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GENERIC PROPERTIES OF CRITICAL POINTS
OF THE BOUNDARY MEAN CURVATURE

Anna Maria Micheletti — Angela Pistoia

Abstract. Given a bounded domain Ω ⊂ RN of class Ck with k ≥ 3,

we prove that for a generic deformation I + ψ, with ψ small enough, all

the critical points of the mean curvature of the boundary of the domain
(I + ψ)Ω are non degenerate.

1. Introduction

Let Ω ⊂ RN be a domain of class Ck with k ≥ 3 and N ≥ 2. We consider
the domain Ωψ := (I + ψ)Ω given by the deformation I + ψ. We are interested
in studying the non degeneracy of the critical points of the mean curvature of
the boundary of the domain Ωψ with respect to the parameter ψ.

Let Ek be the vector space of all the Ck applications ψ: RN → RN such that

(1.1) ‖ψ‖k := sup
x∈RN

max
0≤|α|≤k

∣∣∣∣ ∂αψi(x)
∂x1

α1 . . . ∂xNαN

∣∣∣∣ < +∞.

Ek is a Banach space equipped with the norm ‖ · ‖k. Let Bρ := {ψ ∈ Ek :
‖ψ‖k ≤ ρ} be the ball in Ek centered at 0 with radius ρ.

More precisely, we will prove the following result.
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Theorem 1.1. The set A := {ψ ∈ Bρ : all the critical points of the mean
curvature of the boundary of the domain Ωψ are non degenerate} is a residual
(hence dense) subset of Bρ, provided ρ is small enough.

The result of Theorem 1.1 can be applied to the study of the following prob-
lem:

(1.2) −ε2∆u+ u = |u|p−1u in Ω,
∂u

∂ν
= 0 on ∂Ω,

where ε is a small positive parameter and ν denotes the unit outward normal to
∂Ω and 1 < p < (N + 2)/(N − 2) < if N ≥ 3 or p > 1 if N = 2.

This problem arises from different mathematical models: for example, it ap-
pears in the study of stationary solutions for the Keller–Segal system in chemo-
taxis and the Gierer–Meinhardt system in biological pattern formation. Prob-
lem (1.2) has been widely studied in many aspects: a large number of papers
have been devoted in investigating the existence, multiplicity and asymptotic
behaviour of positive solutions in the semiclassical limit ε→ 0+.

The analysis reveals that the solutions seem to exhibit a “point condensation
phenomena”, i.e. they tend to zero as ε→ 0+ except at a finite number of points.
In the pioneering papers [11], [13], [14], Lin, Ni and Takagi first proved that for
ε sufficiently small there is a least energy solution uε with the property that
uε has exactly one maximum point ξε in Ω, and ξε must be located on ∂Ω and
near the most curved part of the ∂Ω, i.e. H(ξε) → max

ξ∈∂Ω
H(P ), where H(ξ)

denotes the mean curvature of the boundary ∂Ω. Since then, there have been
many papers looking for higher energy solutions. More specifically, solutions with
multiple boundary peaks as well as multiple interior peaks have been established,
with each peak concentrating at a different point whose location depends on
the geometry of the domain (see [1], [4]–[8], [10], [13], [14], [19], [20] and the
references therein). In particular, it turns out that if ξ1, . . . , ξk are k different
C1-stable critical points of the boundary mean curvature H then problem (1.2)
has a solution whose k boundary peaks approach ξ1, . . . , ξk as ε goes to zero.

In the papers [2] and [9] the authors first construct solutions exhibiting a clus-
ter, i.e. given k ≥ 1 and ξ0 a strict local minimum of H, there exists a solution
with k boundary peaks concentrating at ξ0 as ε goes to zero. As far as it concerns
the existence of sign-changing solutions, the first result was due to Noussair and
Wei in [15], where it is proved that for ε sufficiently small (1.2) has a least en-
ergy nodal solution with one positive boundary peak and one negative boundary
peak; moreover such peaks approach the global minimum points of the mean
curvature. In the particular case when the set of global minima consists of a sin-
gle point, then the peaks concentrates at the same point giving rise to a cluster.
Successively, in [12] the authors glued the single bump solutions and obtained
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nodal solutions with multiple boundary peaks concentrating at different critical
points of the mean curvature.

