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NONCONVEX RETRACTS AND COMPUTATION
FOR FIXED POINT INDEX IN CONES

Guowei Zhang — Pengcheng Li

Abstract. In this paper we construct two retracts in a cone by nonneg-

ative functionals of convex and concave types, and an example is given to
illustrate that the retracts are nonconvex. Then the nonconvex retracts

are used to compute the fixed point index for the completely continuous

operator in the domains D1 ∩ D2 and D1 ∪ D2, where D1 and D2 are
bounded open sets in the cone. The computation for fixed point index can

be applied to the existence and the more precise location of positive fixed

points.

1. Introduction

Let E be a real Banach space with the zero element denoted by θ. A non-
empty convex closed set P ⊂ E is called a cone if it satisfies the following two
conditions: (i) λx ∈ P for x ∈ P and λ ≥ 0; (ii) ±x ∈ P implies x = θ. For
the theory and properties of cone and fixed point index in Banach spaces we
refer to [13], [14]. A nonnegative functional γ:P → [0,+∞) is said to be convex
or concave if γ(tx + (1 − t)y) ≤ tγ(x) + (1 − t)γ(y) and γ(tx + (1 − t)y) ≥
tγ(x) + (1− t)γ(y) for all x, y ∈ P and t ∈ [0, 1], respectively. γ is bounded if its
range of bounded set in E is bounded. For D ⊂ P , D and ∂D are respectively
the closure and boundary of D in P . The open ball centered at θ with the radius
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R > 0 is denoted by BR = {x ∈ E | ‖x‖ < R} and [x] stands for x/‖x‖ for
x ∈ E \ {θ}. Throughout this paper, the notations

D1 = {x ∈ P | α(x) < R1}, D2 = {x ∈ P | β(x) < R2},
D′

1 = {x ∈ P | α(x) > R1}, D′
2 = {x ∈ P | β(x) > R2}

are always used for the functionals α, β:P→ [0,+∞) and the constants R1, R2 >0.
Computation for fixed point index in cones and topological degrees about

nonlinear completely continuous operators plays a very important role in the
fixed point theory, see the references [1]–[10], [12]–[23] listed in this paper and
others. Krasnosel’skĭi is the first author who considered fixed point index results
about cone compression/expansion (see [15]). In [1], [3] there are the following
results of computation for fixed point index.

Theorem 1.1. Let P be a cone in E, α, β:P → [0,+∞) be continuous
functionals, D1 and D2 be nonempty bounded subsets of P .

(a) Suppose that A:D1 → P is a completely continuous operator with

inf
x∈∂D1

‖Ax‖ > 0 and A(∂D1) ⊂ D
′
1.

If α(λx) ≤ λα(x) for x ∈ ∂D1, λ ∈ (0, 1], then the fixed point index
i(A,D1, P ) = 0.

(b) Suppose that A:D2 → P is a completely continuous operator with A(∂D2) ⊂
D2. If β(θ) = 0 and β(µx) ≥ µβ(x) for x ∈ ∂D2, µ ≥ 1, then the fixed
point index i(A,D2, P ) = 1.

Theorem 1.2. Let P be a cone in E, α:P → [0,+∞) be a continuous convex
functional and β:P → [0,+∞) be a continuous concave functional, D1 and D2

be nonempty bounded subsets of P with D1 ∩D′
2 6= ∅. Suppose that A:P → P is

a completely continuous operator.

(a) If Ax ∈ D1 for x ∈ (∂D1) ∩D
′
2 and x ∈ (∂D1) ∩ {x ∈ P | Ax ∈ D2},

then the fixed point index i(A,D1, P ) = 1.
(b) If Ax ∈ D′

2 for x ∈ (∂D2) ∩D1 and x ∈ (∂D2) ∩ {x ∈ P | Ax ∈ D′
1},

then the fixed point index i(A,D2, P ) = 0.

