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RADIAL SYMMETRY OF n-MODE POSITIVE SOLUTIONS
FOR SEMILINEAR ELLIPTIC EQUATIONS IN A DISC
AND ITS APPLICATION TO THE HÉNON EQUATION

Naoki Shioji — Kohtaro Watanabe

Abstract. Let f ∈ C((0, 1)× (0,∞), R) and n ∈ N with n ≥ 2 such that

for each u ∈ (0,∞), r 7→ r2−2nf(r, u): (0, 1) → R is nonincreasing and let
D = {x = (x1, x2) ∈ R2 : |x| < 1}. We show that each positive solution of

∆u + f(|x|, u) = 0 in D, u = 0 on ∂D

which satisfies u(r, θ) = u(r, θ + 2π/n) by the polar coordinates is radially

symmetric and ur(|x|) < 0 for each r = |x| ∈ (0, 1). We apply our result to
the Hénon equation.

1. Introduction

The radial symmetry of positive solutions of the problem

(1.1)

{
∆u + f(|x|, u) = 0 in B,

u = 0 on ∂B,

has been studied by many researchers, where B is the open unit ball in RN

(N≥2) and f ∈ C((0, 1)×(0,∞), R). Gidas, Ni and Nirenberg [12] showed that if
f satisfies that for each u ∈ (0,∞), r 7→ f(r, u): (0, 1) → R is nonincreasing, then
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any C2(B)-positive solution is radially symmetric. For related results, we refer
to [1], [4]–[10], [12], [13], [17]–[20], [22]–[27], [29], [30]. For recent developments
of the symmetry of positive solutions of (1.1), see [2], [3], [15], [28], [33] and
references therein.

In this paper, we give a radial symmetry result for an n-mode positive solu-
tion of

(1.2)

{
∆u + f(|x|, u) = 0 in D \ {0},
u = 0 on ∂D,

where D = {x = (x1, x2) ∈ R2 : |x| < 1}. We say a function u:D → R is n-mode
with n ∈ N if it is 2π/n rotationally invariant, i.e.

u(r, θ) = u

(
r, θ +

2π

n

)
for each (r, θ) ∈ [0, 1]× R

by the polar coordinates. We say u is of class Cn (n ∈ N) at the origin if u

is of class Cn−1 in a neighbourhood of the origin and each (n − 1)-th partial
derivative is totally differentiable at the origin.

Now, we show our first result.

Theorem 1.1. Let n ∈ N with n ≥ 2 and f ∈ C((0, 1) × (0,∞), R) such
that:

(a) for each u ∈ (0,∞), r 7→ r2−2nf(r, u): (0, 1) → R is nonincreasing,
(b) for each r0 ∈ (0, 1) and M ∈ (0,∞),

sup
{∣∣∣∣f(r, u1)− f(r, u2)

u1 − u2

∣∣∣∣ : (r, u1, u2) ∈ (r0, 1)× (0,M ]2, u1 6= u2

}
< ∞.

Let u ∈ C2(D \ {0}) ∩ C(D) be an n-mode positive solution of (1.2). Assume
that u is of class Cn at the origin or u(0) > u(x) for all x ∈ D \ {0}. Then u is
radially symmetric and ur(|x|) < 0 for r = |x| ∈ (0, 1).

Remark 1.2. The case n = 1 corresponds to Gidas–Ni–Nirenberg’s theorem.

Under the condition u(x) →∞ as |x| → 0, we can show the following.

Theorem 1.3. Let n and f be as in Theorem 1.1. Let u ∈ C2(D \ {0}) ∩
C(D \ {0}) be an n-mode positive solution of

(1.3)


∆u + f(|x|, u) = 0 in D \ {0},
u = 0 on ∂D,

lim
|x|→0

u(x) = ∞.

Then u is radially symmetric and ur(|x|) < 0 for r = |x| ∈ (0, 1).
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As an application, we consider the Hénon equation

(1.4)

{
∆u + |x|α|u|p−2u = 0 in D,

u = 0 on ∂D

with α ∈ (0,∞) and p ∈ (2,∞). Smets, Willem and Su [32, Theorem 6] showed
that the problem has a nonradial positive solution for sufficiently large α > 0
(including the higher dimensional case). We show that the solution they obtained
does not have an n-mode symmetry in some sense and that the number of the
nonradial positive solutions tends to infinity as α →∞.

For each α > 0, we denote by dαe and bαc the smallest integer greater than
or equal to α and the largest integer less than or equal to α, respectively. For
each α ≥ 0 and p > 2, we set

Rα,p(u) =

∫
D

|∇u|2 dx( ∫
D

|x|α|u|p dx

)2/p
for each u ∈ H1

0 (D) \ {0}.

Theorem 1.4. There hold the following:

(a) If α ∈ (0,∞), p ∈ (2,∞) and u is an n-mode, positive solution of (1.4)
with n ≥ 1 + dα/2e, then u is radially symmetric.

