© 2013 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University

MULTIPLE SOLUTIONS TO A DIRICHLET EIGENVALUE PROBLEM WITH p-LAPLACIAN

Salvatore A. Marano — Dumitru Motreanu — Daniele Puglisi

ABSTRACT. The existence of a greatest negative, a smallest positive, and a nodal weak solution to a homogeneous Dirichlet problem with p-Laplacian and reaction term depending on a positive parameter is investigated via variational as well as topological methods, besides truncation techniques.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 3$, with a smooth boundary $\partial\Omega$, let $1 , and let <math>j: \Omega \times \mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ be a Carathéodory function. Consider the homogeneous Dirichlet problem:

(1.1)
$$\begin{cases} -\Delta_p u = j(x, u, \lambda) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

where Δ_p denotes the *p*-Laplace differential operator $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$. As usual, a function $u \in W_0^{1,p}(\Omega)$ is called a (weak) solution to (1.1) provided

$$\int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) \, dx = \int_{\Omega} j(x,u(x),\lambda) v(x) \, dx \quad \text{for all } v \in W_0^{1,p}(\Omega).$$

 $^{2010\} Mathematics\ Subject\ Classification.\ 35 J20,\ 35 J92,\ 49 J40.$

 $Key\ words\ and\ phrases.$ Dirichlet eigenvalue problem, $p ext{-}\text{Laplacian},$ constant-sign solutions, nodal solutions.

The literature concerning (1.1) is by now very wide and many existence, multiplicity, or bifurcation-type results are already available. In particular, a meaningful case occurs when

$$(1.2) j(x,t,\lambda) := \lambda |t|^{q-2}t + |t|^{r-2}t, (x,t,\lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^+,$$

with $1 < q < p < r < p^*$. If p = 2 then (1.2) reduces to a so-called concave-convex nonlinearity and, after the seminal paper [1], the corresponding problem has been thoroughly investigated. A similar comment can also be made when $p \neq 2$, in which case we cite [2]. The work [6] treats jumping nonlinearities not explicitly depending on λ , i.e.

$$(1.3) \ \ j(x,t,\lambda) := a(t^{+})^{p-1} - b(t^{-})^{p-1} + q(x,t) \quad \text{for all } (x,t,\lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^{+},$$

where $(a, b) \in \mathbb{R}^2$ lies above the Cuesta-de Figueiredo-Gossez [7] curve \mathcal{C} in the Fučik spectrum of $-\Delta_p$ while the Carathéodory function $g: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies

(1.4)
$$\lim_{t \to 0} \frac{g(x,t)}{|t|^{p-1}} = 0 \quad \text{uniformly in } x \in \Omega,$$

besides some standard growth condition. Under the assumption that a negative sub-solution \underline{u} and a positive super-solution \overline{u} to (1.1) are available, the existence of at least three nontrivial solutions, one negative, another positive, and the third nodal, within the order interval $[\underline{u}, \overline{u}]$ is established. If $a = b = \lambda$ then (1.3) becomes

$$(1.5) j(x,t,\lambda) := \lambda |t|^{p-2}t + g(x,t).$$

The same conclusion as before still holds without requiring sub-super-solutions, provided $\lambda > \lambda_2$, the second eigenvalue of $-\Delta_p$ in $W_0^{1,p}(\Omega)$, while g turns out to be bounded on bounded sets, fulfils (1.4), and

(1.6)
$$\lim_{|t| \to +\infty} \frac{g(x,t)}{|t|^{p-2}t} = -\infty \quad \text{uniformly in } x \in \Omega;$$

see [5, Theorem 4.1]. Finally, [10] investigates the existence of multiple, both constant-sign and nodal, solutions to (1.1) whenever λ is small enough, while [13] contains a bifurcation theorem, describing the dependence of positive solutions to (1.1) on the parameter $\lambda > 0$, where the reaction term j takes the form

$$j(x,t,\lambda) := \lambda h(x,t) + g(x,t), \quad (x,t,\lambda) \in \Omega \times \mathbb{R} \times \mathbb{R}^+,$$

for suitable $g, h: \Omega \times \mathbb{R} \to \mathbb{R}$.

Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a Carathéodory function such that

$$|f(x,t)| \le a_1(1+|t|^{p-1})$$
 for all $(x,t) \in \Omega \times \mathbb{R}$,

(1.7)
$$\limsup_{|t| \to +\infty} \frac{f(x,t)}{|t|^{p-2}t} \le 0 \quad \text{uniformly in } x \in \Omega,$$

and, moreover, there exists $a_2, A_2 > 0$ satisfying

$$(1.8) a_2 \leq \liminf_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} \leq \limsup_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} \leq A_2 uniformly in x \in \Omega.$$

Setting $j(x, t, \lambda) := \lambda f(x, t)$, Problem (1.1) becomes

(1.9)
$$\begin{cases} -\Delta_p u = \lambda f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

In this paper we prove that (1.9) possesses at least three nontrivial solutions, one greatest negative v_{λ} , another smallest positive u_{λ} , and the third nodal u_0 , with $v_{\lambda} \leq u_0 \leq u_{\lambda}$, provided λ is sufficiently large; vide Theorem 5.1 as well as, regarding an explicit estimate of λ , Remark 4.2. It should be noted that, for fixed $\lambda > 0$, the nonlinearity (1.5) fulfils (1.7)–(1.8) once (1.4) and (1.6) hold true, whereas (1.7)–(1.8) do not imply neither (1.4) nor (1.6). As an example, take

$$g(x,t) := \left\{ \begin{array}{ll} |t|^{p-3}\sin(t|t|) & \text{if } |t| \leq 1, \\ \lambda|t|^{p-2}t(\sin(t|t|)-2) - \lambda s(t)(\sin(s(t))-2) + \sin(s(t)) & \text{otherwise}, \end{array} \right.$$

where p > 1 and s(t) denotes the signum function.

