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A CRITERION FOR BIJECTIVITY
OF MAPPINGS OF EUCLIDEAN SPACES

Albetã C. Mafra — Marcelo Tavares

Abstract. We study the following problem introduced by J. Hadamard
in 1906: to find sufficient conditions for a local diffeomorphism of an Eu-

clidean space to be a global diffeomorphism. J. Hadamard introduced a ce-
lebrated integral condition which is a sufficient condition for the bijectivity

of a local diffeomorphism. In this paper we improve the classical result

of Hadamard giving a new sufficient condition for a C2 mapping to be
bijective.

1. Introduction

In a remarkable paper [5] Hadamard begin to study the following problem:
find sufficient conditions for a local diffeomorphism F : Rn → Rn to be a global
diffeomorphism. In his work, Hadamard introduces an integral condition which
is sufficient to assure the bijectivity of F . In [7], Lévy obtain a version of the
Hadamard Theorem for Banach spaces. In [10], Plastock presents a proof of the
Hadamard–Lévy theorem for Banach spaces using covering space theory. In this
scenario, the Euclidean case is often stated as follows:

Theorem 1.1 (Hadamard–Plastock Theorem [5], [10]). Let F : Rn → Rn be
a C1 local diffeomorphism. If∫ ∞

0

inf
‖z‖=r

‖DF (z)−1‖−1 dr = ∞,

then F is a diffeomorphism.
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In [8] an interesting generalization of the Hadamard–Plastock Theorem is
obtained:

Theorem 1.2 (Nollet–Xavier Theorem [8]). Let F : Rn → Rn be a C1 local
diffeomorphism. If

(1.1)
∫ ∞

0

inf
‖z‖=r

‖DF (z)tv‖ dr = ∞, for all v ∈ Rn \ {0},

then F is a diffeomorphism.

For other recent results about invertibility of local diffeomorphisms see also
[1], [3], [11], [12].

Now we start to describe our results. For r ≥ 0 and n ∈ N, denote

Sr = Sr(n) = {z ∈ Rn; ‖z‖ = r}.

Given a differentiable mapping F : Rn → Rn, define the function

θ: Rn \ F−1(0) → S1, z 7→ F (z)
‖F (z)‖

.

For

(1.2) S = {r ∈ [0,∞); Sr ∩ F−1(0) 6= ∅},

we can consider the function

[0,∞) \S → [0,∞), r 7→ inf
‖z‖=r

‖DF (z)tθ(z)‖.

Our main result is an improvement of Hadamard–Plastock Theorem in the C2

case:

Theorem 1.3. Let F : Rn → Rn be a C2 mapping such that

(a) F is a local homeomorphism;
(b) DF (z)tF (z) 6= 0 whenever F (z) 6= 0.

If

(1.3)
∫ ∞

0

inf
‖z‖=r

‖DF (z)tθ(z)‖ dr = ∞,

then F is a bijective mapping.

In order to see that Theorem 1 improves Hadamard-Plastock Theorem, note
that conditions (a) and (b) are satisfied whenever F is a local diffeomorphism,
that is, whenever DF (z) is non singular for all z ∈ Rn. On the other hand, if
Sr ∩ F−1(0) = ∅, then

inf
‖z‖=r

‖DF (z)−1‖−1 = inf
‖z‖=r

(
inf
‖v‖=1

‖DF (z)tv‖
)
≤ inf
‖z‖=r

‖DF (z)tθ(z)‖.
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In the case n = 2 we can weaken condition (a) in Theorem 1.3 and still obtain
the properness of F :

Theorem 1.4. Let F : R2 → R2 be a C2 mapping such that

(a) F−1(0) is discrete;
(b) DF (z)tF (z) 6= 0 whenever F (z) 6= 0.

If ∫ ∞

0

inf
‖z‖=r

‖DF (z)tθ(z)‖ dr = ∞,

then F is a proper mapping.