(b) For each α, p ∈ (2,∞), if nα ≥ 1 then problem (1.4) has a nonradial,
n-mode positive solution un for n = 1, . . . , nα such that

(1.5) Rα,p(u1) < . . . < Rα,p(unα
),

where nα is the greatest integer less than

(1.6)
(

α + 2
2α

)4/(p−2)(
α− 2

α

)2α/(p−2)(
1 +

α

2

)
.

In particular, there hold the following:
(i) For each α ∈ (2,∞), if p ∈ (2,∞) is large enough, then nα = dα/2e,

that is, problem (1.4) has a nonradial, n-mode positive solution
for n = 1, . . . , dα/2e(= nα) satisfying (1.5).

(ii) For each p ∈ (2,∞) and m ∈ N, if α ∈ (2,∞) is large enough,
problem (1.4) has a nonradial, n-mode positive solution un for n =
1, . . . , m such that Rα,p(u1) < . . . < Rα,p(um). In particular, for
each p ∈ (2,∞), the number of nonradial positive solutions of (1.4)
tends to infinity as α →∞.

Remark 1.5. In the theorem above, we can easily see nα ≤ dα/2e.

Remark 1.6. In the case that α > 0 is sufficiently small, Kajikiya [16,
Theorem 2.4] showed that the least energy solution of (1.4) is radially symmetric.
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We study further the symmetry of n-mode positive solutions for (1.1). In
some of radial symmetry results for positive solutions of semilinear elliptic equa-
tions, geometry plays an important role. Naito, Nishimoto and Suzuki [25] con-
sidered the case that (1−r2)2f(r, u): (0, 1) → R is decreasing for each u ∈ (0,∞).
Using hyperbolic geometry, they showed each positive solution of (1.1) is radially
symmetric; see also [26] for the higher dimensional case. The authors [31] stud-
ied the case that a ∈ (−1, 1] and (1 + ar2)2f(r, u): (0, 1) → R is nonincreasing
for each u ∈ (0,∞), and they showed that each positive solution (1.1) is radially
symmetric. We generalize Theorems 1.1 and 1.3 by using elliptic and hyperbolic
geometry. In the following, the case a = 0 corresponds to Theorem 1.1.

Theorem 1.7. Let n ∈ N with n ≥ 2, a ∈ [−1, 1] and f ∈ C((0, 1) ×
(0,∞), R) such that

(a) for each u ∈ (0,∞), r 7→ (1 + ar2n)2r2−2nf(r, u): (0, 1) → R is nonin-
creasing in the case of a ∈ (−1, 1], and it is decreasing in the case of
a = −1,

(b) for each r0 ∈ (0, 1) and M ∈ (0,∞),

sup
{∣∣∣∣f(r, u1)− f(r, u2)

u1 − u2

∣∣∣∣ : (r, u1, u2) ∈ (r0, 1)× (0,M ]2, u1 6= u2

}
< ∞.

Let u ∈ C2(D \ {0}) ∩ C(D) be an n-mode positive solution of (1.2). Assume
that u is of class Cn at the origin or u(0) > u(x) for all x ∈ D \ {0}. Then u is
radially symmetric and ur(|x|) < 0 for r = |x| ∈ (0, 1).

Remark 1.8. The case n = 1 and a = −1 corresponds to [25, Theorem 1]
(see also [26, Theorem 1]), and the case n = 1 and a ∈ (−1, 0)∪(0, 1] corresponds
to [31, Theorem 1].

As a consequence of Theorem 1.7, we have the following:

Corollary 1.9. Let n, a and f be as in Theorem 1.7. Assume f(r, u) ≥ 0
for each (r, u) ∈ (0, 1)×(0,∞). Let u ∈ C2(D\{0})∩C(D) be a positive solution
of (1.2) which is of class Ck (k ∈ N ∪ {∞}) at the origin. If u is m-mode with
n ≤ m ≤ k, then u is radially symmetric.

In the following, the case a = 0 corresponds to Theorem 1.3.

Theorem 1.10. Let n, a and f be as in Theorem 1.7. Let u ∈ C2(D\{0})∩
C(D\{0}) be an n-mode positive solution of (1.3). Then u is radially symmetric
and ur(|x|) < 0 for r = |x| ∈ (0, 1).

This paper is organized as follows. In Section 2, we give the proofs of Theo-
rems 1.1 and 1.3, and in Section 3, we give the proof of Theorem 1.4. Although
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we need some devices to prove Theorems 1.7 and 1.10, we can prove them simi-
larly. So we give a proof of Theorem 1.7 in Appendix and we omit the proof of
Theorem 1.10.

2. Proofs of Theorems 1.1 and 1.3

First, we give the proof of Theorem 1.1. Let n, f and u be as in Theorem 1.1.
By using the polar coordinates, we define ũ:D → R by ũ(r, θ) = u(r1/n, θ/n)
for (r, θ) ∈ D. Since u is n-mode and u satisfies (1.2), we can see that ũ ∈
C2(D \ {0}) ∩ C(D) and ũ satisfies

(2.1)

{
∆ũ + f̃(|x|, ũ) = 0 in D \ {0},
ũ = 0 on ∂D,

where f̃ ∈ C((0, 1) × (0,∞), R) is given by f̃(r, t) = n−2r(2−2n)/nf(r1/n, t) for
(r, t) ∈ (0, 1)× (0,∞), and f̃ satisfies

(2.2) for each t > 0, r 7→ f̃(r, t) is nonincreasing.

