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DIMENSION OF ATTRACTORS
AND INVARIANT SETS

IN REACTION DIFFUSION EQUATIONS

Martino Prizzi

Abstract. Under fairly general assumptions, we prove that every compact

invariant set I of the semiflow generated by the semilinear reaction diffusion

equation

ut + β(x)u−∆u = f(x, u), (t, x) ∈ [0, +∞[× Ω,

u = 0, (t, x) ∈ [0, +∞×∂Ω

in H1
0 (Ω) has finite Hausdorff dimension. Here Ω is an arbitrary, possibly

unbounded, domain in R3 and f(x, u) is a nonlinearity of subcritical growth.
The nonlinearity f(x, u) needs not to satisfy any dissipativeness assumption

and the invariant subset I needs not to be an attractor. If Ω is regular,

f(x, u) is dissipative and I is the global attractor, we give an explicit bound
on the Hausdorff dimension of I in terms of the structure parameter of the

equation.

1. Introduction

In this paper we consider the reaction diffusion equation

(1.1)
ut + β(x)u−∆u = f(x, u), (t, x) ∈ [0,+∞[× Ω,

u = 0, (t, x) ∈ [0,+∞[× ∂Ω.
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Here Ω is an arbitrary (possibly unbounded) open set in R3, β(x) is a potential
such that the operator −∆ + β(x) is positive, and f(x, u) is a nonlinearity of
subcritical growth (i.e. of polynomial growth strictly less than five).

The assumptions on β(x) and f(x, u) will be made more precise in Section 2
below. Under such assumptions, equation (1.1) generates a local semiflow π in
the space H1

0 (Ω). Suppose that the semiflow π admits a compact invariant set I
(i.e. π(t, I) = I for all t ≥ 0). We do not make any structure assumption on the
nonlinearity f(x, u) and therefore we do not assume that I is the global attractor
of equation (1.1): for example, I can be an unstable invariant set detected by
Conley index arguments (see e.g. [16]).

Our aim is to prove that I has finite Hausdorff dimension and to give an
explicit estimate of its dimension. The first results concerning the dimension of
invariant sets of dynamical systems are due to Mallet–Paret [14] and Mañé [15].
For a comprehensive study of the subject, see e.g. [6], [12], [20], [23].

When Ω is a bounded domain and f(x, u) satisfies suitable dissipativeness
conditions, the existence of a finite dimensional compact global attractor for
(1.1) is a classical achievement (see e.g. [6], [12], [23]). When Ω is unbounded,
new difficulties arise due to the lack of compactness of the Sobolev embeddings.
These difficulties can be overcome in several ways: by introducing weighted
spaces (see e.g. [5], [9]), by developing suitable tail-estimates (see e.g. [24], [17]),
by exploiting comparison arguments (see e.g. [3]).

Concerning the finite dimensionality of the attractor, in [5], [9], [24] and
other similar works the potential β(x) is always assumed to be just a positive
constant. In [4] Arrieta et al. considered for the first time the case of a sign-
changing potential. In their results the invariant set I does not need to be an
attractor; however they need to make some structure assumptions on f(x, u)
which essentially resemble the conditions ensuring the existence of the global
attractor. Moreover, in [4] the invariant set is a-priori assumed to be bounded
in the L∞-norm. In concrete situations, such a-priori estimate can be obtained
through elliptic regularity combined with some comparison argument. This in
turn requires to make some regularity assumption on the boundary of Ω.

In this paper we do not make any structure assumption on the nonlinearity
f(x, u), neither do we assume ∂Ω to be regular. Our only assumption is that the
mapping h 7→ (∂uf(x, 0))+h has to be a relatively form compact perturbation of
−∆ + β(x). This can be achieved, e.g. by assuming that ∂uf(x, 0) can be esti-
mated from above by some positive Lr function, r > 3/2. Under this assumption,
we shall prove that I has finite Hausdorff dimension. Also, we give an explicit
estimate of the dimension of I, involving the number N of negative eigenvalues
of the operator −∆ + β(x)− ∂uf(x, 0). When Ω has a regular boundary, we can
explicitly estimate N by mean of Cwickel–Lieb–Rozenblum inequality (see [21]);
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as a consequence, if we also assume that f(x, u) is dissipative, we recover the
result of Arrieta et al. [4].

The paper is organized as follows. In Section 2 we introduce notations, we
state the main assumptions and we collect some preliminaries about the semiflow
generated by equation (1.1). In Section 3 we prove that the semiflow generated
by equation (1.1) is uniformly L2-differentiable on any compact invariant set I.
In Section 4 we recall the definition of Hausdorff dimension and we prove that
any compact invariant set I has finite Hausdorff dimension in L2(Ω) as well as
in H1

0 (Ω). In Section 5 we compute the number of negative eigenvalues of the
operator −∆+β(x)−∂uf(x, 0) by mean of Cwickel–Lieb–Rozenblum inequality.
In Section 6 we specialize our result to the case of a dissipative equation and we
recover the result of Arrieta et al. [4].

The results contained in this paper continue to hold if one replaces −∆ with
the general second order elliptic operator in divergence form

−
3∑

i,j=1

∂xi(aij(x)∂xj ).

2. Notation, preliminaries and remarks

Let σ ≥ 1. We denote by Lσu(RN ) the set of measurable functions ω: RN → R
such that

|ω|Lσ
u

:= sup
y∈RN

( ∫
B(y)

|ω(x)|σ dx
)1/σ

<∞,

where, for y ∈ RN , B(y) is the open unit cube in RN centered at y.
In this paper we assume throughout that N = 3, and we fix an open (pos-

sibly unbounded) set Ω ⊂ R3. We denote by MB the constant of the Sobolev
embedding H1(B) ⊂ L6(B), where B is any open unit cube in R3. More-
over, for 2 ≤ q ≤ 6, we denote by Mq the constant of the Sobolev embedding
H1(R3) ⊂ Lq(R3).

Proposition 2.1. Let σ > 3/2 and let ω ∈ Lσu(R3). Set ρ := 3/2σ. Then,
for every ε > 0 and for every u ∈ H1

0 (Ω),∫
Ω

|ω(x)||u(x)|2 dx ≤ |ω|Lσ
u
(ρεM2

B |u|2H1 + (1− ρ)ε−ρ/(1−ρ)|u|2L2).

Moreover, for every u ∈ H1
0 (Ω),∫

Ω

|ω(x)||u(x)|2 dx ≤M2ρ
B |ω|Lσ

u
|u|2ρH1 |u|2(1−ρ)L2 .