Very recently, in [3], the same conclusion has been achieved supposing p > N, the function f independent of x, and $\lambda > 0$ small enough. Significantly, no condition at infinity is taken on, but one requires that

(1.10)
$$\lim_{t \to 0} \frac{f(t)}{|t|^{p-2}t} = L \in \mathbb{R}^+,$$

besides a suitable condition for $F(z) := \int_0^z f(t) dt$ near zero. Obviously, (1.10) forces (1.8).

Our results are obtained via variational and topological methods, as well as truncation arguments. Some of these techniques have already been employed in [5]. Possible extensions to non-smooth settings will be addressed in a future work.

2. Basic assumptions and auxiliary results

Let $(X, \|\cdot\|)$ be a real Banach space. Given a set $V \subseteq X$, write \overline{V} for the closure of V, ∂V for the boundary of V, and $\operatorname{int}(V)$ for the interior of V. If $x \in X$ and $\delta > 0$ then

$$B_{\delta}(x) := \{ z \in X : ||z - x|| < \delta \}.$$

The symbol $(X^*, \|\cdot\|_{X^*})$ denotes the dual space of $X, \langle \cdot, \cdot \rangle$ indicates the duality pairing between X and X^* , while $x_n \to x$ (respectively, $x_n \to x$) in X means 'the sequence $\{x_n\}$ converges strongly (respectively, weakly) in X'.

The next elementary but useful result [13, Proposition 2.1] will be used in Section 3.

PROPOSITION 2.1. Suppose $(X, \|\cdot\|)$ is an ordered Banach space with order cone C. If $x_0 \in \text{int}(C)$ then to every $z \in X$ there corresponds $t_z > 0$ such that $t_z x_0 - z \in C$.

A function $\Phi: X \to \mathbb{R}$ fulfilling

$$\lim_{\|x\| \to +\infty} \Phi(x) = +\infty$$

is called coercive. We say that Φ is weakly sequentially lower semi-continuous when $x_n \rightharpoonup x$ in X implies $\Phi(x) \leq \liminf_{n \to \infty} \Phi(x_n)$. Let $\Phi \in C^1(X)$. The classical Palais–Smale condition for Φ reads as follows.

(PS) Every sequence $\{x_n\} \subseteq X$ such that $\{\Phi(x_n)\}$ is bounded and $\|\Phi'(x_n)\|_{X^*} \to 0$ possesses a convergent subsequence.

Define, for every $c \in \mathbb{R}$,

$$\Phi^c := \{ x \in X : \Phi(x) \le c \}, \quad K_c(\Phi) := K(\Phi) \cap \Phi^{-1}(c),$$

where, as usual, $K(\Phi)$ denotes the critical set of Φ , i.e. $K(\Phi) := \{x \in X : \Phi'(x) = 0\}.$

An operator $A: X \to X^*$ is called of type (S)₊ if

$$x_n \rightharpoonup x$$
 in X , $\limsup_{n \to +\infty} \langle A(x_n), x_n - x \rangle \le 0$

imply $x_n \to x$. The next simple result is more or less known and will be employed in Section 4.

PROPOSITION 2.2. Let X be reflexive and let $\Phi \in C^1(X)$ be coercive. Assume $\Phi' = A + B$, where $A: X \to X^*$ is of type $(S)_+$ while $B: X \to X^*$ is compact. Then Φ satisfies (PS).

PROOF. Pick a sequence $\{x_n\} \subseteq X$ such that $\{\Phi(x_n)\}$ turns out to be bounded and

(2.1)
$$\lim_{n \to +\infty} \|\Phi'(x_n)\|_{X^*} = 0.$$

By the reflexivity of X, besides the coercivity of Φ , we may suppose, up to subsequences, $x_n \rightharpoonup x$ in X. Since B is compact, using (2.1) and taking a subsequence when necessary, one has

$$\lim_{n \to +\infty} \langle A(x_n), x_n - x \rangle = \lim_{n \to +\infty} (\langle \Phi'(x_n), x_n - x \rangle - \langle B(x_n), x_n - x \rangle) = 0.$$

This forces $x_n \to x$ in X, because A is of type $(S)_+$, as desired.

Throughout the paper, Ω is a bounded domain of the real Euclidean N-space $(\mathbb{R}^N, |\cdot|)$ with a smooth boundary $\partial\Omega$, $p \in (1, +\infty)$, p' := p/(p-1), $\|\cdot\|_p$ stands

for the usual norm of $L^p(\Omega)$, and $W_0^{1,p}(\Omega)$ indicates the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. On $W_0^{1,p}(\Omega)$ we introduce the norm

$$||u|| := \left(\int_{\Omega} |\nabla u(x)|^p dx \right)^{1/p}, \quad u \in W_0^{1,p}(\Omega).$$

Write p^* for the critical exponent of the Sobolev embedding $W_0^{1,p}(\Omega) \subseteq L^q(\Omega)$. Recall that $p^* = Np/(N-p)$ if p < N, $p^* = +\infty$ otherwise, and the embedding is compact whenever $1 \le q < p^*$.

Define $C_0^1(\overline{\Omega}) := \{u \in C^1(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega\}$. Obviously, $C_0^1(\overline{\Omega})$ turns out to be an ordered Banach space with order cone

$$C_0^1(\overline{\Omega})_+ := \{ u \in C_0^1(\overline{\Omega}) : u(x) \ge 0 \text{ for all } x \in \overline{\Omega} \}.$$

Moreover, one has

$$\operatorname{int}(C_0^1(\overline{\Omega})_+) = \bigg\{ u \in C_0^1(\overline{\Omega}) : u > 0 \text{ in } \Omega, \ \frac{\partial u}{\partial n} < 0 \text{ on } \partial \Omega \bigg\},$$

where n(x) is the outward unit normal vector to $\partial\Omega$ at the point $x\in\partial\Omega$; see, for example, [9, Remark 6.2.10].

