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A CRITERION FOR BIJECTIVITY
OF MAPPINGS OF EUCLIDEAN SPACES

ALBETA C. MAFRA — MARCELO TAVARES

ABSTRACT. We study the following problem introduced by J. Hadamard
in 1906: to find sufficient conditions for a local diffeomorphism of an Eu-
clidean space to be a global diffeomorphism. J. Hadamard introduced a ce-
lebrated integral condition which is a sufficient condition for the bijectivity
of a local diffeomorphism. In this paper we improve the classical result
of Hadamard giving a new sufficient condition for a C2? mapping to be
bijective.

1. Introduction

In a remarkable paper [5] Hadamard begin to study the following problem:
find sufficient conditions for a local diffeomorphism F:R™ — R™ to be a global
diffeomorphism. In his work, Hadamard introduces an integral condition which
is sufficient to assure the bijectivity of F. In [7], Lévy obtain a version of the
Hadamard Theorem for Banach spaces. In [10], Plastock presents a proof of the
Hadamard—Lévy theorem for Banach spaces using covering space theory. In this
scenario, the Euclidean case is often stated as follows:

THEOREM 1.1 (Hadamard—Plastock Theorem [5], [10]). Let F:R™ — R"™ be
a C' local diffeomorphism. If

/ int D)7~ dr = .
0 Z||=Tr

then F is a diffeomorphism.
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In [8] an interesting generalization of the Hadamard—Plastock Theorem is
obtained:

THEOREM 1.2 (Nollet—Xavier Theorem [8]). Let F:R™ — R" be a C! local
diffeomorphism. If

(1.1) / inf |DF(2)"| dr =00, for allveR™\ {0},
0

llzll=r
then F is a diffeomorphism.

For other recent results about invertibility of local diffeomorphisms see also
(1], [3], [11], [12].
Now we start to describe our results. For » > 0 and n € N, denote

S, =S,(n) ={z€R"; ||z|| =r}.

Given a differentiable mapping F: R™ — R", define the function

.Nn —1 N 2 F(Z)
0:R"\ F~1(0) — Sy, FOI
For
(1.2) S ={re[0,00); S, NF~10) # 0},

we can consider the function

[0,00) \ & — [0, 00), r inf |DF(2)'0(z)].

llzll=r
Our main result is an improvement of Hadamard-Plastock Theorem in the C?
case:
THEOREM 1.3. Let F:R™ — R" be a C? mapping such that

(a) F is a local homeomorphism;

(b) DF(2)'F(2) # 0 whenever F(z) # 0.
If
(13) | it IDFEY0G) | dr = .

then F' is a bijective mapping.

In order to see that Theorem 1 improves Hadamard-Plastock Theorem, note
that conditions (a) and (b) are satisfied whenever F' is a local diffeomorphism,
that is, whenever DF(z) is non singular for all z € R™. On the other hand, if
S, NF~1(0) = 0, then

inf ||DF(Z)*1||*1:H11H1f ( inf |DF(z)tv||> < inf |DF(2)'0(2)|.

llzll=r llvl=1 llzll=r



A CRITERION FOR BIJECTIVITY OF MAPPINGS OF EUCLIDEAN SPACES 119

In the case n = 2 we can weaken condition (a) in Theorem 1.3 and still obtain
the properness of F":

THEOREM 1.4. Let F:R? — R? be a C? mapping such that
(a) F~1(0) is discrete;
(b) DF(2)'F(z) # 0 whenever F(z) # 0.
If
o
/ inf ||DF(2)'0(2)| dr = oo,
0

llzll=r

then F' is a proper mapping.

We compare Theorems 1.3 and 1.4 to the Nollet-Xavier Theorem through
a trivial example (cf. Example 3.5). Finally, we obtain a corollary due to The-
orem 1.3 about perturbations of identity. The most classical version of the
Perturbation of Identity Theorem asserts that if a C mapping n:R" — R" sa-
tisfies || Dn(z)|] < A < 1 for all z € R™, then the mapping F(z) = z + n(z) is
a diffeomorphism. We obtain the following:

COROLLARY 1.5 (Perturbation of Identity). Let n:R™ — R™ be a C? map-
ping. Suppose that, for some rq > 0,

IDn()! - (= + ()]
@l = <t

provided that ||z|| > ro. Then the mapping F(z) = z + n(z) is a diffeomorphism

if, and only if, it is a local diffeomorphism.