Proof. See the proof of Lemma 3.3 in [18]. �



318 M. Prizzi

Let β ∈ Lσu(R3), with σ > 3/2. Let us consider the following bilinear form
defined on the space H1

0 (Ω):

a(u, v) :=
∫

Ω

∇u(x) · ∇v(x) dx+
∫

Ω

β(x)u(x)v(x) dx, u, v ∈ H1
0 (Ω).

Our first assumption is the following:

Hypothesis 2.2. There exists λ1 > 0 such that

(2.1)
∫

Ω

|∇u(x)|2 dx+
∫

Ω

β(x)|u(x)|2 dx ≥ λ1|u|2L2 , u ∈ H1
0 (Ω).

Remark 2.3. Conditions on β(x) under which Hypothesis 2.2 is satisfied
are expounded e.g. in [1], [2].

As a consequence of (2.1) and Proposition 2.1, we have:

Proposition 2.4. There exist two positive constants λ0 and Λ0 such that

λ0|u|2H1 ≤
∫

Ω

|∇u(x)|2 dx+
∫

Ω

β(x)|u(x)|2 dx ≤ Λ0|u|2H1 , u ∈ H1
0 (Ω).

The constants λ0 and Λ0 can be computed explicitly in terms of λ1, MB and |β|Lσ
u
.

Proof. Cf. Lemma 4.2 in [17]. �

It follows from Proposition 2.4 that the bilinear form a( · , · ) defines a scalar
product in H1

0 (Ω), equivalent to the standard one. According to the results of
Section 4 in [17], a( · , · ) induces a positive selfadjoint operator A in the space
L2(Ω). A is uniquely determined by the relation

〈Au, v〉L2 = a(u, v), u ∈ D(A), v ∈ H1
0 (Ω).

Notice that Au = −∆u + βu in the sense of distributions, and u ∈ D(A) if
and only if −∆u + βu ∈ L2(Ω). Set X := L2(Ω), and let (Xα)α∈R be the
scale of fractional power spaces associated with A (see Section 2 in [17] for
a short, self-contained, description of this scale of spaces). Here we just recall
that X0 = L2(Ω), X1 = D(A), X1/2 = H1

0 (Ω) and X−α is the dual of Xα for
α ∈ ]0,+∞[. For α ∈ ]0,+∞[, the space Xα is a Hilbert space with respect to
the scalar product

〈u, v〉Xα := 〈Aαu,Aαv〉L2 , u, v ∈ Xα.

Also, the space X−α is a Hilbert space with respect to the scalar product
〈 · , · 〉X−α dual to the scalar product 〈 · , · 〉Xα , i.e.

〈u′, v′〉X−α = 〈R−1
α u′, R−1

α v′〉Xα , u, v ∈ X−α,

where Rα:Xα → X−α is the Riesz isomorphism u 7→ 〈 · , u〉Xα . Finally, for every
α ∈ R, A induces a selfadjoint operator A(α):Xα+1 → Xα, such that A(α′) is
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an extension of A(α) whenever α′ ≤ α, and D(Aβ(α)) = Xα+β for β ∈ [0, 1]. If
α ∈ [0, 1/2], u ∈ X1−α and v ∈ X1/2 ⊂ Xα, then

〈v,A(−α)u〉(Xα,X−α) = 〈u, v〉X1/2 = a(u, v).

Lemma 2.5. Let (Xα)α∈R be as above.

(a) If p ∈ [2, 6[, then Xα ⊂ Lp(Ω) for α ∈]3(p− 2)/4p, 1/2]. Accordingly, if
q ∈ ]6/5, 2], then Lq(Ω) ⊂ X−α for α ∈ ]3(2− q)/4q, 1/2].

(b) If σ > 3/2 and ω ∈ Lσu(Ω), then the assignment u 7→ ωu defines a
bounded linear map from X1/2 to X−α for α ∈ ]3/4σ, 1/2].

Proof. See Lemmas 5.1 and 5.2 and the proof of Proposition 5.3 in [17].�

Our second assumption is the following:

Hypothesis 2.6.

(a) f : Ω× R → R is such that, for every u ∈ R, f( · , u) is measurable and,
for almost every x ∈ Ω, f(x, · ) is of class C2;

(b) f( · , 0) ∈ Lq(Ω), with 6/5 < q ≤ 2 and ∂uf( · , 0) ∈ Lσu(R3), with
σ > 3/2;

(c) there exist constants C and γ, with C > 0 and 2 ≤ γ < 3 such that
|∂uuf(x, u)| ≤ C(1 + |u|γ). Notice that, in view of Young’s inequality,
the requirement γ ≥ 2 is not restrictive.

We introduce the Nemitski operator f̂ which associates with every function
u: Ω → R the function f̂(u)(x) := f(x, u(x)).

Proposition 2.7. Assume f satisfies Hypothesis (2.6). Let α be such that

1
2
> α > max

{
γ − 1

4
,

3
4

2− q

q
,

3
4σ

}
.

Then the assignment u 7→ f(u), where

〈v, f(u)〉(Xα,X−α) :=
∫

Ω

f̂(u)(x)v(x) dx,

defines a map f :X1/2 → X−α which is Lipschitzian on bounded sets.

Proof. See the proof of Proposition 5.3 in [17]. �

Setting X := X−α and A := A(−α), we have that Xα+1/2 = X1/2. We can
rewrite equation (1.1) as an abstract parabolic problem in the space X, namely

(2.2) u̇+ Au = f(u).
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By results in [11], equation (2.2) has a unique mild solution for every initial
datum u0 ∈ Xα+1/2 = H1

0 (Ω), satisfying the variation of constants formula

u(t) = e−Atu0 +
∫ t

0

e−A(t−s)f(u(s)) ds, t ≥ 0.

It follows that (2.2) generates a local semiflow π in the space H1
0 (Ω). More-

over, if u( · ): [0, T [→ Xα+1/2 is a mild solution of (2.2), then u(t) is differen-
tiable into Xα+1/2 = H1

0 (Ω) for t ∈ ]0, T [, and it satisfies equation (2.2) in
X = X−α ⊂ H−1(Ω). In particular, u( · ) is a weak solution of (1.1).

Assume now that I ⊂ H1
0 (Ω) is a compact invariant set for the semiflow π

generated by (2.2). If B is a Banach space such that H1
0 (Ω) ⊂ B, we define

|I|B := max{|u|B | u ∈ I}.

We end this section with a technical lemma that will be used later.

Lemma 2.8. For every T > 0 there exists a constant L(T ) such that, when-
ever u0 and v0 ∈ I, setting u(t) := π(t, u0) and v(t) := π(t, v0), t ≥ 0, the
following estimate holds:

|u(t)− v(t)|H1 ≤ L(T )t−(α+1/2)|u0 − v0|L2 , t ∈ ]0, T ].

