
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder University Centre
Volume 40, 2012, 337–358

RANDOM TOPOLOGICAL DEGREE
AND RANDOM DIFFERENTIAL INCLUSIONS

Jan Andres — Lech Górniewicz

Dedicated to the memory of Francesco S. DeBlasi

Abstract. We present a random topological degree effectively applica-
ble mainly to periodic problems for random differential inclusions. These

problems can be transformed to the existence problems of random fixed

points or periodic orbits of the associated Poincaré translation operators.
The solvability can be so guaranteed either directly by means of nontrivial

topological invariants (random degree, index of a random direct potential)
or via a randomization scheme using deterministic results which are “peri-

odicity stable” under implemented parameter values.

1. Introduction

The main aim of this paper is to develop a random topological degree applica-
ble in an easy but effective way to problems associated with random differential
equations and inclusions. This will be done via transformation of the given
random problems into the deterministic case. In this way, we will be able to de-
fine random Poincaré’s translation operators along the trajectories of differential
inclusions whose fixed points or periodic orbits determine random periodic solu-
tions. Our approach also allows us, besides other things, to formulate a scheme
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for randomization of many periodicity results obtained for deterministic equa-
tions and inclusions.

Our investigation relies on the fact that random differential equations, inclu-
sions and dynamical systems represent an important tool in the study of non-
deterministic dynamics. For the related standard reference sources, see e.g. [6],
[29], [31], [39], and the references therein. For article references, see e.g. [2], [4],
[11], [14], [20], [26], [28], [34]–[36], [38], [41]. For some practical applications
of random systems, see e.g. the monograph [43].

The solutions of initial and boundary value problems for random differential
inclusions can be either represented or determined by random fixed points or
periodic orbits of the associated random operators. That is also why the random
fixed point theory plays an important role in this field. Its study was initiated
by the Prague probabilistic school, especially by the work of Antońın Špaček [40]
and Otto Hanš [22]. For some further earlier results, see e.g. the survey article [9].
For more recent related references, see e.g. [10], [15], [24]–[26], [33], [36]–[38], [41],
[42], [44], [45].

Our paper is organized as follows. Preliminary results are collected in the
next section. They concern especially two lemmas (2.10 and 2.11) for obtaining
(in a deterministic way) random fixed points and periodic orbits in terms of mea-
surable selections. In Section 3, a random degree is defined for a rather general
class of random multivalued operators. The random analogies of fixed point the-
orems of Borsuk and Schauder are presented there as well. Random differential
inclusions are considered in Section 4. It is shown that random Cauchy (initial
value) problems are solvable under natural assumptions and that the associated
solution operator is a random u-mapping. Random periodic problems are inves-
tigated in Section 5 via random Poincaré translation operators. The nontrivial
index of a random guiding function is proved there to guarantee the existence
of periodic solutions. In Section 6, a randomization scheme is finally formu-
lated for periodic solutions in the sense that many deterministic results which
are “periodicity stable” under implemented parameter values can be randomized
in this way.

2. Some preliminaries

In the entire text, all topological spaces are at least metric. Let us recall that
a space X is an absolute neighbourhood retract (ANR) if, for each space Y and
every closed A ⊂ Y , each continuous mapping f :A→ X is extendable over some
neighbourhood of A. A space X is an absolute retract (AR) if, for each space
Y and every closed A ⊂ Y , each continuous mapping f :A → X is extendable
over Y . A space X is called an Rδ-set if there exists a decreasing sequence {Xn}
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of compact absolute retracts Xn such that X =
⋂
{Xn | n = 1, 2, . . . }. For more

details, see e.g. [3], [19].
Furthermore, all multivalued maps ϕ:X ( Y have nonempty values, i.e.

ϕ:X → 2Y \{∅}. We say that a single valued map v:X → Y is a selection of the
multivalued map ϕ:X ( Y (written v ⊂ ϕ) if v(x) ∈ ϕ(x), for every x ∈ X. By
a fixed point of ϕ, we mean x ∈ X ∩ Y 6= ∅ such that x ∈ ϕ(x). The set of fixed
points of ϕ will be denoted by Fix(ϕ) := {x ∈ X | x ∈ ϕ(x)}.
By a k-periodic point of ϕ:X → X we could obviously mean a fixed point

of the k-th iterate, i.e. x ∈ ϕk(x), where x 6∈ ϕj(x), for j < k. Rather than
by periodic points of ϕ, we shall however deal with periodic orbits of ϕ. By
a k-orbit of ϕ:X ( Y , we shall understand a sequence {xi}k−1i=0 , where xi ∈ X,
i = 0, . . . , k − 1, such that
(i) xi+1 ∈ ϕ(xi), i = 0, . . . , k − 2, and x0 ∈ ϕ(xk−1),
(ii) the sequence {xi}k−1i=0 is not formed by going p-times around a shorter
subsequence of m consecutive elements, where mp = k.

If still

(iii) xi 6= xj , i 6= j; i, j = 0, . . . , k − 1, then we speak about a primary
k-orbit.

By ameasurable space, we shall mean as usually the pair (Ω,Σ), where a set Ω
is equipped with a σ-algebra Σ of subsets. We shall use B(X) to denote the Borel
σ-algebra on X. The symbol Σ⊗B(X) denotes the smallest σ-algebra on Ω×X
which contains all the sets A×B, where A ∈ Σ and B ∈ B(X).
Denoting, for ϕ:X ( Y , by

ϕ−1(B) := {x ∈ X | ϕ(x) ⊂ B} and ϕ−1+ (B) := {x ∈ X | ϕ(x) ∩B 6= ∅}

the small and large counter-images of B ⊂ Y , we can define (weakly) measurable
multivalued maps as follows.

Definition 2.1. Let (Ω,Σ) be a measurable space and Y be a separable
metric space. A map ϕ: Ω ( Y with closed values is called measurable if
ϕ−1(B) ∈ Σ, for each open B ⊂ Y , or equivalently, if ϕ−1+ (B) ∈ Σ, for each
closed B ⊂ Y . It is called weakly measurable if ϕ−1+ (B) ∈ Σ, for each open
B ⊂ Y , or equivalently, if ϕ−1(B) ∈ Σ, for each closed B ⊂ Y .