The paper is organized as follows: In the second section we study the maximal
interval of existence of the solutions of the vector field X, = Vh/||Vh||?, where
h:R"™ — R is a C? function. This is done from a compactness condition on h,
which is a generalization of Palais—-Smale condition. In Section 3 we prove the
main theorems using the results from the previous section applied to the function

h(z) = |F(2)II*/2.

2. Global normal forms for submersions

Let h:R™ — R be a C? function and denote by Crit(h) the set of the critical
points of h. In the literature, the vector field

(2.1) Xn(2) = Vh(2)/||VA(2)|%, 2 € R™\ Crit(h)

is often used to study the levels of h. In fact, it is well-known that if A is
a submersion at every point and X, is complete (in particular, if || V|| is bounded
away from zero), then h is a globally trivial fibration and such trivialization is
obtained from the (global) flow of X}, (see [9], [8], [4]). The study of levels of
a function is directly related to the problem of invertibility of mappings. In fact,
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the injectivity of a local diffeomorphism in the plane F(z,y) = (f(z,y), g9(z,v))
follows from the connectedness of the levels of the submersions f or g (see [12]).
This connectedness is achieved (in particular) by mean of the trivialization of
such submersions. On the other hand, when we want to check the properness
of a C? mapping F:R® — R" it is useful to study the vector field Xj, for
h = ||F||?/2, since the levels of h are exactly the inverse-images of spheres
under F'. Indeed, we prove that the regular levels of h are connected when the
maximal interval of existence of the trajectories of X}, is of the form («, c0) for
an « that depends on the initial point and on the infimum of A (cf. Lemma 3.1).

From the above discussion we conclude that it is useful to estimate the max-
imal interval of existence of the trajectories of X}. The proposition below esti-
mates such intervals from a condition of compactness on h, which is a generali-
zation of the Palais—Smale condition ([9]).

PROPOSITION 2.1. Let h:R™ — R be a C? mapping whose only possible
critical value is its minimal value and denote ¢ = inf h. Suppose that there
are a locally bounded function U:[0,00) — [0,00) and a continuous function
T:(c,00) — (0,00) such that

(a) W=L(0) is discrete and U is continuous on [0,00) \ ¥~1(0);

(b) fo W(r)dr = oo;

(c) IVRh(2)|| = ®(||2])(T o h)(2), for all = € R™\ Crit(h).
Then, for the orbit v of X, passing by z € R™\ Crit(h), the mazimal interval of
existence is given by (c — h(z), +00).

PROOF. Let z be a point in R™ \ Crit(h). Write ¢y = h(z), and define
H:(c—cp,00) — R, s'—>/ 1/T(r 4 co) dr.
0

Let v be a trajectory of Xj by z defined in its maximal interval of existence
(w—,w4) (see [6, p. 12]). We have (w_,wy) C (¢ — cg, 00), because

(2.2) h(1(s)) = 5+ co.

Denote by I the image of (w_,w;) by H, and let s be the inverse of H and
suppose that w; # oo. Since the only possible critical points of h are its minimal
points, we have that

(2.3) lim [y(s)] = oc.

s—wy
We divide the analysis into two cases:
Case 1. ¥~1(0) is a finite set.
Denote U=1(0) = {r; < ... < rx}. By (2.3), there is a tq € I such that if
so = s(tp), then
[v(so)ll > 7
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Define a(t) = (y o s)(t + to), for t € [0, H(w4) — to). We have that

Vh(a(t))
o (t) = s~ - (T e h)(a(t),
IVh(a(®)]®
thus,
1
(2.4) o' ()] € =———=, foralltel0,H(wy)—to).
v ([la(®)1) ’
Let u be the maximal solution of the Cauchy problem
u = !
U(u)’
u(0) = [l7 (o)l
We claim that the maximal interval of existence of u contains [0, 00). In fact,
t u(t)
t= [ ©dc= [ wear
0 u(0)

and the desired conclusion follows from (b). By (2.4), it follows from Lemmas 3.1,
3.2 and Theorem 4.1 of [6, p. 26] that

(2.5) [a@®)| <u(?), tel0,H(wy)—to)
But

li Dl = 1 = 00.

L e = lm y(s)] = o0

and this is a contradiction.

Case 2. ¥~1(0) is an infinite set.

