) > 0 for k sufficiently large. This combined with (4.1) leads to ∆y(k) <

−a(k)y(k) < 0. Thus we have y(k + 1) < y(k), which together with y(k) > 0

implies lim
k→+∞

y(k) = h ≥ 0.

We claim that h = 0. If h > 0, then we have ∆y(k) < −a(k)y(k) < −ha(k)

for k sufficiently large, i.e. there exists N1 > 0, such that ∆y(k) < −ha(k) for

all k ≥ N1.

Summing two sides of the inequality from N1 to +∞, we get

h− y(N1) =

+∞∑
k=N1

∆y(k) < −h
+∞∑
k=N1

a(k) = −∞

which is a contradiction, so we have h = 0.

Case 2. Suppose y(k) is eventually negative. By the similar proof as above,

we also can get h = 0.

Case 3. Suppose y(k) is oscillatory. By Lemma 2.9, we know x(k) and x∗(k)

are all bounded. So y(k) is bounded.

Let lim
k→+∞

sup y(k) = p ≥ 0, lim
k→+∞

inf y(k) = q ≤ 0.

For for any ε > 0 sufficiently small, there exists N2 > 0, such that

(4.2) q − ε < y(k) < p+ ε for all k ≥ N2.

From (4.1) we have

y(k + 1)− (1− a(k))y(k) =
b(k)

1 + x∗n(k − τ(k))

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))
− 1

]
.
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Multiplying the two sides by
k∏

s=0
1/(1− a(s)), we get

∆

(
y(k)

k−1∏
s=0

1

1− a(s)

)
(4.3)

=
b(k)

1 + x∗n(k − τ(k))

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))
− 1

] k∏
s=0

1

1− a(s)

=
b(k)

1 + x∗n(k − τ(k))

[
exp

(
ln

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))

])
− 1

] k∏
s=0

1

1− a(s)
.

By mean value theorem, we have

ln

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))

]
(4.4)

= ln(1 + x∗n(k − τ(k)))− ln(1 + xn(k − τ(k)))

=
nξn−1

1 + ξn
(x∗(k − τ(k))− x(k − τ(k))) = −nξ

n−1

1 + ξn
y(k − τ(k))

where ξ lies between x∗(k − τ(k)) and x(k − τ(k)).

Notice that the function g(x) = nxn−1/(1 + xn) is increasing on [0, n
√
n− 1]

and decreasing on [ n
√
n− 1,+∞). So g(x) = nxn−1/(1 + xn) has maximum

(n− 1)1−1/n on [0,+∞). Hence we have nξn−1/(1 + ξn) ≤ (n− 1)1−1/n, which

together with (4.2) and (4.4) yields

(4.5) ln

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))

]
≤ −(q − ε)(n− 1)1−1/n,

in which q − ε < 0. Thus, by (4.3) and (4.5), we get

∆

(
y(k)

k−1∏
s=0

1

1− a(s)

)
(4.6)

≤ [exp(−(q − ε)(n− 1)1−1/n)− 1]
b(k)

1 + x∗n(k − τ(k))

k∏
s=0

1

1− a(s)

= [exp(−(q − ε)(n− 1)1−1/n)− 1] ∆

(
x∗(k)

k−1∏
s=0

1

1− a(s)

)
,

Summing two sides of (4.6) from N2 to k, (k > N2), we get

y(k + 1)

k∏
s=0

1

1− a(s)
− y(N2)

N2−1∏
s=0

1

1− a(s)

≤ [exp(−(q − ε)(n− 1)1−1/n)− 1]

·
(
x∗(k + 1)

k∏
s=0

1

1− a(s)
− x∗(N2)

N2−1∏
s=0

1

1− a(s)

)
.
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This leads to

y(k + 1) ≤ y(N2)

k∏
s=N2

(1− a(s)) + [exp(−(q − ε)(n− 1)1−1/n)− 1]

·
(
x∗(k + 1)− x∗(N2)

k∏
s=N2

(1− a(s))

)

≤ y(N2)

k∏
s=N2

(1− a(s)) + [exp(−(q − ε)(n− 1)1−1/n)− 1]

·
(
Mb̃− x∗(N2)

k∏
s=N2

(1− a(s))

)
.

Let k → +∞, we get p ≤Mb̃[exp(−(q−ε)(n−1)1−1/n)−1]. As ε is arbitrary,

we have

(4.7) p ≤Mb̃[exp(−q(n− 1)1−1/n)− 1].

Now we prove that the inequality q ≥ Mb̃[exp(−p(n − 1)1−1/n) − 1] holds

too. By similar method as above, from nξn−1/(1 + ξn) ≤ (n−1)1−1/n and (4.2),

(4.4), we get

(4.8) ln

[
1 + x∗n(k − τ(k))

1 + xn(k − τ(k))

]
≥ −(p+ ε)(n− 1)1−1/n,

Hence, by (4.3) and (4.8), we obtain

∆

(
y(k)

k−1∏
s=0

1

1− a(s)

)
(4.9)

≥ [exp(−(p+ ε)(n− 1)1−1/n)− 1]
b(k)

1 + x∗n(k − τ(k))

k∏
s=0

1

1− a(s)

= [exp(−(p+ ε)(n− 1)1−1/n)− 1] ∆

(
x∗(k)

k−1∏
s=0

1

1− a(s)

)
.

Summing two sides of (4.9) from N2 to k, (k > N2), we get

y(k + 1)

k∏
s=0

1

1− a(s)
− y(N2)

N2−1∏
s=0

1

1− a(s)

≥ [exp(−(p+ ε)(n− 1)1−1/n)− 1]

·
(
x∗(k + 1)

k∏
s=0

1

1− a(s)
− x∗(N2)

N2−1∏
s=0

1

1− a(s)

)
.
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This yields

y(k + 1) ≥ y(N2)

k∏
s=N2

(1− a(s)) + [exp(−(p+ ε)(n− 1)1−1/n)− 1]

·
(
x∗(k + 1)− x∗(N2)

k∏
s=N2

(1− a(s))

)

≥ y(N2)

k∏
s=N2

(1− a(s)) + [exp(−(p+ ε)(n− 1)1−1/n)− 1]

·
(
Mb̃− x∗(N2)

k∏
s=N2

(1− a(s))

)
.

Let k → +∞. We get q ≥ Mb̃[exp(−(p + ε)(n − 1)1−1/n) − 1]. As ε is

arbitrary, we have

(4.10) q ≥Mb̃[exp(−p(n− 1)1−1/n)− 1].

From the condition (n − 1)n−1(Mb̃)n ≤ 1, we have Mb̃(n − 1)1−1/n ≤ 1. Since

p ≥ 0, q ≤ 0, by Mb̃(n− 1)1−1/n ≤ 1 and the results in [18], we know that (4.7)

and (4.10) have a unique solution p = q = 0. So we get lim
k→+∞

y(k) = 0. This

implies x∗(k) is globally attractive. �

Remark 4.2. By means of the well-known inequality xx ≥ x for x > 0, we

get (n − 1)n−1 ≥ n − 1 for n > 1. Hence the inequality (n − 1)n−1(Mb̃)n ≤ 1

implies (n − 1)(Mb̃)n ≤ 1. Thus the condition of Theorem 4.1 can be replaced

by n > 1 and (n− 1)n−1(Mb̃)n ≤ 1.

So we have the following theorem.

Theorem 4.3. Assume that n > 1 and (n− 1)n−1(Mb̃)n ≤ 1, then equation

(1.2) has a unique globally attractive ω-periodic positive solution.
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