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MULTIPLE SOLUTIONS
TO A DIRICHLET EIGENVALUE PROBLEM
WITH p-LAPLACITAN

SALVATORE A. MARANO — DUMITRU MOTREANU — DANIELE PUGLISI

ABSTRACT. The existence of a greatest negative, a smallest positive, and
a nodal weak solution to a homogeneous Dirichlet problem with p-Laplacian
and reaction term depending on a positive parameter is investigated via
variational as well as topological methods, besides truncation techniques.

1. Introduction

Let Q be a bounded domain in RY, N > 3, with a smooth boundary 99, let
1< p < +4oo, and let j: 2 x R x RT — R be a Carathéodory function. Consider
the homogeneous Dirichlet problem:

—Apu = j(z,u,\) in Q,

1.1
(L) u=20 on 0f),

where A, denotes the p-Laplace differential operator Apu := div(|Vu[P=2Vu).
As usual, a function u € Wy () is called a (weak) solution to (1.1) provided

/ |Vu(z)|P~2Vu(z) - Vo(z) do = / j(z, u(x), No(z)de  for all v € Wy P(9).
Q Q
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The literature concerning (1.1) is by now very wide and many existence, multi-
plicity, or bifurcation-type results are already available. In particular, a mean-
ingful case occurs when

(1.2) Gl t, N) = Mt972t 4 1772, (2,6, 0) € Q x R x RT,

with 1 < g <p <r <p* If p=2 then (1.2) reduces to a so-called concave-
convex nonlinearity and, after the seminal paper [1], the corresponding problem
has been thoroughly investigated. A similar comment can also be made when
p # 2, in which case we cite [2]. The work [6] treats jumping nonlinearities not
explicitly depending on A, i.e.

(1.3) j(x,t,A) ;= a(tT)P~t — bt )P~ 4+ g(z,t) forall (z,t,)) € X x R x R,

where (a,b) € R? lies above the Cuesta—de Figueiredo-Gossez [7] curve C in the
Fucik spectrum of —A, while the Carathéodory function g: 2 x R — R satisfies

(1.4) im 258 0 wniformly in € 0,
0 e

besides some standard growth condition. Under the assumption that a negative

sub-solution u and a positive super-solution @ to (1.1) are available, the existence

of at least three nontrivial solutions, one negative, another positive, and the

third nodal, within the order interval [u,W] is established. If @ = b = A then

(1.3) becomes
(1.5) ja,t, A) = APt + g(a,1).

The same conclusion as before still holds without requiring sub-super-solutions,
provided A > X2, the second eigenvalue of —A,, in VVO1 ?(Q), while g turns out to
be bounded on bounded sets, fulfils (1.4), and

g(z, 1)
|t|—+oo [E[P—2¢

(1.6) = —oo uniformly in z €

see [5, Theorem 4.1]. Finally, [10] investigates the existence of multiple, both
constant-sign and nodal, solutions to (1.1) whenever X is small enough, while [13]
contains a bifurcation theorem, describing the dependence of positive solutions
to (1.1) on the parameter A > 0, where the reaction term j takes the form

glx,t, A) == Ah(x,t) + g(z,t), (2,t,)) € QxR x R,

for suitable g,h: Q2 x R — R.
Let f:Q xR — R be a Carathéodory function such that

|f(z,t)] < ar(1+|tP~Y) for all (x,t) € Q xR,

t
(1.7) lim sup f(:r_,Q)
[t|—+oo [t[PT21

<0 uniformly in z € Q,
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and, moreover, there exists ag, As > 0 satisfying

. x,t . x,t . .
(1.8) as < hrtri}(?f J;|(p_2i <l t—>(;1 ‘i|(p_2i < A uniformly in z € Q.

Setting j(z,t, A) := Af(x,t), Problem (1.1) becomes
{ —Apu = Af(z,u) in Q,

(1.9) u=20 on 0N.

