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ON AN ASYMPTOTICALLY LINEAR
SINGULAR BOUNDARY VALUE PROBLEMS

Dang Dinh Hai

Abstract. We prove the existence of positive solutions for the singular

boundary value problems

8<
:
−∆u =

p(x)

uβ
+ λf(u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, 0 < β < 1,

λ > 0 is a small parameter, f : (0,∞) → R is asymptotically linear at ∞
and is possibly singular at 0.

1. Introduction

Consider the boundary value problems:

(I)

{
−∆u =

p(x)
uβ

+ λf(u) in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in Rn with smooth boundary ∂Ω, 0 < β < 1,
p: Ω → R, and f : (0,∞) → R may be singular at 0.

Singular problems of the type (I) have been studied extensively in recent years
(see [3], [4], [6]–[10], [12]–[16] and the references therein). When f is continuous
and nonnegative on [0,∞), limu→∞ f(u)/u = m ∈ (0,∞) and f satisfies some
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additional conditions at 0, Z. Zhang [16] show that (I) has a positive solution
for λ ∈ (0, λ1/m), provided that p ≥ 0, p 6≡ 0, pφ−β1 ∈ Lq(Ω), n/2 < q. Here
λ1 and φ1 are the first eigenvalue and corresponding positive eigenfunction of
−∆ with Dirichlet boundary conditions. Related results when p ≡ 0 and f is
nonsingular can be found in [1]. In this paper, we are interested in the case
when f is asymptotically linear at ∞ and is possibly singular at 0, and p may
be negative. Our results extend corresponding results [16]. In particular, our
results when applied to the model cases

(1.1)

 −∆u =
a

uβ
+ λ

(
b

uδ
+ u

(
1 +

1
u+ 1

))
in Ω,

u = 0 on ∂Ω,

and

(1.2)

 −∆u =
a

uβ
+ λ

(
b

uδ
+ ue1/(1+u)

)
in Ω,

u = 0 on ∂Ω,

with a, b ∈ R, β, δ ∈ (0, 1) give the existence of a positive solution to (1.1)
provided that λ is close enough to λ1 on the left, and the existence of a positive
solution to (1.2) if and only if λ < λ1. Our approach is based on the method of
sub- and supersolutions.

2. Preliminary results

We shall denote the norms in Lp(Ω), C1(Ω), and C1,α(Ω) by || · ||p, | · |1 and
| · |1,α, respectively. Throughout the paper we assume that ||φ1||∞ = 1.

Let d(x) denote the distance from x to the boundary of Ω.
We first establish a regularity result, which plays a crucial role in the proofs

of the existence results.

Lemma 2.1. Let h ∈ L1(Ω) and suppose that there exist numbers γ ∈ (0, 1)
and C > 0 such that

(2.1) |h(x)| ≤ C

φγ1(x)

for almost every x ∈ Ω. Let u ∈ H1
0 (Ω) be the solution of

(2.2)

{
−∆u = h in Ω,

u = 0 on ∂Ω.

Then there exist constants α ∈ (0, 1) and M > 0 depending only on C, γ, Ω such
that u ∈ C1,α(Ω) and |u|1,α < M .

Proof. Note that Lemma 2.1 was proved in [8] under the additional as-
sumptions that h ≥ 0 and u ≤ C̃d in Ω for some C̃ > 0.
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It follows from [4] that the problem{
−∆v =

1
vγ

in Ω,

v = 0 on ∂Ω,

has a positive solution v which is Lipschitz continuous in Ω.Let C1, C2 > 0 be
such that v(x) ≤ C1d(x) ≤ C2φ1(x) in Ω. Then

−∆(CCγ2 v) ≥
C

φγ1
in Ω.

Let ũ be the solution of {
−∆ũ = |h| in Ω,

ũ = 0 on ∂Ω,
and let u = u+ ũ. Then

−∆u = h+ |h| in Ω.

By the maximum principle, ũ(x) ≤ CCγ2 v(x) ≤ C3d(x) and u(x) ≤ 2C3d(x) for
x ∈ Ω. Using the regularity result in [8], we conclude that there exist α ∈ (0, 1)
and M0 > 0 such that ũ, u ∈ C1,α(Ω) and |ũ|1,α, |u|1,α < M0. Since u = u − ũ,
Lemma 2.1 follows. �

Remark 2.2. Note that under the assumptions of Lemma 2.1, (2.2) has a
unique solution u ∈ H1

0 (Ω). Indeed, for u, ξ ∈ H1
0 (Ω), define

a(u, ξ) =
∫

Ω

∇u.∇ξ dx, ĥ(ξ) =
∫

Ω

hξ dx.