It is well known that, for compact-valued maps ϕ: Ω( Y , the notions of mea-
surability and weak measurability coincide. Moreover, if ϕ and ψ are measurable,
then so is their Cartesian product ϕ × ψ. For more properties and details, see
[3, Proposition 3.45 in Chapter I] and [12].
As an important tool in our investigations, we shall employ a version of the

Aumann selection theorem in [24, Theorem 2.2.14] which we state here in the
form of lemma.
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Lemma 2.2. If ϕ: Ω ( Y , where Ω is a complete measure space and Y is
a complete separable metric space, is a multivalued map whose graph

Γϕ := {(ω, y) ∈ Ω× Y | y ∈ ϕ(ω)}

is measurable, i.e. Γϕ ∈ Σ⊗B(Y ), then ϕ possesses a measurable (single-valued)
selection f ⊂ ϕ.

Remark 2.3. If ϕ: Ω ( Y is measurable with closed values like in the
Kuratowski–Ryll–Nardzewski theorem (see e.g. [3], [12], [19], [24]), then its graph
Γϕ is measurable (cf. e.g. [24, Proposition 1.7]), and subsequently ϕ possesses
a measurable selection f ⊂ ϕ.

We shall also consider more regular semicontinuous maps.

Definition 2.4. A map ϕ:X ( Y with closed values is said to be upper
semicontinuous (u.s.c.) if, for every open B ⊂ Y , the set ϕ−1(B) is open in X,
or equivalently, if ϕ−1+ (B) is closed in X. It is said to be lower semicontinuous
(l.s.c.) if, for every open B ⊂ Y , the set ϕ−1+ (B) is open in X, or equivalently, if
ϕ−1(B) is closed in X. If it is both u.s.c. and l.s.c., then it is called continuous.

Of course, if ϕ is u.s.c. or l.s.c., then it is measurable. If a single-valued
f :X → Y is u.s.c. or l.s.c., then it is continuous. If a compact-valued ϕ:X ( Y

is u.s.c. and A ⊂ X is a compact subset of X, then ϕ(A) is compact. Moreover,
for compact u.s.c. maps ϕ, Fix(ϕ) is compact. For more properties and details,
see e.g. [3, Chapter I.3].
The notions of a random operator, a random fixed point and a random orbit

are essential in this paper. In the sequel, Ω will be always a complete measure
space and X be always a complete separable metric space.

Definition 2.5. Let A ⊂ X be a closed subset and ϕ: Ω × A ( X be
a multivalued map with closed values. We say that ϕ is a random operator if it
is product-measurable (measurable in the whole), i.e. measurable w.r.t. minimal
σ-algebra Σ ⊗ B(X), generated by Σ × B(X), where B(X) denotes the Borel
sets of X. If ϕ(ω, · ):A ( X is still u.s.c. (or l.s.c.), then ϕ is called a random
u-operator (or a random l-operator).

Remark 2.6. For the definition of a random operator, it is usually still
required ϕ to be compact-valued (cf. [19]), and ϕ(ω, · ):A ( X to be u.s.c.
(cf. [19, Chapter III.31]) or h-continuous (cf. [24, Chapter 5.6]), for almost all
ω ∈ Ω. Since these restrictions are not necessary for us, we omitted them in
Definition 2.5.

Definition 2.7. Let A ⊂ X be a closed subset and ϕ: Ω × A ( X be
a random operator. We say that ϕ has a random fixed point ξ if there exists
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a measurable mapping ξ: Ω→ A such that:

ξ(ω) ∈ ϕ(ω, ξ(ω)), for every ω ∈ Ω.

We let Fixra(ϕ) = {ξ: Ω→ A | ξ is a random fixed point for ϕ}.

Given k, m ∈ N, we write m|k to mean that m is a divisor of k. The set
of all divisors of k will be denoted by d(k).

Definition 2.8. Let A ⊂ X be a closed subset and ϕ: Ω × A ( X be
a random operator. A sequence of measurable maps {ξi}k−1i=0 , where ξi: Ω → A,
i = 0, . . . , k − 1, is called a random k-orbit, associated to ϕ, if there exists
a partition of Ω such that (µ denotes a measure):

(2.1)


Ω = Ω0 ∪

⋃
m∈d(k)

Ωm, where µ(Ω0) = 0, all Ωm’s are measurable,

there are i0, i1, . . . , il such that µ(Ωij ) > 0, for all ij ’s,

and the least common multiple of ij ’s is k,

and {ξi(ω)}k−1i=0 is, for each fixed ω ∈ Ωij , a (deterministic) ij-orbit in the sense
of Definition 2.7.

Remark 2.9. Observe that for random k-orbits in Definition 2.8, the fol-
lowing two conditions are obviously satisfied:

(a) ξi+1(ω) ∈ ϕ(ω, ξi(ω)), i = 0, . . . , k − 2, and ξ0(ω) ∈ ϕ(ω, ξk−1(ω)), for
almost all ω ∈ Ω,

(b) the sequence {ξi}k−1i=0 is not formed by going p-times around a shorter
subsequence of m consecutive elements, where mp = k.

One can readily check that the notion of a random 1-orbit coincides with the
one of a random fixed point.
The following lemma is crucial in our considerations.

Lemma 2.10. Let X be a separable space, A a closed subset of X and ϕ: Ω×
X ( X a measurable map with nonempty closed values. We let ϕω:A ( X,
ϕω(x) := ϕ(ω, x). Assume further that, for every ω ∈ Ω, the set Fixϕω := {x ∈
X | x ∈ ϕω(x)} of fixed points of ϕω is nonempty and closed. Then the map
Γ:Ω( X, given by Γ(ω) = Fixϕω, has a measurable selection.

Proof. Firstly, we define the function f : Ω×A→ [0,∞) by putting

f(ω, x) := dist(x, ϕ(ω, x)) = inf{d(x, y) | y ∈ ϕ(ω, x)}.

Since ϕ is measurable, so is f (cf. e.g. [19, Proposition (19.16)], [24, Proposi-
tion 1.4]).
Now, it is obvious that the graph

ΓF = {(ω, x) ∈ Ω×X | x ∈ F (ω)}



342 Random Topological Degree and Random Differential Inclusions

of F is equal to

f−1(0) = {(ω, x) ∈ Ω×A | f(ω, x) = 0}.

