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ON THE KURATOWSKI MEASURE
OF NONCOMPACTNESS FOR DUALITY MAPPINGS

George Dinca

Abstract. Let (X, ‖ · ‖) be an infinite dimensional real Banach space

having a Fréchet differentiable norm and ϕ: R+ → R+ be a gauge function.

Denote by Jϕ: X → X∗ the duality mapping on X corresponding to ϕ.
Then, for the Kuratowski measure of noncompactness of Jϕ, the fol-

lowing estimate holds:

α(Jϕ) ≥ sup

�
ϕ(r)

r

���� r > 0

�
.

In particular, for−∆p: W 1,p
0 (Ω)→W−1,p′ (Ω), 1 < p <∞, 1/p +1/p′ = 1,

viewed as duality mapping on W 1,p
0 (Ω), corresponding to the gauge func-

tion ϕ(t) = tp−1, one has

α(−∆p) =

(
1 for p = 2,

∞ for p ∈ (1, 2) ∪ (2,∞).

1. Introduction

The first part of this introduction deals with the definition and some funda-
mental properties of duality mappings, which are needed in what follows.

Being introduced by A. Beurling and A.E. Livingston [3], duality mappings
on Banach spaces were intensively studied by many authors. A rather com-
plete list of references may be found in I. Cioranescu [4]. We only note here
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the remarkable contributions of E. Asplund and F. E. Browder and the deep
connection between the denseness of the range of a duality mapping and the
Bishop–Phelps theorem.

Let ϕ: R+ → R+ be a gauge function, that is: ϕ is continuous, strictly
increasing, ϕ(0) = 0 and ϕ(t) →∞ as t →∞.

Let X be a real Banach space, X∗ its dual and P(X∗) the set of all parts
of X∗.

By definition, the duality mapping on X, corresponding to the gauge func-
tion ϕ, is the set valued mapping Jϕ:X → P(X∗), defined by:

(1.1)
Jϕ0 = {0},
Jϕx = ϕ(‖x‖){x∗ ∈ X∗ | 〈x∗, x〉 = ‖x‖, ‖x∗‖ = 1}, if x 6= 0.

Due to the Hahn–Banach theorem

D(Jϕ) = {x ∈ X | Jϕx 6= ∅} = X.

We also note that, according to the well-known Bishop–Phelps theorem (see
R.R. Phelps [11, Theorem 3.19]), the set of all functionals x∗ in X∗ which attain
their norms on the unit ball, that is, which satisfy

〈x∗, x〉 = ‖x∗‖ for some x ∈ X with ‖x‖ = 1

is norm dense in X∗.
Equivalently, the duality map corresponding to the identity gauge function

ϕ(t) = t, denoted by J , has dense range:

J(X) = X∗, where J(X) =
⋃

x∈X

Jx

=
⋃

x∈X

{u∗ ∈ X∗ | 〈u∗, x〉 = ‖u∗‖‖x‖, ‖u∗‖ = ‖x‖}.

It follows from this that Jϕ(X) = X∗ for any gauge function ϕ. Indeed, let
x∗ ∈ X∗. According to Bishop–Phelps theorem, there exists a sequence (x∗n)
such that 〈x∗n, xn〉 = ‖x∗n‖ for some xn with ‖xn‖ = 1 and x∗n → x∗. It suffices
to prove that there exists a sequence (yn) such that x∗n ∈ Jϕyn. It suffices to
take yn = rnxn with ϕ(rn) = ‖x∗n‖.

By definition of Jϕ, it is clear that Jϕ is single valued if and only if X is
smooth (at any x 6= 0 there is an unique x∗ ∈ X∗ which satisfies 〈x∗, x〉 = ‖x‖
and ‖x∗‖ = 1) which, in turn, is the same as saying that the norm of X is
Gâteaux differentiable at every nonzero point of X (see J. Diestel [5, Theorem 1
in Chapter 2]).
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Let us assume that X is smooth and denote by (grad‖ · ‖):X \{0} → X∗ the
map defined by

〈(grad ‖ · ‖)(x), h〉 = lim
t→0

‖x + th‖ − ‖x‖
t

for all h ∈ X.

It is easily seen (M.M. Vajnberg [12, Lemma 2.5]) that this map has the
following metric properties:

(1.2) ‖(grad ‖ · ‖)(x)‖ = 1; 〈(grad ‖ · ‖)(x), x〉 = ‖x‖

for any nonzero x, and

(grad ‖ · ‖)(αx) = signα(grad ‖ · ‖)(x)

for any nonzero x and α 6= 0.
By comparing (1.1) and (1.2) we deduce that, on a smooth Banach space,

any duality mapping Jϕ is a single-valued map from X into X∗ defined as follows

(1.3)
Jϕ0 = 0

Jϕx = ϕ(‖x‖)(grad ‖ · ‖)(x) if x 6= 0.