We compare Theorems 1.3 and 1.4 to the Nollet–Xavier Theorem through
a trivial example (cf. Example 3.5). Finally, we obtain a corollary due to The-
orem 1.3 about perturbations of identity. The most classical version of the
Perturbation of Identity Theorem asserts that if a C mapping η: Rn → Rn sa-
tisfies ‖Dη(z)‖ ≤ λ < 1 for all z ∈ Rn, then the mapping F (z) = z + η(z) is
a diffeomorphism. We obtain the following:

Corollary 1.5 (Perturbation of Identity). Let η: Rn → Rn be a C2 map-
ping. Suppose that, for some r0 > 0,

‖Dη(z)t · (z + η(z))‖
‖(z + η(z))‖

≤ λ < 1,

provided that ‖z‖ ≥ r0. Then the mapping F (z) = z + η(z) is a diffeomorphism
if, and only if, it is a local diffeomorphism.

The paper is organized as follows: In the second section we study the maximal
interval of existence of the solutions of the vector field Xh = ∇h/‖∇h‖2, where
h: Rn → R is a C2 function. This is done from a compactness condition on h,
which is a generalization of Palais–Smale condition. In Section 3 we prove the
main theorems using the results from the previous section applied to the function
h(z) = ‖F (z)‖2/2.

2. Global normal forms for submersions

Let h: Rn → R be a C2 function and denote by Crit(h) the set of the critical
points of h. In the literature, the vector field

(2.1) Xh(z) = ∇h(z)/‖∇h(z)‖2, z ∈ Rn \ Crit(h)

is often used to study the levels of h. In fact, it is well-known that if h is
a submersion at every point and Xh is complete (in particular, if ‖∇h‖ is bounded
away from zero), then h is a globally trivial fibration and such trivialization is
obtained from the (global) flow of Xh (see [9], [8], [4]). The study of levels of
a function is directly related to the problem of invertibility of mappings. In fact,
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the injectivity of a local diffeomorphism in the plane F (x, y) = (f(x, y), g(x, y))
follows from the connectedness of the levels of the submersions f or g (see [12]).
This connectedness is achieved (in particular) by mean of the trivialization of
such submersions. On the other hand, when we want to check the properness
of a C2 mapping F : Rn → Rn it is useful to study the vector field Xh for
h = ‖F‖2/2, since the levels of h are exactly the inverse-images of spheres
under F . Indeed, we prove that the regular levels of h are connected when the
maximal interval of existence of the trajectories of Xh is of the form (α,∞) for
an α that depends on the initial point and on the infimum of h (cf. Lemma 3.1).

From the above discussion we conclude that it is useful to estimate the max-
imal interval of existence of the trajectories of Xh. The proposition below esti-
mates such intervals from a condition of compactness on h, which is a generali-
zation of the Palais–Smale condition ([9]).

Proposition 2.1. Let h: Rn → R be a C2 mapping whose only possible
critical value is its minimal value and denote c = inf h. Suppose that there
are a locally bounded function Ψ: [0,∞) → [0,∞) and a continuous function
T : (c,∞) → (0,∞) such that

(a) Ψ−1(0) is discrete and Ψ is continuous on [0,∞) \Ψ−1(0);
(b)

∫∞
0

Ψ(r) dr = ∞;
(c) ‖∇h(z)‖ ≥ Ψ(‖z‖)(T ◦ h)(z), for all z ∈ Rn \ Crit(h).

Then, for the orbit γ of Xh passing by z ∈ Rn \Crit(h), the maximal interval of
existence is given by (c− h(z),+∞).

Proof. Let z be a point in Rn \ Crit(h). Write c0 = h(z), and define

H: (c− c0,∞) → R, s 7→
∫ s

0

1/T (r + c0) dr.

Let γ be a trajectory of Xh by z defined in its maximal interval of existence
(ω−, ω+) (see [6, p. 12]). We have (ω−, ω+) ⊂ (c− c0,∞), because

(2.2) h(γ(s)) = s + c0.

Denote by I the image of (ω−, ω+) by H, and let s be the inverse of H and
suppose that ω+ 6= ∞. Since the only possible critical points of h are its minimal
points, we have that

(2.3) lim
s→ω+

‖γ(s)‖ = ∞.

