ON AN ASYMPTOTICALLY LINEAR SINGULAR BOUNDARY VALUE PROBLEMS

Dang Dinh Hai

Abstract. We prove the existence of positive solutions for the singular boundary value problems

$$
\begin{cases}-\Delta u=\frac{p(x)}{u^{\beta}}+\lambda f(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, 0<\beta<1$, $\lambda>0$ is a small parameter, $f:(0, \infty) \rightarrow \mathbb{R}$ is asymptotically linear at ∞ and is possibly singular at 0 .

1. Introduction

Consider the boundary value problems:

$$
\begin{cases}-\Delta u=\frac{p(x)}{u^{\beta}}+\lambda f(u) & \text { in } \Omega \tag{I}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{n} with smooth boundary $\partial \Omega, 0<\beta<1$, $p: \Omega \rightarrow \mathbb{R}$, and $f:(0, \infty) \rightarrow \mathbb{R}$ may be singular at 0 .

Singular problems of the type (I) have been studied extensively in recent years (see [3], [4], [6]-[10], [12]-[16] and the references therein). When f is continuous and nonnegative on $[0, \infty), \lim _{u \rightarrow \infty} f(u) / u=m \in(0, \infty)$ and f satisfies some

[^0]additional conditions at $0, \mathrm{Z}$. Zhang [16] show that (I) has a positive solution for $\lambda \in\left(0, \lambda_{1} / m\right)$, provided that $p \geq 0, p \not \equiv 0, p \phi_{1}^{-\beta} \in L^{q}(\Omega), n / 2<q$. Here λ_{1} and ϕ_{1} are the first eigenvalue and corresponding positive eigenfunction of $-\Delta$ with Dirichlet boundary conditions. Related results when $p \equiv 0$ and f is nonsingular can be found in [1]. In this paper, we are interested in the case when f is asymptotically linear at ∞ and is possibly singular at 0 , and p may be negative. Our results extend corresponding results [16]. In particular, our results when applied to the model cases
\[

$$
\begin{cases}-\Delta u=\frac{a}{u^{\beta}}+\lambda\left(\frac{b}{u^{\delta}}+u\left(1+\frac{1}{u+1}\right)\right) & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$
\]

and

$$
\begin{cases}-\Delta u=\frac{a}{u^{\beta}}+\lambda\left(\frac{b}{u^{\delta}}+u e^{1 /(1+u)}\right) & \text { in } \Omega \tag{1.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $a, b \in \mathbb{R}, \beta, \delta \in(0,1)$ give the existence of a positive solution to (1.1) provided that λ is close enough to λ_{1} on the left, and the existence of a positive solution to (1.2) if and only if $\lambda<\lambda_{1}$. Our approach is based on the method of sub- and supersolutions.

2. Preliminary results

We shall denote the norms in $L^{p}(\Omega), C^{1}(\bar{\Omega})$, and $C^{1, \alpha}(\bar{\Omega})$ by $\|\cdot\|_{p},|\cdot|_{1}$ and $|\cdot|_{1, \alpha}$, respectively. Throughout the paper we assume that $\left\|\phi_{1}\right\|_{\infty}=1$.

Let $d(x)$ denote the distance from x to the boundary of Ω.
We first establish a regularity result, which plays a crucial role in the proofs of the existence results.

Lemma 2.1. Let $h \in L^{1}(\Omega)$ and suppose that there exist numbers $\gamma \in(0,1)$ and $C>0$ such that

$$
\begin{equation*}
|h(x)| \leq \frac{C}{\phi_{1}^{\gamma}(x)} \tag{2.1}
\end{equation*}
$$

for almost every $x \in \Omega$. Let $u \in H_{0}^{1}(\Omega)$ be the solution of

$$
\begin{cases}-\Delta u=h & \text { in } \Omega \tag{2.2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Then there exist constants $\alpha \in(0,1)$ and $M>0$ depending only on C, γ, Ω such that $u \in C^{1, \alpha}(\bar{\Omega})$ and $|u|_{1, \alpha}<M$.

Proof. Note that Lemma 2.1 was proved in [8] under the additional assumptions that $h \geq 0$ and $u \leq \widetilde{C} d$ in Ω for some $\widetilde{C}>0$.