In this paper we prove that (1.9) possesses at least three nontrivial solutions,
one greatest negative vy, another smallest positive uy, and the third nodal ug,
with vy < ug < uy, provided X is sufficiently large; vide Theorem 5.1 as well
as, regarding an explicit estimate of A\, Remark 4.2. It should be noted that,
for fized A > 0, the nonlinearity (1.5) fulfils (1.7)—(1.8) once (1.4) and (1.6) hold
true, whereas (1.7)—(1.8) do not imply neither (1.4) nor (1.6). As an example,
take

( )-_.{|tw_3shﬂtﬁ) if |t <1,
I = A[t[P~2t(sin(t|t]) — 2) — As(t)(sin(s(t)) — 2) +sin(s(t)) otherwise,

where p > 1 and s(t) denotes the signum function.

Very recently, in [3], the same conclusion has been achieved supposing p > N,
the function f independent of z, and A > 0 small enough. Significantly, no
condition at infinity is taken on, but one requires that

t
(1.10) lim St =L eR",
t—0 |t‘p72t

besides a suitable condition for F(z) := [ f(t)dt near zero. Obviously, (1.10)
forces (1.8).

Our results are obtained via variational and topological methods, as well as
truncation arguments. Some of these techniques have already been employed
in [5]. Possible extensions to non-smooth settings will be addressed in a future
work.

2. Basic assumptions and auxiliary results

Let (X, || - ||) be a real Banach space. Given a set V C X, write V for the
closure of V', 9V for the boundary of V, and int(V) for the interior of V. If
x € X and § > 0 then

Bs(z) :={z€ X : ||z — x| < d}.

The symbol (X*,||-||x+) denotes the dual space of X, (-, -) indicates the duality
pairing between X and X*, while z,, — x (respectively, z, — z) in X means
‘the sequence {x,} converges strongly (respectively, weakly) in X" .
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The next elementary but useful result [13, Proposition 2.1] will be used in
Section 3.

PROPOSITION 2.1. Suppose (X, || - ||) is an ordered Banach space with order
cone C. If g € int(C) then to every z € X there corresponds t, > 0 such that
t,xg—z € C.

A function ®: X — R fulfilling

O(x) = +o0
)| —+o0
is called coercive. We say that ® is weakly sequentially lower semi-continuous
when z,, — z in X implies ®(x) < liminf, .., ®(z,). Let ® € C*(X). The
classical Palais—Smale condition for ® reads as follows.
(PS) Every sequence {zn} C X such that {®(x,)} is bounded and || P’ (z,,)] x+
— 0 possesses a convergent subsequence.

Define, for every ¢ € R,
P i={zcX: @) <ch, K. (P):=K(@) N> (),

where, as usual, K(®) denotes the critical set of ®, i.e. K(®) := {z € X :
d'(z) = 0}.
An operator A: X — X* is called of type (S)4 if
zp = inX, limsup(A(z,),z,—z) <0
n—-+o0o
imply z,, — =. The next simple result is more or less known and will be employed
in Section 4.

PROPOSITION 2.2. Let X be reflevive and let ® € C1(X) be coercive. As-
sume ® = A+ B, where A: X — X* is of type (S); while B: X — X* is
compact. Then ® satisfies (PS).

Proor. Pick a sequence {z,} C X such that {®(x,)} turns out to be
bounded and

(2.1) lim @/ () - = 0.

By the reflexivity of X, besides the coercivity of ®, we may suppose, up to subse-
quences, x,, — x in X. Since B is compact, using (2.1) and taking a subsequence
when necessary, one has
lim (A(xy,), 2z, —x) = lim (®'(z,), 2, — ) — (B(xy), 2 — x)) = 0.
n—-+oo n—-+4oo

This forces x,, — x in X, because A is of type (S)4, as desired. ]

Throughout the paper, €2 is a bounded domain of the real Euclidean N-space
(RN, |-|) with a smooth boundary 98, p € (1,+00), p' :=p/(p—1), || - ||, stands
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for the usual norm of LP(), and W,?(Q) indicates the closure of C§°(Q) in
Whr(€). On WiP(Q) we introduce the norm

foll== ([ |Vu<x>pdx)1/p, u e WEP(9).

