LONG TIME EXISTENCE OF SOLUTIONS TO 2D NAVIER-STOKES EQUATIONS WITH INFLOW-OUTFLOW AND HEAT CONVECTION

Piotr Kacprzyk

Abstract

Global existence of regular solutions to the Navier-Stokes equations for velocity and pressure coupled with the heat convection equation for temperature in cylindrical pipe with inflow and outflow in the twodimensional case is shown. We assume the slip boundary conditions for velocity and the Neumann condition for temperature. First an appropriate estimate is shown and next the existence of solutions is proved by the Leray-Schauder fixed point theorem

1. Introduction

We consider the problem

$$
\begin{array}{ll}
v_{, t}+v \cdot \nabla v-\operatorname{div} \mathbb{T}(v, p)=\alpha(\theta) g & \text { in } \Omega^{T}=\Omega \times(0, T), \\
\operatorname{div} v=0 & \text { in } \Omega^{T}, \\
\theta_{, t}+v \cdot \nabla \theta-\chi \Delta \theta=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \mathbb{D}(v) \cdot \bar{\tau}=0 & \text { on } S^{T}=S \times(0, T), \tag{1.1}\\
v \cdot \bar{n}=0, \quad \bar{n} \cdot \nabla \theta=0 & \text { on } S_{1}^{T}, \\
v \cdot \bar{n}=d, \quad \bar{n} \cdot \nabla \theta=\varphi>0 & \text { on } S_{2}^{T}, \\
\left.v\right|_{t=0}=v_{0},\left.\quad \theta\right|_{t=0}=\theta_{0} & \text { in } \Omega,
\end{array}
$$

[^0]Key words and phrases. Navier-Stokes equations, heat convection, slip boundary condition, Neumann condition, global existence, Leray-Schauder fixed point theorem.

Partially supported by the MNiSW Grant NN 201396937.
where $\alpha>0, \Omega \subset \mathbb{R}^{2}$ is a bounded domain, Ω^{T} satisfies the weak horn condition (see [2, Section 8]) and is not axially symmetric, $S=\partial \Omega, v=\left(v_{1}(x, t), v_{2}(x, t)\right) \in$ \mathbb{R}^{2} is the velocity of the fluid, $\theta=\theta(x, t) \in \mathbb{R}$ the temperature, $p=p(x, t) \in \mathbb{R}$ the pressure, $g=\left(g_{1}(x, t), g_{2}(x, t)\right) \in \mathbb{R}^{2}$ the external force, $\nu>0$ the constant viscosity coeficient, $\chi>0$ the constant heat coefficient. We assume that $S=$ $S_{1} \cup S_{2}$, where S_{1} is the part of the boundary which is parallel to the axis x_{2} and S_{2} is perpendicular to x_{2}. Hence

$$
\begin{aligned}
& S_{1}=\left\{x \in \mathbb{R}^{2}: x_{1}=b_{1}<0 \vee x_{1}=b_{2}>0,-a \leq x_{2} \leq a\right\}, \\
& S_{2}=\left\{x \in \mathbb{R}^{2}: b_{1} \leq x_{1} \leq b_{2}, x_{2}=-a \vee x_{2}=a\right\}
\end{aligned}
$$

and \bar{n} the unit outward vector normal to $S, \bar{\tau}$ is the tangent wector to S.
By $\mathbb{T}(v, p)$ we denote the stress tensor

$$
\mathbb{T}(v, p)=\nu \mathbb{D}(v)-p I
$$

where I is the unit matrix and $\mathbb{D}(v)=\left\{v_{i, x_{j}}+v_{j, x_{i}}\right\}_{i, j=1,2}$ is the dilatation tensor.

To describe inflow and outflow we define

$$
d_{1}=-\left.v \cdot \bar{n}\right|_{S_{2}(-a)}, \quad d_{2}=\left.v \cdot \bar{n}\right|_{S_{2}(a)}
$$

so $d_{i} \geq 0, i=1,2$, and by $(1.1)_{2,6}$ we have the compatibility condition

$$
\int_{S_{2}(-a)} d_{1} d S_{2}=\int_{S_{2}(a)} d_{2} d S_{2}
$$

This paper extends the result from [5] to the inflow-outflow case.
Now we formulate the main result
Theorem 1.1. Assume that $\alpha \in C^{1}(\mathbb{R}), v_{0}, \theta_{0} \in W_{s}^{2-2 / s}(\Omega), v_{, t}(0), \theta_{, t}(0) \in$ $L_{2}(\Omega), d \in W_{s}^{2-1 / s, 1-1 / 2 s}\left(S_{2}^{T}\right), \varphi \in W_{s}^{1-1 / s, 1 / 2-1 / 2 s}\left(S_{2}^{T}\right), g, g_{, t} \in L_{\infty}\left(\Omega^{T}\right)$, $2<s<6$. Then there exists a solution (v, p, θ) of problem (1.1) such $v, \theta \in$ $W_{s}^{2,1}\left(\Omega^{T}\right), \nabla p \in L_{s}\left(\Omega^{T}\right)$ and constants $c>0, c_{1}>0, c_{2}>0$ are such that

$$
\|v\|_{W_{s}^{2,1}\left(\Omega^{T}\right)}+\|\nabla p\|_{L_{s}\left(\Omega^{T}\right)}+\|\theta\|_{W_{s}^{2,1}\left(\Omega^{T}\right)} \leq c
$$

and $c_{1} \leq \theta \leq c_{2}$.
The above result is an extension of the result from [5], where the long time existence of solutions is proved in the case without inflow and outflow. The considered in this paper problem has nonhomogeneous boundary conditions for velocity and temperature (see $(1.1)_{6}$) which needs many additional considerations comparing with [5] (see proofs of Lemmas 3.2-3.4). Since the basic estimates in this paper are obtained by the energy method the nonhomogeneous Dirichlet boundary condition for velocity must be made homogeneous by an appropriate extension (see (3.7) and the transformation before (3.7)). The inflow-outflow
problem for the Navier-Stokes equations was considered in [8], where the Besov spaces are used so the proof becomes more complicated.