Denote ¥=1(0) = {r; < ... < rp < ...}. By (b) and since ¥ is locally
bounded, for each k£ > 2, we can choose a rp_1 <l < rg, so that

E:/mﬂﬂmzux

E>27 e

From (2.3), there is a ko € N such that, for each k > ko, thereis aty € [0, H(wy))
so that

® {11 >ty and

o (st = -
We claim that

Tk
(2.6) mﬂ—mz/ W(r) dr.
Iy
In fact, suppose that tp1 — tp < fl:“ U(r)dr, for some k > kq. Consider a(t) =
v(s(t + tg)), for ¢t € [0, tx41 — tx]. We have
1

(2.7) lo ()| < Ta@)’ for all t € [0, tx41 — tg).
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Let u be the maximal solution of the Cauchy problem

;1
- U(w)’
There is a 7 such that tlim u(t) = ri. But if ¢t € [0,n), then
=1
t u(t)
t= [ VW ©od = [ v
k

Thus n = fl:’“ U(r)dr > tg+1 — tk. Applying Lemmas 3.1, 3.2 and Theorem 4.1
of [6], we obtain

la()|| < u(t), for all t € [0, t5sr — t].

But this is a contradiction, since ||a(tr+1 — tr)l| = |v(sCEx+1)|| = let1 > 7.
Hence we have (2.6). On the other hand,

0> ) > Yt -2 Y [ vidr—,

k>ko k>ko V k

and we also have a contradiction in the second case. Therefore, w; = oo.

Now, if lim ~(s) consists of a critical point, then, by (2.2), w_ = ¢ — ¢
S—w_
since the only possible critical points of h are minimal points. Suppose that
w_ # ¢ — ¢p. In this case, we have lim ||y(s)|| = co. Considering the curve
S—w_
(2.8) B(t) = a(=t) =~(s(=t)), te[0,—H(w-))
and proceeding as above we obtain a contradiction and thus w_ = ¢ — ¢g. (]

If F:R™ — R" is a C! mapping and h = ||F||?/2, then the Proposition 2.1
is strongly related to the existence of a F-admissible flow (see Definition 3.1
and Theorem 4.1 of [11]). However, the existence of a F-admissible flow does
not imply that h=1(0) # 0 (see Remark 3.1 of [11]). Below we prove that with
a further condition on 7" in Proposition 2.1 it is possible to ensure that h assume

its minimum.

PROPOSTION 2.2. Let h, ¥ and T be as in the Proposition 2.1. If c =infh €

R and
cte 1
——d
/C ) r < 00

for some € > 0, then h assumes its minimum.

PrOOF. Let 74: (w_,w;) — R™ be an orbit of X, by z € R™ \ Crit(h), write
h(z) = ¢o and define

H:[c—cp,00) = R, Sl—>/ 1/T(r + co) dr.
0
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Let s be the inverse of H and let 3 be as in (2.8). We have that —H(c—c¢p) € R
and, by the same arguments in the Proposition 2.1, if lim ||7y(s)| = oo, then
s—c—cop

we have a contradiction. Therefore, lim |y(s)|| consists of a critical point,
s—c—co

which is a minimal point of h. (]

A weak—Palais—Smale condition was defined in [13, Definition 3.4] in a very
general context. Let ¢:[0,00) — [0,00) be a continuous nondecreasing function

such that
[
———dr = 0.
o 1+¢(r)

We say that a C! function h:R™ — R satisfies the weak-Palais—Smale condi-
tion if any sequence {z;} in R™ such that h(zy) is bounded and ||Vh(z)|[(1 +
©(]|z&]])) — 0 has a convergent subsequence. We say that h satisfies the weak—
Palais—Smale condition at level a € R if any sequence {z;} in R™ such that
h(zx) — a and ||Vh(zk)|[(1 + ©(||zx]])) — 0 has a convergent subsequence. For
p(r) = 0, the weak—Palais—Smale condition is just the classical Palais—Smale
condition.

If h satisfies the conditions of Proposition 2.1, with ¥ = 1/(1 + ¢(r)), for
some ¢ continuous, nonnegative and nondecreasing, then h is weak—Palais—Smale
at each level a € (¢, 00). However, h can satisfy the conditions of Proposition 2.2,
without to be weak-Palais-Smale. Therefore, Proposition 2.2 assures the exis-
tence of a minimal point provided that h is bounded from below and satisfies
a (slightly different) kind of compactness (see Theorem 3.6 of [13]).

As mentioned above, the invertibility of a local diffeomorphism in the plane
F(z,y) = (f(z,y),9(x,y)) is directly connected to the trivialization of the sub-
mersions f or g (see [12]). Therefore, it is interesting to study the case where h
is a submersion at every point of R™. This is done in the next two results:

ProOPOSTION 2.3. Let h, ¥ and T be as in Proposition 2.1. If ¢ = infh =
—00, then h gives a globally trivial fibration of R™ on R whose fibers are the
levels of h.