It follows from [4] that the problem

$$
\begin{cases}-\Delta v=\frac{1}{v^{\gamma}} & \text { in } \Omega \\ v=0 & \text { on } \partial \Omega\end{cases}
$$

has a positive solution v which is Lipschitz continuous in $\bar{\Omega}$. Let $C_{1}, C_{2}>0$ be such that $v(x) \leq C_{1} d(x) \leq C_{2} \phi_{1}(x)$ in Ω. Then

$$
-\Delta\left(C C_{2}^{\gamma} v\right) \geq \frac{C}{\phi_{1}^{\gamma}} \quad \text { in } \Omega
$$

Let \widetilde{u} be the solution of

$$
\begin{cases}-\Delta \widetilde{u}=|h| & \text { in } \Omega \\ \widetilde{u}=0 & \text { on } \partial \Omega\end{cases}
$$

and let $\bar{u}=u+\widetilde{u}$. Then

$$
-\Delta \bar{u}=h+|h| \quad \text { in } \Omega
$$

By the maximum principle, $\widetilde{u}(x) \leq C C_{2}^{\gamma} v(x) \leq C_{3} d(x)$ and $\bar{u}(x) \leq 2 C_{3} d(x)$ for $x \in \Omega$. Using the regularity result in [8], we conclude that there exist $\alpha \in(0,1)$ and $M_{0}>0$ such that $\widetilde{u}, \bar{u} \in C^{1, \alpha}(\bar{\Omega})$ and $|\widetilde{u}|_{1, \alpha},|\bar{u}|_{1, \alpha}<M_{0}$. Since $u=\bar{u}-\widetilde{u}$, Lemma 2.1 follows.

Remark 2.2. Note that under the assumptions of Lemma 2.1, (2.2) has a unique solution $u \in H_{0}^{1}(\Omega)$. Indeed, for $u, \xi \in H_{0}^{1}(\Omega)$, define

$$
a(u, \xi)=\int_{\Omega} \nabla u \cdot \nabla \xi d x, \quad \widehat{h}(\xi)=\int_{\Omega} h \xi d x
$$

Then $a(u, \xi)$ is bilinear, continuous, and coercive on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$. By Hardy's inequality (see e.g. [2, p. 194]) and the fact that d / ϕ_{1} is bounded in Ω, we obtain

$$
|\widehat{h}(\xi)| \leq k_{1} \int_{\Omega}\left|\frac{\xi}{d^{\gamma}}\right| d x \leq k_{1}\|d\|_{\infty}^{1-\gamma} \int_{\Omega}\left|\frac{\xi}{d}\right| d x \leq k_{2}| | \nabla \xi \|_{2}
$$

for all $\xi \in H_{0}^{1}(\Omega)$, where k_{1}, k_{2} are constants independent on ξ. Thus $\widehat{h} \in H^{-1}(\Omega)$ (the dual of $H_{0}^{1}(\Omega)$), and the Lax-Milgram Theorem (see [2, Corollary V.8]) implies the existence of a unique $u \in H_{0}^{1}(\Omega)$ such that $a(u, \xi)=\widehat{h}(\xi)$ for all $\xi \in H_{0}^{1}(\Omega)$.

Lemma 2.3. Let $h \in L^{1}(\Omega)$ satisfy (2.1) and let u be the solution of (2.2). Then $|u|_{1} \rightarrow 0$ as $\|h\|_{1} \rightarrow 0$.

Proof. By Lemma 2.1, there exists $M>0$ such that $|u|_{1, \alpha}<M$. Multiplying the equation in (2.2) by u and integrating gives

$$
\|\nabla u\|_{2}^{2}=\int_{\Omega} h u d x \leq\|u\|_{\infty}\|h\|_{1} \leq M\|h\|_{1}
$$

which implies $u \rightarrow 0$ in $L^{2}(\Omega)$ as $\|h\|_{1} \rightarrow 0$. Since $C^{1, \alpha}(\bar{\Omega})$ is compactly imbedded in $C^{1}(\bar{\Omega})$, it follows that $u \rightarrow 0$ in $C^{1}(\bar{\Omega})$ as $\|h\|_{1} \rightarrow 0$.