Let $W^{-1,p'}(\Omega)$ be the dual space of $W_0^{1,p}(\Omega)$ and let $A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ be the nonlinear operator stemming from the negative p-Laplacian, i.e.

$$(2.2) \qquad \langle A(u), v \rangle := \int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) \, dx \quad \text{for all } u, v \in W_0^{1,p}(\Omega)$$

Denote by λ_1 (respectively, λ_2) the first (respectively, second) eigenvalue of the operator $-\Delta_p$ in $W_0^{1,p}(\Omega)$. The following properties of λ_1 , λ_2 , and A can be found in [7], [12]; vide also [9, Section 6.2]:

- (p_1) $0 < \lambda_1 < \lambda_2$.
- (p₂) $||u||_p^p \le ||u||^p / \lambda_1$ for all $u \in W_0^{1,p}(\Omega)$.
- (p₃) There exists an eigenfunction ϕ_1 corresponding to λ_1 such that $\phi_1 \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$ as well as $\|\phi_1\|_p = 1$.
- (p₄) If $S := \{u \in W_0^{1,p}(\Omega) : ||u||_p = 1\}$ and $\Gamma_0 := \{\gamma \in C^0([-1,1],S) : \gamma(-1) = -\phi_1, \ \gamma(1) = \phi_1\}$, then $\lambda_2 = \inf_{\gamma \in \Gamma_0} \max_{u \in \gamma([-1,1])} ||u||^p$.
- (p_5) The operator A is maximal monotone and of type $(S)_+$.

Finally, put, provided $t \in \mathbb{R}$, $t^- := \max\{-t, 0\}$, $t^+ := \max\{t, 0\}$.

If $u, v: \Omega \to \mathbb{R}$ belong to a given function space X and $u(x) \leq v(x)$ for almost every $x \in \Omega$ then we set

$$[u,v]:=\{w\in X: u(x)\leq w(x)\leq v(x) \text{ a.e. in }\Omega\}.$$

Likewise, $\Omega(u(x) < t) := \{x \in \Omega : u(x) < t\}$, etc. From now on, to avoid unnecessary technicalities, 'for every $x \in \Omega$ ' will take the place of 'for almost

every $x \in \Omega$ ' and the variable x will be omitted when no confusion can arise. Moreover, we shall write

$$X := W_0^{1,p}(\Omega), \qquad C_+ := C_0^1(\overline{\Omega})_+.$$

Let $\lambda > 0$. If $f: \Omega \times \mathbb{R} \to \mathbb{R}$ satisfies the conditions:

- (f₁) $f(\cdot,t)$ is measurable for all $t \in \mathbb{R}$ while $f(x,\cdot)$ is continuous for every $x \in \Omega$.
- (f₂) there exists $a_1 > 0$ such that $|f(x,t)| \le a_1(1+|t|^{p-1})$ in $\Omega \times \mathbb{R}$, then the functional $\Phi_{\lambda}: X \to \mathbb{R}$ given by

$$\Phi_{\lambda}(u) := \frac{1}{p} \|u\|^p - \lambda \int_{\Omega} F(x, u(x)) dx, \quad u \in X,$$

where, as usual,

(2.3)
$$F(x,\xi) := \int_0^{\xi} f(x,t) dt \quad \text{for all } (x,\xi) \in \Omega \times \mathbb{R},$$

turns out to be well defined and continuously differentiable. Obviously, critical points of Φ_{λ} are weak solutions to (1.9), and vice-versa.

We shall assume also that

- (f₃) $\limsup_{|t|\to+\infty} \frac{f(x,t)}{|t|^{p-2}t} \le 0$ uniformly in $x \in \Omega$, and
- (f_4) for suitable $a_2, A_2 > 0$ one has

$$a_2 \le \liminf_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} \le \limsup_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} \le A_2$$

uniformly in $x \in \Omega$.

3. Extremal constant-sign solutions

THEOREM 3.1. If (f_1) - (f_4) hold true then, for every $\lambda > 0$ sufficiently large, problem (1.9) possesses a smallest positive solution $u_{\lambda} \in \operatorname{int}(C_+)$ and a greatest negative solution $v_{\lambda} \in \operatorname{-int}(C_+)$.

PROOF. Put $f_+(x,t):=f(x,t^+),$ $F_+(x,\xi):=\int_0^\xi f_+(x,t)\,dt,$ and define, provided $\lambda>0,$ $u\in X,$

$$\Phi_{\lambda,+}(u) := \frac{1}{p} ||u||^p - \lambda \int_{\Omega} F_+(x, u(x)) dx.$$

Since X compactly embeds in $L^p(\Omega)$, the functional $\Phi_{\lambda,+}$ turns out to be weakly sequentially lower semi-continuous. By (f₃), for every $\lambda, \varepsilon > 0$ we can find $t_{\lambda,\varepsilon} > 0$ such that

$$f(x,t) < \frac{\lambda_1}{\lambda} \varepsilon t^{p-1}$$
 for all $(x,t) \in \Omega \times \mathbb{R}$ with $t \ge t_{\lambda,\varepsilon}$.

