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HADWIGER INTEGRATION OF RANDOM FIELDS

Matthew L. Wright

Abstract. Hadwiger integrals employ the intrinsic volumes as measures
for integration of real-valued functions. We provide a formula for the ex-

pected values of Hadwiger integrals of Gaussian-related random fields. The

expected Hadwiger integrals of random fields are both theoretically inter-
esting and potentially useful in applications such as sensor networks, image

processing, and cell dynamics. Furthermore, combining the expected inte-

grals with a functional version of Hadwiger’s theorem, we obtain expected
values of more general valuations on Gaussian-related random fields.

1. Introduction

The intrinsic volumes are valuations on sets that provide various notions of

the size of a set, thus generalizing both Lebesgue volume and Euler characteris-

tic. Because the intrinsic volumes are additive, they can be used as “measures”

for integration of functions defined on sets [4]. The resulting Hadwiger integrals,

which generalize both the Lebesgue integral and the Euler integral, provide var-

ious notions of the size of a function. The goal of this paper is to combine Had-

wiger integrals with Gaussian-related random fields, obtaining expected-value

results that will be useful in various applications.

We briefly describe the potential utility of the Hadwiger integrals. While the

Euler integral is useful for counting the number of objects detected by a sensor
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network [2], [3], the higher-dimensional Hadwiger integrals return the aggre-

gate perimeter, surface area, etc. of the detected objects [4]. Current work (in

progress by the author) explores uses of these integrals in image processing.

For example, local Euler/Hadwiger integrals seem to be useful in distinguish-

ing between textures within an image. While the Euler integral can compare

textures in a scale-invariant way, the Hadwiger integrals can help distinguish

scale-dependent features in an image. Furthermore, in cell structures that evolve

by a process of mean curvature flow, the intrinsic volumes appear in the three-

dimensional von Neumann–Mullins relation, which gives the rate of change of cell

volume [9]. This suggests that the Hadwiger integrals may be useful for under-

standing change in functions defined on a cell structure (for example, a function

that gives the temperature at each point in a cell).

In applications such as these, one often encounters noise and other uncertain-

ties which can be modeled by random fields. The data obtained from a sensor

network, for example, only approximates a function whose true value cannot be

measured exactly at every point in its domain. The observed function might

contain noise or uncertainties that can be modeled by a Gaussian process. Thus,

an understanding of Hadwiger integrals of random fields helps explain the contri-

bution of noise to situations in which one desires to compute Hadwiger integrals.

Bobrowski and Borman gave the expected Euler integral of Gaussian-related

random fields [5]. We generalize their results, computing the expected Hadwiger

integrals of Gaussian-related random fields. We first provide some background

material, both on Hadwiger integration and on random fields. Our main result

is Theorem 5.1, which gives a formula for the expected Hadwiger integrals in

terms of the intrinsic volumes and Gaussian Minkowski functionals. We then

provide two examples in which the Gaussian Minkowski functionals, and thus

the expected Hadwiger integrals, are computed explicitly. Lastly, we connect

this work to Hadwiger’s theorem, which allows us to obtain the expected values

of more general valuations on Gaussian-related random fields.

2. Hadwiger integration

The intrinsic volumes (1) are a class of n + 1 valuations defined on “tame”

subsets of Euclidean space Rn. We denote the intrinsic volumes as µ0, . . . , µn,

with µ0 the Euler characteristic and µn Lebesgue measure on Rn. Intuitively,

µk gives a notion of the k-dimensional size of a set; for example, µ1 gives the

length, or more properly mean width, of a set, and µn−1 is proportional to the

(1) The intrinsic volumes are also known as Lipschitz–Killing curvatures and, with different

normalization, Minkowski functionals and quermassintegrals. Klain and Rota give a combina-

torial approach to the intrinsic volumes [8], while Adler and Taylor provide a perspective from

integral geometry [1].
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surface area for n-dimensional sets. The intrinsic volumes appear in the Steiner

Formula (2), which gives the n-dimensional volume of a “tube” of radius ρ around

a closed convex n-dimensional set A:

(2.1) µn(A+ ρBn) =

n∑
i=0

ωn−iρ
n−iµi(A).