Write p* for the critical exponent of the Sobolev embedding W, **(€2) € L7(1).
Recall that p* = Np/(N —p) if p < N, p* = 400 otherwise, and the embedding
is compact whenever 1 < g < p*.

Define C3(Q) := {u € C*(Q) : u = 0 on 9Q}. Obviously, C3(Q) turns out to
be an ordered Banach space with order cone

Co( )y :={uecCHQ) :u(x) >0 for all z € Q}.

Moreover, one has

_ _ 0
int(C3(Q)4) = {u €Ci(Q):u>0inQ, a—z < 0on 89},
where n(x) is the outward unit normal vector to 0 at the point x € 9Q; see,
for example, [9, Remark 6.2.10].
Let W12 () be the dual space of W, () and let A: W, *() — W17 (Q)
be the nonlinear operator stemming from the negative p-Laplacian, i.e.

(2.2)  (A(w),v) := /Q |Vu(z)[P~2Vu(z) - Vo(z)de  for all u,v € Wy P (Q)

Denote by Ay (respectively, A2) the first (respectively, second) eigenvalue of the
operator —A,, in Wolp(Q) The following properties of Ay, Ag, and A can be
found in [7], [12]; vide also [9, Section 6.2]:

(pl) 0< A < A

(p2) [[ullp < [[ullP/\ for all u € Wy™(Q).

(ps) There exists an eigenfunction ¢1 corresponding to A1 such that ¢1 €
int(C(Q)+) as well as ||¢1], = 1.

(pa) If S := {u € WyP(Q) : |jull, = 1} and Ty := {y € C°([-1,1],85) :

1) =— 1) = ¢1}, then Ay = inf P,
Y(=1) = —=¢1, ¥(1) = g1}, then A Jnf e [l

(ps) The operator A is mazximal monotone and of type (S).

Finally, put, provided ¢t € R, ¢~ := max{—t,0}, t* := max{¢, 0}.

If u,v: Q — R belong to a given function space X and u(x) < v(z) for almost
every x € () then we set

[u,v] :=={w € X : u(z) < w(x) <v(zr) a.e. in Q}.

Likewise, Q(u(z) < t) := {z € Q : u(z) < t}, etc. From now on, to avoid
unnecessary technicalities, ‘for every x € €0’ will take the place of ‘for almost
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every x € {2’ and the variable z will be omitted when no confusion can arise.
Moreover, we shall write

X =W, P(Q), Oy :=C),.

Let A > 0. If f:Q x R — R satisfies the conditions:

(f1) f(-,t) is measurable for allt € R while f(x, -) is continuous for every
x €,
(f2) there exists a; > 0 such that |f(z,t)] < ai(1+ [t[P71) in Q x R,

then the functional ®,: X — R given by
1
Ba(w) =l A | Flo,u()do, e X,
p Q

where, as usual,

3
(2.3) F(z,¢8) := /0 f(z,t)dt for all (z,£) € 2 xR,

turns out to be well defined and continuously differentiable. Obviously, critical
points of ®, are weak solutions to (1.9), and vice-versa.
We shall assume also that
(f3) limsup f(xit) < 0 uniformly in x € Q, and
|40 [T[P72E
(f4) for suitable az, Ay > 0 one has

t t
as < liminf f(@,?) < lims f(@,?) <
t—0  [¢[P—2¢ 1o [t|P2t

2

uniformly in x € Q.

3. Extremal constant-sign solutions

THEOREM 3.1. If (f;)—(f4) hold true then, for every A > 0 sufficiently large,
problem (1.9) possesses a smallest positive solution uy € int(C) and a greatest
negative solution vy € —int(C).

PROOF. Put fy(z,t) := f(z,t1), Fy(z,€) := f(f f+(z,t)dt, and define, pro-
vided A >0, u € X,

B () 1= Sl = [ Pyau(e) do

Since X compactly embeds in L?((2), the functional ® 4 turns out to be weakly
sequentially lower semi-continuous. By (f3), for every A\,e > 0 we can find
tye > 0 such that

A
flz,t) < Tlstp_l for all (z,t) € @ x R with ¢ > ¢ ..
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Hence, on account of (p2),

1—¢
D)+ (u) >

[ull® = az(), weX,

where as(A) > 0. Choosing € < 1 guarantees that ® 1 is coercive. Let & € X
satisfy

Ca+(w) = inf @54 (u).