Through these computations for fixed point index, the fixed point theorems of
expansion-compression type in cones were deduced and applied to the existence
and the location of positive solutions for differential and difference equations. In
this paper we shall discuss the fixed point index in the domains D1 ∩ D2 and
D1 ∪D2 which can be applied to the existence and the more precise location of
positive fixed points, and thus positive solutions for differential and difference
equations under different conditions from those in previous work.
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First we construct two nonconvex retracts in a cone by nonnegative function-
als of convex and concave types, and then the retracts are used to compute the
fixed point index for the completely continuous operator in the domains D1∩D2

and D1∪D2. A subset X ⊂ E is called a retract of E if there exists a continuous
mapping r:E → X, a retraction, satisfying r(x) = x, x ∈ X. By a theorem due
to Dugundji [11], every nonempty closed convex subset of E is a retract of E.
An example is given to illustrate that the retracts obtained in this paper are
nonconvex.

2. Nonconvex retracts

Theorem 2.1. Let P be a cone in E, α:P → [0,+∞) be a continuous convex
functional and β:P → [0,+∞) be a bounded continuous concave functional with
α(θ) = β(θ) = 0 and α(x) > 0, β(x) > 0 for x 6= θ, both {x ∈ P | α(x) ≤ R}
and {x ∈ P | β(x) ≤ R} be bounded for all R > 0. If

(2.1) β(µx) > β(x), for all µ > 1, x ∈ P \ {θ},

then D1 ∩D2 is a retract of E.

Proof. Since both α and β are continuous with α(θ) = β(θ) = 0, there
exist nonzero elements in D1 ∩D2, i.e. D1 ∩D2 6= ∅.

(a) Since D1 is a closed convex set, there exists a retraction g1:E → D1.
(b) If D1 ∩ D

′
2 = ∅, then D1 ⊂ D2 and D1 ∩ D2 = D1 is a retract of E.

Afterwards we may suppose that D1∩D
′
2 6= ∅. Since D1 is bounded, there exists

a constant R′
1 > 0 such that ‖x‖ ≤ R′

1, for all x ∈ D1 ∩ D
′
2. Because β(x) is

a bounded functional, we have a constant M > R2 such that β(x) ≤ M , for all
x ∈ D1 ∩ D

′
2. Due to the boundedness of {x ∈ P | β(x) ≤ M + 1}, we know

that there exists a constant R′
2 > R′

1 such that β(x) > M + 1 for x ∈ P ∩ ∂BR′
2
.

Owing to θ 6∈ D1 ∩D
′
2, we can define

g2(x) =
β(R′

2[x])−R2

β(R′
2[x])− β(x)

(x−R′
2[x]), for all x ∈ D1 ∩D

′
2.

Obviously, g2 is continuous.
(c) For x ∈ D1 ∩D

′
2, define

g3(x) =

{
g2(x) + R′

2[x], ‖g2(x)‖ ≤ R′
2;

θ, ‖g2(x)‖ > R′
2.

Thus g3:D1 ∩D
′
2 → P is continuous. In fact, if ‖g2(x)‖ ≤ R′

2, i.e.

(2.2)
∥∥∥∥ β(R′

2[x])−R2

β(R′
2[x])− β(x)

(x−R′
2[x])

∥∥∥∥ =
β(R′

2[x])−R2

β(R′
2[x])− β(x)

(R′
2 − ‖x‖) ≤ R′

2,
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then

g3(x) =
(

β(R′
2[x])−R2

β(R′
2[x])− β(x)

(‖x‖ −R′
2) + R′

2

)
[x] ∈ P,

which implies that g3:D1 ∩ D
′
2 → P . When ‖g2(x)‖ = R′

2, by (2.2) we have
g3(x) = θ and hence g3(x) is continuous.

(d) Define

g4(x) =

{
g3(x), x ∈ D1 ∩D

′
2;

x, x ∈ D1 ∩D2.