Indeed, from

∆ũ(r, θ) + f̃(r, ũ(r, θ)) =
1
n2

r(2−2n)/n

(
urr

(
r1/n,

θ

n

)
+

1
r1/n

ur

(
r1/n,

θ

n

)
+

1
r2/n

uθθ

(
r1/n,

θ

n

)
+ f

(
r1/n, u

(
r1/n,

θ

n

)))
= 0,

we have (2.1), and we can easily see (2.2).
For each λ ∈ (0, 1), we set Σλ = {x ∈ D : x1 > λ} and we define hλ: Σλ → D

by hλ(x) = (2λ− x1, x2) for x = (x1, x2) ∈ Σλ. We note that hλ satisfies

(2.3) |hλ(x)| < |x| for each λ ∈ (0, 1) and x ∈ Σλ ∪ Int∂D(Σλ ∩ ∂D).

Here, for a subset E of ∂D, we denote by Int∂DE, the interior set of E with
respect to the relative topology of ∂D. We set xλ = (2λ, 0) for λ ∈ (0, 1). For
the sake of convenience in the arguments in Appendix, we set λ̂ = 1/2 in this
section. We can see

(2.4) xλ ∈


Σλ for each λ ∈ (0, λ̂),

∂Σλ for λ = λ̂,

R2 \ Σλ for each λ ∈ (λ̂, 1)

and

(2.5) hλ(xλ) = 0 for each λ ∈ (0, λ̂].

For the sake of completeness, we note that Σλ \ {xλ} = Σλ for each λ ∈ [λ̂, 1)
and Σλ \ {xλ} = Σλ for each λ ∈ (λ̂, 1).
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We define vλ ∈ C2(Σλ \ {xλ}) ∩ C(Σλ) and cλ ∈ L∞(Σλ) by

(2.6) vλ(x) = ũ(x)− ũ(hλ(x)) for x ∈ Σλ

and

(2.7) cλ(x) =

 − f̃(|x|, ũ(x))− f̃(|x|, ũ(hλ(x)))
ũ(x)− ũ(hλ(x))

for x ∈ Σλ with vλ(x) 6= 0,

0 for x ∈ Σλ with vλ(x) = 0,

respectively. By the assumptions of Theorem 1.1, we can see

(2.8) sup
r<λ<1

ess sup
x∈Σλ

|cλ(x)| < ∞ for each r ∈ (0, 1)

and

(2.9) −∆vλ(x) + cλ(x)vλ(x) ≤ 0 for λ ∈ (0, 1) and x ∈ Σλ \ {xλ}.

Now, we apply the moving plane argument. Since ũ may not be C2 at the
origin, we need additional arguments. We set

(2.10) A1 = {λ ∈ [λ̂, 1) : vλ(x) < 0 for each x ∈ Σλ} and µ1 = inf
λ∈A1

λ.

Lemma 2.1. A1 6= ∅.

Proof. Let λ ∈ [λ̂, 1) such that λ is sufficiently close to 1. Then we can
easily see vλ(x) ≤ 0 for x ∈ ∂Σλ and vλ(x) < 0 for x ∈ Int∂D(∂D ∩ ∂Σλ)
from (2.3). Since |Σλ| � 1 and (2.9) holds, by the Alexandroff–Bakelman–Pucci
inequality [14, Theorem 9.1], which is abbreviated to the ABP inequality below,
we have vλ ≤ 0 on Σλ. By the strong maximum principle, we have vλ < 0 in
Σλ. Thus we have shown λ ∈ A1, which yields A1 6= ∅. �

Lemma 2.2. µ1 = λ̂ and λ̂ ∈ A1.

Proof. We have vµ1(x) ≤ 0 for x ∈ Σµ1 . Since (2.9) holds with λ = µ1

and vµ1(x) < 0 for x ∈ Int∂D(∂Σµ1 ∩ ∂D) from (2.3), by the strong maximum
principle, we have vµ1(x) < 0 for x ∈ Σµ1 , which yields µ1 ∈ A1. So it is
enough to show µ1 = λ̂. Suppose not, i.e. µ1 > λ̂. Let G be an open set such
that G ⊂ Σµ1 and |Σµ1 \ G| � 1. We have max

x∈G
vµ1(x) < 0. Let 0 < ε � 1.

Then we have max
x∈G

vµ1−ε(x) < 0 and |Σµ1−ε \ G| � 1. Since (2.9) holds with

λ = µ1 − ε, vµ1−ε(x) ≤ 0 for x ∈ ∂(Σµ1−ε \ G) and vµ1−ε(x) < 0 for x ∈
(Int∂D(∂Σµ1−ε ∩ ∂D)) ∪ ∂G, by the ABP inequality and the strong maximum
principle, we have vµ1−ε(x) < 0 for x ∈ Σµ1−ε, which yields µ1 − ε ∈ A1. This
is a contradiction. Thus we have shown µ1 = λ̂ and λ̂ ∈ A1. �

We set

(2.11) A2 = {λ ∈ (0, λ̂) : vλ(x) < 0 for each x ∈ Σλ} and µ2 = inf
λ∈A2

λ.
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Lemma 2.3. A2 6= ∅.