2. Notation

Let us consider the Stokes problem

$$
\begin{array}{ll}
v_{, t}-\operatorname{div} \mathbb{T}(v, p)=f & \text { in } \Omega^{T}, \\
\operatorname{div} v=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \mathbb{D}(v) \cdot \bar{\tau}=g & \text { on } S^{T}, \tag{2.1}\\
v \cdot \bar{n}=d & \text { on } S^{T}, \\
\left.v\right|_{t=0}=v_{0} & \text { in } \Omega .
\end{array}
$$

Theorem 2.1. Let $f \in L_{q}\left(\Omega^{T}\right), v_{0} \in W_{q}^{2-2 / q}(\Omega), d \in W_{q}^{2-1 / q, 1-1 / 2 q}\left(S^{T}\right)$, $\int_{S} d d S=0, g \in W_{q}^{1-1 / q, 1 / 2-1 / 2 q}\left(S^{T}\right), q \in(1, \infty)$. Then there exists a unique solution to problem (2.1) such that $v \in W_{q}^{2,1}\left(\Omega^{T}\right), \nabla p \in L_{q}\left(\Omega^{T}\right)$ and

$$
\begin{aligned}
\|v\|_{W_{q}^{2,1}\left(\Omega^{T}\right)}+\|\nabla p\|_{L_{q}\left(\Omega^{T}\right)} \leq & c\left(\|f\|_{L_{q}\left(\Omega^{T}\right)}+\left\|v_{0}\right\|_{W_{q}^{2-2 / q}(\Omega)}\right. \\
& \left.+\|d\|_{W_{q}^{2-1 / q, 1-1 / 2 q}\left(S^{T}\right)}+\|g\|_{W_{q}^{1-1 / q, 1 / 2-1 / 2 q}\left(S^{T}\right)}\right)
\end{aligned}
$$

Next we consider the following problem

$$
\begin{array}{ll}
\theta_{, t}-\Delta \theta=f & \text { in } \Omega^{T}, \\
\bar{n} \cdot \nabla \theta=d & \text { on } S^{T}, \tag{2.2}\\
\left.\theta\right|_{t=0}=\theta_{0} & \text { in } \Omega .
\end{array}
$$

Theorem 2.2. Let $f \in L_{q}\left(\Omega^{T}\right), v_{0} \in W_{q}^{2-2 / q}(\Omega), d \in W_{q}^{1-1 / q, 1 / 2-1 / 2 q}\left(S^{T}\right)$, $q \in(1,+\infty)$. Then there exists a unique solution to problem (2.2) such that $\theta \in W_{q}^{2,1}\left(\Omega^{T}\right)$ and

$$
\begin{equation*}
\|\theta\|_{W_{q}^{2,1}(\Omega)} \leq c\left(\|f\|_{L_{q}\left(\Omega^{T}\right)}+\left\|\theta_{0}\right\|_{W_{q}^{2-2 / q}(\Omega)}+\|d\|_{W_{q}^{1-1 / q, 1 / 2-1 / 2 q}\left(S^{T}\right)}\right) \tag{2.3}
\end{equation*}
$$

Theorem 2.3 (see [2, Chapter 3, Section 10]). Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain such that Ω^{T} satisfies the weak horn condition and let $u \in W_{s}^{2,1}\left(\Omega^{T}\right) \cap$ $L_{2}\left(\Omega^{T}\right)$. Then the following interpolation inequality holds

$$
\begin{equation*}
\|\nabla u\|_{L_{q}\left(\Omega^{T}\right)} \leq \varepsilon\|u\|_{W_{s}^{2,1}\left(\Omega^{T}\right)}+c / \varepsilon\|\nabla u\|_{L_{2}\left(\Omega^{T}\right)}, \tag{2.4}
\end{equation*}
$$

for $s, q \in(1, \infty)$ satisfying $1 / s-1 / q<1 /(n+2), q>2$.
Theorem 2.4 (Korn inequality, see [7], [8]). Assume that $\Omega \subset \mathbb{R}^{n}$ is not invariant with respect to any rotation. Assume that

$$
\begin{equation*}
\|\mathbb{D}(u)\|_{L_{2}(\Omega)}<\infty,\left.\quad u \cdot \bar{n}\right|_{S}=0, \quad \operatorname{div} u=0 \tag{2.5}
\end{equation*}
$$

Then $\|u\|_{H^{1}(\Omega)} \leq c\|\mathbb{D}(u)\|_{L_{2}(\Omega)}$.

3. Estimates

We show estimates for the temperature
Lemma 3.1. Assume $\theta(0) \geq c_{1}>0$. Assume that $\varphi \geq 0, d \in L_{2}\left(0, T ; L_{\infty}\left(S_{2}\right)\right)$. Then, for θ sufficiently regular, we have

$$
\begin{equation*}
\theta(t) \geq c_{1}, \quad t \geq 0 \tag{3.1}
\end{equation*}
$$

Proof. Let $\left(\theta-c_{1}\right)_{-}=\min \left\{0, \theta-c_{1}\right\}$. Multiplying (1.1) $)_{3}$ by $\left(\theta-c_{1}\right)_{-}$ integrating over Ω we obtain

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t} \int_{\Omega}\left(\theta-c_{1}\right)_{-}^{2} d x+\chi \int_{\Omega}\left|\nabla\left(\theta-c_{1}\right)_{-}\right|^{2} d x \\
& \quad=-\frac{1}{2} \int_{S} \bar{n} \cdot v\left(\theta-c_{1}\right)_{-}^{2} d S+\chi \int_{S} \bar{n} \cdot \nabla\left(\theta-c_{1}\right)_{-}\left(\theta-c_{1}\right)_{-} d S \\
& \quad=-\frac{1}{2} \int_{S_{2}} d\left(\theta-c_{1}\right)_{-}^{2} d S_{2}+\chi \int_{S_{2}} \varphi\left(\theta-c_{1}\right)_{-} d S_{2}
\end{aligned}
$$

Applying some interpolation inequality and inequality $\varphi>0$, we obtain

$$
\frac{d}{d t}\left\|\left(\theta-c_{1}\right)_{-}\right\|_{L_{2}(\Omega)}^{2}+\left\|\nabla\left(\theta-c_{1}\right)_{-}\right\|_{L_{2}(\Omega)}^{2} \leq c\|d\|_{L_{\infty}\left(S_{2}\right)}^{2}\left\|\left(\theta-c_{1}\right)_{-}\right\|_{L_{2}(\Omega)}^{2}
$$

Finally, using the Gronwall inequality, we have

$$
\begin{aligned}
\left\|\left(\theta-c_{1}\right)_{-}\right\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\| & \nabla\left(\theta-c_{1}\right)_{-} \|_{L_{2}\left(\Omega^{T}\right)}^{2} \\
& \leq \exp \left(c\|d\|_{L_{2}\left(0, T ; L_{\infty}\left(S_{2}\right)\right)}^{2}\right)\left\|\left(\theta-c_{1}\right)_{-}(0)\right\|_{L_{2}(\Omega)}
\end{aligned}
$$