Hence, on account of (p_2) ,

$$\Phi_{\lambda,+}(u) > \frac{1-\varepsilon}{p} ||u||^p - a_3(\lambda), \quad u \in X,$$

where $a_3(\lambda) > 0$. Choosing $\varepsilon < 1$ guarantees that $\Phi_{\lambda,+}$ is coercive. Let $\widehat{u} \in X$ satisfy

$$\Phi_{\lambda,+}(\widehat{u}) = \inf_{u \in X} \Phi_{\lambda,+}(u).$$

From $\Phi'_{\lambda,+}(\widehat{u}) = 0$ it follows

(3.1)
$$\langle A(\widehat{u}), v \rangle = \lambda \int_{\Omega} f_{+}(x, \widehat{u}(x))v(x) dx, \quad v \in X,$$

with A as in (2.2). Due to (3.1) written for $v := -\widehat{u}^-$ one has $\|\widehat{u}^-\|^p = 0$. Thus, $\widehat{u} \geq 0$ and, a fortiori, the function \widehat{u} solves (1.9). By (f₄) there exists $\delta > 0$ fulfilling

$$(3.2) f(x,t) > \frac{a_2}{2} t^{p-1} for all (x,t) \in \Omega \times (0,\delta).$$

Pick $\tau > 0$ so small that $\tau \phi_1(x) < \delta$ in Ω . Through (3.2) and (p₃) we obtain

(3.3)
$$\Phi_{\lambda,+}(\tau\phi_1) < \frac{\tau^p}{p} \left(\lambda_1 - \lambda \frac{a_2}{2}\right) < 0$$

as soon as $\lambda > 2\lambda_1/a_2$. This evidently forces $\hat{u} \neq 0$. Standard regularity results [8, Theorems 1.5.5–1.5.6] then yield $\hat{u} \in C_+$. Since, because of (3.2),

$$\Delta_{p}\widehat{u}(x) = -\lambda f(x, \widehat{u}(x)) \le 0 \text{ in } \Omega(\widehat{u}(x) < \delta),$$

while (f_2) leads to

$$\Delta_p \widehat{u}(x) \le \lambda \left(\frac{a_1}{\delta^{p-1}} + 1\right) \widehat{u}(x)^{p-1}$$
 for every $x \in \Omega(\widehat{u}(x) \ge \delta)$,

Theorem 5 in [15] gives $\widehat{u} \in \operatorname{int}(C_+)$. Now, Proposition 2.1 provides $\varepsilon > 0$ such that $\varepsilon \phi_1 \leq \widehat{u}$. Arguing exactly as in the proofs of [4, Lemma 4.23] and [4, Corollary 4.24], and using [15, Theorem 5] once more, we see that the set

$$S_{\lambda,+} := \{ u \in [\varepsilon \phi_1, \widehat{u}] : u \text{ satisfies } (1.9) \}$$

possesses a smallest element, say u_{ε} . So, in particular, for every sufficiently large $n \in \mathbb{N}$ there exists a least solution

$$(3.4) u_n \in \operatorname{int}(C_+) \cap [n^{-1}\phi_1, \widehat{u}]$$

to (1.9). Consequently,

(3.5)
$$A(u_n) = \lambda f(\cdot, u_n) \quad \text{in } W^{-1,p'}(\Omega).$$

The minimality property of u_n gives

(3.6)
$$u_n \downarrow u_\lambda$$
 pointwise in Ω ,

where $u_{\lambda}: \Omega \to \mathbb{R}$ complies with $0 \le u_{\lambda} \le \widehat{u}$. We claim that u_{λ} turns out to be a solution of problem (1.9). In fact, by (3.5), (f₂), and (3.4), one has

$$||u_n||^p = \langle A(u_n), u_n \rangle = \lambda \int_{\Omega} f(x, u_n(x)) u_n(x) dx \le \lambda a_1(||\widehat{u}||_1 + ||\widehat{u}||_p^p)$$

for all $n \in \mathbb{N}$, i.e. $\{u_n\} \subseteq X$ is bounded. Therefore, up to subsequences, $u_n \rightharpoonup u_\lambda$ in X. Gathering (f_1) , (3.6), (f_2) , and (3.4) together we next achieve

$$\lim_{n \to +\infty} \langle A(u_n), u_n - u_\lambda \rangle = \lim_{n \to +\infty} \lambda \int_{\Omega} f(x, u_n(x)) (u_n(x) - u_\lambda(x)) \, dx = 0.$$

Because of (p₅) this implies $u_n \to u_\lambda$ in X. Now, the assertion follows from (3.5). If $u_\lambda \equiv 0$ then, by (3.6),

(3.7)
$$u_n \downarrow 0$$
 pointwise in Ω .

Put $v_n := u_n/||u_n||$. Since $\{v_n\}$ is bounded, we may suppose (along a relabelled subsequence, when necessary)

(3.8)
$$v_n \rightharpoonup v \text{ in } X, \quad v_n \to v \text{ in } L^p(\Omega),$$

as well as

(3.9) $|v_n(x)| \le w(x)$ for all $n \in \mathbb{N}$, $v_n(x) \to v(x)$ for almost all $x \in \Omega$, with $w \in L^p(\Omega)$. Through (3.5) one has

(3.10)
$$\langle A(v_n), v_n - v \rangle = \lambda \int_{\Omega} \frac{f(x, u_n)}{u_n^{p-1}} v_n^{p-1} (v_n - v) dx.$$

Letting $n \to +\infty$ and using (3.7), (f₄), besides (3.9), yields

$$\lim_{n \to +\infty} \langle A(v_n), v_n - v \rangle = 0.$$

Hence, as before, $v_n \to v$ in X. The choice of v_n forces $v \neq 0$. By (3.5) again we next get

$$A(v_n) = \lambda \frac{f(\cdot, u_n)}{u_n^{p-1}} v_n^{p-1} \text{ in } W^{-1,p'}(\Omega).$$

Due to (3.7)–(3.9) and (f_4) , this implies

$$-\Delta_p v(x) = \lambda m_\lambda(x) v(x)^{p-1}$$
 for almost every $x \in \Omega$,

where

$$(3.11) \hspace{1cm} m_{\lambda}(x) := \liminf_{n \to +\infty} \frac{f(x, u_n(x))}{u_n(x)^{p-1}} \geq m(x) := \liminf_{t \to 0^+} \frac{f(x, t)}{t^{p-1}}.$$

So, if $\lambda > \lambda_1(m)$, with $\lambda_1(m)$ being the first eigenvalue of the weighted nonlinear eigenvalue problem

$$-\Delta_p u = \lambda m(x)|u|^{p-2}u$$
 in Ω , $u = 0$ on $\partial\Omega$,

then $\lambda > \lambda_1(m_\lambda)$, because (3.11) gives $\lambda_1(m) \geq \lambda_1(m_\lambda)$. Via [9, Proposition 6.2.15] we thus see that v changes sign in Ω , which is impossible. Consequently, $u_\lambda \geq 0$ but $u_\lambda \neq 0$, and Theorem 5 of [15] leads to $u_\lambda \in \text{int}(C_+)$.