Then a(u, ξ) is bilinear, continuous, and coercive on H1
0 (Ω)×H1

0 (Ω). By Hardy’s
inequality (see e.g. [2, p. 194]) and the fact that d/φ1 is bounded in Ω, we obtain

|ĥ(ξ)| ≤ k1

∫
Ω

∣∣∣∣ ξdγ
∣∣∣∣ dx ≤ k1||d||1−γ∞

∫
Ω

∣∣∣∣ ξd
∣∣∣∣ dx ≤ k2||∇ξ||2,

for all ξ ∈ H1
0 (Ω), where k1, k2 are constants independent on ξ. Thus ĥ ∈ H−1(Ω)

(the dual of H1
0 (Ω)), and the Lax–Milgram Theorem (see [2, Corollary V.8])

implies the existence of a unique u ∈ H1
0 (Ω) such that a(u, ξ) = ĥ(ξ) for all

ξ ∈ H1
0 (Ω).

Lemma 2.3. Let h ∈ L1(Ω) satisfy (2.1) and let u be the solution of (2.2).
Then |u|1 → 0 as ||h||1 → 0.

Proof. By Lemma 2.1, there exists M > 0 such that |u|1,α < M . Multi-
plying the equation in (2.2) by u and integrating gives

||∇u||22 =
∫

Ω

hu dx ≤ ||u||∞||h||1 ≤M ||h||1,

which implies u→ 0 in L2(Ω) as ||h||1 → 0. Since C1,α(Ω) is compactly imbed-
ded in C1(Ω), it follows that u→ 0 in C1(Ω) as ||h||1 → 0. �
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Now, consider the problem:

(2.3)

{
−∆u = h(x, u) in Ω,

u = 0 on ∂Ω,

where h: Ω × (0,∞) → R is continuous. Let φ, ψ ∈ C1(Ω) satisfy φ, ψ ≥ lφ1 in
Ω for some l > 0 and suppose there existγ ∈ (0, 1) and C > 0 such that

(∗) |h(x,w)| ≤ C

φγ1(x)

for almost every x ∈ Ω and all w ∈ C(Ω) with φ ≤ w ≤ ψ in Ω. Suppose φ, ψ are
sub- and supersolution of (2.3), respectively, i.e. for all ξ ∈ H1

0 (Ω) with ξ ≥ 0,∫
Ω

∇φ.∇ξ dx ≤
∫

Ω

h(x, φ)ξ dx,
∫

Ω

∇ψ.∇ξ dx ≥
∫

Ω

h(x, ψ)ξ dx.

Note that the integrals on the right-hand side are defined by virtue of Hardy’s
inequality.

Lemma 2.4. Under the above assumptions, there exists α ∈ (0, 1) such that
(2.3) has a solution u ∈ C1,α(Ω).

Proof. For each v ∈ C(Ω), define h̃(x, v) = h(x,min(max(v, φ), ψ)). Then,
in view of (∗), we have

|h̃(x, v)| ≤ C

φγ1(x)
for almost every x ∈ Ω, where C is a positive constant independent on v. Hence,
it follows from Remark 2.2 and Lemma 2.1 that for each v ∈ C(Ω), the problem{

−∆u = h̃(x, v) in Ω,

u = 0 on ∂Ω,

has a unique solution u ∈ C1,α(Ω) with |u|1,α < C, where α ∈ (0, 1) and C >

0 are constants independent on v. Define Tv = u. Then T is a bounded,
compact, and continuous operator on C(Ω). Note that the continuity of T follows
from Lemma 2.3, the fact that 1/φγ1 ∈ L1(Ω), and the Lebesgue dominated
convergence. Hence T has a fixed point u by Schauder fixed point theorem.
Using standard arguments (see e.g. [5], [11]), we obtain φ ≤ u ≤ ψ in Ω, and
Lemma 2.4 follows. �

3. Main results

We make the following assumptions:

(A.1) p ∈ L∞(Ω).
(A.2) f : (0,∞) → R is continuous and there exists δ ∈ (0, 1) such that

lim sup
u→0+

uδ|f(u)| <∞.
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(A.3) There exist positive numbers m, k, A such that

lim
u→∞

f(u)
u

= m and f(u) ≥ mu+ k for u ≥ A.

Let λ∞ = λ1/m. Then we have:

Theorem 3.1. Let (A.1)–(A.3) hold. Then there exists a positive number ε
such that for λ ∈ (λ∞− ε, λ∞), problem (I) has a positive solution uλ ∈ C1,α(Ω)
for some α ∈ (0, 1). Furthermore,

uλ ≥
kλ∞

4(λ∞ − λ)
φ1 in Ω.

Theorem 3.2. Let (A.2) hold, f ≥ 0 and suppose

(A.3’) lim supu→∞ f(u)/u = m for some m ∈ (0,∞).