We divide the analysis into two cases:
Case 1. Ψ−1(0) is a finite set.
Denote Ψ−1(0) = {r1 < . . . < rk}. By (2.3), there is a t0 ∈ I such that if

s0 = s(t0), then
‖γ(s0)‖ > rk.
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Define α(t) = (γ ◦ s)(t + t0), for t ∈ [0,H(ω+)− t0). We have that

α′(t) =
∇h(α(t))

‖∇h(α(t))‖2
· (T ◦ h)(α(t)),

thus,

(2.4) ‖α′(t)‖ ≤ 1
Ψ (‖α(t)‖)

, for all t ∈ [0,H(ω+)− t0).

Let u be the maximal solution of the Cauchy problem u′ =
1

Ψ(u)
,

u(0) = ‖γ(s0)‖.

We claim that the maximal interval of existence of u contains [0,∞). In fact,

t =
∫ t

0

Ψ(u(ζ))u′(ζ) dζ =
∫ u(t)

u(0)

Ψ(r) dr.

and the desired conclusion follows from (b). By (2.4), it follows from Lemmas 3.1,
3.2 and Theorem 4.1 of [6, p. 26] that

(2.5) ‖α(t)‖ ≤ u(t), t ∈ [0,H(ω+)− t0).

But
lim

t→H(ω+)−t0
‖α(t)‖ = lim

s→ω+
‖γ(s)‖ = ∞.

and this is a contradiction.

Case 2. Ψ−1(0) is an infinite set.
Denote Ψ−1(0) = {r1 < . . . < rk < . . . }. By (b) and since Ψ is locally

bounded, for each k ≥ 2, we can choose a rk−1 < lk < rk, so that∑
k≥2

∫ rk

lk

Ψ(r) dr = ∞.

From (2.3), there is a k0 ∈ N such that, for each k ≥ k0, there is a tk ∈ [0,H(ω+))
so that

• tk+1 > tk and
• ‖γ(s(tk))‖ = lk.

We claim that

(2.6) tk+1 − tk ≥
∫ rk

lk

Ψ(r) dr.

In fact, suppose that tk+1 − tk <
∫ rk

lk
Ψ(r) dr, for some k ≥ k0. Consider α(t) =

γ(s(t + tk)), for t ∈ [0, tk+1 − tk]. We have

(2.7) ‖α′(t)‖ ≤ 1
Ψ(‖α(t)‖)

, for all t ∈ [0, tk+1 − tk].
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Let u be the maximal solution of the Cauchy problem u′ =
1

Ψ(u)
,

u(0) = lk,

There is a η such that lim
t→η

u(t) = rk. But if t ∈ [0, η), then

t =
∫ t

0

Ψ(u(ζ))u′(ζ) dζ =
∫ u(t)

lk

Ψ(r) dr.

Thus η =
∫ rk

lk
Ψ(r)dr > tk+1 − tk. Applying Lemmas 3.1, 3.2 and Theorem 4.1

of [6], we obtain

‖α(t)‖ ≤ u(t), for all t ∈ [0, tk+1 − tk].

But this is a contradiction, since ‖α(tk+1 − tk)‖ = ‖γ(s(tk+1))‖ = lk+1 > rk.
Hence we have (2.6). On the other hand,

∞ > H(ω+) >
∑
k≥k0

(tk+1 − tk) ≥
∑
k≥k0

∫ rk

lk

Ψ(r) dr = ∞,

and we also have a contradiction in the second case. Therefore, ω+ = ∞.
Now, if lim

s→ω−
γ(s) consists of a critical point, then, by (2.2), ω− = c − c0

since the only possible critical points of h are minimal points. Suppose that
ω− 6= c− c0. In this case, we have lim

s→ω−
‖γ(s)‖ = ∞. Considering the curve

(2.8) β(t) = α(−t) = γ(s(−t)), t ∈ [0,−H(ω−))

and proceeding as above we obtain a contradiction and thus ω− = c− c0. �

If F : Rn → Rn is a C1 mapping and h = ‖F‖2/2, then the Proposition 2.1
is strongly related to the existence of a F -admissible flow (see Definition 3.1
and Theorem 4.1 of [11]). However, the existence of a F -admissible flow does
not imply that h−1(0) 6= ∅ (see Remark 3.1 of [11]). Below we prove that with
a further condition on T in Proposition 2.1 it is possible to ensure that h assume
its minimum.