Let us finally verify that u_{λ} turns out to be minimal. Suppose $u \in \operatorname{int}(C_{+})$ solves (1.9). Through Proposition 2.1 one has $n^{-1}\phi_{1} \leq u$ for any sufficiently large n. Without loss of generality we may assume that $u \leq \widehat{u}$, otherwise we replace u by a solution $\widetilde{u} \in \operatorname{int}(C_{+})$ such that $\widetilde{u} \leq \min\{u, \widehat{u}\}$, whose existence is achieved as in the proof of [4, Corollary 4.24]. Therefore, $u \in [n^{-1}\phi_{1}, \widehat{u}]$. Since u_{n} was the least solution of (1.9) belonging to $[n^{-1}\phi_{1}, \widehat{u}]$, from (3.6) it follows

$$u_{\lambda}(x) \le u_n(x) \le u(x), \quad x \in \Omega,$$

i.e. $u_{\lambda} \leq u$, which represents the desired conclusion.

Setting

$$\Phi_{\lambda,-}(u) := \frac{1}{p} \|u\|^p - \lambda \int_{\Omega} F_{-}(x, u(x)) dx \quad \text{for all } u \in X,$$

where $F_{-}(x,\xi) := \int_{0}^{\xi} f(x,-t^{-}) dt$, analogous arguments produce a greatest negative solution $v_{\lambda} \in -\text{int}(C_{+})$ to problem (1.9).

REMARK 3.2. The preceding proof shows that the conclusion of Theorem 3.1 holds provided $\lambda > \max\{2\lambda_1/a_2, \lambda_1(m)\}$, with m as in (3.11).

4. Nodal solutions

THEOREM 4.1. Under assumptions (f_1) – (f_4) , for every $\lambda > 0$ sufficiently large, problem (1.9) possesses a nontrivial sign-changing solution $u_0 \in C_0^1(\overline{\Omega})$ such that $v_{\lambda} \leq u_0 \leq u_{\lambda}$, where u_{λ}, v_{λ} are given by Theorem 3.1.

PROOF. Define, provided $x \in \Omega$, $t, \xi \in \mathbb{R}$,

(4.1)
$$\widehat{f}(x,t) := \begin{cases} f(x,v_{\lambda}(x)) & \text{if } t < v_{\lambda}(x), \\ f(x,t) & \text{for } v_{\lambda}(x) \le t \le u_{\lambda}(x), \\ f(x,u_{\lambda}(x)) & \text{when } t > u_{\lambda}(x), \end{cases}$$

$$\widehat{f}_{+}(x,t) := \widehat{f}(x,\pm t^{\pm})$$

as well as

$$\widehat{F}(x,\xi) := \int_0^\xi \widehat{f}(x,t) \, dt, \qquad \widehat{F}_\pm(x,\xi) := \int_0^\xi \widehat{f}_\pm(x,t) \, dt.$$

Moreover, put

(4.2)
$$\widehat{\Phi}_{\lambda}(u) := \frac{1}{p} \|u\|^p - \lambda \int_{\Omega} \widehat{F}(x, u(x)) dx,$$

$$\widehat{\Phi}_{\lambda,\pm}(u) := \frac{1}{p} \|u\|^p - \lambda \int_{\Omega} \widehat{F}_{\pm}(x, u(x)) dx,$$

for all $u \in X$. The same reasoning made in the proof of Theorem 3.1 ensures here that the functionals $\widehat{\Phi}_{\lambda}$, $\widehat{\Phi}_{\lambda,\pm}$ are weakly sequentially lower semi-continuous and coercive. Hence, there exists $\overline{u} \in X$ satisfying

$$\widehat{\Phi}_{\lambda,+}(\overline{u}) = \inf_{u \in X} \widehat{\Phi}_{\lambda,+}(u).$$

As in the above-mentioned proof we then obtain

$$(4.5) \overline{u} \in \operatorname{int}(C_+).$$

Proposition 2.1 furnishes

for any $\tau > 0$ small enough. From $\widehat{\Phi}'_{\lambda,+}(\overline{u}) = 0$ it follows

(4.7)
$$\langle A(\overline{u}), v \rangle = \lambda \int_{\Omega} \widehat{f}_{+}(x, \overline{u}(x))v(x) dx \quad \text{for all } v \in X,$$

with A given by (2.2). Due to (4.7), written for $v := (\overline{u} - u_{\lambda})^+$, and (4.1) one achieves

$$\langle A(\overline{u}) - A(u_{\lambda}), (\overline{u} - u_{\lambda})^{+} \rangle = \lambda \int_{\Omega} [\widehat{f}_{+}(x, \overline{u}) - f(x, u_{\lambda})] (\overline{u} - u_{\lambda})^{+} dx = 0.$$

On account of (p_5) this implies $\overline{u} \leq u_{\lambda}$. So, owing to (4.1) and (4.7) again, the function \overline{u} turns out to be a solution of (1.9). Since u_{λ} was minimal, we must have $\overline{u} = u_{\lambda}$. Gathering (4.4)–(4.5) together yields that u_{λ} is a $C_0^1(\overline{\Omega})$ -local minimum for $\widehat{\Phi}_{\lambda}$. By [8, Proposition 4.6.10], the function u_{λ} enjoys the same property in the space X. Likewise, replacing the functional $\widehat{\Phi}_{\lambda,+}$ with $\widehat{\Phi}_{\lambda,-}$ one realizes that v_{λ} is a local minimizer of $\widehat{\Phi}_{\lambda}$.