Proof. We note that x
bλ = (1, 0). Let G be an open set such that G ⊂ Σ

bλ

and |Σ
bλ \ G| � 1. From λ̂ ∈ A1 and G ⊂ Σ

bλ, we have max
x∈G

v
bλ(x) < 0. Let

λ ∈ (0, λ̂) such that λ is sufficiently close to λ̂. We note |Σλ \ G| � 1 and xλ

is close to (1, 0). We choose a sufficiently small open neighbourhood U of xλ

with U ⊂ Σλ, and we set H = G ∪ U . Then we have vλ(x) < 0 for x ∈ H,
vλ(x) ≤ 0 for x ∈ ∂Σλ ∪ ∂H and |Σλ \H| � 1. Since (2.9) holds on Σλ \H, by
the ABP inequality and the strong maximum principle, we have vλ < 0 on Σλ,
which yields λ ∈ A2. �

Lemma 2.4. Assume that u is of class Cn at the origin. Then there holds

(2.12)
∂(ũ ◦ hµ2)

∂x1
(xµ2) = 0.

Proof. We will show that each j-th partial derivative of u at (0, 0) is zero
for all j = 1, . . . , n. Since u is n-mode with n ≥ 2 and u is totally differentiable
at the origin, we can easily see ∇u(0, 0) = (0, 0). Let j ∈ {1, . . . , n}. By using
mathematical induction, we can see that each (j − 1)-th partial derivative of
u is also n-mode (in a small open ball whose center is the origin), it is totally
differentiable at zero and hence each j-th partial differential coefficient of u at
the origin is zero. Hence we have shown

(2.13)
∂ju

∂xk
1∂xj−k

2

(0, 0) = 0 for j = 1, . . . , n and k = 0, . . . , j.

Next, we will show

(2.14) lim
t→+0

u(t1/nα(t), t1/nβ(t))− u(0, 0)
t

= 0,

where 0 < ε � 1 and α, β ∈ C([0, ε), [0,∞)) are any bounded functions. By
Taylor’s theorem and (2.13), for each 0 < t � 1, there exists ζt ∈ (0, 1) such
that

u(tα(tn), tβ(tn))

= u(0, 0) +
n−1∑
k=0

(tα(tn))k(tβ(tn))n−1−k

k!(n− 1− k)!
∂n−1u

∂xk
1∂xn−1−k

2

(ζttα(tn), ζttβ(tn)).

Using (2.13) again, we obtain

lim
t→+0

u(tα(tn), tβ(tn))− u(0, 0)
tn

= lim
t→+0

n−1∑
k=0

(α(tn))k(β(tn))n−1−k

k!(n− 1− k)!

·

∂n−1u

∂xk
1∂xn−1−k

2

(ζttα(tn), ζttβ(tn))− ∂n−1u

∂xk
1∂xn−1−k

2

(0, 0)

t
= 0,
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which yields (2.14). From the definitions of ũ and hµ2 and (2.14), we have

lim
t→+0

ũ(hµ2(xµ2 + t(1, 0)))− ũ(hµ2(xµ2))
t

= lim
t→+0

u(t1/n cos π/n, t1/n sinπ/n)− u(0, 0)
t

= 0,

lim
t→+0

ũ(hµ2(xµ2 − t(1, 0)))− ũ(hµ2(xµ2))
t

= lim
t→+0

u(t
1
n , 0)− u(0, 0)

t
= 0.

Hence we have shown (2.12). �

Lemma 2.5. µ2 = 0.

Proof. Suppose µ2 6= 0. Then we have µ2 ∈ (0, λ̂) by Lemma 2.3, and
we can see vµ2 ≤ 0 on Σµ2 . We will show vµ2 < 0 on Σµ2 \ {xµ2}. We have
vµ2(x) < 0 for x ∈ Int∂D(∂Σµ2 ∩ ∂D) from (2.3). By (2.9) with λ = µ2 and the
strong maximum principle, we have vµ2 < 0 on Σµ2 \ {xµ2}.

Next, we will show vµ2(xµ2) < 0. In the case u(0) > u(x) for x ∈ D \{0}, we
can easily see vµ2(xµ2) < 0. So we consider the case that u is of class Cn at the
origin. Suppose vµ2(xµ2) < 0 does not hold, i.e. vµ2(xµ2) = 0. Let ν1 = (−1, 0)
and ν2 = (1, 0). From (2.12), we have

∂vµ2

∂ν1
(xµ2) = − ∂ũ

∂x1
(xµ2) +

∂(ũ ◦ hµ2)
∂x1

(xµ2) = − ∂ũ

∂x1
(xµ2),

∂vµ2

∂ν2
(xµ2) =

∂ũ

∂x1
(xµ2)−

∂(ũ ◦ hµ2)
∂x1

(xµ2) =
∂ũ

∂x1
(xµ2).