In equation (2.1), Bn is the n-dimensional unit ball in Rn, ωn denotes its volume,

and the sum on the left is the Minkowski sum. The intrinsic volumes are additive,

meaning that

µi(A) + µi(B) = µi(A ∩B) + µi(A ∪B).

Additivity is the key property that facilitates use of the intrinsic volumes as

“measures” for integration. Other important properties include invariance with

respect to isometries, normalization independent of the dimension of the ambient

space, and homogeneity:

µi(λ ·A) = λiµi(A) for λ > 0.

For a function f : M → R on a set M ⊆ Rn, we write {f ≥ s} to denote

the superlevel set {p ∈ M : f(p) ≥ s}, and similarly for {f > s} and other

inequalities. For the purpose of this paper, a continuous function f : M → R is

tame if the intrinsic volumes of {f ≥ s} and {f ≤ s} are well-defined, except for

at most finitely many s ∈ R. A detailed treatment of tame sets and functions

from the perspective of o-minimal geometry can be found in [4].

Integrals with respect to the intrinsic volumes are known as Hadwiger inte-

grals, which can be thought of as valuations on functions. The Hadwiger inte-

grals of continuous functions appear in dual pairs, called the lower and upper

Hadwiger integrals [4]. We denote the lower Hadwiger integral of a function

f : M → R with respect to µi as
∫
f bdµic, and the upper Hadwiger integral

as
∫
f ddµie.

Definition 2.1. The lower and upper Hadwiger integrals of a tame function

f : M → R are defined as follows:∫
M

f bdµic =

∫ ∞
0

(µi{f ≥ s} − µi{f < −s}) ds,∫
M

f ddµie =

∫ ∞
0

(µi{f > s} − µi{f ≤ −s}) ds,

for any i ∈ {0, 1, . . . , n}.

The Hadwiger integrals provide various notions of the size of a function. Just

as we can interpret µk as indicating the k-dimensional size of sets, an integral

with respect to µk gives a notion of the k-dimensional size of real-valued functions

(2) The Steiner Formula is similar to Weyl’s tube formula, though the latter is usually

stated for submanifolds rather than convex sets [7], [10].
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defined on sets. Intuitively, an integral with respect to µk returns a weighted

sum of the k-dimensional sizes of all superlevel sets of a function. For example,

if a tame function f : Rn → Z≥0 has compact support and finite image, then

(2.2)

∫
Rn

f bdµic =

∫
Rn

f ddµie =

max(f)∑
s=1

µi{f ≥ s}.

While the lower and upper Hadwiger integrals agree (as in (2.2)) on functions

with finite image, for continuous functions the two integrals are generally not

equal. With suitable assumptions about continuity, any Euclidean-invariant val-

uation on real-valued functions is a linear combination of the Hadwiger inte-

grals [4].

3. Random fields

A random field is a stochastic process, defined over a topological space, taking

values in Rk. Intuitively, a random field f can be thought of as a function on

a topological space M whose value at any point p ∈ M is a random variable.

Adler and Taylor provide a formal definition [1], [11].

In particular, we are interested in Gaussian random fields. If the finite-

dimensional distributions of (f(p1), . . . , f(pj)) are multivariate Gaussian for each

1 ≤ j < ∞ and each (p1, . . . , pj) ∈ M j , then f is a Gaussian random field.

Associated to any random field f : M → Rk are two important functions: the

mean function m(p) = E(f(p)) and the covariance function

C(p1, p2) = E[(f(p1)−m(p1))(f(p2)−m(p2))].

Indeed, the distribution of a real-valued Gaussian random field is completely

determined by its mean and covariance functions. A random field is isotropic if

its covariance function is invariant under isometries of M .