Let $w_0 \in X$ fulfil $\widehat{\Phi}_{\lambda}(w_0) = \inf_{u \in X} \widehat{\Phi}_{\lambda}(u)$. Through (4.6) and (3.3) we infer

$$\widehat{\Phi}_{\lambda}(w_0) \leq \widehat{\Phi}_{\lambda}(\tau\phi_1) = \widehat{\Phi}_{\lambda,+}(\tau\phi_1) = \Phi_{\lambda,+}(\tau\phi_1) < 0,$$

i.e. $w_0 \neq 0$, provided $\lambda > 2\lambda_1/a_2$. Further, $w_0 \in [v_\lambda, u_\lambda]$ because

(4.8)
$$K(\widehat{\Phi}_{\lambda}) \subseteq [v_{\lambda}, u_{\lambda}],$$

as a simple computation shows. Thus, w_0 turns out to be a nontrivial solution of (1.9). Without loss of generality we may suppose $w_0 = u_{\lambda}$ or $w_0 = v_{\lambda}$, otherwise the extremality of u_{λ} , v_{λ} established in Theorem 3.1 would force a changing of sign for w_0 , which completes the proof. So, let $w_0 = u_{\lambda}$ (a similar reasoning applies when $w_0 = v_{\lambda}$). We may assume also that v_{λ} is a strict local minimum of $\widehat{\Phi}_{\lambda}$. In fact, if this were false then infinitely many nodal solutions to (1.9) might be found via (4.8) besides the extremality of u_{λ}, v_{λ} , and the conclusion follows. Pick $\rho \in (0, ||u_{\lambda} - v_{\lambda}||)$ such that

$$\widehat{\Phi}_{\lambda}(u_{\lambda}) \leq \widehat{\Phi}_{\lambda}(v_{\lambda}) < \inf_{u \in \partial B_{\rho}(v_{\lambda})} \widehat{\Phi}_{\lambda}(u).$$

The functional $\widehat{\Phi}_{\lambda}$ is coercive and one has

$$\langle \widehat{\Phi}'_{\lambda}(u), v \rangle = \langle A(u), v \rangle + \langle B(u), v \rangle$$
 for all $u, v \in X$,

where

$$\langle B(u), v \rangle := -\lambda \int_{\Omega} f(x, u(x)) v(x) dx.$$

By (p_5) the operator A turns out to be of type $(S)_+$ while $B: X \to X^*$ is compact, because (f_1) – (f_2) hold true and X compactly embeds in $L^p(\Omega)$. So, Proposition 2.2 guarantees that $\widehat{\Phi}_{\lambda}$ satisfies (PS). Bearing in mind (4.9), the Mountain-Pass Theorem can be applied. Hence, there exists $u_0 \in X$ complying with $\widehat{\Phi}'_{\lambda}(u_0) = 0$ and

(4.10)
$$\inf_{u \in \partial B_{\rho}(v_{\lambda})} \widehat{\Phi}_{\lambda}(u) \leq \widehat{\Phi}_{\lambda}(u_{0}) = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \widehat{\Phi}_{\lambda}(\gamma(t)),$$

where

$$\Gamma := \{ \gamma \in C^0([0,1], X) : \gamma(0) = v_\lambda, \ \gamma(1) = u_\lambda \}.$$

Due to (4.8) and (4.1) the function u_0 solves (1.9). By (4.9)–(4.10) one has $u_0 \notin \{u_\lambda, v_\lambda\}$, while standard regularity arguments provide $u_0 \in C_0^1(\overline{\Omega})$. The proof is thus completed once we verify that $u_0 \neq 0$. This immediately comes out from

$$\widehat{\Phi}_{\lambda}(u_0) < 0,$$

which, in view of (4.10), holds whenever we construct a path $\hat{\gamma} \in \Gamma$ satisfying

(4.12)
$$\widehat{\Phi}_{\lambda}(\widehat{\gamma}(t)) < 0 \text{ for all } t \in [0, 1].$$

Owing to (p_4) , there exists $\gamma \in \Gamma_0$ such that

$$\max_{t \in [-1,1]} \|\gamma(t)\|^p < \lambda_2 + \frac{a_2}{2^{p+1}}.$$

Define $S_C := S \cap C_0^1(\overline{\Omega})$ and consider on S_C the topology induced by that of $C_0^1(\overline{\Omega})$. Clearly, S_C is a dense subset of S. So, we can find $\gamma_0 \in C^0([-1,1], S_C)$ such that $\gamma_0(-1) = -\phi_1$, $\gamma_0(1) = \phi_1$, and

$$\max_{t \in [-1,1]} \|\gamma(t) - \gamma_0(t)\|^p < \frac{a_2}{2^{p+1}}.$$

This evidently forces

(4.13)
$$\max_{t \in [-1,1]} \|\gamma_0(t)\|^p < 2^{p-1}\lambda_2 + \frac{a_2}{2}.$$

Assumption (f_4) yields

(4.14)
$$F(x,\xi) \ge \frac{a_2}{2p} |\xi|^p \quad \text{provided } |\xi| \le \delta,$$

where $\delta > 0$. Pick $\varepsilon_0 > 0$ fulfilling

(4.15)
$$\varepsilon_0 \max_{x \in \overline{\Omega}} |u(x)| \le \delta \quad \text{for all } u \in \gamma_0([-1, 1]).$$

Since $u_{\lambda}, -v_{\lambda} \in \operatorname{int}(C_{+})$, to every $u \in \gamma_{0}([-1, 1])$ and every bounded neighbourhood V_{u} of u in $C_{0}^{1}(\overline{\Omega})$ there corresponds $\nu_{u} > 0$ such that

$$u_{\lambda} - \frac{1}{m}v \in \operatorname{int}(C_{+}), \quad -v_{\lambda} + \frac{1}{n}v \in \operatorname{int}(C_{+}) \quad \text{whenever } m, n \geq \nu_{u}, v \in V_{u}.$$