By Hopf’s lemma, we obtain

− ∂ũ

∂x1
(xµ2) < 0 and

∂ũ

∂x1
(xµ2) < 0,

which is a contradiction. So we have shown vµ2(xµ2) < 0. Thus we have vµ2 < 0
on Σµ2 , which shows µ2 ∈ A2.

We choose an open set G such that G ⊂ Σµ2 and |Σµ2 \ G| � 1. We
have max

G
vµ2 < 0. Let 0 < ε � 1. Then we have |Σµ2−ε \ G| � 1 and

max
G

vµ2−ε < 0. Since (2.9) holds with λ = µ2 − ε, by the ABP inequality and

the strong maximum principle, we have vµ2−ε(x) < 0 for x ∈ Σµ2−ε \G. Hence
we have shown vµ2−ε(x) < 0 for x ∈ Σµ2−ε. Thus we have µ2 − ε ∈ A2, which is
a contradiction. Therefore we obtain µ2 = 0. �

Proof of Theorem 1.1. By the lemmas above, we can infer that ũ is
radially symmetric and ũr(x) < 0 for r = |x| ∈ (0, 1). From the definition of ũ,
we can find u is also radially symmetric and ur(x) < 0 for r = |x| ∈ (0, 1). �

Proof of Theorem 1.3. Since the arguments for the proof of Theorem 1.1
almost similarly work for that of Theorem 1.3, we prove it briefly.
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We define ũ ∈ C2(D \ {0}) ∩ C(D \ {0}) as before. For λ ∈ (0, 1), we define
vλ ∈ C2(Σλ \ {xλ}) ∩ C(Σλ \ {xλ}) by

vλ(x) = ũ(x)− ũ(hλ(x)) for x ∈ Σλ \ {xλ},

and we define cλ by (2.7). We note that the definition of vλ is almost same
as (2.6). For the sake of simplicity, we consider vλ(xλ) = −∞ in the case
xλ ∈ Σλ with λ ∈ (0, 1). We note cλ may not belong to L∞(Σλ). However, we
have

sup
r<λ<1

ess sup{|cλ(x)| : x ∈ Σλ, vλ(x) ≥ −1} < ∞ for each r ∈ (0, 1).

We can easily see that (2.9) holds.
We define A1 and µ1 by (2.10). Since xλ 6∈ Σλ for λ ∈ [λ̂, 1), we can show

µ1 = λ̂ by similar lines as those in the proofs of Lemmas 2.1 and 2.2. We
define A2 and µ2 by (2.11). By a similar proof of Lemma 2.3, we can show
A2 6= ∅. We will show µ2 = 0. Suppose not, i.e. µ2 > 0. Since vµ2 ≤ 0 on Σµ2 ,
vµ2 ≤ −1 in a small neighbourhood U of xµ2 with U ⊂ Σµ2 , and (2.9) holds for
all x ∈ Σµ2 \U , we have vµ2 < 0 in Σµ2 by the strong maximum principle. Thus
we have µ2 ∈ A2. Let G be an open set such that G ⊂ Σµ2 and |Σµ2 \G| � 1.
We have max

x∈G
vµ2(x) < 0. Let λ ∈ (0, µ2) such that λ is sufficiently close to µ2.

Let V = {x ∈ Σλ : vλ(x) < −1} and set H = G ∪ V . Then we have xλ ∈ H,
H ⊂ Σλ ∪ Int∂D(∂Σλ ∩ ∂D), max

H
vλ < 0, |Σλ \H| � 1, and (2.9) holds for all

x ∈ Σλ \H. By the ABP inequality and the strong maximum principle, we have
vλ(x) < 0 for all x ∈ Σλ, which is a contradiction. Thus we have shown µ2 = 0,
and we can infer that u is radially symmetric and ur(x) < 0 for r = |x| ∈ (0, 1).�

3. Proof of Theorem 1.4

We will show (a). We note that each positive solution of (1.4) is of class Ckα ,
where

kα =


bαc+ 2 if α ∈ (0,∞) \ N,

α + 1 if α is an odd natural number,

∞ if α is an even natural number.

Let u be an n-mode, positive solution of (1.4) with n ≥ 1 + dα/2e. We choose
n̂ ∈ N such as (α + 2)n̂ ≤ 2n < 2(α + 2)n̂. We also choose m ∈ N such that

m((α + 2)n̂− n) ≥ nn̂, m/n̂ ∈ N and m(α + 2) > 2n.

We set m̂ = m/n̂. We note that m̂ ≥ 2. We set u(r, θ) = u(rm/n, (m/n)θ). We
note that u is m-mode and hence it is m̂-mode. From u(r, θ) = u(rn/m, (n/m)θ),
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we can easily see that

∆u +
(

m

n

)2

|x|(m(α+2)−2n)/n up−1 = 0 in D \ {0}.

We will show

(3.1)

 ∆u +
(

m

n

)2

|x|(m(α+2)−2n)/n up−1 = 0 in D,

u = 0 on ∂D.