For x ∈ {x ∈ P | β(x) = R2, α(x) ≤ R1}, we have that g2(x) = x − R′
2[x] and

‖g2(x)‖ = R′
2 − ‖x‖ < R′

2. Therefore g3(x) = x and g4:D1 → P is well defined
and continuous.

(e) In the following we shall show that β(g3(x)) ≤ R2, α(g3(x)) ≤ R1 for
x ∈ D1 ∩D

′
2, that is, g4:D1 → D1 ∩D2.

Actually when ‖g2(x)‖ > R′
2, we have that g3(x) = θ, and hence α(g3(x)) =

0 ≤ R1, β(g3(x)) = 0 ≤ R2.
When ‖g2(x)‖ ≤ R′

2, it follows from β(x) ≥ R2 that

β(R′
2[x])−R2

β(R′
2[x])− β(x)

≥ 1,

and

g3(x) =
β(R′

2[x])−R2

β(R′
2[x])− β(x)

(x−R′
2[x]) + R′

2[x],

x =
β(R′

2[x])− β(x)
β(R′

2[x])−R2
g3(x) +

(
1− β(R′

2[x])− β(x)
β(R′

2[x])−R2

)
R′

2[x].

By the concavity of β, we have

β(x) ≥ β(R′
2[x])− β(x)

β(R′
2[x])−R2

β(g3(x)) +
(

1− β(R′
2[x])− β(x)

β(R′
2[x])−R2

)
β(R′

2[x]),

(2.3) β(g3(x)) ≤ β(R′
2[x])−R2

β(R′
2[x])− β(x)

β(x)−
(

β(R′
2[x])−R2

β(R′
2[x])− β(x)

−1
)

β(R′
2[x]) = R2.

On the other hand, when ‖g2(x)‖ ≤ R′
2, if

β(R′
2[x])−R2

β(R′
2[x])− β(x)

(
1−R′

2

1
‖x‖

)
+ R′

2

1
‖x‖

> 1,

from (2.1) we have

β(g3(x)) = β

((
β(R′

2[x])−R2

β(R′
2[x])− β(x)

(
1−R′

2

1
‖x‖

)
+ R′

2

1
‖x‖

)
x

)
> β(x).

Since β(x) ≥ R2, it follows that β(g3(x)) > R2, which contradicts (2.3), and
thus

0 ≤ β(R′
2[x])−R2

β(R′
2[x])− β(x)

(
1−R′

2

1
‖x‖

)
+ R′

2

1
‖x‖

≤ 1.
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By the convexity of α,

α(g3(x)) =α

((
β(R′

2[x])−R2

β(R′
2[x])− β(x)

(
1−R′

2

1
‖x‖

)
+ R′

2

1
‖x‖

)
x

)
≤

(
β(R′

2[x])−R2

β(R′
2[x])− β(x)

(
1−R′

2

1
‖x‖

)
+ R′

2

1
‖x‖

)
α(x) ≤ α(x) ≤ R1.

(f) Let g(x) = g4(g1(x)), for all x ∈ E, then g:E → D1∩D2 is a retraction.�

Theorem 2.2. Let P be a cone in E, α:P → [0,+∞) be a continuous
functional and β:P → [0,+∞) be a continuous concave functional with α(θ) =
β(θ) = 0 and α(x) > 0, β(x) > 0 for x 6= θ. If D′

1 ∩D′
2 6= ∅, (2.1) holds and

(2.4) α(λx) ≤ λα(x), for all λ ∈ [0, 1], x ∈ P,

then D
′
1 ∩D

′
2 is a retract of E.

Proof. (a) Since D
′
2 is a closed convex set, there exists a retraction

g1:E → D
′
2.

(b) If D1 ∩ D
′
2 = ∅, then D

′
1 ⊃ D

′
2 and D

′
1 ∩ D

′
2 = D

′
2 is a retract of E.