Since $\left(\theta-c_{1}\right)_{-}(0)=0$ we conclude the proof.
Lemma 3.2. Assume $d \in L_{2}\left(0, T ; L_{\infty}\left(S_{2}\right)\right), \varphi \in L_{2}\left(S_{2}^{T}\right), \theta(0) \in L_{2}(\Omega)$. Then

$$
\begin{align*}
& \|\theta\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\|\nabla \theta\|_{L_{2}\left(\Omega^{T}\right)}^{2} \tag{3.2}\\
& \quad \leq c \exp \left(c\|d\|_{L_{2}\left(0, T ; L_{\infty}\left(S_{2}\right)\right)}^{2}\right) \cdot\left(\|\varphi\|_{L_{2}\left(S_{2}^{T}\right)}^{2}+\|\theta(0)\|_{L_{2}(\Omega)}^{2}\right) \equiv A_{1} .
\end{align*}
$$

Proof. Multiplying (1.1) $)_{3}$ by θ and integrating over Ω we obtain

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{\Omega} \theta^{2} d x+\chi \int_{\Omega}|\nabla \theta|^{2} d x & =-\frac{1}{2} \int_{S} \bar{n} \cdot v \theta^{2} d S+\chi \int_{S} \bar{n} \cdot \nabla \theta \theta d S \\
& =-\frac{1}{2} \int_{S_{2}} d \theta^{2} d S_{2}+\chi \int_{S_{2}} \varphi \theta d S_{2}
\end{aligned}
$$

Using some interpolation and the Young inequality we obtain

$$
\frac{d}{d t}\|\theta\|_{L_{2}(\Omega)}^{2}+\|\nabla \theta\|_{L_{2}(\Omega)}^{2} \leq c\left(\|d\|_{L_{\infty}\left(S_{2}\right)}^{2}\|\theta\|_{L_{2}(\Omega)}^{2}+\|\varphi\|_{L_{2}\left(S_{2}\right)}^{2}+\|\theta\|_{L_{2}(\Omega)}^{2}\right)
$$

Finally, by the Gronwall inequality, we obtain (3.2).

Lemma 3.3. Assume that θ is sufficiently regular. Then there exists a constant $c_{2}>0$ such that

$$
\begin{equation*}
\|\theta\|_{L_{\infty}\left(\Omega^{T}\right)} \leq c_{2} \tag{3.3}
\end{equation*}
$$

Proof. Multiplying (1.1) $)_{3}$ by θ^{p-1} integrating over Ω and using the boundary conditions we obtain
$\frac{1}{p} \frac{d}{d t}\|\theta\|_{L_{p}(\Omega)}^{p}+\frac{1}{p} \int_{S_{2}} d \theta^{p} d S_{2}+\chi \frac{4(p-1)}{p^{2}} \int_{\Omega}\left|\nabla \theta^{p / 2}\right|^{2} d x-\chi \int_{S_{2}} \varphi \theta^{p-1} d S_{2}=0$.
Applying the Hölder and an interpolation inequality

$$
\|\theta\|_{L_{p}\left(S_{2}\right)}^{p} \leq \varepsilon\left\|\nabla \theta^{p / 2}\right\|_{L_{2}(\Omega)}^{2}+c\left(\frac{1}{\varepsilon}\right)\|\theta\|_{L_{p}(\Omega)}^{p}
$$

we have
(3.4) $\frac{d}{d t}\|\theta\|_{L_{p}(\Omega)}^{p}+\left\|\nabla \theta^{p / 2}\right\|_{L_{2}(\Omega)}^{2} \leq c\left(\|d\|_{L_{\infty}\left(S_{2}\right)}^{2}\|\theta\|_{L_{p}(\Omega)}^{p}+\|\varphi\|_{L_{\infty}\left(S_{2}\right)}\|\theta\|_{L_{p}\left(S_{2}\right)}^{p-1}\right)$.

Now we estimate the last term from the r.h.s. of (3.4)

$$
\begin{align*}
& \|\varphi\|_{L_{\infty}\left(S_{2}\right)}\|\theta\|_{L_{p}\left(S_{2}\right)}^{p-1} \leq\|\varphi\|_{L_{\infty}\left(S_{2}\right)}\left\|\nabla \theta^{p / 2}\right\|_{L_{2}(\Omega)}^{(p-1) / p}\left\|\theta^{p / 2}\right\|_{L_{2}(\Omega)}^{(p-1) / p} \tag{3.5}\\
& \quad \leq\|\varphi\|_{L_{\infty}\left(S_{2}\right)}^{\left(\varepsilon\left\|\nabla \theta^{p / 2}\right\|_{L_{2}(\Omega)}^{2}+c(1 / \varepsilon)\left\|\theta^{p / 2}\right\|_{L_{2}(\Omega)}^{2(p-1) /(p+1)}\right) \equiv I} .
\end{align*}
$$

From (3.1) $\int_{\Omega} \theta^{p} d x \geq \int_{\Omega} c_{1} d x=c_{2}$, therefore

$$
\frac{\|\theta\|_{L_{p}(\Omega)}^{2 p /(p+1)}}{c_{2}^{2 /(p+1)}} \geq 1
$$

Using the last inequality in (3.5) we obtain

$$
\begin{equation*}
I \leq\|\varphi\|_{L_{\infty}\left(S_{2}\right)}\left(\varepsilon\left\|\nabla \theta^{p / 2}\right\|_{L_{2}(\Omega)}^{2}+c(1 / \varepsilon) c_{2}^{2 /(p+1)}\|\theta\|_{L_{p}(\Omega)}^{p}\right) \tag{3.6}
\end{equation*}
$$

Then (3.4), (3.5) and (3.6) imply

$$
\|\theta\|_{L_{p}(\Omega)}^{p-1} \frac{d}{d t}\|\theta\|_{L_{p}(\Omega)} \leq c\|\theta\|_{L_{p}(\Omega)}^{p}
$$

Finally, using the Gronwall inequality and passing with p to infinity, we obtain inequality

$$
\|\theta\|_{L_{\infty}\left(\Omega^{T}\right)} \leq c e^{c T}\|\theta(0)\|_{L_{\infty}(\Omega)}
$$

To obtain the energy type estimate for solutions to problem (1.1) we introduce the function

$$
\left.\beta\right|_{S_{2}(-a)}=d_{1},\left.\quad \beta\right|_{S_{2}(a)}=d_{2}
$$

Then we define u by

$$
\operatorname{div} u=-\operatorname{div} b,\left.\quad u \cdot \bar{n}\right|_{S}=0
$$

where $b=(0, \beta)$.