Since f is measurable, so is the set ΓF = f−1(0), and consequently F : Ω (

X is measurable on the graph. By virtue of Aumann’s selection theorem (see
Lemma 2.2), there exists a measurable selection v: Ω→ X of F which completes
the proof. �

Note that if ϕ is a random l-operator, then it is sufficient to assume in Lem-
ma 2.10 only that ϕ( · , x) is measurable, for every x ∈ X.
In order to formulate the generalization of Lemma 2.10 for random orbits, it

will be useful to make a partition of Ω as in Definition 2.8. The way of partition
depends on a concrete situation considered in Lemma 2.11 below.
Defining the multivalued maps Ok: Ω( Ak, k ∈ N, and Ok/mm �Ωm : Ωm ( Ak

by
Ok(ω) := {{xi}k−1i=0 ∈ A

k | {xi}k−1i=0 is a k-orbit of ϕ(ω, · )},
and

Ok/mm �Ωm (ω) :=
{
{xi}k−1i=0 ∈ A

k

∣∣∣∣ {xi}m−1i=0 is an m-orbit of ϕ(ω, · )

and xi+tm = xi, for t = 1, . . . ,
k

m

}
i.e. Ok/mm (ω) �Ωm , ω ∈ Ωm, is a set of m-orbits repeated (k/m)-times, we are
ready to give the following crucial statement, whose “if-part” was proved in [1]
(the “only if-part” follows directly from the definition of a random k-orbit).

Lemma 2.11. Assume that ϕ: Ω × A ( X is a random operator. Then ϕ
admits a random k-orbit, k ∈ N, if and only if Om(ω) is, under (2.1), nonempty,
for all ω ∈ Ωm, where m|k.

In particular, we can still give the following corollary (cf. [1, Corollary 1]).

Corollary 2.12. If the set Ok(ω) of orbits of ϕ(ω, · ) is nonempty, for
almost every ω ∈ Ω, then ϕ admits a random k-orbit.

Remark 2.13. Observe that, for k = 1, Corollary 2.12 generalizes Lem-
ma 2.10 in the sense that the set Fixϕω need not be closed.

3. Random degree

In this section, a random topological degree will be defined for a suitable
class of random operators.
Let Rn, n ≥ 1, be as usually an n-dimensional real Euclidean space, with

the inner product 〈 · , · 〉 and the induced norm ‖ · ‖. A closed (resp. open) ball
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in Rn with center x and radius r > 0 is denoted by Bn(x, r) (resp. Bn0 (x, r)).
Furthermore, put

Bn(r) = Bn(0, r), Bn0 (r) = B
n
0 (0, r),

Sn−1(r) = Bn(r) \Bn0 (r), Pn = Rn \ {0};

Z stands for the set of all integers.
For any X ∈ ANR, we let

J ra(Ω×Bn(r), X) := {F : Ω×Bn(r)( X |
F is a random u-operator with Rδ-values}.

For any X ∈ ANR and any continuous function f :X → Rn, we put

J raf (Ω×Bn(r),Rn) := {ϕ: Ω×Bn(r)( Rn |
ϕ = f ◦ F, for some F ∈ J ra(Ω×Bn(r), X), and ϕ(Ω× Sn−1(r)) ⊂ Pn}.

Finally, we define

CJ ra(Ω×Bn(r),Rn) :=
⋃
{J raf (Ω×Bn(r),Rn |

f :X → Rn is continuous and X ∈ ANR}.

The aim of this section is to introduce the notion of a random topological degree
for the class CJ ra(Ω×Bn(r),Rn). Before doing it, we need an appropriate notion
of a homotopy in CJ ra(Ω×Bn(r),Rn).

Definition 3.1. Let ϕ1, ϕ2 ∈ CJ ra(Ω×Bn(r),Rn) be two maps of the form:

ϕ1 = f1 ◦ F1, Ω×Bn(r)
F1
( X

f1−→ Rn,

ϕ2 = f2 ◦ F2, Ω×Bn(r)
F2
( X

f2−→ Rn.

We say that ϕ1 and ϕ2 are homotopic in CJ ra(Ω × Bn(r),Rn) if there exists
a random u-operator with Rδ-values χ: Ω×Bn(r)× [0, 1]( X and a continuous
homotopy h:X × [0, 1]→ Rn such that:

(a) χ(ω, x, 0) = F1(ω, x), for every ω ∈ Ω and x ∈ Bn(r),
(b) χ(ω, x, 1) = F2(ω, x), for every ω ∈ Ω and x ∈ Bn(r),
(c) h(x, 0) = f1(x), h(x, 1) = f2(x), for every x ∈ Bn(r),
(d) for every (ω, u, t) ∈ Ω× Sn−1(r)× [0, 1] and x ∈ χ(ω, u, t), we have

h(x, t) 6= 0.

The mapping H: Ω × Bn(r) × [0, 1]( Rn) given by H(ω, x, t) = h(χ(ω, x, t), t)
is called a homotopy in CJ ra(Ω×Bn(r),Rn) between ϕ1 and ϕ2.

Now, observe that if ϕ ∈ CJ ra(Ω × Bn(r),Rn), then ϕω = ϕ(ω, · ) ∈
CJ ra({ω} ×Bn(r),Rn), for every ω ∈ Ω, and so the topological degree Deg(ϕω)
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of ϕω is well defined (see e.g. [3], [8], [13], [18]). Therefore, we are allowed to
define:

Definition 3.2. We define a multivalued map D:CJ ra(Ω×Bn(r),Rn)( Z
by putting

D(ϕ) := {Deg(ϕω) | ω ∈ Ω}.
The map D is called the random topological degree of ϕ on CJ ra(Ω×Bn(r),Rn).

In what follows, we say that the random topological degree D(ϕ) of ϕ is
different from zero (written D(ϕ) 6= 0) if Deg(ϕω) 6= 0, for every ω ∈ Ω.
Below, we collect the most important properties of the random topological

degree.