Afterwards we may suppose that D1 ∩D
′
2 6= ∅. Owing to θ 6∈ D1 ∩D

′
2, we can

define

g2(x) =


R1

α(x)
x, x ∈ D1 ∩D

′
2;

x, x ∈ D
′
1 ∩D

′
2.

Because g2(x) = x if α(x) = R1 and β(x) ≥ R2, we have that g2(x) is continuous
on D

′
2.

(c) For x ∈ D1 ∩ D
′
2, g2(x) = R1x/α(x), i.e. x = α(x)g2(x)/R1. It follows

from α(x) ≤ R1 that α(x)/R1 ≤ 1, and thus by (2.4),

α(x) = α

(
α(x)
R1

g2(x)
)
≤ α(x)

R1
α(g2(x)),

that is, α(g2(x)) ≥ R1. We have from (2.1) that

β(g2(x)) = β

(
R1

α(x)
x

)
≥ β(x) ≥ R2,

and then g2:D
′
2 → D

′
1 ∩D

′
2.

(d) Let g(x) = g2(g1(x)), for all x ∈ E, then g:E → D
′
1∩D

′
2 is a retraction.�

3. Computation for the fixed point index

In this section we shall use the retracts obtained above to compute the fixed
point index for nonlinear completely continuous operators. The next theorem
follows the idea from [19].
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Theorem 3.1. Let P be a cone in E and Ω be a bounded open set in P ,
A: Ω → P be completely continuous with Ax 6= x, for all x ∈ ∂Ω. Suppose that
D ⊂ P is a retract of E satisfying A(∂Ω) ⊂ D.

(a) If D ⊂ Ω, then the fixed point index i(A,Ω, P ) = 1;
(b) If D ∩ Ω = ∅, then the fixed point index i(A,Ω, P ) = 0.

Proof. Let g:E → D be a retraction.
(a) Take R sufficiently large such that Ω ⊂ PR = {x ∈ P | ‖x‖ < R}. By

the extension theorem, A|∂Ω has a completely continuous extension A1:PR → P

with A1x = Ax for x ∈ ∂Ω. Denote A2 = gA1, then A2:PR → D is completely
continuous and A2x = Ax for x ∈ ∂Ω since A(∂Ω) ⊂ D. It follows from D ⊂
Ω ⊂ PR and the homotopy invariance of fixed point index that

(3.1) i(A2, PR, P ) = i(θ, PR, P ) = 1.

Notice that A2:PR → D ⊂ Ω and Ax 6= x for x ∈ ∂Ω, then A2 has no fixed
point in PR \ Ω and hence

(3.2) i(A2, PR, P ) = i(A2,Ω, P ) = i(A,Ω, P ).

Therefore, from (3.1) and (3.2) it follows that i(A,Ω, P ) = 1.
(b) A|∂Ω has a completely continuous extension A3: Ω → P with A3x = Ax

for x ∈ ∂Ω. Denote A4 = gA3, thus A4: Ω → D is completely continuous and
A4x = Ax for x ∈ ∂Ω since A(∂Ω) ⊂ D. If i(A,Ω, P ) 6= 0, then i(A4,Ω, P ) 6= 0
and A4 has a fixed point in D ∩ Ω, which contradicts D ∩ Ω = ∅. �

Theorem 3.2. Let P be a cone in E, α:P → [0,+∞) be a continuous convex
functional and β:P → [0,+∞) be a bounded continuous concave functional with
α(θ) = β(θ) = 0 and α(x) > 0, β(x) > 0 for x 6= θ, both {x ∈ P | α(x) ≤ R}
and {x ∈ P | β(x) ≤ R} be bounded for all R > 0, A:P → P be completely
continuous. Suppose that (2.1) holds.