Propostion 2.2. Let h, Ψ and T be as in the Proposition 2.1. If c = inf h ∈
R and ∫ c+ε

c

1
T (r)

dr < ∞

for some ε > 0, then h assumes its minimum.

Proof. Let γ: (ω−, ω+) → Rn be an orbit of Xh by z ∈ Rn \ Crit(h), write
h(z) = c0 and define

H: [c− c0,∞) → R, s 7→
∫ s

0

1/T (r + c0) dr.
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Let s be the inverse of H and let β be as in (2.8). We have that −H(c− c0) ∈ R
and, by the same arguments in the Proposition 2.1, if lim

s→c−c0
‖γ(s)‖ = ∞, then

we have a contradiction. Therefore, lim
s→c−c0

‖γ(s)‖ consists of a critical point,

which is a minimal point of h. �

A weak–Palais–Smale condition was defined in [13, Definition 3.4] in a very
general context. Let ϕ: [0,∞) → [0,∞) be a continuous nondecreasing function
such that ∫ ∞

0

1
1 + ϕ(r)

dr = ∞.

We say that a C1 function h: Rn → R satisfies the weak–Palais–Smale condi-
tion if any sequence {zk} in Rn such that h(zk) is bounded and ‖∇h(zk)‖(1 +
ϕ(‖zk‖)) → 0 has a convergent subsequence. We say that h satisfies the weak–
Palais–Smale condition at level a ∈ R if any sequence {zk} in Rn such that
h(zk) → a and ‖∇h(zk)‖(1 + ϕ(‖zk‖)) → 0 has a convergent subsequence. For
ϕ(r) ≡ 0, the weak–Palais–Smale condition is just the classical Palais–Smale
condition.

If h satisfies the conditions of Proposition 2.1, with Ψ = 1/(1 + ϕ(r)), for
some ϕ continuous, nonnegative and nondecreasing, then h is weak–Palais–Smale
at each level a ∈ (c,∞). However, h can satisfy the conditions of Proposition 2.2,
without to be weak-Palais-Smale. Therefore, Proposition 2.2 assures the exis-
tence of a minimal point provided that h is bounded from below and satisfies
a (slightly different) kind of compactness (see Theorem 3.6 of [13]).

As mentioned above, the invertibility of a local diffeomorphism in the plane
F (x, y) = (f(x, y), g(x, y)) is directly connected to the trivialization of the sub-
mersions f or g (see [12]). Therefore, it is interesting to study the case where h

is a submersion at every point of Rn. This is done in the next two results:

Propostion 2.3. Let h, Ψ and T be as in Proposition 2.1. If c = inf h =
−∞, then h gives a globally trivial fibration of Rn on R whose fibers are the
levels of h.

Proof. This follows from the fact that h is a submersion and Xh defines
a complete flow (see section 8 of [9]). �

Given a C1 submersion h: Rn → R, we can consider the upper-semicontinuous
function

Θ: Rn → [0,∞), z 7→ inf{‖∇h(y)‖; y ∈ h−1(h(z))}.

By construction, Θ can be factored in the form Θ = T ◦ h, where T is upper-
semicontinuous and defined on the image of h. Since ‖∇h‖ ≥ Θ = T ◦ h, it
follows from the proposition below that h is a globally trivial fibration provided
that 1/T is locally integrable (compare with [4]):
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Propostion 2.4. Let h: Rn → R be a submersion of class C1 and U =
h(Rn). Suppose that there is an upper-semicontinuous function T :U → [0,∞)
such that

(a) 1/T ∈ L1
loc(U);

(b) ‖∇h‖ ≥ T ◦ h.

Then h gives a globally trivial fibration of Rn on U whose fibers are the levels of h.

Proof. Once again, let γ: (ω−, ω+) → Rn be an orbit of Xh by z ∈ Rn,
with h(z) = c0, and write

V = {s; s = h(x)− c0, for some x ∈ Rn}.

By section 8 of [9], it is enough to prove that γ cuts each level of h. By (2.2), it
is enough to prove that (ω−, ω+) = V . We define

H:V → R, s 7→
∫ s

0

1/T (r + c0) dr,

and denote by I the image of (ω−, ω+) by H. Since T is upper-semicontinuous,
T assumes its maximum in each compact interval J ⊂ V . We write T |J ≤ C.
Therefore, if a, b ∈ J , we have

(2.9) |H(a)−H(b)| ≥ 1
C
|b− a|.