A~

From @) | (u) = 0 it follows

(3.1) (A(u),v) = )\/Qf_‘_(x,ﬂ(x))v(x) de, veX,

with A as in (2.2). Due to (3.1) written for v := —u~ one has ||[u~||P = 0. Thus,
u > 0 and, a fortiori, the function u solves (1.9). By (f4) there exists § > 0
fulfilling

(3.2) fz,t) > C;—Qtp’l for all (z,t) € Q x (0,0).

Pick 7 > 0 so small that 7¢;(x) < § in Q. Through (3.2) and (p3) we obtain
P
(33) (I))\7+(T¢1) < % <>\1 — )\a;> <0

as soon as A > 2\;/as. This evidently forces u # 0. Standard regularity results
[8, Theorems 1.5.5-1.5.6] then yield @ € C. Since, because of (3.2),

Apu(z) = =AM f(z,u(z)) <0 in Qu(z) <9),
while (fs) leads to

ai
gp—1

Ayu(z) < )\< + 1> a(z)P~!  for every z € Q(u(z) > 6),

Theorem 5 in [15] gives & € int(C4). Now, Proposition 2.1 provides ¢ > 0
such that e¢ < u. Arguing exactly as in the proofs of [4, Lemma 4.23] and [4,
Corollary 4.24], and using [15, Theorem 5] once more, we see that the set

Sx,+ = {u € [ed1,U] : u satisfies (1.9)}

possesses a smallest element, say u.. So, in particular, for every sufficiently large
n € N there exists a least solution

(3.4) U, € int(Cy) N [n~" ey, U

o (1.9). Consequently,

(3.5) Aun) = Af(+,up) in WH2(Q).
The minimality property of u,, gives

(3.6) Up | uy pointwise in €2,
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where uy: 2 — R complies with 0 < uy < u. We claim that u) turns out to be
a solution of problem (1.9). In fact, by (3.5), (f2), and (3.4), one has

l[unl[” = (Alun), un) = A/Qf(x»%(x))un(ff) da < Aay([[ully + [fu][3)

for all n € N, i.e. {u,} C X is bounded. Therefore, up to subsequences, u, — uy
in X. Gathering (f1), (3.6), (f2), and (3.4) together we next achieve

lim (A(up),u, —uy) = lim )\/fxun )(un(x) —ur(x)) dx = 0.

n——+oo n4>+oo

Because of (ps) this implies u, — uy in X. Now, the assertion follows from (3.5).
If uy = 0 then, by (3.6),

(3.7) u, | 0 pointwise in Q.

Put vy, := up/||un||. Since {v,} is bounded, we may suppose (along a relabelled

subsequence, when necessary)

(3.8) v, = v in X, v, — v in LP(Q),
as well as
(3.9) |vn(z)| <w(z) forallneN, vp(x) — v(z) for almost all z € Q,

with w € LP(§2). Through (3.5) one has

(3.10) (A(vn), 00 —v) = A % WP~ (v, — v) dz.
Q Un

Letting n — 400 and using (3.7), (fs), besides (3.9), yields

lim (A(vy,), v, —v) = 0.

n—-+4oo

Hence, as before, v, — v in X. The choice of v,, forces v # 0. By (3.5) again we
next get

Avp) = AL un) gp’ﬁ”) P~ in WL (Q).

Due to (3.7)—(3.9) and (f4), this implies
—Ayv(z) = dmy(z)v(z)P~  for almost every z € €,
where

n——+oo un(x)Pfl - t—0t tpfl

So, if A > A1(m), with A1 (m) being the first eigenvalue of the weighted nonlinear
eigenvalue problem

—Apu = dm(2)|uP"2u in Q, u=0 on 09,
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then A > Aq(my), because (3.11) gives A1(m) > A1(my). Via [9, Proposi-
tion 6.2.15] we thus see that v changes sign in €, which is impossible. Con-
sequently, uy > 0 but uy # 0, and Theorem 5 of [15] leads to uy € int(Cy.).