Let ϕ ∈ C∞
0 (D) and let 0 < ε < 1. We have

0 =
∫
{x:ε<|x|<1}

(
∆u +

(
m

n

)2

|x|(m(α+2)−2n)/n up−1

)
ϕ dx

=
∫
{x:ε<|x|<1}

∆u ϕ dx +
(

m

n

)2 ∫
{x:ε<|x|<1}

|x|(m(α+2)−2n)/n up−1ϕ dx

= −
∫
|x|=ε

∂u

∂r
ϕ dσ −

∫
{x:ε<|x|<1}

∇u∇ϕ dx

+
(

m

n

)2 ∫
{x:ε<|x|<1}

|x|(m(α+2)−2n)/n up−1ϕ dx.

Noting u ∈ C1(D), and letting ε → 0, we can find that u is a weak solution
of (3.1). By the elliptic regularity, u is a strong solution of (3.1). Since we have

m(α + 2)− 2n

n
+ 1 ≥ m̂

from m((α + 2)n̂− n) ≥ nn̂, we can infer u ∈ C bm(D). From (α + 2)n̂ ≤ 2n, we
can easily see

r 7→ r2−2bm+(m(α+2)−2n)/n

is nonincreasing. Noting u is m̂-mode and applying Theorem 1, we obtain that
u is radially symmetric, which implies that so is u. Hence we have shown (a).

We will show (b). We set Hn = {u ∈ H1
0 (D) : u is n-mode} for each n ∈ N

and H∞ = {u ∈ H1
0 (D) : u is radially symmetric}. For each α ≥ 0 and p > 2,

we set
Sα,p,n = inf

u∈Hn\{0}
Rα,p(u) for each n ∈ N ∪ {∞}.

For the sake of completeness, we note that H1 = H1
0 (D) and

S0,p,1 = inf
u∈H1

0 (D)\{0}
R0,p(u).

Let α, p ∈ (2,∞). Setting vu(|x|) = u(|x|2/(α+2)) for each u ∈ H∞, we can find

(3.2) Sα,p,∞ = inf
u∈H∞\{0}

(
α + 2

2

)1+2/p

Rα,p(vu) ≥ S0,p,1

(
α + 2

2

)1+2/p

;



Radial Symmetry of n-Mode Positive Solutions 279

see [32, Theorem 4.1] and its proof. Next, let ϕ be any element of C∞
0 (D). Since

we can consider ϕ ∈ C∞
0 (R2) by the zero extension, we can define ϕα ∈ C∞

0 (D)
by ϕα((x1, x2)) = ϕ(α(x1 − (1 − 1/α)), αx2) for (x1, x2) ∈ D. We set D1 = D

and

Dn = {(r cos θ, r sin θ) : 0 < r < 1,−π/n < θ < π/n} for n ∈ N \ {1}.

Following the arguments in [32, Theorem 4.2], [11, Proposition 2] and [21,
Lemma 1.3], we will show

(3.3) Sα,p,n ≤ S0,p,1n
1−2/pα4/p

(
α

α− 2

)2α/p

for each n ∈ N with suppϕα ⊂ Dn. Let n ∈ N with suppϕα ⊂ Dn. For the sake
of completeness, we note that α ∈ (2,∞) and n ≤ dα/2e is a sufficient condition
for suppϕα ⊂ Dn. We define Pn:D → D by

Pn(r cos θ, r sin θ) = (r cos(θ + 2π/n), r sin(θ + 2π/n))

for (r, θ) ∈ [0, 1) × R. We set ϕ̃(x) = ϕα(x) + ϕα(Pn(x)) + . . . + ϕα(Pn−1
n (x))

for x ∈ D. Since we have∫
D

|∇ϕα|2 dx =
∫

D

|∇ϕ|2 dx and
∫

D

|x|α|ϕα|p dx ≥ α−2

(
1− 2

α

)α ∫
D

|ϕ|p dx,

we obtain

Sα,p,n ≤ Rα,p(ϕ̃) ≤
n

∫
D

|∇ϕ|2 dx(
nα−2

(
1− 2

α

)α ∫
D

|ϕ|p dx

)2/p
.

Since ϕ ∈ C∞
0 (D) is arbitrary, we have shown (3.3). From (3.2) and (3.3), we

can see that n ≤ nα is a sufficient condition for Sα,p,n < Sα,p,∞.
Following [21, Lemma 1.5], we will show that if n > 1 and Sα,p,n < Sα,p,∞

then Sα,p,1 < . . . < Sα,p,n. Let n > 1 and Sα,p,n < Sα,p,∞. We can choose
u ∈ Hn \ {0} such that Rα,p(u) = Sα,p,n and u ≥ 0. We note that u 6∈ H∞ and
u is a positive solution of (1.4). Let m ∈ {1, . . . , n− 1}. We define v ∈ Hm by

v(r cos θ, r sin θ) = u(r cos(mθ/n), r sin(mθ/n))

for (r, θ) ∈ [0, 1)× R. Since we can see∫
D

|x|α|v|p dx =
∫

D

|x|α|u|p dx

and ∫
D

|∇v|2 dx =
∫ 2π

0

∫ 1

0

(∣∣∣∣∂u

∂r

∣∣∣∣2 +
m2

n2r2

∣∣∣∣∂u

∂θ

∣∣∣∣2)r dr dθ <

∫
D

|∇u|2 dx,
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we have

Sα,p,m ≤ Rα,p(v) < Rα,p(u) = Sα,p,n.