The first result providing a multiplicity result for sign-changing peak solu-
tions is due to Wei and Weth [21]: they consider the problem (1.2) in a two-
dimensional domain and prove that, given k ≥ 1 and given ξ0 a local strict
minimum of the mean curvature, there exists a clusteredsolution with k positive
boundary peaks and k negative boundary peaks concentrating at ξ0.

Very recently, in [3] the authors it proved that given a non degenerate max-
imum ξ0 of the mean curvature H of ∂Ω and given two positive integers h, k
with h + k ≤ 6, for ε sufficiently small (1.2) possesses a cluster with h positive
boundary peaks and k negative boundary peaks approaching ξ0.

All the previous results require a sort of non degeneracy of critical points
of the mean curvature of ∂Ω. Theorem 1.1 allows to claim that for a generic
deformation I +ψ of the domain Ω, all the critical points of the mean curvature
of the boundary of the domain (I +ψ)Ω are non degenerate and all the previous
results hold.

The paper is organized as follows. In Section 2 we set the problem and
in Section 3 we prove the main result, using some technical lemmas proved
in Section 4.

2. Setting of the problem

Let us fix a bounded domain Ω in RN of class Ck with N ≥ 2 and k ≥ 3.
Then there exists ρ positive and small enough such that if ψ ∈ Bρ then the map
I+ψ: Ω → (I+ψ)Ω is a diffeomorphism. We set Ωψ := (I+ψ)Ω. For any point
ξ ∈ ∂Ω we have a local system of coordinates. Without loss of generality, we can
assume ξ = 0. We can choose a neighbourhood U of 0 in RN , a ball B(0, R) in
RN−1 centered at 0 with radius R and a map h:B(0, R) → U ∩ ∂Ω defined by

(2.1) h(y) := (y, f(y)), y := (y1, . . . , yN−1),

where f :B(0, R) → R is a Ck-map with f(0) = 0, ∇f(0) = 0 and

f(y) =
1
2

N−1∑
i=1

λiy
2
i +O(|y|3).

Here λi are the principal curvatures at ξ and the mean curvature of the boundary
∂Ω at ξ is

H(ξ) :=
1

N − 1

N−1∑
i=1

λi.

If ξ ∈ ∂Ω and ψ ∈ Bρ we consider the mean curvature H(ξ, ψ) := Hψ(ξ) of the
boundary ∂Ωψ of the domain Ωψ := (I + ψ)Ω at the point (I + ψ)(ξ). In par-
ticular, using the local system of coordinates given by (2.1), we set H̃(y, ψ) =
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H(h(y), ψ). H̃ is nothing but the expression in local coordinates of the mean
curvature of the boundary ∂Ωψ at the point (I + ψ)(y, f(y)) ∈ ∂Ωψ. Now we
introduce the C1-map

(2.2) F :B(0, R)×Bρ ⊂ RN−1 × Ek → RN−1, F (y, ψ) := ∇yH̃(y, ψ).

We shall apply the following abstract transversality theorem to the map F

(see [16], [17], [18]).

Theorem 2.1. Let X, Y , Z be three Banach spaces and U ⊂ X, V ⊂ Y

open subsets. Let F :U × V → Z be a Cα−map with α ≥ 1. Assume that

(a) for any y ∈ V , F ( · , y):U → Z is a Fredholm map of index l with l ≤ α;
(b) 0 is a regular value of F , i.e. the operator F ′(x0, y0):X × Y → Z is

onto at any point (x0, y0) such that F (x0, y0) = 0;
(c) the map π ◦ i:F−1(0) → Y is proper, where i:F−1(0) → Y is the cano-

nical embedding and π:X × Y → Y is the projection.