Let us finally verify that uy turns out to be minimal. Suppose u € int(Cy.)
solves (1.9). Through Proposition 2.1 one has n=!¢; < u for any sufficiently
large n. Without loss of generality we may assume that v < @, otherwise we
replace u by a solution & € int(Cy) such that @ < min{u, u}, whose existence is
achieved as in the proof of [4, Corollary 4.24]. Therefore, u € [n"1¢1,%]. Since
u,, was the least solution of (1.9) belonging to [n~1¢q,], from (3.6) it follows

ux(z) < up(z) <ulx), =€,

i.e. uy < wu, which represents the desired conclusion.
Setting

Dy _(u) := 1 [|u||” — )\/ F_(z,u(z))dx for all u e X,
b Q

where F_(z,€) := fog f(x,—t7)dt, analogous arguments produce a greatest neg-
ative solution vy € —int(C) to problem (1.9). O

REMARK 3.2. The preceding proof shows that the conclusion of Theorem 3.1
holds provided A > max{2X\;/az, A1(m)}, with m as in (3.11).

4. Nodal solutions

THEOREM 4.1. Under assumptions (f1)—(fy), for every A > 0 sufficiently
large, problem (1.9) possesses a nontrivial sign-changing solution ug € C}(Q)
such that vy < ug < uy, where uy, vy are given by Theorem 3.1.

PROOF. Define, provided =z € 2, t,£ € R,
flzyon(z)) if t < wp(z),
f(:c,t) =1 f(z,t) for vy(z) <t < wuy(z),
f(z,ux(z)) when t > uy(z),

fe(z,t) = f(x, iti)

(4.1)

as well as

~ £ R £
F(z,§) ::/O f(z,t)dt, Fy(z,8) ::/O fx(z,t)dt.

Moreover, put

P ! P _ F(z. u(z))dz
(4.2) Ba(w) 1= - ] A/QF< u(z)) d,

(4.3) s (u) = % ||u||”—)\/ﬂﬁi(x,u(x))da:,
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for all u € X. The same reasoning made in the proof of Theorem 3.1 ensures
here that the functionals @, ® + are weakly sequentially lower semi-continuous
and coercive. Hence, there exists w € X satisfying

(4.4) ) 4 (1) = ot Oy 4 (u).
As in the above-mentioned proof we then obtain
(4.5) u € int(Cy).
Proposition 2.1 furnishes

(4.6) To1(x) <u(x), z€Q,

for any 7 > 0 small enough. From @’)\ (@) = 0 it follows
(4.7) (A(@),v) = /\/ Fe(z,u(z))v(z)de  for all v € X,
Q

with A given by (2.2). Due to (4.7), written for v := (u — uy)", and (4.1) one
achieves

(A@) — Alun), (@ —un)") = /\/Q[J?+($,ﬂ) — fla,u\))(@—ux)* dz = 0.

On account of (ps) this implies @ < uy. So, owing to (4.1) and (4.7) again, the
function @ turns out to be a solution of (1.9). Since uy was minimal, we must
have T = uy. Gathering (4.4)—(4.5) together yields that uy is a C(£2)-local
minimum for CTDA. By [8, Proposition 4.6.10], the function wu) enjoys the same
property in the space X. Likewise, replacing the functional d A+ with d A,— one
realizes that vy is a local minimizer of d A

Let wg € X fulfil EI;)\(wO) = ulélg (/I\))\(u> Through (4.6) and (3.3) we infer

O (wo) < Dx(T¢1) = Pa 1 (161) = Dy 4 (T¢1) < 0,
i.e. wy # 0, provided A > 2X\;/ag. Further, wy € [vy, u)] because
(4.8) K(®,) C [ox,w],

as a simple computation shows. Thus, wg turns out to be a nontrivial solution
of (1.9). Without loss of generality we may suppose wy = u) or wg = vy, other-
wise the extremality of uy, vy established in Theorem 3.1 would force a changing
of sign for wg, which completes the proof. So, let wy = uy (a similar reasoning
applies when wg = vy). We may assume also that vy is a strict local minimum
of ®y. In fact, if this were false then infinitely many nodal solutions to (1.9)
might be found via (4.8) besides the extremality of uy, vy, and the conclusion
follows. Pick p € (0, |[ux — vy||) such that

(4.9) Dy (up) < Pr(vy) < inf By (u).
u€IB,(vy)
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The functional & » 1s coercive and one has
(@ (u),v) = (A(u),v) + (B(u),v) for all u,v € X,

where
(B(u),v) := f)\/Qf(x,u(:c))v(x) dx.