Next we introduce the function φ by

$$
\Delta \varphi=-\operatorname{div} b \quad \text { in } \Omega, \quad \bar{n} \cdot \nabla \varphi=0 \quad \text { on } S, \quad \int_{\Omega} \varphi d x=0
$$

Finally, the function

$$
w=v-(b+\nabla \varphi) \equiv v-\delta_{1}
$$

and p is a solution to the problem

$$
\begin{array}{ll}
w_{, t}-\operatorname{div} \mathbb{T}(w, p)=-\delta_{1, t}+\nu \operatorname{div} \mathbb{D}\left(\delta_{1}\right) & \\
\quad+\left(w+\delta_{1}\right) \cdot \nabla\left(w+\delta_{1}\right)+\alpha(\theta) g & \text { in } \Omega^{T} \\
\operatorname{div} w=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot w=0 & \text { on } S^{T} \\
\nu \bar{n} \cdot \mathbb{D}\left(w+\delta_{1}\right) \cdot \bar{\tau}=0 & \text { on } S^{T} \\
\left.w\right|_{t=0}=v(0) & \text { in } \Omega .
\end{array}
$$

Multiplying (3.7) by w and integrating over Ω yields
(3.8) $\quad \frac{1}{2} \frac{d}{d t}\|w\|_{L_{2}(\Omega)}^{2}-\int_{\Omega} \operatorname{div} \mathbb{T}(w, p) \cdot w d x=\int_{\Omega}\left(-\delta_{1, t}+\nu \operatorname{div} \mathbb{D}\left(\delta_{1}\right)\right) \cdot w d x$ $+\int_{\Omega}\left(w+\delta_{1}\right) \cdot \nabla\left(w+\delta_{1}\right) \cdot w d x+\int_{\Omega} \alpha(\theta) g \cdot w d x \equiv \sum_{i=1}^{3} I_{i}$.

Since $\alpha \in C^{1}(\mathbb{R})$ Lemmas 3.1 and 3.3 imply that

$$
\|\alpha(\theta)\|_{L_{\infty}\left(\Omega^{T}\right)}^{2} \leq c_{3}
$$

The second term on the l.h.s. equals

$$
-\int_{S} \bar{n} \cdot \mathbb{T}(w, p) \cdot w d S+\nu \int_{\Omega}|\mathbb{D}(w)|^{2} d x
$$

where the boundary term assumes the form

$$
\int_{S} \nu \bar{n} \cdot \mathbb{D}\left(\delta_{1}\right) \cdot \bar{\tau} w \cdot \bar{\tau} d S
$$

Hence

$$
-\int_{S} \bar{n} \cdot \mathbb{T}(w, p) \cdot w d S \leq \varepsilon\|w\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left\|\delta_{1}\right\|_{H^{2}(\Omega)}^{2}
$$

Now we estimate the terms from the r.h.s. of (3.8)

$$
\begin{aligned}
\left|I_{1}\right| & \leq \varepsilon\|w\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left(\left\|\delta_{1, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1}\right\|_{H^{2}(\Omega)}^{2}\right) \\
\left|I_{2}\right| & \leq \varepsilon\|w\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left(\left\|\delta_{1}\right\|_{L_{\infty}(\Omega)}^{2}\|w\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1}\right\|_{H^{1}(\Omega)}^{4}\right) \\
\left|I_{3}\right| & \leq \varepsilon\|w\|_{H^{1}(\Omega)}^{2}+c / \varepsilon c_{3}\|g\|_{L_{2}(\Omega)}^{2} .
\end{aligned}
$$

Using the Korn inequality and assuming that ε is sufficiently small we obtain the inequality

$$
\begin{align*}
\frac{d}{d t}\|w\|_{L_{2}(\Omega)}^{2}+\|w\|_{H^{1}(\Omega)}^{2} \leq & c\left(\left\|\delta_{1}\right\|_{L_{\infty}(\Omega)}^{2}\|w\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1}\right\|_{H^{2}(\Omega)}^{2}\right. \\
& \left.+\left\|\delta_{1, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1}\right\|_{H^{1}(\Omega)}^{4}+c_{3}\|g\|_{L_{2}(\Omega)}^{2}\right)
\end{align*}
$$

Continuing, we get

$$
\begin{align*}
& \|w\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\|w\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2} \tag{3.9}\\
& \quad \leq c \exp \left(\left\|\delta_{1}\right\|_{L_{2}\left(0, T ; L_{\infty}(\Omega)\right)}^{2}\right)\left(\left\|\delta_{1}\right\|_{L_{2}\left(0, t ; H^{2}(\Omega)\right)}^{2}+\left\|\delta_{1, t}\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}\right. \\
& \left.\quad+\left\|\delta_{1}\right\|_{L_{4}\left(0, T ; H^{1}(\Omega)\right)}^{4}+c_{3}\|g\|_{L_{2}\left(\Omega^{T}\right)}^{2}+\|w(0)\|_{L_{2}(\Omega)}^{2}\right) .
\end{align*}
$$

Differentiating (3.7) ${ }_{1}$ with respect to t, multiplying by $w_{, t}$, integrating over Ω we obtain
(3.10) $\frac{1}{2} \frac{d}{d t}\left\|w_{, t}\right\|_{L_{2}(\Omega)}^{2}-\int_{\Omega} \operatorname{div} \mathbb{T}\left(w_{, t}, p_{, t}\right) \cdot w_{, t} d x$

$$
\begin{aligned}
= & \int_{\Omega}\left(-\delta_{1, t t}+\nu \operatorname{div} \mathbb{D}\left(\delta_{1, t}\right)\right) \cdot w_{t} d x \\
& +\int_{\Omega}\left(w_{, t}+\delta_{1, t}\right) \cdot \nabla\left(w+\delta_{1}\right) \cdot w_{, t} d x \\
& +\int_{\Omega}\left(w+\delta_{1}\right) \cdot \nabla\left(w_{, t}+\delta_{1, t}\right) \cdot w_{, t} d x \\
& +\int_{\Omega} \alpha_{, \theta} \theta_{, t} g w_{, t} d x+\int_{\Omega} \alpha(\theta) g_{, t} \cdot w_{, t} d x \equiv \sum_{i=1}^{5} I_{i} .
\end{aligned}
$$

The second term on the l.h.s. equals

$$
-\int_{S} \bar{n} \cdot \mathbb{T}\left(w_{, t}, p_{, t}\right) \cdot w_{, t} d S+\nu \int_{\Omega}\left|\mathbb{D}\left(w_{, t}\right)\right|^{2} d x
$$

where the boundary term assumes the form

$$
\int_{S} \nu \bar{n} \cdot \mathbb{D}\left(\delta_{1, t}\right) \cdot \bar{\tau} w_{, t} \cdot \bar{\tau} d S
$$