Now, consider the problem:

$$
\begin{cases}-\Delta u=h(x, u) & \text { in } \Omega \tag{2.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $h: \Omega \times(0, \infty) \rightarrow \mathbb{R}$ is continuous. Let $\phi, \psi \in C^{1}(\bar{\Omega})$ satisfy $\phi, \psi \geq l \phi_{1}$ in Ω for some $l>0$ and suppose there exist $\gamma \in(0,1)$ and $C>0$ such that

$$
\begin{equation*}
|h(x, w)| \leq \frac{C}{\phi_{1}^{\gamma}(x)} \tag{*}
\end{equation*}
$$

for almost every $x \in \Omega$ and all $w \in C(\bar{\Omega})$ with $\phi \leq w \leq \psi$ in Ω. Suppose ϕ, ψ are sub- and supersolution of (2.3), respectively, i.e. for all $\xi \in H_{0}^{1}(\Omega)$ with $\xi \geq 0$,

$$
\int_{\Omega} \nabla \phi \cdot \nabla \xi d x \leq \int_{\Omega} h(x, \phi) \xi d x, \quad \int_{\Omega} \nabla \psi \cdot \nabla \xi d x \geq \int_{\Omega} h(x, \psi) \xi d x
$$

Note that the integrals on the right-hand side are defined by virtue of Hardy's inequality.

LEmma 2.4. Under the above assumptions, there exists $\alpha \in(0,1)$ such that (2.3) has a solution $u \in C^{1, \alpha}(\bar{\Omega})$.

Proof. For each $v \in C(\bar{\Omega})$, define $\widetilde{h}(x, v)=h(x, \min (\max (v, \phi), \psi))$. Then, in view of $(*)$, we have

$$
|\widetilde{h}(x, v)| \leq \frac{C}{\phi_{1}^{\gamma}(x)}
$$

for almost every $x \in \Omega$, where C is a positive constant independent on v. Hence, it follows from Remark 2.2 and Lemma 2.1 that for each $v \in C(\bar{\Omega})$, the problem

$$
\begin{cases}-\Delta u=\widetilde{h}(x, v) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique solution $u \in C^{1, \alpha}(\bar{\Omega})$ with $|u|_{1, \alpha}<C$, where $\alpha \in(0,1)$ and $C>$ 0 are constants independent on v. Define $T v=u$. Then T is a bounded, compact, and continuous operator on $C(\bar{\Omega})$. Note that the continuity of T follows from Lemma 2.3, the fact that $1 / \phi_{1}^{\gamma} \in L^{1}(\Omega)$, and the Lebesgue dominated convergence. Hence T has a fixed point u by Schauder fixed point theorem. Using standard arguments (see e.g. [5], [11]), we obtain $\phi \leq u \leq \psi$ in Ω, and Lemma 2.4 follows.

3. Main results

We make the following assumptions:
(A.1) $p \in L^{\infty}(\Omega)$.
(A.2) $f:(0, \infty) \rightarrow \mathbb{R}$ is continuous and there exists $\delta \in(0,1)$ such that

$$
\limsup _{u \rightarrow 0^{+}} u^{\delta}|f(u)|<\infty
$$

(A.3) There exist positive numbers m, k, A such that

$$
\lim _{u \rightarrow \infty} \frac{f(u)}{u}=m \quad \text { and } \quad f(u) \geq m u+k \quad \text { for } u \geq A
$$

Let $\lambda_{\infty}=\lambda_{1} / m$. Then we have:
Theorem 3.1. Let (A.1)-(A.3) hold. Then there exists a positive number ε such that for $\lambda \in\left(\lambda_{\infty}-\varepsilon, \lambda_{\infty}\right)$, problem (I) has a positive solution $u_{\lambda} \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. Furthermore,

$$
u_{\lambda} \geq \frac{k \lambda_{\infty}}{4\left(\lambda_{\infty}-\lambda\right)} \phi_{1} \quad \text { in } \Omega
$$

Theorem 3.2. Let (A.2) hold, $f \geq 0$ and suppose
(A.3') $\lim \sup _{u \rightarrow \infty} f(u) / u=m$ for some $m \in(0, \infty)$.