Example 3.1. Suppose we model temperature T at position p and in a class-

room M ⊂ R3. Every measurement involves some error, so we can model the

temperature as T (p) = u(p) + f(p), where u is the true unknown temperature

and f is the measurement error. The measurement error at any point can be

modeled as a Gaussian random variable, so f can be modeled as a Gaussian

random field on M . (Example inspired by Chung [6].)

We also work with certain non-Gaussian random fields. Let f : M → Rk be

a Gaussian random field, and let F : Rk → R be a function. Then we call the

random field F ◦ f : M → R a Gaussian-related random field. Of course, the

Gaussian case is recovered if k = 1 and F (x) = x.
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4. Gaussian kinematic formula

Adler and Taylor introduced the Gaussian kinematic formula (GKF), which

gives the expected intrinsic volume of an excursion set of a random field [1, The-

orem 15.9.4]. We state here a version of this formula and give a brief explanation

of the quantities involved.

Theorem 4.1 (GKF). Let M be a compact regular stratified space. Let f =

(f1, . . . , fk) : M → Rk be a Gaussian random field, with i.i.d. components with

zero mean and unit variance, and such that with probability one fj is a stratified

Morse function. Let D ⊂ Rk be closed. Then, for 0 ≤ i ≤ dim(M),

(4.1) E
(
µi
(
f−1(D)

))
=

dim(M)−i∑
j=0

[
i+ j

j

]
(2π)−j/2µi+j(M)Mγ

j (D)

where
[
i+j
j

]
is a flag coefficient and Mγ

j is a Gaussian Minkowski functional,

which we define below.

The flag coefficients of Klain and Rota are somewhat analogous to the bino-

mial coefficients, as the notation suggests [8]. They are defined[ n
m

]
=

(
n

m

)
ωn

ωmωn−m
,

where ωn denotes the n-dimensional volume of the unit ball in Rn. As the

binomial coefficient
(
n
m

)
counts the number of m-element subsets of an n-element

set, the flag coefficient
[
n
m

]
gives a total measure of the m-dimensional linear

subspaces of Rn. This measure is important in the definition of the intrinsic

volumes to make them intrinsic to sets and independent of the ambient space in

which a set may be embedded.

The definition of the Gaussian Minkowski functionalsMγ
j can be found in [1]

and [11]. They satisfy a tube formula similar to the Steiner Formula (2.1), but

involving the Gaussian measure:

(4.2) γn(A+ ρBn) = γn(A) +

∞∑
j=1

ρj

j!
Mγ

j (A),

where γn is the standard Gaussian measure on Rn. Since theMγ
j do not depend

on the dimension of the Gaussian measure space, it is not necessary to writeMγn
j .

In equation (4.1), the intrinsic volumes are computed with respect to a Rie-

mannian metric determined by the random field. This metric is related to the

covariance function C of f , and is defined

(4.3) gp(Xp, Yp) = E[(Xpf) · (Ypf)] = XpYqC(p, q)|p=q,
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whereXp, Yp ∈ TpM , the tangent manifold toM at p [1, Section 12.2]. In particu-

lar, if f is isotropic, then this metric is the Euclidean metric, up to a constant

multiple.

Adler and Taylor give a formal definition of regular stratified space [1, Sec-

tion 9.2.3]; examples include closed manifolds and compact manifolds with boun-

dary. The assumption that each fj is a stratified Morse function is also not too

restrictive. Adler and Taylor address this assumption, giving conditions under

which it holds [1, Section 11.3].

5. Expected Hadwiger integral of a random field

Bobrowski and Borman computed the expected Euler integral of a Gaussian-

related random field [5]. We similarly compute the expected Hadwiger integral

of such a field.

Theorem 5.1. Let M be an n-dimensional compact regular stratified space.

Let f : M → Rk be a Gaussian random field satisfying the GKF conditions.