Theorem 3.3. The multivalued map D:CJ ra(Ω × Bn(r),Rn)( Z defined
in (3.2) has the following properties:

(a) (Existence) If D(ϕ) 6= 0, then there exists a measurable function ξ: Ω→
Bn(r) such that 0 ∈ ϕ(ω, ξ(ω)), for every ω ∈ Ω.

(b) (Excision) If ϕ ∈ CJ ra(Ω × Bn(r),Rn) and {(ω, x) ∈ Ω × Bn(r) | 0 ∈
ϕ(ω, x)} ⊂ Ω × Bn0 (r̃), for some 0 < r̃ < r, then the restriction ϕ̃ of ϕ
to Ω×Bn(r̃) is in CJ ra(Ω×Bn(r̃),Rn) and D(ϕ) = D(ϕ̃).

(c) (Factorization) Let ϕ1, ϕ2 ∈ CJ ra(Ω × Bn(r),Rn) be two maps of the
form:

ϕ1 = f1 ◦ F1, Ω×Bn(r)
F1
( X

f1−→ Rn,

ϕ2 = f2 ◦ F2, Ω×Bn(r)
F2
( Y

f2−→ Rn,

where X,Y ∈ ANR. If there exists a continuous map h:X → Y such
that the diagram

X

h

��

f1

  A
AA

AA
AA

A

Ω×Bn(r)

F2
◦J

JJJJJJJJJ

F1

◦tttttttttt
Rn

Y

f2

>>}}}}}}}}

is commutative, i.e. F2 = h ◦ F1 and f1 = f2 ◦ h, then D(ϕ1) = D(ϕ2).
(d) (Homotopy) If ϕ1 and ϕ2 are homotopic in CJ ra(Ω×Bn(r),Rn), then

D(ϕ1) = D(ϕ2).

Proof. Note that the properties (b)–(d) immediately follow from the re-
spective properties of the function Deg on CJ ra({ω} × Bn(r),Rn), i.e., for
ϕω ∈ CJ ra({ω} ×Bn(r),Rn) and each ω ∈ Ω.
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For the proof of (a), observe that for every ϕ ∈ CJ ra(Ω×Bn(r),Rn), we can
associate the random vector field ϕ̂: Ω×Bn(r)→ Rn defined as follows:

ϕ̂(ω, x) := x− ϕ(ω, x), for every (ω, x) ∈ Ω×Bn(r).

If we assume that D(ϕ) 6= 0 then, for every ω ∈ Ω, in view of the existence prop-
erty for the deterministic topological degree (see e.g. [3, Proposition (8.9.1)]), we
get that Fix(ϕ̂ω) is a nonempty and compact subset of Bn(r).
By applying Lemma 2.10, we get that ξ ∈ Fixra(ϕ̂) which satisfies the fol-

lowing condition:

0 ∈ ϕ(ω, ξ(ω)), for every ω ∈ Ω,
and the proof is completed. �

It is well known that, from the topological degree theory, one can deduce
many topological results like fixed point theorems, theorem on antipodes, theo-
rem on invariance domains, etc.
The same is possible to deduce, under suitable assumptions, for the random

topological degree. Nevertheless, we restrict our considerations to the formula-
tion of the random version of the theorem on antipodes.

Theorem 3.4 (Random Theorem on Antipodes). Let ϕ∈CJ ra(Ω×Bn(r),Rn)
be a random u-operator such that:

(3.4.1) for every x ∈ Sn−1(r) and for every ω ∈ Ω, we have:

Lx ∩ ϕ(ω, x) = ∅ or Lx ∩ ϕ(ω,−x) = ∅,

where Lx := {tx | t ≥ 0}.

Then D(ϕ) 6= 0.

Proof. For every ω ∈ Ω, the map ϕω:Bn(r)→ Rn satisfies the assumptions
of the deterministic Borsuk Antipodal Theorem (see e.g. [19]). Thus, for every
ω ∈ Ω, Deg(ϕω) 6= 0 and our theorem is proved. �

Finally, we shall sketch the random topological degree theory in Banach
spaces. Let E be a separable Banach space. We let:

B(r) = {x ∈ E | ‖x‖ ≤ r},
B0(r) = {x ∈ E | ‖x‖ < r},
S(r) = {x ∈ E | ‖x‖ = r}.

We define CJ ra(Ω × B(r), E) in the same way as CJ ra(Ω × B(r),Rn) but
we have assumed that, for every ω ∈ Ω, the map ϕω = f ◦ Fω : B(r) → E is
compact, i.e. ϕω(B(r)) is a compact subset of E and Fixϕω ⊂ B0(r), for every
ω ∈ Ω.
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As before, with every ϕ ∈ CJ ra(Ω×B(r), E), we associate the random vector
field ϕ̂: Ω×B(r)( E by putting:

ϕ̂(ω, x) = x− ϕ(ω, x).

We let

V ra(Ω×B(r), E) := {ψ : Ω×B(r)( E | ψ = ϕ̂ and ϕ ∈ CJ ra(Ω×B(r), E)}.

Then we define the map D:V ra(Ω×B(r), E)( Z by putting:

(3.1) D(ψ) = {Deg(ψω) | ω ∈ Ω},

where Deg(ψω) is the deterministic topological degree of ψω (see e.g. [3, p. 104]).
The random topological degree defined in (3.1) has all the properties formu-

lated in Theorem 3.3. As a standard consequence of the above random degree
theory (cf. Lemma 2.10), we can formulate:

Theorem 3.5 (Random Schauder Fixed Point Theorem). Let X ∈ AR be
a closed subset of a separable Banach space E and let ϕ: Ω×X ( X be a random
u-operator with Rδ-values such that ϕω:X ( X is compact, for every ω ∈ Ω.
Then Fixra(ϕ) 6= ∅.

Note that Theorem 3.5 immediately follows from the deterministic Schauder
Fixed Point Theorem (see e.g. [18] and Lemma 2.10).
For other topological consequences of Theorem 3.5, see e.g. [3], [8], [18], [19].

Remark 3.6. Let us observe that if ϕ(Ω × Sn−1(r)) ⊂ Sn−1(r), for some
r > 0, then condition (3.4.1) can be replaced by the following one:

ϕ(ω, x) ∩ ϕ(ω,−x) = ∅, for every (ω, x) ∈ Ω× Sn−1(r).