The second part of this introduction deals with the Kuratowski measure of
noncompactness for continuous and bounded operators in Banach spaces.

Recall that, given any bounded subset B of a Banach space X, the Kura-
towski measure of noncompactness of B, α(B), is defined as the infimum of those
ε > 0 such that B can be covered with a finite number of subsets of B having
diameter less or equal to ε. For the properties of α see M. Furi, M. Martelli and
A. Vignoli [8], J.M. Ayerbe Toledano, T. Dominguez Benavides and G. López
Acedo [2]. We only recall here the following two properties which are needed for
the purpose of this paper: for any bounded set B ⊂ X, α(B) = 0 if and only if B

is compact and α(B) = α(B). We also recall the Nussbaum’s nice result concern-
ing the Kuratowski measure of noncompactness of the sphere in an infinite di-
mensional Banach space X: for any r > 0, denote by SX,r = {x ∈ X | ‖x‖ = r}.
Then α(SX,r) = 2r. For the proof, cf. R.D. Nussbaum [10] (see also M. Furi and
A. Vignoli [7]).

Let X and Y be Banach spaces and F :X → Y be a continuous and bounded
operator. By definition, the Kuratowski measure of noncompactness of F is

α(F ) = inf{k ≥ 0 | α[F (B)] ≤ k · α(B), B ⊂ X bounded}.

If dim X = ∞, α(F ) may be equivalently defined as

(1.4) α(F ) = sup
{

α[F (B)]
α(B)

∣∣∣∣ B ⊂ X bounded, α(B) > 0
}

.

By definition of α(F ), it easily follows that α(F ) = 0 if and only if F is
compact. For many other properties of α(F ), cf. M. Furi, M. Martelli and



184 G. Dinca

A. Vignoli [8], J.M. Ayerbe Toledano, T. Dominguez Benavides and G. López
Acedo [2].

2. Statement and proof of the main result

We can now prove the main theorem of this paper.

Theorem 2.1. Assume that (X, ‖ · ‖) is a Banach space with Fréchet differ-
entiable norm. Then one has:

(a) Any duality mapping Jϕ:X → X∗ is norm-to-norm continuous and
bounded;

(b) α(Jϕ) = 0 if and only if dim X < ∞;
(c)

(2.1) α(Jϕ) ≥ sup
{

ϕ(r)
r

∣∣∣∣ r > 0
}

if dim X = ∞.

For the proof we need the following lemma:

Lemma 2.2. Let (X, ‖ ·‖) be a real Banach space with Gâteaux differentiable
norm. Then one has:

(a) For any gauge function ϕ and any r > 0, Jϕ(SX,r) is dense in SX∗,ϕ(r);
(b) Jϕ(X) is dense in X∗.

Proof. (a) Clearly, Jϕ is defined by (1.3) and acts from SX,r into SX∗,ϕ(r).
Let x∗ ∈ SX∗,ϕ(r). According to Bishop–Phelps theorem, there is a sequence

(xn) ⊂ X such that

(2.2) Jxn = ‖xn‖(grad ‖ · ‖)(xn) → x∗.

We deduce from this that ‖xn‖ → ‖x∗‖ = ϕ(r) such that from (2.2) we infer
that

(2.3) ϕ(r)grad ‖ · ‖(xn) → x∗.

Setting yn = rxn/‖xn‖, (2.3) reads as ϕ(‖yn‖)(grad ‖ · ‖)(yn) → x∗, that is
Jϕyn → x∗ with yn ∈ SX,r.

(b) Clearly, if x∗ = 0X∗ , Jϕxn → 0X∗ for any (xn) ⊂ X with xn → 0X .
Let x∗ ∈ X∗ \ {0} and r > 0 be such that ‖x∗‖ = ϕ(r). According to the

preceding point in lemma, there is a sequence (yn) ⊂ SX,r such that Jϕyn → x∗.�

Proof of Theorem 2.1. (a) Since the norm of X is Fréchet differentiable,
Jϕ is single valued and defined by (1.3).

Accordingly, if ‖x‖ ≤ C then ‖Jϕx‖ ≤ ϕ(C), thus Jϕ is bounded. (Notice
that the boundedness is a property that any duality mapping possesses, even in
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case that Jϕ would be a multivalued map. This easily follows by the definition
of Jϕ).

On the other hand, the Fréchet differentiability of the norm of X implies
that the map

x ∈ X \ {0} 7→ (grad ‖ · ‖)(x) ∈ SX∗,1

is norm-to-norm continuous (see M.I. Kadeč [9, Lemma 2]) and then by (1.3)
again, the continuity of Jϕ follows.