Then the set

Θ := {y ∈ V : 0 is a regular value of F ( · , y)}

is a dense open subset of V . If F satisfies (a), (b) and

(d) the map π ◦ i:F−1(0) → Y is σ−proper, i.e. F−1(0) =
+∞⋃
s=1

Cs where Cs

is a closed set and the restriction π ◦ i|Cs is proper for any s

then the set Θ is a residual subset of V , i.e. V \Θ is a countable union of close
subsets without interior points.

3. Proof of the main result

We are going to apply the transversality Theorem 2.1 to the map F defined
by (2.2). In this case we have X = Z = RN−1, Y = Ek, U = B(0, R) ⊂ RN−1

and V = Bρ ⊂ Ek, where R and ρ are small enough. Since X is a finite
dimensional space, it is easy to check that for any ψ ∈ Bρ, the map y → F (y, ψ)
is a Fredholm map of index 0 and then assumption (a) holds.

Assumption (b) is verified in Lemma 4.7. As far as it concerns assump-
tion (d), we have that

F−1(0) =
+∞⋃
s=1

Cs, where Cs := {B(0, R− 1/s)×Bρ−1/s} ∩ F−1(0).

By the compactness of B(0, R− 1/s) ⊂ RN−1 it follows that the restriction
π ◦ i|Cs is proper, namely if the sequence (ψn) ⊂ Bρ−1/s converges to ψ0 and
the sequence (xn) ⊂ B(0, R− 1/s) is such that F (xn, ψn) = 0 then there exists
a subsequence of (xn) which converges to x0 ∈ B(0, R− 1/s) and F (x0, ψ0) = 0.
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Finally, we can apply the transversality Theorem 2.1 and we get that given
a point ξ0 ∈ ∂Ω the set

Θ(ξ0) := {ψ ∈ Bρ : F ′
y(y, ψ): RN−1 → RN−1 is invertible

at any point (y, ψ) ∈ B(0, R)×Bρ such that F (y, ψ) = 0}
= {ψ ∈ Bρ : the critical point in a suitable neighbourhood

of the point (I + ψ)(ξ0) ∈ ∂Ωψ of the mean curvature

of the boundary ∂Ωψ are nondegenerate}

is a residual subset of Bρ.
At this point it holds that for any ξ0 ∈ ∂Ω there exist a positive number

ρ = ρ(ξ0) and a neighbourhood I(ξ0, R) ⊂ ∂Ω of the point ξ0 with R = R(ξ0)
such that the set

(3.1) Θ(ξ0) := {ψ ∈ Bρ : any critical point ξ ∈ (I + ψ)(I(ξ0, R))

of the mean curvature of the boundary ∂Ωψ is nondegenerate}

is a residual subset of Bρ.
Since ∂Ω is compact there exist a finite number ν of points ξi ∈ ∂Ω and

positive numbers Ri, ρi such that
ν⋃
i=1

I(ξi, Ri/2) = ∂Ω and the set Θ(ξi) defined

in (3.1) are residual subsets of Bρ. It is clear that the set A :=
ν⋂
i=1

Θ(ξi) is

a residual subset of Bρ and

A = {ψ ∈ Bρ : any critical point of the mean curvature

of the boundary ∂Ωψ is nondegenerate}.

Here ρ is small enough. By the following lemma we also deduce that A is open.
That concludes the proof of Theorem 1.1.

In the following lemma we prove that the set A is open.

Lemma 3.1. If the domain Ω of class Ck with k ≥ 3 is such that all the
critical points of the mean curvature of the boundary ∂Ω are non degenerate,
then all the critical points of the mean curvature of the boundary (I + ψ)Ω are
non degenerate for ‖ψ‖k small enough.