Let s be the inverse of H. By (2.9), s is Lipschitz on each compact interval and
thus s is absolutely continuous. Define α(t) = γ(s(t)). Since s is an absolutely
continuous increasing function, each coordinate of α is absolutely continuous.
Moreover,

α′(t) = (T ◦ h)(α(t)) ·Xh(α(t)),

almost everywhere, and this implies that ‖α′(t)‖ ≤ 1 almost everywhere. There-
fore

‖α(t)− α(0)‖ =
∥∥∥∥∫ t

0

α′(ξ) dξ

∥∥∥∥ ≤ |t|.

This implies that I = R, so (ω−, ω+) = V , because H is invertible. �

3. Proof of the main results

In this section we prove the main theorems. For this we apply the results
from the previous section to the function h(z) = ‖F (z)‖2/2, where F : Rn → Rn

is a C2 mapping. The next lemmas are strongly related to some results in [11],
just replacing the notion of F -admissible flow (see Definition 3.1 and Theorem 4.1
of [11]) by the local flow of Xh. These lemmas relate the properness of F to the
maximal interval of existence of the trajectories of Xh.

In that follows F : Rn → Rn is a C2 mapping, h(z) = ‖F (z)‖2/2, Xh is as
in (2.1) and c = inf h.



A Criterion for Bijectivity of Mappings of Euclidean Spaces 125

Lemma 3.1. If n ≥ 2, F−1(0) is discrete (possibly empty) and, for each
z ∈ Rn \ Crit(h), the maximal interval of existence of the trajectory of Xh by z

is (c− h(z),+∞), then the regular levels of h are connected.

Proof. Since h is of class C2, the vector field Xh is of class C1 and thus it
defines a local flow which we denote by φ. Let c0 be a regular value in the image
of h. It is easy to see that φ maps h−1(c0) × (c − c0,∞) homeomorphically on
the set Rn \ F−1(0), which is connected since n ≥ 2. �

Lemma 3.2. Let F : Rn → Rn be a C2 local homeomorphism with n ≥ 2. If
F−1(0) 6= ∅ and, for each z ∈ Rn \ Crit(h), the maximal interval of existence of
the trajectory of Xh by z is (−h(z),+∞), then F is bijective.

Proof. Suppose that there is z1 6= z0 such that F (z0) = F (z1) = 0. Since
F is a local homeomorphism, we can take disjoint open sets U0 3 z0 and U1 3 z1

which are sent homeomorphically by F on an open ball B 3 0. Let c0 > 0 be
a regular value of h such that the ball B√2c0

of radius
√

2c0 centered at the
origin is contained in B, then we conclude that h−1(c0) is not connected, which
is an absurd by Lemma 3.1. Hence, F−1(0) = {z0}. Let U0, B and c0 be as
above and note that

h−1([0, c0]) = F−1(B√2c0
) ⊂ U0,

so h−1[0, c0] is compact. Moreover, if R is so that R2/2 > c0, then

F−1(BR) = h−1([0, c0]) ∪ h−1([c0, R
2/2]).

But if φ is the local flow of Xh, then domain of φ contains the set h−1(c0) ×
[0, (R2/2)− c0]. Moreover,

φ(h−1(c0)× [0, (R2/2)− c0]) = h−1([c0, R
2/2]),

then h−1([c0, R
2/2]) is compact, F−1(BR) is compact and F is proper. By

a celebrated result in [2], F is bijective. �

In the case n = 2 we have the following:

Lemma 3.3. Let F : R2 → R2 be a C2 mapping. If F−1(0) is a non-empty
discrete set and, for each z ∈ Rn \ Crit(h), the maximal interval of existence of
the trajectory of Xh by z is (−h(z),+∞), then F−1(0) consists of exactly one
point and F is proper.