By (ps) the operator A turns out to be of type (S)y while B: X — X* is
compact, because (f;)—(f2) hold true and X compactly embeds in LP(2). So,
Proposition 2.2 guarantees that ®, satisfies (PS). Bearing in mind (4.9), the
Mountain-Pass Theorem can be applied. Hence, there exists uy € X complying
with @i\(uo) =0 and

4.10 inf  ®y(u) <P = inf Dy (v(1)),
(4.10) e A(u) < @x(uo) inf max A(v(®))

where

Ii={y € C%[0,1],X) : 7(0) = vz, ¥(1) = ur}.
Due to (4.8) and (4.1) the function ug solves (1.9). By (4.9)—(4.10) one has
ug & {ux, vy}, while standard regularity arguments provide ug € C}(Q). The

proof is thus completed once we verify that ug # 0. This immediately comes out
from

(4.11) 5 (uo) < 0,
which, in view of (4.10), holds whenever we construct a path 5 € T' satisfying

(4.12) D,(3(t)) <0 for all t € [0,1].

Owing to (p4), there exists v € I’y such that

a2
HIP < A :
sy O <o+ 55
Define S¢ := S N CE(Q) and consider on S¢ the topology induced by that of
C3(Q). Clearly, S¢ is a dense subset of S. So, we can find o € C°([-1,1], S¢)
such that vo(—1) = —¢1, 10(1) = ¢1, and

a2
t) — t)||P .
(0 = 0(0)]P < 0%
This evidently forces
(4.13) max_|o(t)]|P < 2P~ hs + 2.
te[—1,1] 2

Assumption (fy) yields

(4.14) F(x,8) > ;—2 |€|P provided |£] < 6,
p
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where § > 0. Pick g9 > 0 fulfilling

(4.15) gomax |u(z)] < ¢ for all u € y([—1,1]).
€N

Since uy, —vy € int(C,), to every u € vo([—1, 1]) and every bounded neighbour-
hood V;, of u in C}(Q) there corresponds v, > 0 such that

1 1
uy— —v €int(Cr), —vyx+ —v€int(Cy) whenever m,n > vy, v €V, .
m n

Through the compactness of yo([—1, 1]) in C} (€2) we thus obtain e; > 0 satisfying
(4.16) oa(z) <eul(z) <ur(z) forall z € Q, uey(-1,1]), € (0,e1).

The function ¢ — v(t), t € [—1,1], is a continuous path in S¢ joining —¢; with
¢1. Moreover, if 0 < e < min{eg, &1} then (4.13), (4.16), (4.15), and (4.14) give

(417) Ba(evolt)) :fu%(wnp A / Fla,en0(t)(2)) da

p <2p g + 2 )—)\5”/ 170 (t)(2)|? dx

P 1—-A
p 2

for all ¢ € [—1, 1], whenever A > (2P A2 + ag)/as.

Now, set a := <f>>\7+(u>\), b = ;I\>>\7+(€(b1), and observe that a < b < 0.
In fact, as the reasoning made below (4.4) actually shows, uy is the unique
global minimizer for <f>,\’+. Consequently, a < b, while (4.17) written for t = 1
yields b < 0. Thus, in particular,