The constant L(T ) depends only on |I|H1 , and on the constants of Hypotheses 2.2
and 2.6.

Proof. We have

u(t)− v(t) = e−At(u0 − v0) +
∫ t

0

e−A(t−s)(f(u(s))− f(v(s))) ds;

it follows that

|u(t) − v(t)|Xα+1/2

≤ t−(α+1/2)|u0 − v0|X +
∫ t

0

(t− s)−(α+1/2)|f(u(s))− f(v(s))|X ds

≤ t−(α+1/2)|u0 − v0|X +
∫ t

0

(t− s)−(α+1/2)C(|I|H1)|u(s)− v(s)|Xα+1/2 ds.

By Henry’s inequality [11, Theorem 7.1.1], this implies that

|u(t)− v(t)|Xα+1/2 ≤ L(T )t−(α+1/2)|u0 − v0|X, t ∈]0, T ],

and the thesis follows. �
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3. Uniform differentiability

In this section we prove some technical results which will allow us to apply
the methods of [23] for proving finite dimensionality of compact invariant sets.
We assume throughout that I ⊂ H1

0 (Ω) is a compact invariant set of the semiflow
π generated by equation (2.2).

Lemma 3.1. There exists a constant K such that, whenever u0 and v0 ∈ I,
setting u(t) := π(t, u0) and v(t) := π(t, v0), t ≥ 0, the following estimate holds:

|u(t)− v(t)|2L2 + λ0

∫ t

0

|u(s)− v(s)|2H1 ds ≤ eKt|u0 − v0|2L2 .

The constant K depends only on |I|H1 , on λ0 and Λ0 (see Proposition 2.4), on
|∂uf( · , 0)|Lσ

u
, and on the constants C and γ (see Hypothesis 2.6).

Proof. Set z(t) = u(t)− v(t). Then

1
2
d

dt
|z(t)|2L2 +

∫
Ω

|∇z(t)(x)|2 dx+
∫

Ω

β(x)|z(t)(x)|2 dx

=
∫

Ω

(f(x, u(t)(x))− f(x, v(t)(x))z(t)(x) dx.

It follows from Proposition 2.4 and Hypothesis 2.6 that

1
2
d

dt
|z(t)|2L2 + λ0|z(t)|2H1 ≤

∫
Ω

|∂uf(x, 0)||z(t)(x)|2 dx

+ C ′
∫

Ω

(1 + |u(t)(x)|γ+1 + |v(t)(x)|γ+1)|z(t)(x)|2 dx

≤
∫

Ω

|∂uf(x, 0)||z(t)(x)|2 dx+ C ′|z(t)|2L2

+ C ′(|u(t)|γ+1
L6 + |v(t)|γ+1

L6 |z(t)|2L12/(5−γ) ,

where C ′ is a constant depending only on C and γ. Notice that 2<12/(5−γ)< 6.
Therefore, by interpolation, we get that for every ε > 0 there exists a constant
cε > 0 such that

(3.1) |z(t)|2L12/(5−γ) ≤ ε|z(t)|2H1 + cε|z(t)|2L2 .

Now (3.1) and Proposition 2.1 imply that, for every ε > 0, there exists a constant
C ′ε, depending on C ′, |I|H1 and ε, such that

(3.2)
1
2
d

dt
|z(t)|2L2 + λ0|z(t)|2H1 ≤ ε|z(t)|2H1 + C ′ε|z(t)|2L2 .

Now choosing ε = λ0/2 and multiplying (3.2) by e−2C′εt we get

(3.3)
d

dt
(e−2C′εt|z(t)|2L2) + λ0e

−2C′εt|z(t)|2H1 ≤ 0.

Integrating (3.3) we obtain the thesis. �
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Let u( · ): R → H1
0 (Ω) be a full bounded solution of (2.2) such that u(t) ∈ I

for t ∈ R. Let us consider the non autonomous linear equation

(3.4)
ut + β(x)u−∆u = ∂uf(x, u(t))u, (t, x) ∈ [0,+∞[× Ω,

u = 0, (t, x) ∈ [0,+∞[× ∂Ω.

We introduce the following bilinear form defined on on the space H1
0 (Ω):

(3.5) a(t;u, v) :=
∫

Ω

∇u(x) · ∇v(x) dx+
∫

Ω

β(x)u(x)v(x) dx

−
∫

Ω

∂uf(x, u(t)(x))u(x)v(x) dx, u, v ∈ H1
0 (Ω).

Proposition 3.2. There exist constants κi > 0, i = 1, . . . , 4, such that:

(a) |a(t;u, v)| ≤ κ1|u|H1 |v|H1 , u, v ∈ H1
0 (Ω), t ∈ R;

(b) |a(t;u, u)| ≥ κ2|u|2H1 − κ3|u|2L2 , u ∈ H1
0 (Ω), t ∈ R;

(c) |a(t;u, v)− a(s;u, v)| ≤ κ4|t− s||u|H1 |v|H1 , u, v ∈ H1
0 (Ω), t, s ∈ R.

Proof. Properties (a) and (b) follow from Hypothesis 2.6 and Proposi-
tion 2.1. In order to prove point (c), we first observe that, by Theorem 3.5.2
in [11] (and its proof), the function u( · ) is differentiable into H1

0 (Ω), with
|u̇( · )|H1 ≤ L, where L is a constant depending on |I|H1 and on the constants
in Hypotheses 2.2 and 2.6. Therefore we have:

|a(t;u, v) − a(s;u, v)| ≤
∫

Ω

|∂uf(x, u(t)− ∂uf(x, u(s))||u(x)||v(x)| dx

≤
∫

Ω

C(1 + |u(t)(x)|γ + |u(s)(x)|γ)|u(t)(x)− u(s)(x)||u(x)||v(x)| dx

≤C ′(1 + |u(t)|γH1 + |u(s)|γH1)|u(t)− u(s)|H1 |u|H1 |v|H1

≤C ′(1 + 2|I|γH1)L|t− s||u|H1 |v|H1 ,

and the proof is complete. �

Now let A(t) be the self-adjoint operator determined by the relation

(3.6) 〈A(t)u, v〉L2 = a(t;u, v), u ∈ D(A(t)), v ∈ H1
0 (Ω).