Let F : Rk → R be a piecewise C2 function. Let g = F ◦ f , so g : M → R
is a Gaussian-related random field. Then the expected lower Hadwiger integral

of g is:

(5.1) E
(∫

M

g bdµic
)

= µi(M)E(g) +

n−i∑
j=1

[
i+ j

j

]
(2π)−j/2µi+j(M)

∫
R
Mγ

j {F ≥ s} ds,

and similarly for the upper Hadwiger integral.

Note that in equation (5.1), E(g) = E(g(p)) for any p ∈ M , which is well-

defined by the GKF conditions on f .

Proof. From Definition 2.1 of the lower Hadwiger integral,∫
M

g bdµic =

∫ ∞
0

µi{g ≥ s} ds−
∫ 0

−∞
(µi(M)− µi{g ≥ s}) ds.

Taking expectations,

E
(∫

M

g bdµic
)

=

∫ ∞
0

E (µi{g ≥ s}) ds−
∫ 0

−∞
(µi(M)− E (µi{g ≥ s})) ds.

Thus, the expected Hadwiger integral can be expressed in terms of the ex-

pected intrinsic volumes of the superlevel sets {g ≥ s}. Since g = F ◦f , it follows

that {g ≥ s} = f−1{F ≥ s}. The Gaussian Kinematic Formula (4.1) allows us
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to rewrite the expected intrinsic volumes of {g ≥ s}:

E(µi{g ≥ s}) = E(µi(f
−1{F ≥ s}))

=

n−i∑
j=0

[
i+ j

j

]
(2π)−j/2µi+j(M)Mγ

j {F ≥ s}.

Combining the previous two equations, we obtain

E
(∫

M

g bdµic
)

=

∫ ∞
0

( n−i∑
j=0

[
i+ j

j

]
(2π)−j/2µi+j(M)Mγ

j {F ≥ s}
)
ds

−
∫ 0

−∞

(
µi(M)−

n−i∑
j=0

[
i+ j

j

]
(2π)−j/2µi+j(M)Mγ

j {F ≥ s}
)
ds.

To make the above expression more manageable, we separate the j = 0 terms

out of the sum, and the expected Hadwiger integral becomes

E
(∫

M

g bdµic
)

= µi(M)

[ ∫ ∞
0

Mγ
0{F ≥ s} ds−

∫ 0

−∞
(1−Mγ

0{F ≥ s}) ds
]

+

n−i∑
j=1

∫ ∞
−∞

[
i+ j

j

]
(2π)−j/2µi+j(M)Mγ

j {F ≥ s} ds.

To simplify the quantity in square brackets above, let X be a k-dimensional

standard Gaussian random variable, and let Y = F (X). Then the definition of

the Gaussian Minkowski functionals implies Mγ
0{F ≥ s} = P(X ∈ {F ≥ s}) =

P(Y ≥ s). It follows that∫ ∞
0

Mγ
0{F ≥ s} ds −

∫ 0

−∞
(1−Mγ

0{F ≥ s}) ds

=

∫ ∞
0

P(Y ≥ s) ds−
∫ 0

−∞
(1− P(Y ≥ s)) ds

=

∫ ∞
0

P(Y ≥ s) ds−
∫ 0

−∞
P(Y < s) ds = E(Y ) = E(g),

where the last equality holds because f is standard normal at every point. Thus,

we obtain equation (5.1).

6. Examples

We give two examples to illustrate the computation of Mγ
j {F ≥ s} in equa-

tion (5.1). These examples extend those given by Bobrowski and Borman for

the Euler case [5, Section 4] and involve computations by Adler and Taylor [1,

Section 15.10].
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Example 6.1 (The real case). Suppose random field f : M → R satisfies the

conditions of Theorem 5.1, F : R → R is piecewise C2, and g = F ◦ f . In this

case it is possible to simplify the Mγ
j {F ≥ s} from equation (5.1).