(a) If A(∂(D1 ∩D2)) ⊂ D1 ∩D2 with Ax 6= x, for all x ∈ ∂(D1 ∩D2), then
i(A,D1 ∩D2, P ) = 1;

(b) If A(∂(D1 ∩D2)) ⊂ D
′
1 ∩D

′
2 with Ax 6= x, for all x ∈ ∂(D1 ∩D2), then

i(A,D1 ∩D2, P ) = 0;
(c) If A(∂(D1 ∪D2)) ⊂ D1 ∩D2 with Ax 6= x, for all x ∈ ∂(D1 ∪D2), then

i(A,D1 ∪D2, P ) = 1;
(d) If A(∂(D1 ∪D2)) ⊂ D

′
1 ∩D

′
2 with Ax 6= x, for all x ∈ ∂(D1 ∪D2), then

i(A,D1 ∪D2, P ) = 0.

Proof. It is clear that D
′
1 ∩ D

′
2 6= ∅ since both {x ∈ P | α(x) ≤ R} and

{x ∈ P | β(x) ≤ R} are bounded for all R > 0. By the convexity of α and
α(θ) = 0 we know that (2.4) is satisfied. From Theorems 2.1 and 2.2 it follows
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that D1 ∩D2 and D
′
1 ∩D

′
2 are retracts of E, and then Theorem 3.1 tells us that

the conclusions of this theorem holds. �

Corollary 3.3. Under the same conditions as those in Theorem 3.2, if
(D1 ∪D2) \ (D1 ∩D2) 6= ∅ and

(a) A(∂(D1 ∩D2)) ⊂ D1 ∩D2, A(∂(D1 ∪D2)) ⊂ D
′
1 ∩D

′
2; or

(b) A(∂(D1 ∩D2)) ⊂ D
′
1 ∩D

′
2, A(∂(D1 ∪D2)) ⊂ D1 ∩D2,

then A has a fixed point in (D1 ∪D2) \ (D1 ∩D2).

4. An example

In this section we will give an example to illustrate that the retracts obtained
are nonconvex.

Let E = C[0, 1] be Banach space with the norm ‖x‖ = max
0≤t≤1

|x(t)|, for all

x ∈ C[0, 1],

P =
{

x ∈ C[0, 1]|
∣∣∣∣ x(t) ≥ 0, for all t ∈ [0, 1], min

t∈[1/3,2/3]
x(t) ≥ 1

9
‖x‖

}
.

Obviously, P is a cone in E. Define

α(x) = max
t∈[1/3,2/3]

x(t), β(x) = min
t∈[1/3,2/3]

x(t)

for x ∈ P , it is clear that α:P → [0,+∞) is a continuous convex functional
and β:P → [0,+∞) is a bounded continuous concave functional with α(θ) =
β(θ) = 0 and α(x) > 0, β(x) > 0 for x 6= θ, both {x ∈ P | α(x) ≤ R} and
{x ∈ P | β(x) ≤ R} are bounded for all R > 0. Moreover, (2.1) and (2.4) are
satisfied.

Let R1 = 7/9 and R2 = 5/18. If we take x1(t) = 5t/6 and x2(t) = 5(1− t)/6
for t ∈ [0, 1], then x1, x2 ∈ D1 ∩ D2. However α((x1 + x2)/2) = 5/12 > R2,
thus D1 ∩ D2 is not convex. If we take x3(t) = 7t/6 and x4(t) = 7(1 − t)/6
for t ∈ [0, 1], then x3, x4 ∈ D

′
1 ∩ D

′
2. However α((x3 + x4)/2) = 7/12 < R1,

thus D
′
1 ∩D

′
2 is not convex. Besides, if we take x5(t) = t and x6(t) = 2(t− 1)2

for t ∈ [0, 1], then it is easy to see that x5 ∈ D1 \ D2 and x6 ∈ D2 \ D1, i.e.
(D1 ∪D2) \ (D1 ∩D2) 6= ∅.
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[15] M.A. Krasnosel’skĭi, Positive Solutions of Operator Equations, P. Noordhoff, Gröningen,
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