Proof. By the assumption, the critical points of the mean curvature of ∂Ω
are in a finite number. Let ξ1, . . . , ξν be the critical points. Fix a critical point ξ1
and use a local system of coordinates as in (2.1), so that we can consider the func-
tion H̃(y, ψ) and the C1-map F (y, ψ) = ∇yH̃(y, ψ) with (y, ψ) ∈ B(0, R)×Bρ ⊂
RN−1×Ek. Since F (0, 0) = 0 and F ′

y(0, 0): RN−1 → RN−1 is an isomorphism, by
the implicit function theorem, there exist y(ψ) and ρ1 such that F (y(ψ), ψ) = 0
if ‖ψ‖k ≤ ρ1 and y(0) = 0. Therefore, the mean curvature of ∂Ωψ has a unique
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non degenerate critical point ηψ ∈ ∂Ωψ if ‖ψ‖k ≤ ρ1 with η0 = ξ1. The same
argument holds for all the other critical points of the mean curvature of ∂Ω.

Now, let us prove that A is open. By contradiction, we assume that there exist
sequences (ψn) ⊂ Bρ convergent to 0 and (ξn) ⊂ ∂Ω convergent to ξ0 ∈ ∂Ω such
that the points (I+ψn)(ξn) are degenerate critical points of the mean curvature of
the boundary ∂Ωψn . Using the local system of coordinates (2.1) at the point ξ0 ∈
∂Ω we have F (yn, ψn) = ∇yH̃(yn, ψn) = 0. Then we get ∇yH̃(0, 0) = 0, namely
ξ0 is a critical point of the mean curvature of ∂Ω. Therefore ξ0 ∈ {ξ1, . . . , ξν}.
Using the above argument, if n is large enough (I +ψn)(ξn) is a non degenerate
critical point of the mean curvature of the boundary ∂Ωψn and a contradiction
arises. �

4. Some technical results

Given a point ξ0 ∈ ∂Ω and chosen the local system of coordinates defined
in (2.1), we are going to calculate H̃(y, ψ) when ψ ∈ Bρ ⊂ Ek.

For the point (I+ψ)(ξ0) ∈ ∂Ωψ we have a local system of coordinates defined
by

(4.1) hψ(y) := (y1 + ψ̃1(y), . . . , yN−1 + ψ̃N−1(y), f(y) + ψ̃N (y)) ∈ ∂Ωψ

where y ∈ B(0, R) ⊂ RN−1 and ψ̃:B(0, R) → RN is defined by

(4.2) ψ̃(y) := ψ(y, f(y)).

Using this coordinate system, the components of the Riemannian metric gψij(y)
on the manifold ∂Ωψ can be expressed as follows

gψij(y) = ∂yif∂yjf + ∂yi ψ̃j + ∂yj ψ̃i(4.3)

+ ∂yif∂yj ψ̃N + ∂yjf∂yi ψ̃N +
N∑
k=1

∂yi ψ̃k∂yj ψ̃k,

gψii(y) = 1 + (∂yif)2 + 2∂yi ψ̃i + 2∂yif∂yi ψ̃N +
N∑
k=1

(∂yi ψ̃k)
2,(4.4)

|gψ(y)| =det gψ(y) =
∑

σpermutation
of {1,...,N−1}

(−1)σgψ1,σ1
(y) . . . gN−1,σN−1(y).(4.5)

The tangent space of the manifold ∂Ωψ at the point y+ ψ̃(y) is the vector space
generated by the vectors

(4.6) τψi (y) := τi(y) + ∂yi ψ̃(y), τi := (0, . . . , 1︸︷︷︸
i-th

, . . . , 0, ∂yif),

for i = 1, . . . , N − 1.
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The normal vector νψ(y) ∈ RN to the boundary ∂Ωψ is given by

(4.7) νψ(y) =
(
∂y1f, . . . , ∂yN−1f,−1

) 1√
1 + ‖∇f‖2

+ σ(y, ψ(y)),

where σ(y, ψ(y)) → 0 as ψ → 0 uniformly with respect to y. We set for any
i, j = 1, . . . , N − 1

γψij(y) = (∂2
yiyj ψ̃1(y), . . . , ∂2

yiyj ψ̃N−1(y), ∂2
yiyjf(y) + ∂2

yiyj ψ̃N (y)),(4.8)

Γψij(y) = (γψij(y), ν
ψ(y))RN .(4.9)

Finally, we have

H̃(y, ψ) =
1

N − 1

N−1∑
i=1

λi(y, ψ),

where λ1, . . . , λN−1 are the solutions of the equation

(4.10) det(Γψij(y)− λgψij(y)) = 0, i, j = 1, . . . , N − 1.