In addition, assume $p \geq 0, p \not \equiv 0$ in Ω and either (A.1) or
(A.1') $p \phi_{1}^{-\beta} \in L^{q}(\Omega)$ for some $q>n$
holds. Then, for $\lambda \in\left(0, \lambda_{\infty}\right)$, (I) has a positive solution $u_{\lambda} \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. If, in addition, $f(u) \geq m u$ for all $u>0$, then (I) has no positive solutions for $\lambda \geq \lambda_{\infty}$.

Remark 3.3. When $p \equiv 0$ and f is nonsingular, the existence result in Theorem 3.1 was obtained in [1] using bifurcation theory. Theorem 3.2 improves Theorem 1 in [16], where f is required to be continuous on $[0, \infty), f(0)=0$, and $\lim _{u \rightarrow 0^{+}} f(u) / u=m_{1}$.

Remark 3.4. It should be noted that Theorem 3.1 may not be true if $k=0$ in (A.3). Indeed, consider the problem

$$
\begin{cases}-\Delta u=-\frac{1}{u^{\beta}}+\lambda u & \text { in } \Omega \tag{**}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Then, by multiplying the equation in $(* *)$ by ϕ_{1} and integrating, we see that $(* *)$ does not have any positive solutions for $\lambda<\lambda_{1}=\lambda_{\infty}$.

We are ready to give the proofs of the main results. Without loss of generality, we assume $m=1$.

Proof of Theorem 3.1. Let $\lambda_{1} / 2<\lambda<\lambda_{1}$ and $c=k \lambda_{1} /\left(4\left(\lambda_{1}-\lambda\right)\right)$. Let ϕ_{0}, z_{0} satisfy

$$
-\Delta \phi_{0}=\left\{\begin{array}{ll}
\lambda(c+k) \phi_{1} & \text { if } \phi_{1} \geq A / c, \\
0 & \text { if } \phi_{1}<A / c
\end{array} \quad \phi_{0}=0 \quad \text { on } \partial \Omega,\right.
$$

and

$$
-\Delta z_{0}=\left\{\begin{array}{ll}
\lambda(c+k) \phi_{1} & \text { in } \Omega, \\
z_{0}=0 & \text { on } \partial \Omega,
\end{array} \quad z_{0}=0 \quad \text { on } \partial \Omega\right.
$$

Note that $z_{0}=\left(\lambda(c+k) / \lambda_{1}\right) \phi_{1}$. Then

$$
-\Delta\left(z_{0}-\phi_{0}\right)=h \equiv \begin{cases}0 & \text { if } \phi_{1} \geq A / c \\ \lambda(c+k) \phi_{1} & \text { if } \phi_{1}<A / c\end{cases}
$$

Note that

$$
\left|\lambda(c+k) \phi_{1}\right| \leq \lambda_{1}(A+k)
$$

if $\phi_{1}<A / c$, and so $\|h\|_{1} \rightarrow 0$ as $\lambda \rightarrow \lambda_{1}^{-}$. Hence Lemma 2.3 implies

$$
\left|z_{0}-\phi_{0}\right|_{1} \rightarrow 0 \quad \text { as } \lambda \rightarrow \lambda_{1}^{-}
$$

Let $c_{0}>0$ be such that $d \leq c_{0} \phi_{1}$ in Ω. Then there exists $\varepsilon>0$ such that, for $\lambda_{1}-\lambda<\varepsilon$, we have

$$
\left|\phi_{0}-z_{0}\right|_{1}<\frac{k}{8 c_{0}}
$$

Hence, for such λ,

$$
\phi_{0} \geq z_{0}-\frac{k}{8 c_{0}} d \geq z_{0}-\frac{k}{8} \phi_{1}=\left(\frac{\lambda(c+k)}{\lambda_{1}}-\frac{k}{8}\right) \phi_{1}
$$