We recommend [3], [19], for other formulations of the Borsuk Antipodal
Theorem for multivalued maps in the deterministic case. All the mentioned
results have adequate random formulations.
Let us note that, for mappings with convex values, a random coincidence

topological degree is considered in [41]. See also [10], [15], [25], [33], [36], [37], [45],
for random fixed point theorems of multivalued operators, and [9], [22], [26], [44],
for those of single-valued operators.

Remark 3.7. Randomizing the deterministic topological invariants for peri-
odic orbits like the generalized Euler characteristic (cf. [3, Chapter II.6]), some-
times also called the Fuller index, or various indices of periodicity (cf. [27]) seems
to be a delicate open problem. The most promissible appropriate tool might be
with this respect the Lefschetz number of period k (see e.g. [32] and the references
therein).
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4. Random differential inclusions

Let ϕ: Ω× [0, a]×Rn ( Rn be a random u-operator, defined in an analogous
way as above on Ω× [0, a]× Rn.

Definition 4.1. A random u-operator ϕ: Ω× [0, a]×Rn ( Rn with convex,
compact values is called a random u-Carathéodory map if:

(4.1.1) there exists a map µ: Ω × [0, a] → [0,∞) such that µ(ω, · ) is Lebesque
integrable, µ( · , t) is measurable and

‖ϕ(ω, t, x)‖ ≤ µ(ω, t)(1 + ‖x‖),

for every ω ∈ Ω, t ∈ [0, a] and x ∈ Rn.

Now, for a given random u-Carathéodory map ϕ: Ω× [0, a]× Rn ( Rn and
a measurable map ξ0: Ω→ Rn, we shall consider the following Cauchy problem:

(Cϕ,ξ0)

{
x′(ω, t) ∈ ϕ(ω, t, x(ω, t)),
x(ω, 0) = ξ0(ω),

where the solution x: Ω × [0, a] → Rn is a map such that x( · , t) is measurable,
x(ω, · ) is absolutely continuous and the derivative x′(ω, t) is considered w.r.t. t.
In what follows, we shall denote by S(ϕ, ξ0) the set of all solutions of (Cϕ,ξ0).

Theorem 4.2. If ϕ: Ω× [0, a]×Rn ( Rn is a random u-Carathéodory map,
then S(ϕ, ξ0) 6= ∅, for any measurable ξ0: Ω→ Rn.

Proof. For the proof, consider the map F : Ω×C([0, a],Rn)( C([0, a],Rn)
defined as follows:

F (ω, x) :=
{
ξ0(ω) + v

∣∣∣∣ v(t) = ∫ t
0
u(τ)dτ and

u(τ) ∈ ϕ(ω, τ, x(τ)) is a Lebesque integrable selection of ϕ
}
.

It follows from the Kuratowski–Ryll–Nardzewski selection theorem (see Lem-
ma 2.2 and Remark 2.3) and (4.1.1) that the map F is well defined. It can be
easily seen that if ξ: Ω → C([0, a],Rn) is a random fixed point of F , then the
map x: Ω× [0, a]→ Rn, where x(ω, t) = ξ(ω)(t), is a solution of (Cϕ,ξ0).
Therefore, it is sufficient to show that F satisfies all assumptions of Theo-

rem 3.5. It is a standard fact (see e.g. [7], [3]) that F (ω, · ) is a u.s.c. compact
map with convex values. So, it suffices to show that F is measurable. To do it,
we define the mapping F : Ω×C([0, a],Rn)( C([0, a],Rn) in the following way:

F (ω, x) := F (ω, x)− ξ0(ω).
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Obviously, F is measurable if and only if so is F . Thus, to show that F is
measurable, we consider the diagram

Ω× C([0, a],Rn)
G
( L1([a, b],Rn)

L−→ C([0, a],Rn)

in which:

G(ω, x) := {µ ∈ L1([a, b],Rn) | µ(τ) ∈ ϕ(ω, τ, x(τ)), for every τ},

L(u)(t) :=
∫ t
0
u(τ) dτ,

where L1([a, b],Rn) denotes the space of Lebesgue integrable functions with the
integral norm.

Since F = L ◦ G and L is a continuous single-valued map, we have only to
prove that G is measurable. To do it, we define the function:

f : Ω× C([0, a],Rn)× L1([0, a],Rn → [0,∞), f(ω, x, u) = distL1(u,G(ω, x)).

Thus, we have

f(ω, x, u) =
∫ a
0
distRn(u(t), ϕ(ω, t, x(t)) dt.

Since ϕ is measurable, so is the map (ω, t, x, u)→ distRn(u(t), ϕ(ω, , t, x(t)) (see
[23, Theorem 3.3] and cf. also [38]). Thus, by the Fubini theorem, the map f
is measurable and again, in view of Theorem 3.3 in [23], we infer that G is
measurable which completes the proof. �

Having a random u-Carathéodory map ϕ: Ω × [0, a] × Rn ( Rn, for every
ω ∈ Ω and y ∈ Rn, we can consider the following deterministic Cauchy problem:

(Cϕω,y)

{
x′(t) ∈ ϕω(t, x(t)) := ϕ(ω, t, x(t)),
x(0) = y.

It is well known (see [7], [3], [13], that the set S(ϕω, y) of all solutions of (Cϕω,y)
is an Rσ-set.

We define the map P : Ω× Rn ( C([0, a],Rn), by putting:

(4.1) P (ω, y) := S(ϕω, y) = {x ∈ C([0, a],Rn) |
x′(t) ∈ ϕω(t, x(t)) and x(0) = y}.

We can state the following important proposition:

Proposition 4.3. Under the above assumptions, the mapping

P : Ω× Rn ( C([0, a],Rn)
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defined in (4.1) is a random u-operator.