By a similar argument, we can conclude that Sα,p,1 < . . . < Sα,p,n. Hence we can
infer that if Sα,p,n < Sα,p,∞, then for each m = 1, . . . , n, there exists a nonradial
positive solution um ∈ Hm of (1.4) satisfying Rα,p(um) = Sα,p,m.

We set the number in (1.6) as η(α, p). For a fixed α ∈ (2,∞), we have
η(α, p) → 1 + α/2 as p → ∞, which yields (i). For a fixed p ∈ (2,∞), we have
η(α, p) → ∞ as α → ∞, which yields (ii). Hence, we can finish the proof of
Theorem 1.4. �

Appendix. Proof of Theorem 1.7

Let a ∈ [−1, 1] \ {0}. We consider that (D, g) is a Riemannian manifold,
where the metric tensor g is defined by

(A.1)
4|a||dx|2

(1 + a|x|2)2
.

For each λ ∈ (0, 1), let Tλ ⊂ D be the geodesic which intersects x1-axis orthog-
onally at (λ, 0), i.e.

(A.2) Tλ =
{

x ∈ D : |x− eλ| =
1 + aλ2

2|a|λ

}
,

where

eλ =
(
− 1− aλ2

2aλ
, 0

)
.

For each λ ∈ (0, 1), we define Σλ ⊂ D by

Σλ =


{

x ∈ D : |x− eλ| >
1 + aλ2

2aλ

}
if a ∈ (0, 1],{

x ∈ D : |x− eλ| <
1 + aλ2

2|a|λ

}
if a ∈ [−1, 0).

For each λ ∈ (0, 1) and x ∈ Σλ, there is the reflection hλ(x) of x with respect
to Tλ in (D, g) and it is given by

(A.3) hλ(x) = eλ +
(

1 + aλ2

2aλ

)2
x− eλ

|x− eλ|2
= eλ +

(
|eλ|2 +

1
a

)
x− eλ

|x− eλ|2
.

Considering Σλ as a subset of the Euclidean space R2, we can see that hλ is
uniquely continuously extended to Σλ. We also denote it by hλ. Then hλ

satisfies (A.3) for all x ∈ Σλ. In the case of a 6= −1, (2.3) holds. In the case of
a = −1, it holds that

(A.4) |hλ(x)| < |x| for each λ ∈ (0, 1) and x ∈ Σλ
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and |hλ(x)| = 1 for each λ ∈ (0, 1) and x ∈ Σλ ∩ ∂D. For the proofs of (A.2),
(A.3), (2.3) and (A.4), see [25], [26], [31]. We note that

(A.5) hλ(x1, 0) =
(

x1(aλ2 − 1) + 2λ

2aλx1 + 1− aλ2
, 0

)
for (x1, 0) ∈ Σλ, λ ∈ (0, 1) and a ∈ [−1, 1] \ {0}.

Now, let n, a, f and u be as in Theorem 1.7. For the sake of simplicity, we
assume a 6= 0. We define ũ ∈ C2(D \ {0}) ∩ C(D) and f̃ ∈ C((0, 1)× (0,∞), R)
as before. We can see that ũ and f̃ satisfy (2.1) and for each t > 0,

(A.6)


r 7→ (1 + ar2)2f̃(r, t) is nonincreasing

in the case of a ∈ (−1, 1] \ {0},
r 7→ (1 + ar2)2f̃(r, t) is decreasing in the case of a = −1.

We set

λ̂ =
1√

1 + a + 1
and xλ =

(
2λ

1− aλ2
, 0

)
for λ ∈ (0, 1).

Noting (A.5), we can see that in the case of a ∈ (−1, 1] \ {0}, (2.4) and (2.5)
hold. In the case of a = −1, we can see that

xλ ∈ Σλ and hλ(xλ) = 0 for each λ ∈ (0, 1).

We respectively define vλ ∈ C2(Σλ \ {xλ}) ∩ C(Σλ) and cλ ∈ L∞(Σλ) by (2.6)
and (2.7), and we can show (2.8). We recall that for a ∈ [−1, 1] \ {0}, the
Laplace–Beltrami operator on (D, g) at x ∈ D is given by

∆(g,x) =
(1 + a|x|2)2

4|a|
∆.

Lemma A.1. The inequality (2.9) holds.

Proof. Let λ ∈ (0, 1) and x ∈ Σλ\{xλ}. First, we will show that hλ: (Σλ, g)
→ (hλ(Σλ), g) is Riemannian isometric. We set hλ(x) = (hλ,1(x), hλ,2(x)) for
x ∈ Σλ. From (A.3), we have(

∂hλ,1

∂xp
(x)

)2

+
(

∂hλ,2

∂xp
(x)

)2

=
(
|eλ|2 +

1
a

)2 1
|x− eλ|4

for p = 1, 2

and
∂hλ,1

∂x1
(x)

∂hλ,1

∂x2
(x) +

∂hλ,2

∂x1
(x)

∂hλ,2

∂x2
(x) = 0.