Through the compactness of $\gamma_0([-1,1])$ in $C_0^1(\overline{\Omega})$ we thus obtain $\varepsilon_1 > 0$ satisfying

$$(4.16) v_{\lambda}(x) \le \varepsilon u(x) \le u_{\lambda}(x) \text{for all } x \in \Omega, u \in \gamma_0([-1,1]), \varepsilon \in (0,\varepsilon_1).$$

The function $t \mapsto \gamma_0(t)$, $t \in [-1, 1]$, is a continuous path in S_C joining $-\phi_1$ with ϕ_1 . Moreover, if $0 < \varepsilon < \min\{\varepsilon_0, \varepsilon_1\}$ then (4.13), (4.16), (4.15), and (4.14) give

$$(4.17) \qquad \widehat{\Phi}_{\lambda}(\varepsilon \gamma_{0}(t)) = \frac{\varepsilon^{p}}{p} \|\gamma_{0}(t)\|^{p} - \lambda \int_{\Omega} \widehat{F}(x, \varepsilon \gamma_{0}(t)(x)) dx$$

$$\leq \frac{\varepsilon^{p}}{p} \left(2^{p-1}\lambda_{2} + \frac{a_{2}}{2}\right) - \lambda \frac{a_{2}}{2p} \varepsilon^{p} \int_{\Omega} |\gamma_{0}(t)(x)|^{p} dx$$

$$= \frac{\varepsilon^{p}}{p} \left(2^{p-1}\lambda_{2} + \frac{(1-\lambda)a_{2}}{2}\right) < 0,$$

for all $t \in [-1, 1]$, whenever $\lambda > (2^p \lambda_2 + a_2)/a_2$.

Now, set $a := \widehat{\Phi}_{\lambda,+}(u_{\lambda})$, $b := \widehat{\Phi}_{\lambda,+}(\varepsilon\phi_1)$, and observe that a < b < 0. In fact, as the reasoning made below (4.4) actually shows, u_{λ} is the unique global minimizer for $\widehat{\Phi}_{\lambda,+}$. Consequently, a < b, while (4.17) written for t = 1 yields b < 0. Thus, in particular,

$$K_a(\widehat{\Phi}_{\lambda,+}) = \{u_{\lambda}\}.$$

Since $K(\widehat{\Phi}_{\lambda,+}) \subseteq [0, u_{\lambda}]$ and, by Theorem 3.1, u_{λ} turns out to be the smallest positive solution of (1.9), no critical value of $\widehat{\Phi}_{\lambda,+}$ lies in (a, b]. So, by the second deformation lemma [9, Theorem 5.1.33], there exists a continuous function $h: [0, 1] \times (\widehat{\Phi}_{\lambda,+})^b \to (\widehat{\Phi}_{\lambda,+})^b$ fulfilling

$$h(0, u) = u, \quad h(1, u) = u_{\lambda}, \quad \text{and} \quad \widehat{\Phi}_{\lambda, +}(h(t, u)) \le \widehat{\Phi}_{\lambda, +}(u)$$

for all $(t, u) \in [0, 1] \times (\widehat{\Phi}_{\lambda, +})^b$. Let $\gamma_+(t) := h(t, \varepsilon \phi_1)^+, t \in [0, 1]$. Then $\gamma_+(0) = \varepsilon \phi_1, \gamma_+(1) = u_\lambda$, as well as

$$(4.18) \quad \widehat{\Phi}_{\lambda}(\gamma_{+}(t)) = \widehat{\Phi}_{\lambda,+}(\gamma_{+}(t)) \leq \widehat{\Phi}_{\lambda,+}(h(t,\varepsilon\phi_{1})) \leq \widehat{\Phi}_{\lambda,+}(\varepsilon\phi_{1}) < 0 \quad \text{in } [0,1].$$

In a similar way, but with $\widehat{\Phi}_{\lambda,-}$ in place of $\widehat{\Phi}_{\lambda,+}$, we can construct a continuous function $\gamma_-: [0,1] \to X$ such that $\gamma_-(0) = v_\lambda$, $\gamma_-(1) = -\varepsilon \phi_1$, and

$$\widehat{\Phi}_{\lambda}(\gamma_{-}(t)) < 0 \quad \text{for all } t \in [0, 1].$$

Concatenating γ_- , $\varepsilon \gamma_0$, and γ_+ we obtain a path $\widehat{\gamma} \in \Gamma$ which, in view of (4.17)–(4.19), satisfies (4.12). This shows (4.11), whence $u_0 \neq 0$.

REMARK 4.2. Through Remark 5.3, the above proof, and (p_1) one realizes that the conclusion of Theorem 4.1 holds provided

$$\lambda > \max\left\{\frac{2^p \lambda_2}{a_2} + 1, \lambda_1(m)\right\},$$

with m given by (3.11).

5. Existence of multiple solutions

Gathering Theorems 3.1 and 4.1 together directly yields the following result.

THEOREM 5.1. Assume (f_1) - (f_4) hold true. Then (1.9) has a smallest positive solution $u_{\lambda} \in \operatorname{int}(C_+)$, a biggest negative solution $v_{\lambda} \in \operatorname{-int}(C_+)$, and a sign-changing solution $u_0 \in C_0^1(\overline{\Omega})$ such that $v_{\lambda} \leq u_0 \leq u_{\lambda}$ for any sufficiently large $\lambda > 0$.

A meaningful special case occurs when the nonlinearity $(x,t) \mapsto f(x,t)$ is odd in t.