Proof. It is well known (see e.g. [3], [13], [19]) that P (ω, · ) is u.s.c. with
Rσ-values. So, it is sufficient to show that P is measurable. We shall proceed
similarly as in the proof of Theorem 4.2.
Consider the diagram:

L1([0, a],Rn)
L

''PPPPPPPPPPPP

Ω× Rn

T
◦ppppppppppp

P
◦C([0, a],Rn)

in which

T (ω, y) :=
{
u ∈ L1([0, a],Rn)

∣∣∣∣ u(t) ∈ ϕ(ω, t, y + ∫ t
0
u(τ) dτ

)}
but, this time, L(u)(t) = y+

∫ t
0 u(τ) dτ . Then P = L◦T and again it is sufficient

to show that T is measurable.
For this, we can proceed quite analogously as in the proof of the measurability

of the mapping G in Theorem 4.2; cf. also Lemma 1 in [38]. �

Observe that the measurability of the operator P : Ω× ( C([0, a],Rn) says
that for any measurable ξ: Ω→ Rn, in view of the Kuratowskii–Ryll–Nardzewski
selection theorem, there exists a measurable selection η: Ω× Rn → C([0, a],Rn)
such that η(ω, x) ⊂ P (ω, ξ(ω)). Thus, the map x: Ω × [0, a] → Rn defined as
follows:

(4.2) x(ω, t) := η(ω, x)(t)

is a solution of (Cϕ,ξ).
Note that (4.2) can be reinterpreted in the sense that deterministic solutions

define random solutions.

Remark 4.4. Above, we used two times the following fact from the measure
theory. If ξ: Ω→ X and ϕ: Ω×X ( Y are two measurable maps, then the map
ϕ̂: Ω×X ( Y , ϕ̂(ω, x) = ϕ(ω, ξ(ω)) is mesaruable, too.
In fact, we have the diagram:

Ω
bξ−→ Ω×X

ϕ
( Y,

where ξ̂(ω) = (ω, ξ(ω)). Then ϕ̂ = ϕ ◦ ξ̂. Observe that, for any measurable D ⊂
Ω ×X, the set ξ̂−1(D) is measurable. Indeed, we can assume without any loss
of generality that D = C ×B, where C ⊂ Ω and B ⊂ X are measurable. Thus,
ξ̂−1(D) = C ∩ ξ−1(B) and ξ̂ has the needed property, because ξ is measurable.
Now, for every measurable U ⊂ Y , we have ϕ̂−1(U) = ξ̂−1(ϕ−1(U)). Since

ϕ−1(U) is measurable, our claim holds true.
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Note that Remark 4.4 will be also used in the following Section 5.

5. Periodic problem for random differential inclusions

For a random u-Carathéodory map ϕ: Ω× [0, a]×Rn ( Rn, we shall consider
the following periodic problem:

(Qϕ)

{
x′(ω, t) ∈ ϕ(ω, t, x(ω, t)),
x(ω, 0) = x(ω, a).

To study the periodic problem (Qϕ) for such a map ϕ, we shall follow an approach
based on the random topological degree theory (for the deterministic case see
e.g. [3], [13], [19], [30]). To do it, consider the random operator P : Ω × Rn (

C([0, a],Rn) defined in (4.1) (cf. Proposition 4.3). Moreover, let us consider the
evaluation map ea:C([0, a],Rn)→ Rn, ea(x) = x(a). Then the composition

(5.1) Pa := ea ◦ P : Ω× Rn ( Rn

is called the random Poincaré operator along the trajectories of (Qϕ).
Assume Fixra(Pa) 6= ∅. This implies that the map: P̂ : Ω×Rn ( C([0, a],Rn)

given by

P̂ (ω, y) := {x ∈ P (ω, y) | x(0) = x(a) = y}
is well defined, i.e. P̂ (ω, y) is compact and nonempty.
We claim that P̂ : Ω × Rn ( C([0, a],Rn) is measurable. Hence, let A be

a closed subset of C([0, a],Rn). Then we get:

P̂−1(A) = P−1(A ∩ ẽ−1(0)),

where ẽ:C([0, a],Rn)( Rn, defined by ẽ(x) = x(0)−x(a), is a continuous map.
So P̂ is measurable and, in view of the Kuratowski–Ryll–Nardzewski selection
theorem, there exists a measurable selection η: Ω×Rn → C([0, a],Rn) of P̂ which
defines a solution of (Qϕ) by putting:

x: Ω× [0, a]→ Rn, x(ω, t) := η(ω, ξ(ω))(t),

where ξ ∈ Fixra(Pa) (cf. Remark 4.4).
Conversely, if we have a solution x of (Qϕ), then the mapping ξ: Ω → Rn,

where ξ(ω) = x(ω, 0), is a fixed point of Pa. Hence, we have proved:

Proposition 5.1. Problem (Qϕ) has a solution if and only the random
Poincaré operator Pa: Ω× Rn ( Rn has a random fixed point.

To find a fixed point of Pa, we associate with Pa the random vector field
P̃a: Ω× Rn ( Rn defined as follows:

P̃a(ω, x) = x− Pa(ω, x).
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Now, we can assume without any loss of generality that P̃a ∈ CJ ra(Ω×Bn,Rn);
if not, then O ∈ P̃a(ω, x), for some ‖x‖ = r and every ω ∈ Ω, and so Pa has
a fixed point or, equivalently, our problem (Qϕ) has a solution.
Proposition 5.1 can be still improved in the following way.

Proposition 5.2. Assume that P̃a ∈ CJ ra(Ω×Bn(r),Rn), for some r > 0.
If D(P̃a) 6= 0, then problem (Qϕ) has a solution.

Proposition 5.2 follows immediately from Proposition 5.1 by means of The-
orem 3.3(a).
In order to show that D(P̃a) 6= 0, we shall adopt to the random case the

guiding potential method introduced by Liapunov and subsequently developed
by Krasnosel’skĭı ([30]) and others (see e.g. [3], [13], [19], and the references
therein).

Definition 5.3. A map V : Ω× Rn → R is called a random potential if the
following two conditions are satisfied:

(a) V ( · , x) is measurable, for every x ∈ R,
(b) V (ω, · ) is a C1-map, for every ω ∈ Ω.

If V : Ω×Rn → R is a random potential, then we define a random vector field
∂V : Ω× Rn → Rn as follows:

∂V (ω, x) :=
(
∂V

∂x1
(ω, x), . . . ,

∂V

∂xn
(ω, x)

)
,

for every (ω, x) ∈ Ω× Rn.