We remark that the ν0(0) = (0, . . . , 0,−1), γ0
ij(0) = (0, . . . , 0, ∂2

yiyjf(0)), Γ0
ij(0)

= −∂2
yiyjf(0) and ∂2

yiyif(0) = λi, ∂2
yiyjf(0) = 0 if i 6= j.

Let Bsij(y, ψ) be the matrix obtained by replacing the s-row of the ma-
trix gψij(y) with (Γψs 1(y), . . . ,Γ

ψ
s N−1(y)). Then the determinant of the matrix

Bsij(y, ψ) is

|Bs(y, ψ)|

=
∑
σ

(−1)σgψ1,σ1
(y) . . . gs−1,σs−1(y)Γ

ψ
s,σs(y)gs+1,σs+1(y) . . . gN−1,σN−1(y).

Then

(4.11)
N−1∑
i=1

λi(y, ψ) =
1

|gψ(y)|

N−1∑
s=1

|Bs(y, ψ)| = (N − 1)H̃(y, ψ).

Moreover, we have for any k = 1, . . . , N − 1

(4.12) (N − 1)DψH̃
′
yk

(y0, ψ0)[ϕ]

= |gψ0(y0)|−4

{[
Dψ|gψ0(y0)|[ϕ]

N−1∑
s=1

∂yk |Bs(y0, ψ0)|

+ |gψ0(y0)|
N−1∑
s=1

Dψ∂yk |Bs(y0, ψ0)|[ϕ]

−Dψ∂yk |gψ0(y0)|[ϕ]
N−1∑
s=1

|Bs(y0, ψ0)|

− ∂yk |gψ0(y0)|
N−1∑
s=1

Dψ|Bs(y0, ψ0)|[ϕ]
]
|gψ0(y0)|2
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− 2|gψ0(y0)|
[
|gψ0(y0)|

N−1∑
s=1

∂yk |Bs(y0, ψ0)|

− ∂yk |gψ0(y0)|
N−1∑
s=1

|Bs(y0, ψ0)|
]
Dψ|gψ0(y0)|[ϕ]

}
.

We just remark that if (y0, ψ0) is such that ∇yH(y0, ψ0) = 0 then the last term
in (4.12) is zero.

Given a point y0 ∈ B(0, R) we define a subset Ay0 of the Banach space
Ek given by the functions ϕ whose first and second derivatives at the point
(y0, f(y0)) are zero, namely

(4.13) Ay0 :=
{
ϕ ∈ Ek :

∂αϕi
∂α1
x1 . . . ∂xN

αN
(y0, f(y0)) = 0,

i = 1, . . . , N, 1 ≤ |α| ≤ 2
}
.

We compute the derivatives of |gψ(y)| with respect to ψ and y.

Lemma 4.1. For any i, j, k = 1, . . . , N − 1 we have

Dψg
ψ
ij(y0)[ϕ] = ∂yi ϕ̃j(y0) + ∂yj ϕ̃i(y0)

+ ∂yif(y0)∂yj ϕ̃N (y0) + ∂yjf(y0)∂yi ϕ̃N (y0)

+
N∑
s=1

(
∂yi ϕ̃s(y0)∂yj ψ̃s(y0) + ∂yi ψ̃s(y0)∂yj ϕ̃s(y0)

)
Dψ∂ykg

ψ
ij(y0)[ϕ] = ∂2

ykyi
ϕ̃j(y0) + ∂ykyj ϕ̃i(y0)

+ ∂2
ykyi

f(y0)∂yj ϕ̃N (y0) + ∂yif(y0)∂2
ykyj

ϕ̃N (y0)

+ ∂2
ykyj

f(y0)∂yi ϕ̃N (y0) + ∂yjf(y0)∂2
ykyi

ϕ̃N (y0)

+
N∑
s=1

(∂2
ykyi

ϕ̃s(y0)∂yj ψ̃s(y0) + ∂yi ϕ̃s(y0)∂
2
ykyj

ψ̃s(y0)

+ ∂2
ykyi

ψ̃s(y0)∂yj ϕ̃s(y0) + ∂yi ψ̃s(y0)∂
2
ykyj

ϕ̃s(y0)).