We can apply Theorem 3.1 in [10] and get:

Proposition 3.3. There exists a two parameter family of bounded linear
operators U(t, s):L2(Ω) → L2(Ω), t ≥ s, such that:

(a) U(s, s) = I for all s ∈ R, and U(t, s)U(s, r) = U(t, r) for all t ≥ s ≥ r;
(b) U(t, s)h0 ∈ D(A(t)) for all h0 ∈ L2(Ω) and t > s;
(c) for every h0 ∈ L2(Ω) and s ∈ R, the map t 7→ U(t, s)h0 is differentiable

into L2(Ω) for t > s, and

∂

∂t
U(t, s)h0 = −A(t)U(t, s)h0.
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In particular, U(t, s)h0 is a weak solution of (3.4).

Given u0 ∈ I, we take a full bounded solution u( · ) of (2.2), whose trajectory
is contained in I, and such that u(0) = u0. Then we define

(3.7) U(u0; t) := U(t, 0), t ≥ 0,

where U(t, s) is the family of operators given by Proposition 3.3. Notice that
U(u0; t) does not depend on the choice of u( · ), due to forward uniqueness for
equation (2.2).

Proposition 3.4. For every t ≥ 0,

sup
u0∈I

‖U(u0; t)‖L(L2,L2) < +∞.

Proof. Let u0 ∈ I and h0 ∈ L2(Ω). Set h(t) := U(u0; t)h0. Then, by
property (c) of Proposition 3.3, for t > 0 we have

d

dt

1
2
|h(t)|2L2 +

∫
Ω

|∇h(t)(x)|2 dx+
∫

Ω

β(x)|h(t)(x)|2 dx

=
∫

Ω

∂uf(x, u(t)(x))|h(t)(x)|2 dx,

where u( · ) is a full bounded solution of (2.2), whose trajectory is contained in
I, and such that u(0) = u0. It follows from Hypothesis 2.6 and Propositions 2.1
and 2.4 that for all ε > 0
d

dt

1
2
|h(t)|2L2 + λ0|h(t)|2H1

≤
∫

Ω

∂uf(x, 0)|h(t)(x)|2 dx+
∫

Ω

(∂uf(x, u(t)(x))− ∂uf(x, 0))|h(t)(x)|2 dx

≤ ε|h(t)|2H1 + cε|h(t)|2L2 +
∫

Ω

C(1 + |u(t)(x)|γ)|u(t)(x)||h(t)(x)|2 dx

≤ ε|h(t)|2H1 + cε|h(t)|2L2 +
∫

Ω

C ′(1 + |u(t)(x)|γ+1)|h(t)(x)|2 dx

≤ ε|h(t)|2H1 + (cε + C ′)|h(t)|2L2 + C ′|u(t)|γ+1
L6 |h(t)|2L12/(5−γ) .

Since 2 < 12/(5 − γ) < 6, by interpolation we get that for every ε > 0 there
exists a constant c′ε > 0 such that

|h(t)|2L12/(5−γ) ≤ ε|h(t)|2H1 + c′ε|h(t)|2L2 .

Therefore we have

(3.8)
d

dt

1
2
|h(t)|2L2 + λ0|h(t)|2H1 ≤ ε|h(t)|2H1 + C ′′(ε, |I|H1)|h(t)|2L2 .

Choosing ε = λ0 and integrating (3.8) we obtain

|h(t)|2L2 ≤ e2C
′′(λ0,|I|H1 )t|h0|2L2 �
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Proposition 3.5. For every t ≥ 0,

lim
ε→0

sup
u0,v0∈I

0<|u0−v0|L2<ε

|π(t, v0)− π(t, u0)− U(u0; t)(v0 − u0)|L2

|v0 − u0|L2
= 0.

Proof. Let u0, v0 ∈ I. Set u(t) := π(t, u0), v(t) := π(t, v0) and θ(t) :=
v(t) − u(t) − U(u0; t)(v0 − u0), t ≥ 0. A computation using property (c) of
Proposition 3.3 shows that, for t > 0,

d

dt

1
2
|θ(t)|2L2 +

∫
Ω

|∇θ(t)(x)|2 dx+
∫

Ω

β(x)|θ(t)(x)|2 dx

=
∫

Ω

∂uf(x, u(t)(x))|θ(t)(x)|2 dx

+
∫

Ω

(f(x, v(t)(x))−f(x, u(t)(x))−∂uf(x, u(t)(x))(v(t)(x)−u(t)(x)))θ(t)(x) dx.

Therefore, by Proposition 2.4

d

dt

1
2
|θ(t)|2L2 + λ0|θ(t)|H1 ≤ I1(t) + I2(t) + I3(t),

where

I1(t) :=
∫

Ω

∂uf(x, 0)|θ(t)(x)|2 dx,

I2(t) :=
∫

Ω

(∂uf(x, u(t)(x))− ∂uf(x, 0))|θ(t)(x)|2 dx,

I3(t) =
∫

Ω

(f(x, v(t))− f(x, u(t))− ∂uf(x, u(t))(v(t)− u(t)))θ(t) dx.

Repeating the same computations of the proof of Proposition 3.4, for ε > 0 we
get

I1(t) + I2(t) ≤ ε|θ(t)|2H1 + C1(ε, |I|H1)|θ(t)|2L2 .

Concerning I3(t), for ε > 0 we have

I2(t) ≤
∫

Ω

C(1 + |u(t)(x)|γ + |v(t)(x)|γ)|v(t)(x)− u(t)(x)|2θ(t)(x) dx

≤C|θ(t)|L6 |v(t)− u(t)|2L12/5 + C|θ(t)|L6(|u(t)|γL6

+ |v(t)|γL6)|v(t)− u(t)|2L12/(5−γ)

≤ ε|θ(t)|2H1 + C2(ε, |I|H1)(|v(t)− u(t)|4L12/5 + |v(t)− u(t)|4L12/(5−γ))

≤ ε|θ(t)|2H1 + C3(ε, |I|H1)(|v(t)− u(t)|H1 |v(t)− u(t)|3L2

+ |v(t)− u(t)|1+γH1 |v(t)− u(t)|3−γL2 )
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Choosing ε = λ0/2, we get

d

dt

1
2
|θ(t)|2L2 − C1(ε, |I|H1)|θ(t)|2L2

≤ C3(ε, |I|H1)(|v(t)− u(t)|H1 |v(t)− u(t)|3L2 + |v(t)− u(t)|1+γH1 |v(t)− u(t)|3−γL2 )

≤ C4(ε, |I|H1)(|v(t)− u(t)|3L2 + |v(t)− u(t)|2H1 |v(t)− u(t)|3−γL2 ).