Hence

$$
\int_{S} \bar{n} \cdot \mathbb{T}\left(w_{, t}, p_{, t}\right) \cdot w_{, t} d S \leq \varepsilon\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left\|\delta_{1, t}\right\|_{H^{2}(\Omega)}^{2}
$$

Now we estimate the terms from the r.h.s. of (3.10)

$$
\begin{aligned}
I_{1} \leq & \varepsilon\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left(\left\|\delta_{1, t t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1, t}\right\|_{H^{2}(\Omega)}^{2}\right) \\
I_{2} \leq & \left\|w_{, t}\right\|_{L_{4}(\Omega)}^{2}\left(\|\nabla w\|_{L_{2}(\Omega)}+\left\|\nabla \delta_{1}\right\|_{L_{2}(\Omega)}\right) \\
& \quad+\left\|w_{, t}\right\|_{L_{4}(\Omega)}\left\|\delta_{1, t}\right\|_{L_{4}(\Omega)}\left(\|\nabla w\|_{L_{2}(\Omega)}+\left\|\nabla \delta_{1}\right\|_{L_{2}(\Omega)}\right) \\
\leq & \varepsilon\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left(\|\nabla w\|_{L_{2}(\Omega)}^{2}+\left\|\nabla \delta_{1}\right\|_{L_{2}(\Omega)}^{2}\right)\left\|w_{, t}\right\|_{L_{2}(\Omega)}^{2} \\
& \quad+c / \varepsilon\left\|\delta_{1, t}\right\|_{L_{4}(\Omega)}^{2}\left(\|\nabla w\|_{L_{2}(\Omega)}^{2}+\left\|\nabla \delta_{1}\right\|_{L_{2}(\Omega)}^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& I_{3} \leq \varepsilon\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left(\left\|\delta_{1}\right\|_{L_{\infty}(\Omega)}^{2}\left\|w_{, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1}\right\|_{L_{4}(\Omega)}^{2}\left\|\nabla \delta_{1, t}\right\|_{L_{2}(\Omega)}^{2}\right. \\
&\left.\quad+\|w\|_{L_{4}(\Omega)}^{2}\left\|\nabla \delta_{1, t}\right\|_{L_{2}(\Omega)}^{2}\right) \\
& I_{4} \leq \varepsilon\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\|g\|_{L_{\infty}(\Omega)}^{2}\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2} c_{4} \\
& I_{5} \leq \varepsilon\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2}+c / \varepsilon\left\|g_{, t}\right\|_{L_{2}(\Omega)}^{2} c_{3}
\end{aligned}
$$

where we assumed that $\|\alpha(\theta)\|_{L_{\infty}\left(\Omega^{T}\right)}^{2} \leq c_{3}$ and $\|\alpha, \theta(\theta)\|_{L_{\infty}\left(\Omega^{T}\right)}^{2} \leq c_{4}$.
Using the Korn inequality and assuming that ε is sufficietnly small we obtain the inequality

$$
\begin{align*}
& \frac{d}{d t}\left\|w_{, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|w_{, t}\right\|_{H^{1}(\Omega)}^{2} \leq c\left(\left\|\delta_{1, t t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1, t}\right\|_{H^{2}(\Omega)}^{2}\right. \tag{3.11}\\
& \quad+\left(\|\nabla w\|_{L_{2}(\Omega)}^{2}+\left\|\delta_{1}\right\|_{L_{\infty}(\Omega)}^{2}+\left\|\nabla \delta_{1}\right\|_{L_{2}(\Omega)}^{2}\right)\left\|w_{, t}\right\|_{L_{2}(\Omega)}^{2} \\
& \quad+\left\|\delta_{1, t}\right\|_{L_{4}(\Omega)}^{2}\left(\|\nabla w\|_{L_{2}(\Omega)}^{2}+\left\|\nabla \delta_{1}\right\|_{L_{2}(\Omega)}^{2}\right)+\left\|g_{, t}\right\|_{L_{2}(\Omega)}^{2} c_{3} \\
& \left.\quad+\left(\left\|\delta_{1}\right\|_{L_{4}(\Omega)}^{2}+\|w\|_{L_{4}(\Omega)}^{2}\right)\left\|\nabla \delta_{1, t}\right\|_{L_{4}(\Omega)}^{2}+\|g\|_{L_{\infty}(\Omega)}^{2}\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2} c_{4}\right)
\end{align*}
$$

Differentiating (1.1) ${ }_{3}$ with respect to t, multiplying by $\theta_{, t}$, integrating over Ω we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2}-\chi \int_{\Omega} \Delta \theta_{, t} \theta_{, t} d x \tag{3.12}\\
&=-\int_{\Omega} v_{, t} \cdot \nabla \theta \theta_{, t} d x-\int_{\Omega} v \cdot \nabla \theta_{, t} \theta_{, t} d x=\sum_{i=1}^{2}-I_{i}
\end{align*}
$$

The second term on the l.h.s. equals

$$
-\chi \int_{S_{2}} \varphi_{, t} \theta_{, t} d S_{2}+\chi\left\|\nabla \theta_{, t}\right\|_{L_{2}(\Omega)}^{2}
$$

where the boundary term we estimate by

$$
\chi \int_{S_{2}} \varphi_{, t} \theta_{, t} d S_{2} \leq \chi\left(\varepsilon\left\|\theta_{, t}\right\|_{H^{1}(\Omega)}^{2}+c(1 / \varepsilon)\left\|\varphi_{, t}\right\|_{L_{2}\left(S_{2}\right)}^{2}\right)
$$

Now we estimate the terms from the r.h.s. of (3.12)