in Ω. Since $\lambda>\lambda_{1} / 2$, this implies

$$
\phi_{0} \geq\left(\frac{\lambda c}{\lambda_{1}}+\frac{3 k}{8}\right) \phi_{1}=\left(\frac{k \lambda_{1}}{4\left(\lambda_{1}-\lambda\right)}+\frac{k}{8}\right) \phi_{1}=\left(c+\frac{k}{8}\right) \phi_{1}
$$

in Ω. Let z be the solution of

$$
\begin{cases}-\Delta z=\frac{1}{\phi_{1}^{\gamma}} & \text { in } \Omega \tag{3.1}\\ z=0 & \text { on } \partial \Omega\end{cases}
$$

where $\gamma=\max (\beta, \delta)$, and let $c_{1}>0$ be such that $z \leq c_{1} \phi_{1}$ in Ω. Then

$$
\phi_{0} \geq c \phi_{1}+k_{1} z
$$

in Ω, where $k_{1}=k / 8 c_{1}$. By decreasing ε further if necessary, we can assume that

$$
\frac{\lambda_{1} K}{c^{\delta}}+\frac{\|p\|_{\infty}}{c^{\beta}}<k_{1}
$$

where $K>0$ is such that

$$
\begin{equation*}
|f(u)| \leq \frac{K}{u^{\delta}} \tag{3.2}
\end{equation*}
$$

for $u \in(0, A)$. Note that the existence of K follows from (A.2).

Let $\phi=\phi_{0}-k_{1} z$. Then $\phi \geq c \phi_{1}$ in Ω. We shall verify that ϕ is a subsolution of (I). Let $\xi \in H_{0}^{1}(\Omega)$ with $\xi \geq 0$. Then

$$
\begin{align*}
\int_{\Omega} \nabla \phi \cdot \nabla \xi d x & =\int_{\Omega}(-\Delta \phi) \xi d x=\int_{\Omega}\left(-\Delta \phi_{0}\right) \xi d x-k_{1} \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x \tag{3.3}\\
& =\lambda \int_{\phi_{1}>A / c}(c+k) \phi_{1} \xi d x-k_{1} \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x .
\end{align*}
$$

If $\phi_{1}(x)>A / c$ then $\phi(x) \geq A$ and so

$$
f(\phi(x)) \geq \phi(x)+k \geq(c+k) \phi_{1}(x)
$$

which implies

$$
\begin{equation*}
\lambda \int_{\phi_{1}>A / c} f(\phi) \xi d x \geq \lambda \int_{\phi_{1}>A / c}(c+k) \phi_{1} \xi d x . \tag{3.4}
\end{equation*}
$$

On the other hand, using (3.2) and the fact that $f(u)>0$ for $u>A$, we get

$$
\begin{align*}
\lambda \int_{\phi_{1}<A / c} f(\phi) \xi d x & \geq \lambda \int_{\left(\phi_{1}<A / c\right) \cap(\phi<A)} f(\phi) \xi d x \geq-\int_{\phi<A} \frac{\lambda K \xi}{\phi^{\delta}} d x \tag{3.5}\\
& \geq-\frac{\lambda K}{c^{\delta}} \int_{\Omega} \frac{\xi}{\phi_{1}^{\delta}} d x \geq-\frac{\lambda_{1} K}{c^{\delta}} \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x
\end{align*}
$$

Also
(3.6) $\int_{\Omega} \frac{p(x)}{\phi^{\beta}} \xi d x \geq-\|p\|_{\infty} \int_{\Omega} \frac{\xi}{\phi^{\beta}} d x \geq-\frac{\|p\|_{\infty}}{c^{\beta}} \int_{\Omega} \frac{\xi}{\phi_{1}^{\beta}} d x \geq-\frac{\|p\|_{\infty}}{c^{\beta}} \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x$.

Combining (3.3)-(3.6), we obtain

$$
\int_{\Omega} \nabla \phi \cdot \nabla \xi d x \leq \int_{\Omega}\left(\frac{p(x)}{\phi^{\beta}}+\lambda f(\phi)\right) \xi d x
$$

i.e. ϕ is a subsolution of (I).