(b) Assume that α(Jϕ) = 0. Then Jϕ is compact. Accordingly, Jϕ(SX,r) is
compact. But, according to Lemma 2.2, Jϕ(SX,r) = SX∗,ϕ(r) and the compact-
ness of SX∗,ϕ(r) implies that X is finite dimensional.

Conversely, if dim X < ∞, any continuous and bounded operator from X

into X∗ is compact. In particular, Jϕ:X → X∗ is compact thus, α(Jϕ) = 0.
(c) Since dim X = ∞, α(Jϕ) is given by (see (1.4))

α(Jϕ) = sup
{

α[Jϕ(B)]
α(B)

∣∣∣∣ B ⊂ X bounded, α(B) > 0
}

.

Take B = SX,r, for any r > 0. The above quoted properties of α, Lemma 2.2
and Nussbaum’s result allow us to write

α[Jϕ(SX,r)]
α(SX,r)

=
α[Jϕ(SX,r)]

α(SX,r)
=

α(SX∗,ϕ(r))
α(SX,r)

=
ϕ(r)

r
.

Consequently{
ϕ(r)

r

∣∣∣∣ r > 0
}
⊂

{
α[Jϕ(B)]

α(B)

∣∣∣∣ B ⊂ X bounded, α(B) > 0
}

and, from this, estimate (2.1) follows. �

3. Application: the Kuratowski measure
of noncompactness for p-Laplacian

In what follows, Ω designates a bounded domain in RN , N ≥ 2, and p is
a real number such that 1 < p < ∞. We shall denote by (W 1,p(Ω), ‖ · ‖) the
classical Sobolev space

W 1,p(Ω) =
{

u ∈ Lp(Ω)
∣∣∣∣ ∂u

∂xi
∈ Lp(Ω) for i = 1, . . . , N,

where
∂u

∂xi
is the distributional derivative

}
,

endowed with the norm

(3.1) ‖u‖p = ‖u‖p
Lp(Ω) +

N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥p

Lp(Ω)

,

and by W 1,p
0 (Ω), the closure of C∞0 (Ω) in the space (W 1,p(Ω), ‖ · ‖).
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Due to Poincaré’s inequality

‖u‖Lp(Ω) ≤ C‖|∇u|‖Lp(Ω) for all u ∈ W 1,p
0 (Ω),

the norm (3.1) is equivalent on W 1,p
0 (Ω) to the norm

(3.2) ‖u‖1,p = ‖|∇u|‖Lp(Ω),

where |∇u| stands for the Euclidean norm of ∇u.
Starting from now, W 1,p

0 (Ω) will be always considered as endowed with the
norm (3.2).

The space (W 1,p
0 (Ω), ‖·‖1,p) is an infinite dimensional, separable, reflexive and

uniformly convex Banach space (see R.A. Adams [1]), with Fréchet differentiable
norm (see, for example [6]).

Consider the operator (also known as the minus p-Laplacian)

−∆p: (W
1,p
0 (Ω), ‖ · ‖1,p) → (W 1,p

0 (Ω), ‖ · ‖1,p)∗,

defined by

−∆pu = −div(|∇u|p−2∇u) = − ∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
for all u ∈ W 1,p

0 (Ω) or, equivalently,

(3.3) 〈−∆pu, v〉 =
∫

Ω

|∇u|p−2∇u · ∇v dx

for all u ∈ W 1,p
0 (Ω).

Defined in this manner, −∆p is nothing else but the duality mapping on
W 1,p

0 (Ω) corresponding to the gauge function ϕ(t) = tp−1.
According to (2.1), one has

(3.4) α(−∆p) ≥ sup{rp−2 | r > 0}.

It follows that, for p ∈ (1, 2) ∪ (2,∞), α(−∆p) = ∞.
For p = 2, it follows from (3.3) that

−∆2:W
1,2
0 (Ω) = H1

0 (Ω) → (H1
0 (Ω))∗ = H−1(Ω)

is defined by

−∆2u = − ∂

∂xi

(
∂u

∂xi

)
for any u ∈ H1

0 (Ω)

or, equivalently

〈−∆2u, v〉H1
0 (Ω),H−1(Ω) = (u, v)H1

0 (Ω), for all u, v ∈ H1
0 (Ω),

where 〈 · , · 〉H1
0 (Ω),H−1(Ω) stands for the duality pairing between H1

0 (Ω) and its
dual H−1(Ω) and ( · , · )H1

0 (Ω) designates the inner product on H1
0 (Ω).
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In other words, −∆2 = −∆ viewed as the canonical isomorphism between
H1

0 (Ω) and its dual H−1(Ω) given by Riesz theorem. Consequently, we have (see
M. Furi, M. Martelli and A. Vignoli [8]) α(−∆2) = α(−∆) ≤ ‖ − ∆‖ = 1. On
the other hand, the estimation (3.4) gives us α(−∆2) ≥ 1. Thus α(−∆2) = 1
and the proof is complete.
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