$$
\begin{aligned}
I_{1} \leq & \left\|v_{, t}\right\|_{L_{4}(\Omega)}\|\nabla \theta\|_{L_{2}(\Omega)}\left\|\theta_{, t}\right\|_{L_{4}(\Omega)} \\
\leq & c\left(\left\|\nabla v_{, t}\right\|_{L_{2}(\Omega)}^{1 / 2}\left\|v_{, t}\right\|_{L_{2}(\Omega)}^{1 / 2}+\left\|v_{, t}\right\|_{L_{2}(\Omega)}\right)\left(\left\|\nabla \theta_{, t}\right\|_{L_{2}(\Omega)}^{1 / 2}\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{1 / 2}\right. \\
& \left.+\|\theta, t\|_{L_{2}(\Omega)}\right)\|\nabla \theta\|_{L_{2}(\Omega)} \\
\leq & c\left(\left(\|\nabla v, t\|_{L_{2}(\Omega)}\left\|v_{, t}\right\|_{L_{2}(\Omega)}+\left\|\nabla \theta_{, t}\right\|_{L_{2}(\Omega)}\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}\right)\|\nabla \theta\|_{L_{2}(\Omega)}\right. \\
& \left.+\left(\left\|v_{, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2}\right)\|\nabla \theta\|_{L_{2}(\Omega)}^{2}+\varepsilon\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2}\right) \\
\leq & c\left(\varepsilon\left(\left\|\nabla v_{, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\nabla \theta_{, t}\right\|_{L_{2}(\Omega)}^{2}\right)\right. \\
& \left.+\left(\left\|v_{, t}\right\|_{L_{2}(\Omega)}^{2}+\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2}\right)\|\nabla \theta\|_{L_{2}(\Omega)}^{2}+\varepsilon\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2}\right) \\
I_{2} \leq & c / \varepsilon\|d\|_{L_{2}\left(S_{2}\right)}^{2}+\varepsilon\left\|\theta_{, t}\right\|_{H^{1}(\Omega)}^{2} .
\end{aligned}
$$

Assuming that ε is sufficiently small we obtain the inequality

$$
\begin{align*}
& \frac{d}{d t}\left\|\theta_{t,}\right\|_{L_{2}(\Omega)}^{2}+\left\|\theta_{, t}\right\|_{H^{1}(\Omega)}^{2} \leq c\left(\varepsilon\|\nabla v, t\|_{L_{2}(\Omega)}^{2}\right. \tag{3.13}\\
& \left.\quad+\|\nabla \theta\|_{L_{2}(\Omega)}^{2}\left(\|v, t\|_{L_{2}(\Omega)}^{2}+\left\|\theta_{, t}\right\|_{L_{2}(\Omega)}^{2}\right)+\|d\|_{L_{2}\left(S_{2}\right)}^{2}+\left\|\varphi_{, t}\right\|_{L_{2}\left(S_{2}\right)}^{2}\right) .
\end{align*}
$$

Then adding (3.8'), (3.11), (3.13), we obtain the result
Lemma 3.4. Assume that $\alpha \in C^{1}(\mathbb{R}), \delta_{1} \in L_{\infty}\left(\Omega^{T}\right) \cap L_{4}\left(0, T ; H^{2}(\Omega)\right), \varphi_{, t} \in$ $L_{2}\left(S_{2}^{T}\right), \quad \delta_{1, t} \in L_{\infty}\left(\Omega^{T}\right) \cap L_{2}\left(0, T ; H^{2}(\Omega)\right), \quad \delta_{1, t t} \in L_{2}\left(\Omega^{T}\right), g \in L_{\infty}\left(\Omega^{T}\right)$, $g_{, t} \in L_{2}\left(\Omega^{T}\right), d \in L_{2}\left(S_{2}^{T}\right), v_{0}, \theta_{0}, v_{, t}(0), \theta_{, t}(0) \in L_{2}\left(\Omega^{T}\right)$. Then

$$
\begin{align*}
& \|w\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}+\|w\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2} \tag{3.14}\\
& \quad \leq c \exp \left(\left\|\delta_{1}\right\|_{L_{2}\left(0, T ; L_{\infty}(\Omega)\right)}^{2}\right)\left(\left\|\delta_{1}\right\|_{L_{2}\left(0, T ; H^{2}(\Omega)\right)}^{2}+\left\|\delta_{1, t}\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}\right. \\
& \left.\quad \quad+\left\|\delta_{1}\right\|_{L_{4}\left(0, T ; H^{1}(\Omega)\right)}^{4}+c_{3}\|g\|_{L_{2}\left(\Omega^{T}\right)}^{2}+\|w(0)\|_{L_{2}(\Omega)}^{2}\right) \equiv A_{2}
\end{align*}
$$

and

$$
\begin{align*}
& \| w_{, t}\left\|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2}+\right\| \theta_{, t} \|_{L_{\infty}\left(0, T ; L_{2}(\Omega)\right)}^{2} \tag{3.15}\\
& \quad+\|w, t\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2}+\left\|\theta_{, t}\right\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2} \\
& \leq c \exp \left(\|\nabla w\|_{L_{2}\left(\Omega^{T}\right)}^{2}+\left\|\delta_{1}\right\|_{L_{2}\left(0, T ; L_{\infty}(\Omega)\right)}^{2}+\left\|\nabla \delta_{1}\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}\right. \\
&\left.\quad+\|g\|_{L_{\infty}\left(\Omega^{T}\right)}^{2}+\|\nabla \theta\|_{L_{2}\left(\Omega^{T}\right)}^{2}\right)\left(\left\|\delta_{1, t t}\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}+\left\|\delta_{1, t}\right\|_{L_{2}\left(0, T ; H^{2}(\Omega)\right)}^{2}\right. \\
& \quad+\left\|\delta_{1, t}\right\|_{L_{\infty}\left(\Omega^{T}\right)}^{2}\left(\|w\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2}+\left\|\nabla \delta_{1}\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}\right) \\
& \quad+\left(\left\|\delta_{1}\right\|_{L_{\infty}\left(\Omega^{T}\right)}^{2}+\|w\|_{L_{2}\left(0, T ; H^{1}(\Omega)\right)}^{2}\right)\left\|\nabla \delta_{1, t}\right\|_{L_{\infty}\left(0, T ; L_{4}(\Omega)\right)}^{2} \\
& \quad+\left\|g g_{, t}\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}+\left\|\varphi_{, t}\right\|_{L_{2}\left(S_{2}^{T}\right)}^{2} \\
&\left.\quad+\|d\|_{L_{2}\left(S_{2}^{T}\right)}^{2}+\left\|v_{, t}(0)\right\|_{L_{2}(\Omega)}^{2}+\left\|\theta_{, t}(0)\right\|_{L_{2}\left(\Omega^{T}\right)}^{2}\right) \equiv A_{3} .
\end{align*}
$$