Here ϕ̃ := ϕ(y, f(y)).

Lemma 4.2. Given y0 ∈ B(0, R) for any ϕ ∈ Ay0 we get

Dψ|gψ0(y0)|[ϕ] = 0 and Dψ∂yk |gψ0(y0)|[ϕ] = 0.

Proof. By (4.13) and Lemma 4.1 it follows immediately that for any i, j, k
we have

Dψg
ψ0
ij (y0)[ϕ] = 0 and Dψ∂ykg

ψ0
ij (y0)[ϕ] = 0.

The claim follows. �
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Lemma 4.3. For any ϕ ∈ Ay0 we have:

(a) Dψγ
ψ
ij(y0)[ϕ] = (∂2

yiyj ϕ̃1(y0), . . . , ∂2
yiyj ϕ̃N (y0)) = 0,

(b) Dψν
ψ(y0)[ϕ] = 0, Dψ∂ykν

ψ(y0)[ϕ] = 0, k = 1, . . . , N − 1,
(c) DψΓψij(y0) = (Dψγ

ψ
ij(y0)[ϕ], νψ(y0)) + (γψij(y0), Dψν

ψ(y0[ϕ])) = 0,
(d) Dψ|Bs(y0, ψ0)|[ϕ] = 0, s = 1, . . . , N − 1.

Proof. (b) follows by the fact that νψ(y) can be expressed as a suitable
C∞−function of the first derivatives ∂yi ψ̃j . (d) follows by the definition of
|Bs(y, ψ)|, Lemma 4.2 and (c). �

Lemma 4.4. For any ϕ ∈ Ay0 we have

Dψ∂ykΓ
ψ0
ij (y0)[ϕ] = (∂3

ykyiyj
ϕ̃(y0), νψ0(y0)),

where ∂3
ykyiyj

ϕ̃(y0) := (∂3
ykyiyj

ϕ̃1(y0), . . . , ∂3
ykyiyj

ϕ̃N (y0)).

Proof. By (a) and (b) of Lemma 4.3 we get

Dψ∂ykΓ
ψ0
ij (y0)[ϕ] = (Dψ∂ykγ

ψ0
ij (y0)[ϕ], νψ0(y0)) + (Dψγ

ψ0
ij (y0)[ϕ], ∂ykν

ψ0(y0))

+ (∂ykγ
ψ0
ij , Dψν

ψ0(y0)[ϕ]) + (γψ0
ij (y0), Dψ∂ykν

ψ0(y0)[ϕ])

= (Dψ∂ykγ
ψ0
ij (y0)[ϕ], νψ0(y0)) = (∂3

ykyiyj
ϕ̃(y0), νψ0(y0)). �

Remark 4.5. For any ϕ ∈ Ay0 we have that Dψ∂yk |Bs(y0, ψ0)|[ϕ] is the
determinant of the matrix obtained by the matrix gψ0

ij (y0) replacing the s-th row
with

(Dψ∂ykΓ
ψ0
s,1(y0)[ϕ], . . . , Dψ∂ykΓ

ψ0
s,N−1(y0)[ϕ])

and in virtue of Lemma 4.4 it coincides with the determinant of the matrix
obtained by the matrix gψ0

ij (y0) replacing the s-th row with

((∂3
ykysy1

ϕ̃(y0), νψ0(y0)), . . . , (∂3
ykysyN−1

ϕ̃(y0), νψ0(y0))).

In the following we choose (y0, ψ0) ∈ B(0, R) × Bρ such that F (y0, ψ0) =
∇yH(y0, ψ0) = 0, namely for any k = 1, . . . , N − 1

0 = ∂ykH(y0, ψ0)(4.14)

=
|gψ0(y0)|

N−1∑
s=1

∂yk |Bs(y0, ψ0)| − ∂yk |gψ0(y0)|
N−1∑
s=1

|Bs(y0, ψ0)|

(N − 1)|gψ0(y0)|2
.