In addition, assume p ≥ 0, p 6≡ 0 in Ω and either (A.1) or

(A.1’) pφ−β1 ∈ Lq(Ω) for some q > n

holds. Then, for λ ∈ (0, λ∞), (I) has a positive solution uλ ∈ C1,α(Ω) for some
α ∈ (0, 1). If, in addition, f(u) ≥ mu for all u > 0, then (I) has no positive
solutions for λ ≥ λ∞.

Remark 3.3. When p ≡ 0 and f is nonsingular, the existence result in
Theorem 3.1 was obtained in [1] using bifurcation theory. Theorem 3.2 improves
Theorem 1 in [16], where f is required to be continuous on [0,∞), f(0) = 0, and
limu→0+ f(u)/u = m1.

Remark 3.4. It should be noted that Theorem 3.1 may not be true if k = 0
in (A.3). Indeed, consider the problem

(∗∗)

{
−∆u = − 1

uβ
+ λu in Ω,

u = 0 on ∂Ω.

Then, by multiplying the equation in (∗∗) by φ1 and integrating, we see that
(∗∗) does not have any positive solutions for λ < λ1 = λ∞.

We are ready to give the proofs of the main results. Without loss of generality,
we assume m = 1.

Proof of Theorem 3.1. Let λ1/2 < λ < λ1 and c = kλ1/(4(λ1 − λ)). Let
φ0, z0 satisfy

−∆φ0 =

{
λ(c+ k)φ1 if φ1 ≥ A/c,

0 if φ1 < A/c,
φ0 = 0 on ∂Ω,
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and

−∆z0 =

{
λ(c+ k)φ1 in Ω,

z0 = 0 on ∂Ω,
z0 = 0 on ∂Ω.

Note that z0 = (λ(c+ k)/λ1)φ1. Then

−∆(z0 − φ0) = h ≡

{
0 if φ1 ≥ A/c,

λ(c+ k)φ1 if φ1 < A/c,

Note that

|λ(c+ k)φ1| ≤ λ1(A+ k)

if φ1 < A/c, and so ||h||1 → 0 as λ→ λ−1 . Hence Lemma 2.3 implies

|z0 − φ0|1 → 0 as λ→ λ−1 .

Let c0 > 0 be such that d ≤ c0φ1 in Ω. Then there exists ε > 0 such that,
for λ1 − λ < ε, we have

|φ0 − z0|1 <
k

8c0
.

Hence, for such λ,

φ0 ≥ z0 −
k

8c0
d ≥ z0 −

k

8
φ1 =

(
λ(c+ k)
λ1

− k

8

)
φ1

in Ω. Since λ > λ1/2, this implies

φ0 ≥
(
λc

λ1
+

3k
8

)
φ1 =

(
kλ1

4(λ1 − λ)
+
k

8

)
φ1 =

(
c+

k

8

)
φ1

in Ω. Let z be the solution of

(3.1)

{
−∆z =

1
φγ1

in Ω,

z = 0 on ∂Ω,

where γ = max(β, δ), and let c1 > 0 be such that z ≤ c1φ1 in Ω. Then

φ0 ≥ cφ1 + k1z,

in Ω, where k1 = k/8c1. By decreasing ε further if necessary, we can assume
that

λ1K

cδ
+

||p||∞
cβ

< k1,

whereK > 0 is such that

(3.2) |f(u)| ≤ K

uδ

for u ∈ (0, A). Note that the existence of K follows from (A.2).



On an Asymptotically Linear Singular Boundary Value Problems 89

Let φ = φ0−k1z. Then φ ≥ cφ1 in Ω. We shall verify that φ is a subsolution
of (I). Let ξ ∈ H1

0 (Ω) with ξ ≥ 0. Then∫
Ω

∇φ.∇ξ dx =
∫

Ω

(−∆φ)ξ dx =
∫

Ω

(−∆φ0)ξ dx− k1

∫
Ω

ξ

φγ1
dx(3.3)

=λ

∫
φ1>A/c

(c+ k)φ1ξ dx− k1

∫
Ω

ξ

φγ1
dx.

If φ1(x) > A/c then φ(x) ≥ A and so

f(φ(x)) ≥ φ(x) + k ≥ (c+ k)φ1(x),

which implies

(3.4) λ

∫
φ1>A/c

f(φ)ξ dx ≥ λ

∫
φ1>A/c

(c+ k)φ1ξ dx.

On the other hand, using (3.2) and the fact that f(u) > 0 for u > A, we get

λ

∫
φ1<A/c

f(φ)ξ dx ≥λ
∫

(φ1<A/c)∩(φ<A)

f(φ)ξ dx ≥ −
∫
φ<A

λKξ

φδ
dx(3.5)

≥ − λK

cδ

∫
Ω

ξ

φδ1
dx ≥ −λ1K

cδ

∫
Ω

ξ

φγ1
dx.