Next, we shall construct a supersolution ψ of (I) with $\psi \geq \phi$. Let λ, c be as in the above and let $a>1$ be such that

$$
\lambda a<\lambda_{1} .
$$

By (A.2) and (A.3), there exist $B, L>0$ such that

$$
\begin{equation*}
f(u) \leq a u \tag{3.7}
\end{equation*}
$$

for $u>B$, and

$$
\begin{equation*}
|f(u)| \leq \frac{L}{u^{\delta}} \tag{3.8}
\end{equation*}
$$

for $u<B$. Let $M_{0}=\lambda L+\|p\|_{\infty}$ and $M>\max \left\{\left(\lambda a c_{1} M_{0}\right) /\left(\lambda_{1}-\lambda a\right), 1\right\}$, where $c_{1}>0$ is such that $z \leq c_{1} \phi_{1}$ in Ω and z is defined in (3.1).

Let $\psi=M \phi_{1}+M_{0} z$. We shall verify that ψ is a supersolution of (I). Let $\xi \in H_{0}^{1}(\Omega)$ with $\xi \geq 0$. Then

$$
\begin{equation*}
\int_{\Omega} \nabla \psi \cdot \nabla \xi d x=\lambda_{1} M \int_{\Omega} \xi \phi_{1} d x+M_{0} \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x \tag{3.9}
\end{equation*}
$$

We have

$$
\begin{equation*}
\lambda \int_{\Omega} f(\psi) \xi d x=\lambda \int_{\psi>B} f(\psi) \xi d x+\lambda \int_{\psi<B} f(\psi) \xi d x . \tag{3.10}
\end{equation*}
$$

By (3.7),
(3.11) $\lambda \int_{\psi>B} f(\psi) \xi d x \leq \lambda a \int_{\psi>B} \psi \xi d x$

$$
\begin{aligned}
& \leq \lambda a M \int_{\psi>B} \phi_{1} \xi d x+\lambda a M_{0} \int_{\psi>B} z \xi d x \\
& \leq \lambda a M \int_{\psi>B} \phi_{1} \xi d x+\lambda a c_{1} M_{0} \int_{\psi>B} \phi_{1} \xi d x \\
& \leq \lambda_{1} M \int_{\Omega} \xi \phi_{1} d x
\end{aligned}
$$

Next, using (3.8), we obtain

$$
\begin{equation*}
\lambda \int_{\psi<B} f(\psi) \xi d x \leq \lambda L \int_{\psi<B} \frac{\xi}{\psi^{\delta}} d x \leq \lambda L \int_{\psi<B} \frac{\xi}{\phi_{1}^{\delta}} d x \leq \lambda L \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x \tag{3.12}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\int_{\Omega} \frac{p(x) \xi}{\psi^{\beta}} d x \leq\|p\|_{\infty} \int_{\Omega} \frac{\xi}{\phi_{1}^{\beta}} d x \leq\|p\|_{\infty} \int_{\Omega} \frac{\xi}{\phi_{1}^{\gamma}} d x \tag{3.13}
\end{equation*}
$$

Combining (3.9)-(3.13), we obtain

$$
\int_{\Omega} \nabla \psi \cdot \nabla \xi d x \geq \int_{\Omega}\left(\frac{p(x)}{\psi^{\beta}}+\lambda f(\psi)\right) \xi d x
$$

i.e. ψ is a supersolution of (I). Lemma 2.4 now gives the existence of a $C^{1, \alpha}(\bar{\Omega})$ solution u of (I) with $u \geq c \phi_{1}$ in Ω.

Proof of Theorem 3.2. Under the assumptions on p, it follows from Lemma 2.1 or regularity results (see e.g. [2]) that the problem

$$
\begin{cases}-\Delta w=\frac{p(x)}{\phi_{1}^{\beta}} & \text { in } \Omega \\ w=0 & \text { on } \partial \Omega\end{cases}
$$

has a solution $w \in C^{1, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$. Let $m_{0}, m_{1}>0$ be such that $m_{0} \phi_{1} \leq w \leq m_{1} \phi_{1}$ in Ω. For $v \in C(\bar{\Omega})$, let $u=T v$ be the solution of