Lemma 3.5. Let the assumptions of Lemma 3.4 be satisfied. Moreover, assume that $v_{0}, \theta_{0} \in W_{s}^{2-2 / s}(\Omega), d \in W_{s}^{2-1 / s, 1-1 / 2 s}\left(S_{2}^{T}\right)$, where $s \in(1,6)$. Then

$$
\begin{align*}
& \|v\|_{W_{s}^{2,1}\left(\Omega^{T}\right)}+\|\nabla p\|_{L_{s}\left(\Omega^{T}\right)}+\|\theta\|_{W_{s}^{2,1}(\Omega)} \leq c\left(\|g\|_{L_{s}\left(\Omega^{T}\right)}\right. \tag{3.16}\\
& +\left\|v_{0}\right\|_{W_{s}^{2-2 / s}(\Omega)}+\left\|\theta_{0}\right\|_{W_{s}^{2-2 / s}(\Omega)}+\|d\|_{W_{s}^{2-1 / s, 1-1 / 2 s}\left(S_{2}^{T}\right)} \\
& \left.\quad+\|\varphi\|_{W_{s}^{1-1 / s, 1 / 2-1 / 2 s}\left(S_{2}^{T}\right)}+A_{1}+A_{2}+A_{3}\right)
\end{align*}
$$

where A_{1}, A_{2}, A_{3} are given by (3.2), (3.14) and (3.15).
Proof. From (3.2), (3.14), (3.15) we have

$$
\left\|v_{, t}\right\|_{L_{\infty}\left(0, t, L_{2}(\Omega)\right)}+\|v\|_{L_{2}\left(0, t ; H^{1}(\Omega)\right)}+\|v\|_{L_{\infty}\left(0, t ; L_{2}(\Omega)\right)} \leq c, \quad t \leq T
$$

Hence $v \in H^{1}\left(\Omega^{t}\right)$ and then

$$
\begin{equation*}
v \in L_{6}\left(\Omega^{T}\right) \tag{3.17}
\end{equation*}
$$

Now we want to increase regularity described by (3.16). For this purpose we consider the problem

$$
\begin{array}{ll}
v_{, t}+v \cdot \nabla v-\operatorname{div} \mathbb{T}(v, p)=\alpha(\theta) g & \text { in } \Omega^{T}, \\
\operatorname{div} v=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \mathbb{D}(v) \cdot \bar{\tau}=0 & \text { on } S^{T}, \\
v \cdot \bar{n}=0 & \text { on } S_{1}^{T}, \tag{3.18}\\
v \cdot \bar{n}=d & \text { on } S_{2}^{T}, \\
\left.v\right|_{t=0}=v_{0} & \text { in } \Omega .
\end{array}
$$

To apply Theorem 2.1 we examine

$$
\|v \cdot \nabla v\|_{L_{s}\left(\Omega^{t}\right)} \leq\|v\|_{L_{s \lambda_{1}}\left(\Omega^{t}\right)}\|\nabla v\|_{L_{s \lambda_{2}}\left(\Omega^{t}\right)}=I
$$

where $1 /\left(s \lambda_{1}\right)+1 /\left(s \lambda_{2}\right)=1 / s$. Assuming $s \lambda_{1}=6$ we obtain $s \lambda_{2}=6 s /(6-s)$, then $4 / s-4 /\left(s \lambda_{2}\right)<1$, where $1<s<6$.

Hence in view of (2.4) and (3.17) we have

$$
I \leq c\|\nabla v\|_{L_{s \lambda_{2}}\left(\Omega^{T}\right)} \leq \varepsilon\|v\|_{W_{s}^{2,1}\left(\Omega^{t}\right)}+c / \varepsilon\|\nabla v\|_{L_{2}\left(\Omega^{t}\right)}
$$

where $1<s<6$.
Assuming that $g \in L_{\infty}\left(\Omega^{T}\right)$ we apply Theorem 2.1. Then we have

$$
\begin{align*}
\|v\|_{W_{s}^{2,1}\left(\Omega^{t}\right)}+\|\nabla p\|_{L_{s}\left(\Omega^{t}\right)} \leq & c\left(\|\nabla v\|_{L_{2}\left(\Omega^{t}\right)}\|\theta\|_{W_{s}^{2,1}\left(\Omega^{T}\right)}\|g\|_{L_{\infty}\left(\Omega^{T}\right)}\right. \tag{3.19}\\
& \left.+\left\|v_{0}\right\|_{W_{s}^{2-2 / s}(\Omega)}+\|d\|_{W_{s}^{2-1 / s, 1-1 / 2 s}\left(S^{t}\right)}\right)
\end{align*}
$$

where $s \in(1,6)$. From (3.2), (3.14), (3.15) we have
(3.20) $\quad\left\|\theta_{, t}\right\|_{L_{\infty}\left(0, t ; L_{2}(\Omega)\right)}+\|\theta\|_{L_{2}\left(0, t ; H^{1}(\Omega)\right)}+\|\theta\|_{L_{\infty}\left(0, t ; L_{2}(\Omega)\right)} \leq c, \quad t \leq T$.

Hence $\theta \in H^{1}\left(\Omega^{t}\right)$ and then

$$
\begin{equation*}
\theta \in L_{6}\left(\Omega^{T}\right) \tag{3.21}
\end{equation*}
$$

Now we want to increase regularity described by (3.16). For this purpose we consider the problem

$$
\begin{array}{ll}
\theta_{, t}+v \cdot \nabla \theta-\chi \Delta \theta=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \nabla \theta=0 & \text { on } S_{1}^{T}, \\
\bar{n} \cdot \nabla \theta=\varphi & \text { on } S_{2}^{T} \tag{3.22}\\
\left.\theta\right|_{t=0}=\theta_{0} & \text { in } \Omega .
\end{array}
$$

To apply Theorem 2.2 we examine

$$
\|v \cdot \nabla \theta\|_{L_{s}\left(\Omega^{t}\right)} \leq\|v\|_{L_{s \lambda_{1}}\left(\Omega^{t}\right)}\|\nabla \theta\|_{L_{s \lambda_{2}}\left(\Omega^{t}\right)}=I_{1}
$$

where $1 /\left(s \lambda_{1}\right)+1 /\left(s \lambda_{1}\right)=1$. Assuming $s \lambda_{1}=6$ we obtain $s \lambda_{2}=6 s /(6-s)$, then $4 / s-4 /\left(s \lambda_{2}\right)<1$, where $1<s<6$.