By Lemmas 4.2, 4.3 and (4.14) for any ϕ ∈ Ay0 and for any k = 1, . . . , N − 1
we get

(4.15) ωk(ϕ) := Dψ∂ykH(y0, ψ0)[ϕ] =

N−1∑
s=1

Dψ∂yk |Bs(y0, ψ0)|[ϕ]

(N − 1)|gψ0(y0)|2
yk.
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Our aim is to verify that the N − 1 functionals ω1, . . . , ωN−1 are linearly
independent.

Given α ∈ {1, . . . , N − 1} and y0 ∈ B(0, R) ⊂ RN−1, let Aαy0 be the subset
of the Banach space Ek defined by

Aαy0 :={ϕ ∈ Ek : the third derivatives of the functions

ϕ̃i(y) = ϕi(y, f(y)), i = 1, . . . , N

evaluated at the point y0 vanish except for ∂3
y3
α
ϕ̃N (y0) 6= 0}.

Lemma 4.6. For any ϕ ∈ Aαy0 we have

(a) ωt(ϕ) = 0 if t 6= α,

(b) ωα(ϕ) = ∂3
y3
α
ϕ̃N (y0)

ν
ψ0
N (y0)M(y0,ψ0)

(N−1)|gψ0 (y0)|2
where M is the determinant of the

matrix obtained by the matrix gψ0
ij (y0) carrying out the α-th row and the

α-th column and νψ0(y0) is the N−component of the vector νψ0(y0).

Proof. By Lemma 4.4 and Remark 4.5 we have for any ϕ ∈ Aαy0 and for
any s = 1, . . . , N − 1

(4.16)
Dψ∂yα |Bs(y0, ψ0)|[ϕ] = 0 if s 6= α,

Dψ∂yt |Bs(y0, ψ0)|[ϕ] = 0 if t 6= α.

By (4.15) and (4.16) we get ωt(ϕ) = 0 for any ϕ ∈ Aαy0 and t 6= α. By (4.15),
Lemma 4.4 and Remark 4.5 we deduce

ωα(ϕ)[(N − 1)|gψ0(y0)|2] = Dψ∂yα |Bα(y0, ψ0)|[ϕ]

= is the determinant of the matrix obtained by the matrix gψ0
ij (y0)

replacing out the s-th row with(
0, . . . , (∂3

y3
α
ϕ̃(y0), νψ0(y0))︸ ︷︷ ︸

α-th

, . . . , 0
)

= ∂3
y3
α
ϕ̃(y0)ν

ψ0
N (y0)M(y0, ψ0). �

Lemma 4.7. The map (y, ϕ) → F ′
ψ(y0, ψ0)[ϕ]+F ′

y(y0, ψ0)y is onto on RN−1

for any (y0, ψ0) ∈ B(0, R)×Bρ such that F (y0, ψ0) = 0 when R and ρ are small
enough.

Proof. We will prove that the map F ′
ψ(y0, ψ0):Ek → RN−1 is onto when

F (y0, ψ0) = 0. More precisely we are going to show that given e1, . . . , eN−1 the
canonical base of RN−1, for any s = 1, . . . , N − 1 there exists ϕ ∈ Ek such that
F ′
ψ(y0, ψ0)[ϕ] = es. We recall that

F ′
ψ(y0, ψ0)[ϕ] = (Dψ∂y1H(y0, ψ0)[ϕ], . . . , Dψ∂yN−1H(y0, ψ0)[ϕ])

= (ω1(ϕ), . . . , ωN−1(ϕ)).
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Given s we choose ϕ ∈ Aαy0 and we have

F ′
ψ(y0, ψ0)[ϕ] = (0, . . . , ωs(ϕ)︸ ︷︷ ︸

s-th

, . . . , 0)

and ωs(ϕ) 6= 0 provided y0 ∈ B(0, R), ψ0 ∈ Bρ with R and ρ small enough. �
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