$$
\begin{cases}-\Delta \phi=\frac{p(x)}{\max ^{\beta}\left(v, c \phi_{1}\right)} & \text { in } \Omega \\ \phi=0 & \text { on } \partial \Omega\end{cases}
$$

where $c>0$ is a small number so that $c^{1-\beta^{2}} \leq m_{1}^{-\beta} m_{0}$ and $c^{1+\beta} \leq m_{1}$. Then T is a bounded compact mapping on $C(\bar{\Omega})$ by Lemmas 2.1 and 2.3. Hence T has a fixed point ϕ. We claim that $\phi \geq c \phi_{1}$ in Ω. Indeed, since

$$
-\Delta \phi \leq \frac{p(x)}{c^{\beta} \phi_{1}^{\beta}}
$$

in Ω, it follows from the weak maximum principle that

$$
\phi \leq c^{-\beta} w \leq c^{-\beta} m_{1} \phi_{1}
$$

in Ω. Hence

$$
-\Delta \phi \geq \frac{p(x)}{\max ^{\beta}\left(c^{-\beta} m_{1}, c\right) \phi_{1}^{\beta}}=\frac{c^{\beta^{2}} m_{1}^{-\beta} p(x)}{\phi_{1}^{\beta}}
$$

in Ω, and so

$$
u \geq c^{\beta^{2}} m_{1}^{-\beta} w \geq c^{\beta^{2}} m_{1}^{-\beta} m_{0} \phi_{1} \geq c \phi_{1}
$$

in Ω. Thus ϕ is a solution of

$$
\begin{cases}-\Delta \phi=\frac{p(x)}{\phi^{\beta}} & \text { in } \Omega \\ \phi=0 & \text { on } \partial \Omega\end{cases}
$$

and since $f \geq 0$, it is easily seen that ϕ is a subsolution of (I). The existence of a supersolution ψ with $\psi \geq \phi$ is derived exactly as in the proof of Theorem 3.1. Finally, the nonexistence result under the additional assumption follows upon multiplying the equation by ϕ_{1} and integrating.

References

[1] A. Ambrozetti, D. Arcoya and B. Buffoni, Positive solutions for some semipositone problems via bifurcation theory, Differential Integral Equations 7 (1994), 655663.
[2] H. Brezis, Analyse Fonctionnelle, Theorie et Applications, second edition, Masson, Paris, 1983.
[3] M.M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equation 14 (1989), 1315-1327.
[4] M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
[5] C. Decoster and S. Nicaise, Lower and upper solutions for elliptic problems in nonsmooth domains, J. Differential Equations 244 (2008), 599-629.
[6] J.I. Diaz, J.M. Morel and L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333-1344.
[7] M. Ghergu and V. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520-536.
[8] J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 117-158.
[9] D.D. HaI, On singular nonpositone semilinear elliptic problems, Topol. Methods Nonlinear Anal. 32 (2008), 41-47.
[10] A.C. Lazer and P.J. Mackenna, On a singular nonlinear elliptic boundary value problem, Proc. Amer. Math. Soc. 111 (1991), 721-730.
[11] V.K. Le and K. Schmitt, Some general concepts of sub- and supersolutions for nonlinear elliptic problems, Topol. Methods Nonlinear Anal. 28 (2006), 87-103.
[12] A.W. Shaker, On singular semilinear elliptic equations, J. Math. Anal. Appl. 173 (1993), 222-228.
[13] C.A. Stuart, Existence and approximation of solutions of non-linear elliptic equations, Math. Z. 147 (1976), 53-63.
[14] Y. Sun, S. Wu and Y. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems, J. Differential Equations 176 (2001), 511-531.
[15] Z. Zhang, On a Dirichlet problem with a singular nonlinearity, J. Math. Anal. Appl. 194 (1995), 103-113.
[16] , Critical points and positive solutions of singular elliptic boundary value problems, J. Math. Anal. Appl. 302 (2005), 476-483.

Dang Dinh Hai
Department of Mathematics
Mississippi State University Mississippi State, MS 39762, USA

E-mail address: dang@math.msstate.edu

[^0]: 2010 Mathematics Subject Classification. 35J75, 35J25.
 Key words and phrases. Singular, elliptic BVP, asymptotically linear.