By Lemma 3.1, we get

d

dt

1
2
|θ(t)|2L2 − C1(ε, |I|H1)|θ(t)|2L2

≤ C4(ε, |I|H1)(e3Kt|v0 − u0|3L2 + e(3−γ)Kt|v(t)− u(t)|2H1 |v0 − u0|3−γL2 ).

Writing C1 for C1(ε, |I|H1) and C4 for C4(ε, |I|H1), we have

(3.9)
d

dt

1
2
(e−C1t|θ(t)|2L2)

≤ C4(e(3K−C1)t|v0 − u0|3L2 + e((3−γ)K−C1)t|v(t)− u(t)|2H1 |v0 − u0|3−γL2 ).

Finally, integrating (3.9), recalling that θ(0) = 0 and taking into account
Lemma 3.1, we get the existence of two increasing functions Φ1(t) and Φ2(t)
such that

|θ(t)|2L2 ≤ Φ1(t)|v0 − u0|3L2 + Φ2(t)|v0 − u0|5−γL2 ,

and the thesis follows. �

4. Dimension of invariant sets

Let X be a complete metric space and let K ⊂ X be a compact set. For
d ∈ R+ and ε > 0 one defines

µH(K, d, ε) := inf
{ ∑
i∈I

rdi

∣∣∣∣ K ⊂
⋃
i∈I

B(xi, ri), ri ≤ ε

}
,

where the infimum is taken over all the finite coverings of K with balls of radius
ri ≤ ε. Observe that µH(K, d, ε) is a non increasing function of ε and d. The
d-dimensional Hausdorff measure of K is by definition

µH(K, d) := lim
ε→0

µH(K, d, ε) = sup
ε>0

µH(K, d, ε).

One has:

(1) µH(K, d) ∈ [0,+∞];
(2) if µH(K, d) <∞, then µH(K, d) = 0 for all d > d;
(3) if µH(K, d) > 0, then µH(K, d) = +∞ for all d < d.

The Hausdorff dimension of K is the smallest d for which µH(K, d) is finite, i.e.

dimH(K) := inf{d > 0 | µH(K, d) = 0}.
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As pointed up in [22], the Hausdorff dimension is in fact an intrinsic metric
property of the set K. Moreover, if Y is another complete metric space and
`:K → Y is a Lipschitzian map, then dim H(`(K)) ≤ dimH(K).

There is a well developed technique to estimate the Hausdorff dimension of
an invariant set of a map or a semigroup. We refer the reader e.g. to [23] and [12].
The geometric idea consists in tracking the evolution of a d-dimensional volume
under the action of the linearization of the semigroup along solutions lying in
the invariant set. One looks then for the smallest d for which any d-dimensional
volume contracts asymptotically as t→∞.

Let u0 ∈ I and let u( · ): R → H1
0 (Ω) be a full bounded solution of (2.2) such

that u(0) = u0 and u(t) ∈ I for t ∈ R. For t ≥ 0, we denote by au0(t;u, v) the
bilinear form defined by (3.5), and by Au0(t) the self-adjoint operator determined
by the relation (3.6). Given a d-dimensional subspace Ed of L2(Ω), with Ed ⊂
H1

0 (Ω), we define the operator Au0(t | Ed):Ed → Ed by

〈Au0(t | Ed)φ, ψ〉L2 := au0(t;φ, ψ), φ, ψ ∈ Ed.

Notice that, if Ed ⊂ D(Au0(t)), then one has Au0(t | Ed) = PEd
Au0(t)PEd

|Ed
,

where PEd
:L2(Ω) → Ed is the L2-orthogonal projection onto Ed. We define

Trd(Au0(t)) := inf
Ed⊂H1

0 (Ω)
dimEd=d

Tr(Au0(t | Ed)).

Let u0 ∈ I, let d ∈ N and let v0,i ∈ L2(Ω), i = 1, . . . , d. Set vi(t) :=
U(u0; t)v0,i, t ≥ 0, where U(u0; t) is defined by (3.7). We denote by G(t) the
d-dimensional volume delimited by v1(t), . . . , vd(t) in L2(Ω), that is

G(t) := |v1(t) ∧ v2(t) ∧ · · · ∧ vd(t)|∧dL2 = (det(〈vi(t), vj(t)〉L2)ij)1/2.

An easy computation using Leibnitz rule and Proposition 3.3 shows that, for
t > 0, G(t) satisfies the ordinary differential equation

G′(t) = −Tr(Au0(t | Ed(t))G(t),

where Ed(t) := span(v1(t), . . . , vd(t)). It follows from Propositions 3.4 and 3.5
and from the results in [23, Chapter V] that the Hausdorff dimension dimH(I)
of I in L2(Ω) is finite and less than or equal to d, provided

lim sup
t→∞

sup
u0∈I

1
t

∫ t

0

−Trd(Au0(s)) ds < 0.

In order to prove that dimH(I) ≤ d, we are lead to estimate −Trd(Au0(t)). To
this end, we notice that, whenever Ed is a d-dimensional subspace of L2(Ω), and
B:Ed → Ed is a selfadjoint operator, then

Tr(B) =
d∑
i=1

〈Bφi, φi〉L2 ,
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where φ1, . . . , φd is any L2-orthonormal basis of Ed. So let Ed ⊂ H1
0 (Ω) be

a d-dimensional space and let φ1, . . . , φd be an L2-orthonormal basis of Ed. Fix
0 < δ < 1. It follows that

Tr(Au0(t | Ed))

=
d∑
i=1

(
(1− δ)

( ∫
Ω

|∇φi|2 dx+
∫

Ω

β(x)|φi|2 dx
)
−

∫
Ω

∂uf(x, 0)|φi|2 dx
)

+ δ
d∑
i=1

( ∫
Ω

|∇φi|2 dx+
∫

Ω

β(x)|φi|2 dx
)

+
d∑
i=1

∫
Ω

(∂uf(x, u(t))− ∂uf(x, 0))|φi|2 dx.

We introduce the following bilinear form defined on the space H1
0 (Ω):

aδ(u, v) := (1− δ)
( ∫

Ω

∇u(x) · ∇v(x) dx+
∫

Ω

β(x)u(x)v(x) dx
)

−
∫

Ω

∂uf(x, 0)u(x)v(x) dx, u, v ∈ H1
0 (Ω).

Let Aδ be the self-adjoint operator determined by the relation

〈Aδu, v〉L2 = aδ(u, v), u ∈ D(Aδ), v ∈ H1
0 (Ω).

Given a d-dimensional subspace Ed of L2(Ω), with Ed ⊂ H1
0 (Ω), we define the

operator Aδ(Ed):Ed → Ed by

〈Aδ(Ed)φ, ψ〉L2 := aδ(φ, ψ), φ, ψ ∈ Ed.