Proof. Let c0 > 0 be a regular value in the image of h. By Lemma 3.1,
we have that h−1(c0)× (c− c0,+∞) is homeomorphic to R2 \ F−1(0) and thus
h−1(c0) is connected. Since h−1(c0) has dimension 1, it is diffeomorphic to S1

and F−1(0) contains exactly one point. Using the local flow φ of Xh we conclude
that h−1(d) is diffeomorphic to S1 for all d > 0 and that F is proper. �
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The lemma below describes the connection between the hypothesis of the
Theorem 1.3 and the maximal intervals of existence of Xh:

Lemma 3.4. If F : Rn → Rn is a C2 mapping such that

(a) F−1(0) is discrete,
(b) DF (z)tF (z) 6= 0 whenever F (z) 6= 0, and
(c)

∫∞
0

inf‖z‖=r ‖DF (z)tθ(z)‖ dr = ∞,

then F−1(0) 6= ∅ and, for each z ∈ Rn\Crit(h), the maximal interval of existence
of the trajectory of Xh by z is (−h(z),+∞).

Proof. If z /∈ F−1(0), then

‖∇h(z)‖ = ‖DF (z)tF (z)‖(3.1)

= ‖DF (z)tθ(z)‖ · ‖F (z)‖ = ‖DF (z)tθ(z)‖ ·
√

2h(z).

Let S be as in (1.2) and consider the functions

Ψ: [0,∞) → [0,∞), r 7→

{
inf
‖z‖=r

‖DF (z)tθ(z)‖ if r /∈ S;

0 if r ∈ S.

and

T : (0,∞) → (0,∞), u 7→
√

2u.

By (b) we have that the only possible critical value of h is its minimal value. By
(3.1), if z ∈ Rn \ Crit(h), then

(3.2) ‖∇h(z)‖ ≥ Ψ(‖z‖)(T ◦ h)(z).

Now observe that Ψ is continuous in [0,∞) \Ψ−1(0). In fact, Ψ is clearly upper
semicontinuous in [0,∞) \ S. Suppose that Ψ is not lower semicontinuous at
some r0 ∈ [0,∞) \S. In this case, there are ε > 0 and a sequence rk → r0 such
that

Ψ(rk) < Ψ(r0)− ε.

Since F−1(0) is closed and discrete, we can suppose that Srk
∩ F−1(0) = ∅ for

all k. Therefore, there is a sequence zk such that ‖zk‖ = rk and

Ψ(rk) = ‖DF (zk)tθ(zk)‖.

Taking subsequences, we can suppose that zk converges to some z of norm r0

and that θ(zk) converges to θ(z). Hence, we have

Ψ(rk) = ‖DF (zk)tθ(zk)‖ < Ψ(r0)− ε ≤ ‖DF (z)tθ(z)‖ − ε,

so

‖DF (z)tθ(z)‖ − ‖DF (zk)tθ(zk)‖ > ε,
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which is absurd. On the other hand, Ψ is locally bounded, since

Ψ(r) ≤ sup
‖z‖=r

‖DF (z)t‖.

By (3.2), the result follows from Propositions 2.1 and 2.2. �

Now we prove the main theorems:

Proof of Theorem 1.3. For n = 1 the result is straightforward. For
n ≥ 2, the proof follows from Lemmas 3.4 and 3.2. �

Proof of Theorem 1.4. The result follows from Lemmas 3.4 and 3.3. �

The trivial example below is useful to compare our results with Nollet–Xavier
Theorem:

Example 3.5. Let F : R2 → R2 be the bijective C∞ mapping defined by

F (z) = F (x, y) = (x3, y).

Note that F is not a local diffeomorphism, since DF (z) is singular for z = (0, y).
However, we have

(1) F−1(0) = {(0, 0)};
(2) DF (z)tF (z) = 0 if and only if F (z) = 0.

Moreover, it is easy to verify that the integral condition (1.3) is satisfied. There-
fore, this example is covered by Theorems 1.3 and 1.4. It is interesting to
note that the integral condition (1.1) is not satisfied, since ‖DF (z)tv‖ = 0 for
z = (0, y) and v = (1, 0).

Proof of Corollary 1.5. If z /∈ F−1(0) and ‖z‖ > r0, then

‖DF (z)tθ(z)‖ =
‖(Id + Dη(z)t)(z + η(z))‖

‖z + η(z)‖
≥ 1− ‖Dη(z)t · (z + η(z))‖

‖(z + η(z))‖
≥ 1−λ.

The result follows from Theorem 1.3. �
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