Also

(3.6)
∫

Ω

p(x)
φβ

ξ dx ≥ −||p||∞
∫

Ω

ξ

φβ
dx ≥ −||p||∞

cβ

∫
Ω

ξ

φβ1
dx ≥ −||p||∞

cβ

∫
Ω

ξ

φγ1
dx.

Combining (3.3)–(3.6), we obtain∫
Ω

∇φ.∇ξ dx ≤
∫

Ω

(
p(x)
φβ

+ λf(φ)
)
ξdx,

i.e. φ is a subsolution of (I).
Next, we shall construct a supersolution ψ of (I) with ψ ≥ φ. Let λ, c be as

in the above and let a > 1 be such that

λa < λ1.

By (A.2) and (A.3), there exist B,L > 0 such that

(3.7) f(u) ≤ au

for u > B, and

(3.8) |f(u)| ≤ L

uδ

for u < B. LetM0 = λL+ ||p||∞ and M > max{(λac1M0)/(λ1 − λa), 1}, where
c1 > 0 is such that z ≤ c1φ1 in Ω and z is defined in (3.1).
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Let ψ = Mφ1 + M0z. We shall verify that ψ is a supersolution of (I). Let
ξ ∈ H1

0 (Ω) with ξ ≥ 0. Then

(3.9)
∫

Ω

∇ψ.∇ξ dx = λ1M

∫
Ω

ξφ1 dx+M0

∫
Ω

ξ

φγ1
dx.

We have

(3.10) λ

∫
Ω

f(ψ)ξ dx = λ

∫
ψ>B

f(ψ)ξ dx+ λ

∫
ψ<B

f(ψ)ξ dx.

By (3.7),

λ

∫
ψ>B

f(ψ)ξ dx ≤λa
∫
ψ>B

ψξ dx(3.11)

≤λaM
∫
ψ>B

φ1ξ dx+ λaM0

∫
ψ>B

zξ dx

≤λaM
∫
ψ>B

φ1ξ dx+ λac1M0

∫
ψ>B

φ1ξ dx

≤λ1M

∫
Ω

ξφ1 dx.

Next, using (3.8), we obtain

(3.12) λ

∫
ψ<B

f(ψ)ξ dx ≤ λL

∫
ψ<B

ξ

ψδ
dx ≤ λL

∫
ψ<B

ξ

φδ1
dx ≤ λL

∫
Ω

ξ

φγ1
dx

Finally,

(3.13)
∫

Ω

p(x)ξ
ψβ

dx ≤ ||p||∞
∫

Ω

ξ

φβ1
dx ≤ ||p||∞

∫
Ω

ξ

φγ1
dx.

Combining (3.9)–(3.13), we obtain∫
Ω

∇ψ.∇ξ dx ≥
∫

Ω

(
p(x)
ψβ

+ λf(ψ)
)
ξ dx,

i.e. ψ is a supersolution of (I). Lemma 2.4 now gives the existence of a C1,α(Ω)
solution u of (I) with u ≥ cφ1 in Ω. �

Proof of Theorem 3.2. Under the assumptions on p, it follows from
Lemma 2.1 or regularity results (see e.g. [2]) that the problem −∆w =

p(x)

φβ1
in Ω,

w = 0 on ∂Ω.

has a solution w ∈ C1,α(Ω) for some α ∈ (0, 1). Let m0,m1 > 0 be such that
m0φ1 ≤ w ≤ m1φ1 in Ω. For v ∈ C(Ω), let u = Tv be the solution of −∆φ =

p(x)
maxβ(v, cφ1)

in Ω,

φ = 0 on ∂Ω,
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where c > 0 is a small number so that c1−β
2 ≤ m−β1 m0 and c1+β ≤ m1. Then T

is a bounded compact mapping on C(Ω) by Lemmas 2.1 and 2.3. Hence T has
a fixed point φ. We claim that φ ≥ cφ1 in Ω. Indeed, since

−∆φ ≤ p(x)

cβφβ1

in Ω, it follows from the weak maximum principle that

φ ≤ c−βw ≤ c−βm1φ1

in Ω. Hence

−∆φ ≥ p(x)

maxβ(c−βm1, c)φ
β
1

=
cβ

2
m−β1 p(x)

φβ1
in Ω, and so

u ≥ cβ
2
m−β1 w ≥ cβ

2
m−β1 m0φ1 ≥ cφ1

in Ω. Thus φ is a solution of −∆φ =
p(x)
φβ

in Ω,

φ = 0 on ∂Ω,

and since f ≥ 0, it is easily seen that φ is a subsolution of (I). The existence of
a supersolution ψ with ψ ≥ φ is derived exactly as in the proof of Theorem 3.1.
Finally, the nonexistence result under the additional assumption follows upon
multiplying the equation by φ1 and integrating. �
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