It follows that

Tr(Au0(t | Ed)) = Tr(Aδ(Ed)) + δ

d∑
i=1

( ∫
Ω

|∇φi|2 dx

+
∫

Ω

β(x)|φi|2 dx
)

+
d∑
i=1

∫
Ω

(∂uf(x, u(t))− ∂uf(x, 0))|φi|2 dx.

We introduce the proper values of the operator Aδ:

µj(Aδ) := sup
ψ1,... ,ψj−1∈H1

0 (Ω)

inf
ψ∈[ψ1,... ,ψj−1]

⊥

|ψ|L2=1, ψ∈H1
0 (Ω)

aδ(ψ,ψ) j = 1, 2, . . .

We recall (see e.g. Theorem XIII.1 in [19]) that:

Proposition 4.1. For each fixed n, either

(a) there are at least n eigenvalues (counting multiplicity) below the bot-
tom of the essential spectrum of Aδ and µn(Aδ) is the nth eigenvalue
(counting multiplicity);
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or

(b) µn(Aδ) is the bottom of the essential spectrum and in that case µn+j(Aδ)
= µn(Aδ), j = 1, 2, . . . and there are at most n−1 eigenvalues (counting
multiplicity) below µn(Aδ). �

Let µj(Aδ(Ed)), j = 1, . . . , d, be the eigenvalues of Aδ(Ed). By Theo-
rem XIII.3 in [19], we have that

µj(Aδ(Ed)) ≥ µj(Aδ), j = 1, . . . , d.

It follows that

Tr(Au0(t | Ed)) ≥
d∑
i=1

µi(Aδ) + δ
d∑
i=1

( ∫
Ω

|∇φi|2 dx+
∫

Ω

β(x)|φi|2 dx
)

+
d∑
i=1

∫
Ω

(∂uf(x, u(t))− ∂uf(x, 0))|φi|2 dx.

To proceed further, we need to recall the Lieb–Thirring inequality (see [13]).

Proposition 4.2. Let N ∈ N and let p ∈ R, with max{N/2, 1} ≤ p ≤
1 + N/2. There exists a constant Kp,N > 0 such that, if φ1, . . . , φd ∈ H1(RN )
are pairwise L2-orthonormal, then

(4.1)
d∑
i=1

∫
RN

|∇φi(x)|2 dx ≥
1

Kp,N

( ∫
RN

ρ(x)p/(p−1) dx

)2(p−1)/N

,

where ρ(x) :=
d∑
i=1

|φi(x)|2.

Now we have:

Lemma 4.3. Let u ∈ I and let φ1, . . . , φd ∈ H1(RN ) be pairwise L2-ortho-
normal. Then

δ
d∑
i=1

( ∫
Ω

|∇φi|2 dx+
∫

Ω

β(x)|φi|2 dx
)

+
d∑
i=1

∫
Ω

(∂uf(x, u(x))− ∂uf(x, 0))|φi|2 dx ≥ −D(γ, λ0, δ, |I|H1),

where

D(γ, λ0, δ, |I|H1) =
5
2

(
3
5

2
δλ0

)3/2

(C|I|L5/2K5/2,3)5/2

+
3− γ

4

(
γ + 1

4
2
δλ0

)(γ+1)/(3−γ)

(C|I|γ+1
L6 K6/(γ+1),3)4/(3−γ).
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Proof. We observe first that

δ
d∑
i=1

( ∫
Ω

|∇φi|2 dx+
∫

Ω

β(x)|φi|2 dx
)
≥ δλ0

d∑
i=1

∫
Ω

|∇φi|2 dx.

On the other hand,∣∣∣∣ ∫
Ω

(
∂uf(x, u(x))− ∂uf(x, 0)

)
ρ(x) dx

∣∣∣∣
≤

∫
Ω

C(1 + |u|γ)|u||ρ| dx ≤ C|u|L5/2 |ρ|L5/3 + C|u|γ+1
L6 |ρ|L6/(5−γ) .

By Lieb–Thirring inequality (4.1), we have∣∣∣∣ ∫
Ω

(∂uf(x, u(x))− ∂uf(x, 0))ρ(x) dx
∣∣∣∣

≤ C|I|L5/2K5/2,3

( d∑
i=1

∫
RN

|∇φi|2 dx
)3/5

+ C|I|γ+1
L6 K6/(γ+1),3

( d∑
i=1

∫
RN

|∇φi|2 dx
)(γ+1)/4

.

The conclusion follows by a simple application of Young’s inequality. �

Thanks to Lemma 4.3, we finally get:

Tr(Au0(t | Ed)) ≥
d∑
i=1

µi(Aδ)−D(γ, λ0, δ, |I|H1).

Therefore, in order to conclude that dimH(I) is finite, we are lead to make some
assumption which guarantees that

∑d
i=1 µi(Aδ) can be made positive and as

large as we want, by choosing d sufficiently large. This is equivalent to the fact
that the bottom of the essential spectrum of Aδ be strictly positive. We make
the following assumption:

Hypothesis 4.4. For every ε > 0 there exists Vε ∈ Lr(Ω), r > 3/2, Vε ≥ 0,
such that ∂uf(x, 0) ≤ Vε(x) + ε, for x ∈ Ω.

We need the following lemmas:

Lemma 4.5. Let r > 3/2 and let V ∈ Lr(Ω). If r > 3 let p := 2; if r ≤ 3 let
p := 6/5. Then the assignment u 7→ V u defines a compact map from H1

0 (Ω) to
Lp(Ω), and hence to H−1(Ω).

Proof. Let B ⊂ H1
0 (Ω) be bounded. If B is a Banach space such that

H1
0 (Ω) ⊂ B, we define |B|B := sup{|u|B | u ∈ B}. If u ∈ H1

0 (Ω) we denote by
ũ its trivial extension to the whole R3. Similarly, we denote by Ṽ the trivial
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extension of V to R3. For k > 0, let χk be the characteristic function of the set
{x ∈ R3 | |x| ≤ k}. Now, for u ∈ B and k > 0, we have:∫

R3
|(1− χk)Ṽ ũ|p dx ≤

( ∫
|x|≥k

|Ṽ |r dx
)p/r( ∫

|x|≥k
|ũ|pr/(r−p) dx

)(r−p)/r

.

It follows that

|(1− χk)Ṽ ũ|Lp ≤ |B|Lpr/(r−p) |(1− χk)Ṽ |Lr , u ∈ B, k > 0.

Similarly, we have:

(4.2) |χkṼ ũ|Lp ≤ |Ṽ |Lr |χkũ|Lpr/(r−p) , u ∈ H1
0 (Ω), k > 0.