THEOREM 5.2. If (f_1) - (f_2) are satisfied, $f(x, \cdot)$ turns out to be odd for all $x \in \Omega$ and, moreover,

- $(\mathbf{f}_3') \ \limsup_{t \to +\infty} \frac{f(x,t)}{t^{p-1}} \le 0 \ \textit{uniformly in } x \in \Omega,$
- (f'_4) there exist $a_2, A_2 > 0$ such that

$$a_2 \le \liminf_{t \to 0^+} \frac{f(x,t)}{t^{p-1}} \le \limsup_{t \to 0^+} \frac{f(x,t)}{t^{p-1}} \le A_2$$

uniformly in $x \in \Omega$,

then the same conclusion of Theorem 5.1 holds, with $v_{\lambda} = -u_{\lambda}$.

REMARK 5.3. Unlike most of the multiplicity results for elliptic problems with odd nonlinearities available in the literature (see for instance [11, Section 11.3] and the references therein), due to (f_2) , the function f does not fulfil the classical Ambrosetti–Rabinowitz condition:

(AR) There are $\theta > p, r > 0$ such that $0 < \theta F(x, \xi) \le \xi f(x, \xi)$ provided $x \in \Omega$ and $|\xi| \ge r$.

Hence, the Symmetric Mountain–Pass Theorem [11, Theorem 11.5] cannot be applied here.

REMARK 5.4. Hypothesis (f'₄) guarantees that $F(x, \xi_0) > 0$ for some $\xi_0 > 0$, with F being as in (2.3).

Theorem 5.2 positively answers under (f'_4) the following question, posed to the second author by Prof. B. Ricceri [14]. Let $f_0: \mathbb{R} \to \mathbb{R}$ be an *odd* function. Suppose f_0 is continuous and satisfies:

$$\lim_{t \to +\infty} \frac{f_0(t)}{t} = 0, \quad \int_0^{\xi_0} f_0(t) \, dt > 0 \quad \text{for some } \xi_0 > 0.$$

Is there a $\mu > 0$ such that, for each $\lambda > \mu$, the problem:

$$-\Delta u = \lambda f_0(u)$$
 in Ω , $u = 0$ on $\partial \Omega$,

possesses a sign-changing weak solution?

Finally, to give an idea of possible applications, consider e.g. the case when $p \geq 2$ and

$$f(x,t) := |t|^{p-2} \sin t, \quad (x,t) \in \Omega \times \mathbb{R}.$$

A simple verification shows that (f_1) – (f_4) are fulfilled with $a_1 = a_2 = 1$. Further, $\lambda_1(m) = \lambda_1$ because m(x) = 1 for all $x \in \Omega$, where m is defined in (3.11). Since $\lambda_2 > \lambda_1$ by (p_1) , Theorem 5.1 and Remark 4.2 assert that the Dirichlet problem:

$$-\Delta_p u = \lambda |u|^{p-2} \sin u \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial \Omega$$

has two extremal constant-sign solutions and a nodal solution provided $\lambda > 2^p \lambda_2 + 1$.

A similar comment remains true for

$$f(x,t) := |t|^{p-2}((-1)^{[t]} + c)\sin t, \quad (x,t) \in \Omega \times \mathbb{R}.$$

Here p > 2, the symbol [t] denotes the greatest integer less than or equal to t, while c > 1. It is worth noting that $f(x, \cdot)$ does not satisfy (1.10).

References

- [1] A. Ambrosetti, H. Brézis and G. Cerami, Combined effects of concave-convex non-linearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.
- [2] A. Ambrosetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. 137 (1996), 219-242.
- [3] P. CANDITO, S. CARL AND R. LIVREA, Multiple solutions for quasilinear elliptic problems via critical points in open sublevels and truncation principles, J. Math. Anal. Appl. 395 (2012), 156–163.
- [4] S. CARL, V.K. LE AND D. MOTREANU, Nonsmooth Variational Problems and Their Inequalities. Comparison Principles and Applications, Springer Monogr. Math., Springer, New York, 2007.
- [5] S. CARL AND D. MOTREANU, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal. 68 (2008), 2668–2676.
- [6] S. CARL AND K. PERERA, Sign-changing and multiple solutions for the p-Laplacian, Abstr. Appl. Anal. 7 (2002), 613–625.
- [7] M. CUESTA, D. DE FIGUEIREDO AND J.-P. GOSSEZ, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212–238.

Multiple Solutions to a Dirichlet Eigenvalue Problem with p-Laplacian 291

- [8] L. GASIŃSKI AND N.S. PAPAGEORGIOU, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman & Hall/CRC, Boca Raton, FL, 2005.
- [9] ______, Topics in Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006.
- [10] S. Hu and N.S. Papageorgiou, Multiplicity of solutions for parametric p-Laplacian equations with nonlinearity concave near the origin, Tohoku Math. J. 62 (2010), 137– 162.
- [11] Y. Jabri, The Mountain Pass Theorem: Variants, Generalizations and some Applications, Encyclopedia Math. Appl., Cambridge Univ. Press, Cambridge, 2003.
- [12] A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. 64 (2006), 1057–1099.
- [13] S.A. MARANO AND N.S. PAPAGEORGIOU, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal. 12 (2013), 815–829.
- [14] B. RICCERI, personal communication.
- [15] J.L. VÁZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

Manuscript received November 5, 2011

SALVATORE A. MARANO Dipartimento di Matematica e Informatica Università degli Studi di Catania Viale A. Doria 6 95125 Catania, ITALY

E-mail address: marano@dmi.unict.it

DUMITRU MOTREANU Départment de Mathématiques Université de Perpignan 52 Avenue Paul Alduy 66860 Perpignan, FRANCE

 $E\text{-}mail\ address:\ motreanu@univ-perp.fr}$

DANIELE PUGLISI Dipartimento di Matematica e Informatica Università degli Studi di Catania A. Doria 6 95125 Catania, ITALY

 $E ext{-}mail\ address: dpuglisi@dmi.unict.it}$

TMNA: Volume $42 - 2013 - N^{\circ} 2$