Noting 2(x− eλ) · eλ = |x|2 − |eλ|2 − |x− eλ|2, we can show

(1 + a|hλ(x)|2)|x− eλ|2 = (1 + a|x|2)
(
|eλ|2 +

1
a

)
,
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where (x− eλ) · eλ is the standard inner product of (x− eλ) and eλ. Using these
equalities and (A.1), we can easily see

gpq(x) =
2∑

i,j=1

gij(hλ(x))
∂hλ,i

∂xp
(x)

∂hλ,j

∂xq
(x) for p, q = 1, 2.

Thus we have shown hλ: (Σλ, g) → (hλ(Σλ), g) is Riemannian isometric.
Let x ∈ Σλ and set y = hλ(x). Noting ũ ∈ C2(D \ {0}), we have

∆(g,y)ũ(y) = ∆(g,x)(ũ(hλ(x))).

Then by (2.3), (A.4), (A.6), we have

0 =∆(g,y)(ũ(y)) +
(1 + a|y|2)2

4|a|
f̃(|y|, ũ(y))

−∆(g,x)ũ(x)− (1 + a|x|2)2

4|a|
f̃(|x|, ũ(x))

=∆(g,x)(ũ(hλ(x))) +
(1 + a|hλ(x)|2)2

4|a|
f̃(|hλ(x)|, ũ(hλ(x)))

−∆(g,x)ũ(x)− (1 + a|x|2)2

4|a|
f̃(|x|, ũ(x))

≥ −∆(g,x)vλ(x) +
(1 + a|x|2)2

4|a|
f̃(|x|, ũ(hλ(x)))− (1 + a|x|2)2

4|a|
f̃(|x|, ũ(x))

=
(1 + a|x|2)2

4|a|
(−∆vλ(x) + cλ(x)vλ(x)).

Hence, we obtain (2.9). �

Proof of Theorem 1.7. As in the case of a = 0, we apply the moving
sphere (plane) argument. First, we consider the case a ∈ (−1, 1] \ {0}. Since the
arguments in Section 2 work except the proof for (2.12), we give a proof for it
only. Putting r exp(iθ) = (r cos θ, r sin θ), we have

lim
t→+0

ũ(hµ2(xµ2 + t(1, 0)))− ũ(hµ2(xµ2))
t

= lim
t→+0

1
t

[
u

((
t(1− aµ2

2)
2

2aµ2(2µ2 − (1− aµ2
2)t) + (1− aµ2

2)2

)1/n

exp
(

iπ

n

))
− u(0, 0)

]
= 0,

lim
t→+0

ũ(hµ2(xµ2 − t(1, 0)))− ũ(hµ2(xµ2))
t

= lim
t→+0

1
t

[
u

((
t(1− aµ2

2)
2

2aµ2(2µ2 − (1− aµ2
2)t) + (1− aµ2

2)2

)1/n

, 0
)
− u(0, 0)

]
= 0,

which yield (2.12). We note that these calculations are also valid for a = −1.
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Next, we consider the case a = −1. Since we do not need to define A1 and
µ1 in this case, we start the moving sphere arguments in Section 2 by setting A2

and µ2. We can easily see A2 6= ∅. Since the arguments in Section 2 also work
except the proof for the first paragraph of Lemma 2.5, we give a proof for it only.
That is, assuming µ2 ∈ (0, λ̂), we will show vµ2 < 0 on Σµ2 \ {xµ2}. By (A.4),
(2.9) with λ = µ2 and the strong maximum principle, we have vµ2 = 0 on Σµ2

or vµ2 < 0 on Σµ2 \ {xµ2}. If vµ2 = 0 on Σµ2 , from the calculation in the proof
of Lemma (A.1), we have

(1− |x|2)2f̃(|x|, ũ(x)) = (1− |hµ2(x)|2)2f̃(|hµ2(x)|, ũ(x))

for x ∈ Σµ2 \ {xµ2}, which contradicts (A.6). Thus we have shown vµ2 < 0 on
Σµ2 \ {xµ2}. �

Proof of Corollary 1.9. Let m ∈ N with m > n. Since

d

dr

(
r−m + arm

r−n + arn

)
=

(m− n)(a2rm+n − r−m−n) + (m + n)(arm−n − ar−m+n)
r(r−n + arn)2

≡ γ(r)
r(r−n + arn)2

,

d

dr
γ(r) =

m2 − n2

r
(r−m + arm)(r−n + arn),

and γ(1) ≤ 0, the function r 7→ (1+ar2m)2r2−2m/((1+ar2n)2r2−2n) is decreasing
in (0, 1). From f ≥ 0, we can find that for each m ∈ N with m ≥ n, (a) in
Theorem 1.7 holds for m instead of n. Now, assume that u is m-mode with
n ≤ m ≤ k. Then from Theorem 1.7, we can see that u is radially symmetric.�
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