Now, given ε > 0, we choose k > 0 so large that |(1− χk)Ṽ |Lr ≤ ε. Then

{Ṽ ũ | u ∈ B} = {χkṼ ũ+ (1− χk)Ṽ ũ | u ∈ B}
⊂ {χkṼ ũ | u ∈ B}+ {(1− χk)Ṽ ũ | u ∈ B}
⊂ {v ∈ Lp(R3) | |v|Lp ≤ ε}+ {χkṼ ũ | u ∈ B}.

We notice that 2 ≤ pr/(r− p) < 6: therefore, By Rellich’s Theorem, H1(Bk(0))
is compactly embedded into Lpr/(r−p). It follows that the set {χkũ | u ∈ B}
is precompact in Lpr/(r−p). By (4.2), we deduce that {χkṼ ũ | u ∈ B} is pre-
compact in Lp(R3). A simple measure of non compactness argument shows then
that the set {Ṽ ũ | u ∈ B} is precompact in Lp(R3) and this in turn implies that
the set {V u | u ∈ B} is precompact in Lp(Ω). �

Lemma 4.6. Let V be as in Lemma 4.5. Let A+V be the selfadjoint operator
determined by the bilinear form a(u, v) +

∫
Ω
V uv dx, u, v ∈ H1

0 (Ω). Then, for
sufficiently large λ > 0, (A + λ)−1 − (A + V + λ)−1 is a compact operator in
L2(Ω).

Proof. Take λ > 0 so large that A + V + λ be strictly positive. Let u ∈
L2(Ω). Set v := (A+ V + λ)−1u, w := (A+ λ)−1u and z := v − w. This means
that

a(v, φ) + λ(v, φ) +
∫

Ω

V vφ dx =
∫

Ω

uφ dx, for all φ ∈ H1
0 (Ω)

and

a(w, φ) + λ(w, φ) =
∫

Ω

uφ dx, for all φ ∈ H1
0 (Ω).

It follows that

a(z, φ) + λ(z, φ) +
∫

Ω

V vφ dx = 0, for all φ ∈ H1
0 (Ω).

Choosing φ := z, Proposition 2.4 and Lemma 4.5 imply

λ0|z|2H1 ≤ |z|H1 |V v|H−1 ≤
λ0

2
|z|2H1 +Kλ0 |V v|2H−1.
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Therefore we obtain the estimate

|(A+ λ)−1u− (A+ V + λ)−1u|H1 ≤ Kλ0 |V (A+ V + λ)−1u|H−1 , u ∈ L2(Ω),

and the conclusion follows from Lemma 4.5. �

Now we can prove:

Proposition 4.7. Assume Hypothesis 4.4 is satisfied. Then the essential
spectrum of Aδ is contained in [(1− δ)λ1,+∞[.

Proof. Hypothesis 4.4 and Proposition 4.1 imply that, for every ε > 0, the
bottom of the essential spectrum of Aδ is larger than or equal to the bottom of
the essential spectrum of (1 − δ)A − ε − Vε(x). We observe that the spectrum
of (1 − δ)A − ε is contained in [(1 − δ)λ1 − ε,+∞[. By Lemma 4.6 and Weyl’s
Theorem (see [19, Theorem XIII.14]), the essential spectrum of (1−δ)A−ε−Vε(x)
coincides with that of (1 − δ)A − ε. It follows that the bottom of the essential
spectrum of Aδ is larger than or equal to (1− δ)λ1− ε for arbitrary small ε > 0,
and the conclusion follows. �

Whenever Hypothesis 4.4 is satisfied, for 0 < δ < 1 and λ < (1 − δ)λ0 we
introduce the following quantity:

N (δ, λ) := # eigenvalues of Aδ below λ.

Then, for d ≥ N (δ, ( 1−δ
2 λ1) we have:

d∑
i=1

µi(Aδ) ≥ N
(
δ,

1− δ

2
λ1

)
µ1(δ) +

(
d−N

(
δ,

1− δ

2
λ1

))
1− δ

2
λ1.

We have thus proved our first main result:

Theorem 4.8. Assume Hypotheses 2.2, 2.6 and 4.4 are satisfied. Let I ⊂
H1

0 (Ω) be a compact invariant set for the semiflow π generated by equation (2.2)
in H1

0 (Ω). Then the Hausdorff dimension of I in L2(Ω) is finite and less than
or equal to d, provided d is an integer number larger than max{d1, d2}, where

d1 := N
(
δ,

1− δ

2
λ1

)
and

d2 :=
2

(1− δ)λ1

(
N

(
δ,

1− δ

2
λ1

)(
1− δ

2
λ1 − µ1(Aδ)

)
+D(γ, λ0, δ, |I|H1)

)
.

Remark 4.9. The first proper value µ1(Aδ) of Aδ can be estimated from
below in terms of λ0 and |∂uf(·, 0)|Lσ

u
. The explicit computations are left to the

reader.

Remark 4.10. By Lemma 2.8, also the Hausdorff dimension of I in H1
0 (Ω)

is finite and it is equal to the Hausdorff dimension of I in L2(Ω).
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5. Estimate of N
(
δ, 1−δ

2 λ1

)
In this section we shall obtain an explicit estimate for the numberN

(
δ, 1−δ

2 λ1

)
in terms of the dominating potential Vε of Hypothesis 4.4. Our main tool is the
celebrated Cwickel–Lieb–Rozenblum inequality, in its abstract formulation due
to Rozenblum and Solomyak (see [21]). In order to exploit the CLR inequality,
we need to make some assumption on the regularity of the open domain Ω.
Namely, we make the following assumption:

Hypothesis 5.1. The open set Ω is a uniformly C2 domain in the sense of
Browder [7, p. 36].

As a consequence, by elliptic regularity we have that

D(−∆) = H2(Ω) ∩H1
0 (Ω) ⊂ L∞(Ω).

In this situation, if ω ∈ Lσu(R3) then the assignment u 7→ ωu defines a relatively
bounded perturbation of −∆ and therefore D(−∆ + ω) = H2(Ω) ∩ H1

0 (Ω). It
follows that Xα ⊂ L∞(Ω) for α > 3/4 (see [11, Theorem 1.6.1]).

Set ε := (1− δ)λ1/4. Define the bilinear forms

ãδ,ε(u, v) := (1− δ)
(∫

Ω

∇u · ∇v dx+
∫

Ω

βuv dx

)
− 3 ε

∫
Ω

uv dx,

for u, v ∈ H1
0 (Ω), and

bδ,ε(u, v) := −
∫

Ω

Vε uv dx.