Ka(a)k,-i-) = {u,\}

Since K($A7+) C [0,uy] and, by Theorem 3.1, uy turns out to be the smallest
positive solution of (1.9), no critical value of CT>A7+ lies in (a,b]. So, by the
second deformation lemma [9, Theorem 5.1.33], there exists a continuous function
h:[0,1] X (®x,4)" — (P54 )° fulfilling

hO,u) =u, h(lu)=uy, and & (h(t,u)) < Dy (u)

for all (t,u) € [0,1] x (®x.4+)b. Let 4 (t) := h(t,e¢1) ™, t € [0,1]. Then 74 (0) =
ep1, v+(1) = uy, as well as

(418) Ba(rs (1) = Bas (74 (1) < Ba s (h(t,£61)) < By (261) <0 in [0,1].
In a similar way, but with ® A,— in place of o A+, We can construct a continuous

function v_: [0, 1] — X such that v_(0) = vy, v_(1) = —e¢1, and

o~

(4.19) Dy (v-(t)) <0 forallte[0,1].
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Concatenating y_, 79, and -4 we obtain a path 4 € I" which, in view of (4.17)—
(4.19), satisfies (4.12). This shows (4.11), whence ug # 0. O

REMARK 4.2. Through Remark 5.3, the above proof, and (p;1) one realizes
that the conclusion of Theorem 4.1 holds provided

2P
A> max{ a/\2 + l,Al(m)},
2

with m given by (3.11).

5. Existence of multiple solutions
Gathering Theorems 3.1 and 4.1 together directly yields the following result.

THEOREM 5.1. Assume (f1)—(f4) hold true. Then (1.9) has a smallest posi-
tive solution uy € int(Cy), a biggest negative solution vy € —int(CL), and
a sign-changing solution ug € C§(Q) such that vy < ug < uy for any sufficiently
large X > 0.

A meaningful special case occurs when the nonlinearity (z,t) — f(z,t) is
odd in t.

THEOREM 5.2. If (f1)—(f2) are satisfied, f(x, ) turns out to be odd for all
x € Q and, moreover,

t
(f5) limsup f(@,t) < 0 uniformly in x € Q,
t—-+oco tr—1
(f;) there exist ag, As > 0 such that
4 t
as < liminf M < limsup M < As
t—o+ tP—1 ro+ Pl
uniformly in x € (O,
then the same conclusion of Theorem 5.1 holds, with vy = —uy.

REMARK 5.3. Unlike most of the multiplicity results for elliptic problems
with odd nonlinearities available in the literature (see for instance [11, Sec-
tion 11.3] and the references therein), due to (f3), the function f does not fulfil
the classical Ambrosetti-Rabinowitz condition:

(AR) There are § > p, r > 0 such that 0 < 0F(z,£) < &f(x,&) provided
x€Qand|E >r.
Hence, the Symmetric Mountain—Pass Theorem [11, Theorem 11.5] cannot be
applied here.

REMARK 5.4. Hypothesis (f]) guarantees that F(x,&y) > 0 for some &y > 0,
with F being as in (2.3).
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Theorem 5.2 positively answers under (f)) the following question, posed to
the second author by Prof. B. Ricceri [14]. Let fo:R — R be an odd function.
Suppose fj is continuous and satisfies:

t
L hol®)

o
—= =0, fo(t)dt >0 for some & > 0.
t—+oo ¢ 0

Is there a p > 0 such that, for each A > u, the problem:
—Au = Afo(u) in 9, u=0 on 99,

possesses a sign-changing weak solution?
Finally, to give an idea of possible applications, consider e.g. the case when
p > 2 and
f(z,t) := [t|P~%sint, (x,t) € QA xR.
A simple verification shows that (f;)—(fy) are fulfilled with a; = a2 = 1. Further,
A1(m) = A1 because m(z) =1 for all x € Q, where m is defined in (3.11). Since
A2 > A1 by (p1), Theorem 5.1 and Remark 4.2 assert that the Dirichlet problem:

—Apu = Au[P"?sinu  in Q, u=0 on 00

has two extremal constant-sign solutions and a nodal solution provided A >
2Py + 1.
A similar comment remains true for

fx,t) = tP2((-D) + ¢)sint, (x,t) € Q x R.

Here p > 2, the symbol [t] denotes the greatest integer less than or equal to ¢,
while ¢ > 1. It is worth noting that f(z, -) does not satisfy (1.10).
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