Definition 5.4. Let V : Ω × Rn → R be a random potential. If, for some
r0 > r, V satisfies the following condition:

0 /∈ ∂V (Ω× Sn−1(r)), for every r ≥ r0,

then V is called a random direct potential.

Let V : Ω × Rn → R be a random direct potential. Observe that ∂V ∈
CJ ra((Ω×Bn(r),Rn), for every r ≥ r0.
So, by Theorem 3.3, D(∂V ) is well defined and, in view of the homotopy

property Theorem 3.3(d), it is independent of r. Hence, it makes sense to define
the index I(V ) of the random direct potential V , by putting:

I(V ) = D(∂V ),

where Deg(∂V ) in Definition 3.2 is considered for ∂V ∈ CJ ra(({ω}×Bn(r),Rn)
with r ≥ r0 and fixed ω ∈ Ω.
Some cases of random direct potentials with nonzero index can be found

similarly as in [30], for deterministic potentials. We restrict our considerations
to the following proposition (cf. [3], [13], [19], [30]).
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Proposition 5.5. If V : Ω×Rn → R is a random direct potential satisfying:

lim
‖x‖→∞

V (ω, x) =∞, for every ω ∈ Ω,

then I(V ) = {1}.

Proposition 5.5 follows immediately from the deterministic case.

Definition 5.7. Let ϕ: Ω× [0, a]×Rn ( Rn be a random u-Carathéodory
operator and let V : Ω×Rn ×R be a random direct potential. We say that V is
a random guiding function for ϕ if the following condition is satisfied:

(5.2) ∃r0 > 0 ∀(ω, t, x) ∈ Ω× [0, a]× Rn with ‖x‖ ≥ r0 ∃y ∈ ϕ(ω, t, x) :
〈y, ∂V (ω, x)〉 ≤ 0 or 〈y, ∂V (ω, x)〉 ≥ 0.

Now, we are ready to state the main result of this section.

Theorem 5.7. If ϕ: Ω × [0, a] × Rn ( Rn is a random u-Carathéodory
operator which possesses a random guiding function V : Ω × Rn → R such that
I(V ) 6= 0 (cf. e.g. Proposition 5.5), then problem (Qϕ) has a solution.

Sketch of the proof. To prove Theorem 5.7, we need a random version
of Lemma 4.5 in [21]. This can be done by making only technical changes in the
mentioned lemma. Then the proof of Theorm 5.7 is quite analogous to the proof
of Theorem 4.4 in [21]. Instead of the deterministic topological degree, we use
here random topological degree presented in Section 3. �

Remark 5.8. For a non-smooth (e.g. locally Lipschitz) guiding function V ,
the analogy of Theorem 5.7 can be given by means of the deterministic Theo-
rem 3.2 in [13] (cf. also [3, Chapter III.8.c], [19]), provided (5.2) is replaced by a
stronger condition, namely

∃r0 > 0 ∀(ω, t, x) ∈ Ω× [0, a]× Rn with ‖x‖ ≥ r0 :
〈ϕ(ω, t, x), ∂V (ω, x)〉 ≤ 0 or 〈ϕ(ω, t, x), ∂V (ω, x)〉 ≥ 0.

Example 5.9. For V (ω, x)≡V (x) := 12‖x‖
2, we have V :Rn→R, ∂V (x)=x,

‖∂V (Sn−1(r))‖ = r ≥ r0 > 0 and lim‖x‖→∞ = ∞ ⇒ I(V ) = {1}. Thus,
problem (Qϕ) possesses, according to Theorem 5.7, a random solution, provided
〈ϕ(ω, t, x), x〉 ≤ 0 or 〈ϕ(ω, t, x), x〉 ≥ 0, for all ω ∈ Ω, t ∈ [0, a] and ‖x‖ ≥ r0 > 0,
where r0 is a suitable constant.

6. Scheme for randomization of periodicity results

Summing up the above investigations, we can formulate the following propo-
sition.
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Proposition 6.1. Let one-parameter family of deterministic problems

(Qϕω )

{
x′(t) ∈ ϕω(t, x(t)) := ϕ(ω, t, x(t)),
x(0) = x(a),

where ϕ: Ω× [0, a]×Rn ( Rn is a random u-Carathéodory map and Ω is a com-
plete measure space, be solvable, for every fixed ω ∈ Ω. Then random problem
(Qϕ) admits a solution.

Proof. If (Qϕω ) has a solution, for each ω ∈ Ω, then there obviously exists
a fixed point x0,ω ∈ Rn of the deterministic Poincaré translation operator Pa,ω
along the trajectories of (Cϕω,y ), i.e. x0,ω ∈ Pa,ω(x0,ω), where Pa,ω:Rn ( Rn

and

(6.1) Pa,ω(y) := {xω(a) | xω( · ) is a solution of (Cϕω,y )}.

Since Pa: Ω×Rn ( Rn defined in (5.1) was verified in the foregoing section
to be a random Poincaré operator with compact values along the trajectories
of (Cϕ,ξ0) and since Pa(ω, y) = Pa,ω(y), for every ω ∈ Ω and y ∈ Rn, it follows
from Lemma 2.10 that Pa possesses a random fixed point. This in turn implies
that, according to Proposition 5.1, problem (Qϕ) admits a solution, as claimed.�

To generalize Proposition 6.1 for random subharmonic solutions, i.e. random
ka-periodic solutions with k ∈ N, i.e. x(ω, t) ≡ x(ω, t+ka), but at the same time
it is not true that for any m|k x(ω, t) ≡ x(ω, t+ma), by means of Lemma 2.11
is, however, a delicate problem. The main obstruction consists rather curiously
in the fact that deterministic ka-periodic solutions imply the existence of deter-
ministic m-orbits of the associated deterministic Poincaré operators, where only
m|k, but not necessarily m = k.
On the other hand, the following lemma enables us to guarantee the existence

of random subharmonic solutions by means of random periodic orbits of the
associated random Poincaré operators.

Lemma 6.2. Random inclusion

(6.2) x′(ω, t) ∈ ϕ(ω, t, x(ω, t)) [ ≡ ϕ(ω, t+ a, x(ω, t))] , a > 0,

where ϕ: Ω× [0, a]×Rn ( Rn is a random u-Carathéodory map and Ω is a com-
plete measure space, possesses a random ma-periodic solution, m ∈ N, provided
the random Poincaré operator Pa along the trajectories of (Cϕ,ξ0) defined in (5.1)
has a random m-orbit in the sense of Definition 2.8.