Moreover, set
aδ,ε(u, v) := ãδ,ε(u, v) + bδ,ε(u, v)

and denote by Ãδ,ε and Aδ,ε the selfadjoint operators induced by ãδ,ε and aδ,ε,
respectively.

A simple computation shows that

N
(
δ,

1− δ

2
λ1

)
≤ nδ,ε,

where nδ,ε is the number of negative eigenvalues of Aδ,ε.
By Theorem 1.3.2 in [8], the operator Ãδ,ε is positive (with Ãδ,ε ≥ εI) and

order preserving. Moreover, since D(Aαδ,ε) ⊂ L∞(Ω) for α > 3/4, then for every
such α and γ < ε we have

|e−t eAδ,εu|L∞ ≤Mα,γt
−αe−γt|u|L2 , u ∈ L2(Ω),

where Mα,γ is a constant depending only on α, γ and on the embedding constant
of H2(Ω) into L∞(Ω). It follows that

M
eAδ,ε

(t) := ‖e−(t/2) eAδ,ε‖2L(L2,L∞) ≤M2
α,γ2

2αt−2αe−γt.
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We are now in a position to apply Theorem 2.1 in [21]. We have thus proved the
following theorem:

Theorem 5.2. Assume that Hypotheses 2.2, 2.6, 4.4 and 5.1 are satisfied.
Let ε := (1− δ)λ1/4. Then

N
(
δ,

1− δ

2
λ1

)
≤ nδ,ε ≤ Cq/2Mq/2,γ

∫
Ω

Vε(x)q dx,

where Cα is a constant depending only on α, for α > 3/4.

6. Dissipative equations: dimension of the attractor

In this section we specialize our results to the case of a dissipative equation.
We make the following assumption:

Hypothesis 6.1. There exists a non negative function D ∈ Lq(Ω), 2 ≥ q >

3/2, such that

(6.1) f(x, u)u ≤ D(x)|u|, (x, u) ∈ Ω× R.

Remark 6.2. Hypotheses 6.1 and 2.2 together are equivalent to the struc-
ture assumption of Theorem 4.4 in [4].

An easy computation shows that |f(x, 0)| ≤ D(x) for x ∈ Ω, and that
F (x, u) :=

∫ u
0
f(x, s) ds satisfies

F (x, u) ≤ D(x)|u|, (x, u) ∈ Ω× R.

By slightly modifying some technical arguments in [17], one can prove that the
semiflow π generated by equation (2.2) in H1

0 (Ω) possesses a compact global
attractorA. Moreover, π is gradient-like with respect to the Lyapunov functional

L(u) :=
∫

Ω

|∇u|2 dx+
∫

Ω

β(x)|u|2 dx−
∫

Ω

F (x, u) dx, u ∈ H1(Ω).

Assuming Hypothesis 6.1, we shall give an explicit estimate for |A|H1 in terms
of |D|Lq . Moreover, we shall prove that Hypothesis 6.1 implies Hypothesis 4.4,
and we explicitly compute the dominating potential Vε in terms of D. Therefore,
we are able to obtain an explicit estimate for the number N

(
δ, 1−δ

2 λ1

)
in terms

of |D|Lq . As a consequence, the estimate of the dimension of A given by Theo-
rem 4.8 can be made completely explicit in terms of the structure parameters of
equation (1.1).

We have the following theorem:
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Theorem 6.3. Assume Hypotheses 2.2, 2.6 and 6.1 are satisfied.

(a) Let φ ∈ H1
0 (Ω) be an equilibrium of π. Then

|φ|H1 ≤ Mq′

λ0
|D|Lq ,

where Mq′ is the embedding constant of H1
0 (R3) into Lq

′
(R3).

(b) There exists a constant S > 0 such that

|u|H1 ≤ S for all u ∈ A.

The constant S can be explicitly computed and depends only on C, γ, σ,
λ0, Λ0, |D|Lq , |∂uf( · , 0)|Lσ

u
and on the constants of Sobolev embeddings.

Proof. Let φ ∈ H1
0 (Ω) be an equilibrium of π. Then, for ε > 0, we have

λ0|φ|2H1 ≤
∫

Ω

|∇φ|2 dx+
∫

Ω

β(x)|φ|2 dx =
∫

Ω

f(x, φ)φdx ≤
∫

Ω

D(x)|φ| dx

≤ |D|Lq |φ|Lq′ ≤ ε|φ|2
Lq′ +

1
4ε
|D|2Lq ≤ εM2

q′ |φ|2H1 +
1
4ε
|D|2Lq ;

choosing ε := λ0/(2M2
q′) we get property (a). In order to prove (b), we notice

that, since L is a Lyapunov functional for π and A is compact in H1
0 (Ω), there

exists an equilibrium φ such that, for every u ∈ A,∫
Ω

|∇u|2 dx+
∫

Ω

β(x)|u|2 dx−
∫

Ω

F (x, u) dx

≤
∫

Ω

|∇φ|2 dx+
∫

Ω

β(x)|φ|2 dx−
∫

Ω

F (x, φ) dx.

Then, for ε > 0, we have:

λ0|u|2H1 ≤
∫

Ω

D(x)|u| dx+ Λ0|φ|2H1 +
∫

Ω

F (x, φ) dx

≤ εM2
q′ |u|2H1 +

1
4ε
|D|2Lq + Λ0|φ|2H1 +

∫
Ω

F (x, φ) dx.

We choose ε := λ0/(2M2
q′) and the conclusion follows. �

Finally, we have:

Theorem 6.4. Assume that Hypotheses 2.6 and 6.1 are satisfied. Then for
every 0 < ε ≤ 1,

∂uf(x, 0) ≤ 2
ε
D(x) +

ε

2
C(1 + εγ).

Proof. For ε > 0 we have:

f(x, ε) = f(x, 0) + ∂uf(x, 0)ε+
∫ ε

0

( ∫ s

0

∂uuf(x, r) dr
)
ds.
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It follows that

f(x, 0)ε+ ∂uf(x, 0)ε2 + ε

∫ ε

0

( ∫ s

0

∂uuf(x, r) dr
)
ds = f(x, ε)ε ≤ D(x)ε.

Therefore

∂uf(x, 0) ≤ D(x) + |f(x, 0)|
ε

+
1
ε

∫ ε

0

( ∫ s

0

C(1 + |r|γ) dr
)
ds,

and the conclusion follows. �

Remark 6.5. Theorem 6.4 shows that Hypotheses 2.6 and 6.1 together im-
ply Hypothesis 4.4, with Vε(x) = 2C

ε D(x).
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