By continuity of F , {F ≥ s} can be written as a disjoint union of closed

intervals:

{F ≥ s} = F−1[s,∞) =
⋃
i

[ai, bi],

where one of the ai may be −∞ and one of the bi may be ∞. Let ϕ(x) =

(2π)−1/2e−x
2/2 be the standard Gaussian density and let

Hm(x) = (−1)mϕ(x)−1
dm

dxm
ϕ(x)

be the mth Hermite polynomial. Bobrowski and Borman show [5, Section 4.1]

that for j ≥ 1,

Mγ
j {F ≥ s} =

∑
i

((−1)j−1Hj−1(bi)ϕ(bi) +Hj−1(ai)ϕ(ai)),

and furthermore that any infinite ai or bi affect only Mγ
0 . Thus, we assume all

ai and bi are finite and

F−1(s) =
⋃
i

{ai, bi}.

Since F ′(ai) > 0 and F ′(bi) < 0, we obtain

Mγ
j {F ≥ s} =

∑
x∈F−1(s)

(sign(F ′(x)))j−1Hj−1(x)ϕ(x).

We can then express the expected lower Hadwiger integral of g as:

E
(∫

M

g bdµic
)

= µi(M)E(g)

+

n−i∑
j=1

[
i+ j

j

]
(2π)−j/2µi+j(M)

∫
R

∑
x∈F−1(s)

(sign(F ′(x)))j−1Hj−1(x)ϕ(x) ds.

As a further special case, if F (x) = x, then g is a Gaussian random field,

E(g) = 0, and we have:

E
(∫

M

g bdµic
)

=

n−i∑
j=1

[
i+ j

j

]
(2π)−j/2µi+j(M)

∫
R
Hj−1(s)ϕ(s) ds.

Example 6.2 (The χ2 case). Let M be a compact n-dimensional manifold,

f : M → Rk a random field satisfying the conditions of Theorem 5.1 with k ≥ n,

and

F (x1, . . . , xk) =

k∑
i=1

x2i .

Then g = F ◦ f is a called a χ2 random field.
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If s ≤ 0, then {F ≥ s} = Rk. The tube formula (4.2) then implies that for

s ≤ 0 and j ≥ 1, Mγ
j {F ≥ s} = 0. Thus, it suffices to consider positive s.

In the χ2 case, Adler and Taylor show [1, Section 15.10.2] that for j ≥ 1,

Mγ
j {F ≥ s} = (−1)j−1

dj−1pk(x)

dxj−1

∣∣∣∣
x=
√
s

where pk(x) =
xk−1e−x

2/2

Γ(k/2)2(k−2)/2
.

Integrating, we obtain:∫ ∞
0

Mγ
1{F ≥ s} ds = 2

√
2

Γ((k + 1)/2)

Γ(k/2)
,∫ ∞

0

Mγ
2{F ≥ s} ds = 2,∫ ∞

0

Mγ
j {F ≥ s} ds = 0 for 3 ≤ j ≤ n.

Additionally, E(g) = k. Therefore, we can express the expected lower Hadwiger

integral of g as:

E
(∫

M

g bdµic
)

= kµi(M)

+

[
i+ 1

1

]
2µi+1(M)√

π
· Γ((k + 1)/2)

Γ(k/2)
+

[
i+ 2

2

]
µi+2(M)

π
.

7. Connection to Hadwiger’s Theorem

We now combine Theorem 5.1 with Hadwiger’s Theorem to obtain expected

values of more general valuations of Gaussian-related random fields. The classic

Hadwiger Theorem states that all Euclidean-invariant convex-continuous valua-

tions on subsets of Rn are linear combinations of the intrinsic volumes [8]. Recent

work lifted the theorem from valuations on sets to valuations on functions defined

on sets, obtaining Hadwiger’s Theorem for functions [4, Theorem 14].