Proof. Consider the inclusion

(6.3) x′(t) ∈ ϕω(t, x(t)) := ϕ(ω, t, x(t)) ≡ ϕ(ω, t+ a, x(t)), a > 0,
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where ϕ is as above and define the solution operators Sr: Ω×Rn ( C([0,ma],Rn)
by the formula

Sr(ω, xr) := {x ∈ C([0,ma],Rn) | x is a solution of (6.3) with x(ra) = xr} ,

where r = 0, . . . ,m.
Since

Sr(ω, xr)
∣∣
[0,ra] = S̃r(ω, xr)

∣∣
[−ra,0],

where

S̃r(ω, xr) := {x ∈ C([−ma, 0],Rn) | x is a solution
of x′(−t) ∈ −ϕω(−t, x(−t))with x(−ra) = xr},

Sr must be a product-measurable operator, for every r = 0, . . . ,m. This follows
from the product-measurability of Sr

∣∣
[ra,ma] and S̃r

∣∣
[−ra,0], r = 0, . . . ,m, proved

in (a slightly modified, after time rescaling) Proposition 4.3, and the fact that
the only common point of the graphs of the maps Sr

∣∣
[0,ra] and Sr

∣∣
[ra,ma] consists

of a singleton {(ra, xr)}.
Now, for a given random m-orbit {ξ}m−1i=0 , define the intersection

S: Ω( C([0,ma],Rn)

of composition Sr(ω, ξr(ω)), r = 0, . . . ,m, i.e.

S(ω) :=
m⋂
r=0

Sr(ω, ξr(ω)), where ξ0(ω) ≡ ξm(ω).

The definition of a random m-orbit (see Definition 2.8) guarantees that S
has nonempty values. Moreover, since Sr

∣∣
[0,ra] = S̃r

∣∣
[−ra,0] and Sr

∣∣
[ra,ma] are

random u-operators (see Proposition 4.3)) with compact values (see e.g. [3]), the
set of values must be compact.
Since the product-measurability implies a superpositional measurability and

the intersection of product-measurable operators is also product-measurable (cf.
[3, Chapter I.3]), S must be a measurable operator.
Thus, applying the Kuratowski–Ryll–Nardzewski selection theorem (cf. Re-

mark 2.3), there exists a single-valued measurable selection x ⊂ S,

x: Ω→ C([0,ma],Rn),

which represents the desired random ma-periodic solution x of (6.2), where
x(ω, i) = ξi(ω), i = 0, . . . ,m− 1. �

Remark 6.3. Despite Lemma 6.2, in view of the above obstructions, to
guarantee a random ka-periodic solution of (6.2), just by means of deterministic
ka-periodic solutions of (6.3), where k > 1, can fail in general. Nevertheless, we
have proved in [2] that if (6.2) admits via Lemma 6.2, for n = 1, an ma-periodic
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solution with m > 1, then the coexistence of random ka-periodic solutions of
(6.2) occurs, for each k ∈ N.

In view of Proposition 6.1, the randomization scheme can be formulated as
follows.

Randomization scheme 6.4. If the given deterministic inclusions are “pe-
riodicity stable”, under the implementation of parameter values ω ∈ Ω, i.e. if they
preserve a-periodic solutions of (6.3), then the related random inclusions (6.2)
admit random a-periodic solutions.

Many differential equations and inclusions in [3], [16], [17], [30], etc. can be
found to be “periodicity stable”, i.e. many periodicity results for them can be
randomized by means of the scheme 6.4. For the simplest illustrative examples,
we can put Ω ⊂ Rl.
We can conclude by the following simple illustrative example.

Example 6.5. Consider the random inclusion

(6.4) x′(ω, t) +A(t)x(ω, t) ∈ F (ω, t, x(ω, t)).

Assume that A: [0, a]→ L(Rn) is a Lebesgue integrable (n×n)-matrix function,
whose Floquet multipliers are different from 1, such that A(t) ≡ A(t + a). Let
F : Ω× [0, a]× Rn ( Rn be a random u-Carathéodory map satisfying

‖F (ω, t, x)‖ ≤ m(t) +K‖x‖, for all ω ∈ Ω, t ∈ [0, a], x ∈ Rn,

where K ≥ 0 is a constant such that

K <

[
max
t∈[0,a]

∫ a
0
‖G(t, s)‖ ds

]−1
,

G is the Green function associated with the homogenous problem{
x′(t) +A(t)x(t) = 0,

x(0) = x(a),

and m ∈ L1([0, a],R). Assume still that F (ω, t, x) ≡ F (ω, t+ a, x).
Under the above assumptions, we can prove that (6.4) admits, by means

of Proposition 6.1, a random periodic solution. Indeed. It follows from the
Floquet theory that the above homogeneous problem has only the trivial solution.
Thus, in view of the Fredholm alternative, the deterministic inclusion

x′(t) +A(t)x(t) ∈ Fω(t, x(t)) := F (ω, t, x(t))

possesses an a-periodic solution xω( · ) of the form

xω(t) =
∫ a
0
G(t, s)fω(s, xω(s)) ds, ω ∈ Ω,
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where fω ⊂ Fω is a measurable selection of Fω, for each ω ∈ Ω. This can be
checked in a standard way (see e.g. [3, Chapter III.5]) by means of a multivalued
version of the Schauder fixed point theorem. Hence, applying Proposition 6.1,
inclusion (6.4) admits a random a-periodic solution, as claimed.
We can also consider this problem in a reverse way, namely starting from the

deterministic inclusion

x′(t) +A(t)x(t) ∈ F (t, x(t))

and implementing into it the parameters ω ∈ Ω, we can easily check that, under
the above assumptions, it is “periodicity stable” w.r.t. such an implementation.
Therefore, scheme 6.4 leads to the same conclusion.

Acknowledgements. The authors are indebted to Professors Francesco
S. DeBlasi and Giulio Pianigiani for their critical reading of the manuscript
and many helpful suggestions.

References
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