Proor. This follows from the fact that A is a submersion and X} defines
a complete flow (see section 8 of [9]). O

Given a C'! submersion h: R® — R, we can consider the upper-semicontinuous

function
©:R" — [0, c0), 2 inf{||Vh(y)|; y € b (h(2))}.

By construction, © can be factored in the form © = T o h, where T is upper-
semicontinuous and defined on the image of h. Since ||Vh| > © = T o h, it
follows from the proposition below that h is a globally trivial fibration provided
that 1/T is locally integrable (compare with [4]):
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PROPOSTION 2.4. Let h:R" — R be a submersion of class C' and U =
h(R™). Suppose that there is an upper-semicontinuous function T:U — [0, 00)
such that

(a) 1/T € Lloc(U).
(b) IVA| > Toh.
Then h gives a globally trivial fibration of R™ on U whose fibers are the levels of h.

PROOF. Once again, let v: (w—,wy) — R™ be an orbit of X, by z € R",
with h(z) = ¢p, and write
= {s; s = h(z) — co, for some z € R"}.

By section 8 of [9], it is enough to prove that v cuts each level of h. By (2.2), it
is enough to prove that (w_,wy) = V. We define

H:V - R, 3»—>/ 1/T(r + co)dr
0

and denote by I the image of (w_,w4) by H. Since T is upper-semicontinuous,
T assumes its maximum in each compact interval J C V. We write T|; < C.
Therefore, if a,b € J, we have

1
(2.9) |H(a) — H(b)| > 5|b —al.

Let s be the inverse of H. By (2.9), s is Lipschitz on each compact interval and
thus s is absolutely continuous. Define a(t) = v(s(t)). Since s is an absolutely
continuous increasing function, each coordinate of a is absolutely continuous.
Moreover,

o/() = (T o h)(a(t)) - Xn(alt)),

almost everywhere, and this implies that ||o/(¢)|| < 1 almost everywhere. There-

o) — af |—H/ dgHsm.

This implies that I = R, so (w_,wy) =V, because H is invertible. O

fore

3. Proof of the main results

In this section we prove the main theorems. For this we apply the results
from the previous section to the function h(z) = || F(2)||?/2, where F:R"™ — R"
is a C2 mapping. The next lemmas are strongly related to some results in [11],
just replacing the notion of F'-admissible flow (see Definition 3.1 and Theorem 4.1
of [11]) by the local flow of X}. These lemmas relate the properness of F to the
maximal interval of existence of the trajectories of Xj,.

In that follows F:R" — R™ is a C? mapping, h(z) = ||F(2)||?/2, X} is as

n (2.1) and ¢ = inf A.
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LEMMA 3.1. If n > 2, F~1(0) is discrete (possibly empty) and, for each
z € R™\ Crit(h), the mazimal interval of existence of the trajectory of Xy, by z
is (¢ — h(z),+00), then the regular levels of h are connected.

PROOF. Since h is of class C?, the vector field X}, is of class C' and thus it
defines a local flow which we denote by ¢. Let ¢y be a regular value in the image
of h. It is easy to see that ¢ maps h~!(cy) X (¢ — ¢g,00) homeomorphically on
the set R™ \ F~1(0), which is connected since n > 2. O

LEMMA 3.2. Let F:R" — R" be a C? local homeomorphism with n > 2. If
F~Y0) # 0 and, for each z € R™ \ Crit(h), the mazimal interval of existence of
the trajectory of X5, by z is (—h(z),+00), then F is bijective.

PROOF. Suppose that there is z; # zg such that F(zy) = F(z1) = 0. Since
F'is a local homeomorphism, we can take disjoint open sets Uy 5 zg and Uy > z;
which are sent homeomorphically by F' on an open ball B 5 0. Let ¢y > 0 be
a regular value of h such that the ball B sz of radius V2¢q centered at the
origin is contained in B, then we conclude that h~1(cg) is not connected, which
is an absurd by Lemma 3.1. Hence, F~1(0) = {z0}. Let Uy, B and ¢y be as
above and note that

h=1([0,c0]) = F~H (B /z5;) C U,
so h=1[0, co] is compact. Moreover, if R is so that R2/2 > ¢g, then
F~1(Br) = h='([0, co]) U h ™" ([co, R?/2]).
But if ¢ is the local flow of X}, then domain of ¢ contains the set h=!(co) x
[0, (R?/2) — ¢o]. Moreover,
¢(h™(co) x [0, (R?*/2) — co]) = h™"([eo, B?/2)),

then h=!([co, R?/2]) is compact, F~1(Bg) is compact and F is proper. By
a celebrated result in [2], F' is bijective. O

In the case n = 2 we have the following:

LEMMA 3.3. Let F:R? — R? be a C? mapping. If F~(0) is a non-empty
discrete set and, for each z € R™ \ Crit(h), the mazimal interval of existence of
the trajectory of Xy, by z is (—h(z),+o0), then F~1(0) consists of exactly one
point and F' is proper.