Hadwiger’s Theorem for functions requires the dual notions of lower- and

upper-continuous valuations on functions. For a rigorous treatment in integral-

geometric terms, see [4, Definition 8]. Briefly, a valuation v on functions assigns

a real number to each function such that v(0) = 0 and the following additivity

condition is satisfied:

v(f) + v(g) = v(f ∨ g) + v(f ∧ g),

for tame functions f and g, where ∨ and ∧ denote pointwise max and min, re-

spectively. If a valuation v is lower-continuous, then lim
m→∞

v
(

1
mbmfc

)
= v(f),

where b · c is the floor function, and dually for upper-continuity. The duality of

lower- and upper-continuity mirrors that present in the lower and upper Had-

wiger integrals. Hadwiger’s Theorem for functions is then [4, Theorem 14]:
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Theorem 7.1 (Hadwiger’s Theorem for functions). If v is a Euclidean-

invariant, lower-continuous valuation on tame functions f : Rn → R, then

v(f) =

n∑
i=0

∫
Rn

ci ◦ f bdµic

for some continuous and monotonically increasing functions ci ∈ C(R) satisfying

ci(0) = 0. Similarly, an upper-continuous valuation can be written in terms of

upper Hadwiger integrals.

In the previous theorem, the coefficient functions ci must be monotonically in-

creasing because composition of f with a decreasing function interchanges lower-

and upper-continuity; for details, see [4, Proposition 13]. We now introduce the

concept of a piecewise C2 valuation, which imposes a smoothness condition on

the functions ci in Theorem 7.1.

Definition 7.2. A Euclidean-invariant, lower- or upper-continuous valua-

tion v is a piecewise C2 valuation if the functions ci guaranteed by Theorem 7.1

are piecewise C2 functions.

Determining whether a valuation v is piecewise C2 is straightforward. Let

A0, . . . , An be a sequence of subsets of Rn such that µi(Aj) = δij , where δij is

the Kronecker delta. Then the indicator function hr = r1Aj is a test function

that isolates cj(r):

v(hr) = v(r1Aj
) =

n∑
i=0

∫
Rn

ci(r1Aj
) bdµic =

n∑
i=0

ci(r)µi(Aj) = cj(r).

For a piecewise C2 valuation of a Gaussian-related random field, Theorem 5.1

gives the expected values of the Hadwiger integrals that appear in Hadwiger’s

theorem. We obtain the following corollary.

Corollary 7.3. Let v be a lower-continuous piecewise C2 valuation, and

let g = F ◦ f : M → R be a Gaussian-related random field as in Theorem 5.1,

with the additional requirement that f is isotropic. Then the expected value of

v(g) is

(7.1) E(v(g)) =

n∑
i=0

(
µi(M)E(ci(g))

+

n−i∑
j=1

[
i+ j

j

]
(2π)−j/2µi+j(M)

∫
R
Mγ

j {ci(F ) ≥ s} ds
)
,

and similarly for an upper-continuous piecewise C2 valuation.
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Proof. Since the field is isotropic, the µi are calculated with respect to the

Euclidean metric. Thus, Euclidean-invariance allows us to apply Theorem 7.1,

obtaining the decomposition

(7.2) v(g) =

n∑
i=0

∫
Rn

ci ◦ g bdµic.

Since each of the ci are piecewise C2 functions, each composition ci(g) is a Gau-

ssian-related random field satisfying the conditions of Theorem 5.1. Therefore,

we can apply Theorem 5.1 to each summand in equation (7.2), obtaining equa-

tion (7.1). �

We conclude with a comment about critical values. While the Euler integral

has an elegant expression in terms of the critical values of a random field [2], [5],

a similar phenomena for the more general Hadwiger integrals is elusive. Because

Euler characteristic is a topological invariant, and the topology of superlevel

sets of a function changes only at critical values, the Euler integral is determined

precisely by the critical values. However, the other intrinsic volumes are metric-

dependent, returning geometric information about sets. Thus, it appears that

the Hadwiger integrals, other than the Euler integral, cannot be reduced to

critical values alone.
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