PrROOF. Let ¢y > 0 be a regular value in the image of h. By Lemma 3.1,
we have that h=!(cp) x (¢ — ¢g, +00) is homeomorphic to R? \ F~1(0) and thus
h=1(co) is connected. Since h~!(cy) has dimension 1, it is diffeomorphic to S!
and F~1(0) contains exactly one point. Using the local flow ¢ of X}, we conclude
that h=1(d) is diffeomorphic to S! for all d > 0 and that F is proper. O
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The lemma below describes the connection between the hypothesis of the
Theorem 1.3 and the maximal intervals of existence of Xj,:
LEMMA 3.4. If F:R" — R" is a C? mapping such that
(a) F~1(0) is discrete,
(b) DF(2)'F(z) # 0 whenever F(z) # 0, and
(c) fooo inf .= [|DF(2)"0(2)| dr = oo,
then F=1(0) # 0 and, for each z € R™\Crit(h), the maximal interval of existence
of the trajectory of Xy by z is (—h(z), +00).
PROOF. If z ¢ F~1(0), then

(3.1) VA=)l = |DF(2)" F(2)|
=[DF(2)'0(2)| - | F(2)ll = [ DF(2)"0(2)|| - v/2h(2).

Let & be as in (1.2) and consider the functions

inf ||DF(2)'0(z)|| ifr¢ &;
U:[0,00) — [0, 00), ri— { lzll=r
0 ifre 8.

and
T:(0,00) — (0, 00), u = V2u.
By (b) we have that the only possible critical value of A is its minimal value. By
(3.1), if z € R™\ Crit(h), then
(32) IVR(2)|| = ¥ (||z][)(T o h)(z).

Now observe that ¥ is continuous in [0,00) \ ¥=1(0). In fact, ¥ is clearly upper
semicontinuous in [0,00) \ &. Suppose that ¥ is not lower semicontinuous at
some g € [0,00) \ 6. In this case, there are ¢ > 0 and a sequence 7, — 7o such
that

U(rg) < ¥(rg) —e.

Since F~1(0) is closed and discrete, we can suppose that S,, N F~1(0) = @ for
all k. Therefore, there is a sequence zj such that ||zg|| = rx and

U(re) = || DF (k) 0(z) I

Taking subsequences, we can suppose that z; converges to some z of norm rq
and that (z;) converges to 6(z). Hence, we have

U(re) = | DF (k)" 0(zk) || < ®(ro) — & < [ DF(2)"0(2)| — e,

IDF(2)"0(2)|| = IDF (21)"0(20) ]| > e,
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which is absurd. On the other hand, ¥ is locally bounded, since

U(r) < sup [|DF(2)"].

l[2ll=r
By (3.2), the result follows from Propositions 2.1 and 2.2. a
Now we prove the main theorems:

PrOOF OF THEOREM 1.3. For n = 1 the result is straightforward. For
n > 2, the proof follows from Lemmas 3.4 and 3.2. ]

PROOF OF THEOREM 1.4. The result follows from Lemmas 3.4 and 3.3. O

The trivial example below is useful to compare our results with Nollet—Xavier
Theorem:

EXAMPLE 3.5. Let F:R? — R2 be the bijective C*° mapping defined by
F(z) = F(a,y) = («%,y).

Note that F' is not a local diffeomorphism, since DF(z) is singular for z = (0, y).
However, we have

(1) F71(0) = {(0,0)};

(2) DF(2)'F(z) =0 if and only if F(z) = 0.
Moreover, it is easy to verify that the integral condition (1.3) is satisfied. There-
fore, this example is covered by Theorems 1.3 and 1.4. It is interesting to
note that the integral condition (1.1) is not satisfied, since ||DF(z)%v|| = 0 for
z=(0,y) and v = (1,0).

PROOF OF COROLLARY 1.5. If z ¢ F~1(0) and ||z|| > ro, then

>1—A
[z +n(2)|l (= +n()ll
The result follows from Theorem 1.3. O
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