Hence in view of (2.4) and (3.21) we have

$$
I_{1} \leq c\|\nabla \theta\|_{L_{s \lambda_{2}}\left(\Omega^{t}\right)} \leq \varepsilon\|\theta\|_{W_{s}^{2,1}\left(\Omega^{t}\right)}+c / \varepsilon\|\nabla \theta\|_{L_{2}\left(\Omega^{t}\right)}
$$

where $1<s<6$. Then, for $s \in(1,6)$, we have

$$
\|\theta\|_{W_{s}^{2,1}\left(\Omega^{t}\right)} \leq c\left(\|\nabla \theta\|_{L_{2}\left(\Omega^{t}\right)}+\left\|\theta_{0}\right\|_{W_{s}^{2-2 / s}(\Omega)}+\|\varphi\|_{W_{s}^{1-1 / s, 1 / 2-1 / 2 s}\left(S^{t}\right)}\right)
$$

4. Existence

For $2<\eta<6$ define $\mathcal{M}\left(\Omega^{T}\right)=\left\{(v, \theta) \in\left(L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)^{2}\right\}\right.$. Let us consider the problems

$$
\begin{array}{ll}
v_{, t}-\operatorname{div} \mathbb{T}(v, p)=-\lambda(\widetilde{v} \cdot \nabla \widetilde{v}+\alpha(\widetilde{\theta}) g) & \text { in } \Omega^{T}, \\
\operatorname{div} v=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \mathbb{D}(v) \cdot \bar{\tau}=0 & \text { on } S^{T}, \\
v \cdot \bar{n}=0 & \text { on } S_{1}^{T}, \tag{4.1}\\
v \cdot \bar{n}=d & \text { on } S_{2}^{T}, \\
v_{, t=0}=v_{0} & \text { in } \Omega
\end{array}
$$

and

$$
\begin{array}{ll}
\theta_{, t}-\chi \Delta \theta=-\lambda \widetilde{v} \cdot \nabla \widetilde{\theta} & \text { in } \Omega^{T}, \\
\bar{n} \cdot \nabla \theta=0 & \text { on } S_{1}^{T}, \\
\bar{n} \cdot \nabla \theta=\varphi & \text { on } S_{2}^{T}, \tag{4.2}\\
\left.\theta\right|_{t=0}=\theta_{0} & \text { in } \Omega,
\end{array}
$$

where $\lambda \in[0,1]$ and $\widetilde{v}, \widetilde{\theta}$ are treated as given functions.
LEMMA 4.1. Let $(\widetilde{v}, \widetilde{\theta}) \in \mathcal{M}\left(\Omega^{T}\right), g \in L_{s}\left(\Omega^{T}\right), v_{0}, \theta_{0} \in W_{s}^{2-2 / s}(\Omega), \alpha \in$ $C^{1}(\mathbb{R}), d \in W_{s}^{2-1 / s, 1-1 / 2 s}\left(S_{2}^{T}\right), \varphi \in W_{s}^{1-1 / s, 1 / 2-1 / 2 s}\left(S_{2}^{T}\right)$, where $2<s<\eta<6$, $4 / s-2 / \eta<1$. Then there exists a unique solution to the problem (4.1), (4.2) such that $v, \theta \in W_{s}^{2,1}\left(\Omega^{T}\right) \subset L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)$, where the imbedding is compact and

$$
\begin{align*}
\|v\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)} & +\|\theta\|_{W_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)} \leq\|v\|_{W_{s}^{2,1}\left(\Omega^{T}\right)}+\|\theta\|_{W_{s}^{2,1}(\Omega)} \tag{4.3}\\
\leq & c\left(\lambda \| \widetilde { v } \| _ { L _ { \infty } (0 , T ; W _ { \eta } ^ { 1 } (\Omega) } \left(\|\widetilde{\theta}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}\right.\right. \\
& \left.\left.+\|\widetilde{v}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}\right)+c_{3}^{1 / 2}\|g\|_{L_{s}\left(\Omega^{T}\right)}\right) \\
& +\left\|v_{0}\right\|_{W_{s}^{2-2 / s}(\Omega)}+\left\|\theta_{0}\right\|_{W_{s}^{2-2 / s}(\Omega)} \\
& \left.+\|d\|_{W_{s}^{2-1 / s, 1-1 / 2 s}\left(S_{2}^{T}\right)}+\|\varphi\|_{W_{s}^{1-1 / s, 1 / 2-1 / 2 s}\left(S_{2}^{T}\right)}\right) .
\end{align*}
$$

Proof. We have

$$
\|\widetilde{v} \cdot \nabla \widetilde{v}\|_{L_{s}\left(\Omega^{t}\right)} \leq c\|\widetilde{v}\|_{L_{\infty}\left(\Omega^{T}\right)}\|\nabla \widetilde{v}\|_{L_{s}\left(\Omega^{T}\right)} \leq c\|\widetilde{v}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}^{2}
$$

$$
\begin{aligned}
\left\|\widetilde{\theta}^{\alpha} g\right\|_{L_{s}\left(\Omega^{T}\right)} & \leq\|\alpha(\widetilde{\theta})\|_{L_{\infty}\left(\Omega^{T}\right)}\|g\|_{L_{s}\left(\Omega^{T}\right)} \leq \alpha\left(\|\widetilde{\theta}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}\right)\|g\|_{L_{s}\left(\Omega^{T}\right)} \\
\|\widetilde{v} \cdot \nabla \widetilde{\theta}\|_{L_{s}\left(\Omega^{T}\right)} & \leq c\|\widetilde{v}\|_{L_{\infty}\left(\Omega^{T}\right)}\|\nabla \widetilde{\theta}\|_{L_{s}\left(\Omega^{T}\right)} \leq c\|\widetilde{v}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}\|\widetilde{\theta}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}
\end{aligned}
$$

By Theorems 2.1 and 2.2 the proof is complete.
To prove the existence of solutions to problem (1.1) we apply the Leray--Schauder fixed point theorem (see [4]). Therefore we introduce the mapping $\phi:[0,1] \times \mathcal{M}\left(\Omega^{T}\right) \rightarrow\left(W_{s}^{2,1}\left(\Omega^{T}\right)\right)^{2},(\lambda, \widetilde{v}, \widetilde{\theta}) \rightarrow \phi(\lambda, \widetilde{v}, \widetilde{\theta})=(v, \theta)$, where (v, θ) is a solution to problems (4.1), (4.2). For $\lambda=0$ we have the existence of a unique solutions. For $\lambda=1$ every fixed point is a solution to problem (1.1).

Lemma 4.2. Let the assumptions of Lemma 4.1 be satisfied. Then mapping $\phi(\lambda, \cdot): \mathcal{M}\left(\Omega^{T}\right) \rightarrow \mathcal{M}\left(\Omega^{T}\right), \lambda \in[0,1]$ is completly continuous.

Proof. By Lemma 4.1 the mapping $\phi(\lambda, \cdot), \lambda \in[0,1]$, is compact. From this it follows that bounded set in $\eta\left(\Omega^{T}\right)$ are transformed into bounded sets in $M\left(\Omega^{T}\right)$. Let $\left(\widetilde{v}_{i}, \widetilde{\theta}_{i}\right) \in M\left(\Omega^{T}\right), i=1,2$ be two given elements. Then $\left(v_{i}, \theta_{i}\right)$, $i=1,2$, are solutions to the problems

$$
\begin{array}{ll}
v_{i, t}-\operatorname{div} \mathbb{T}\left(v_{i}, p_{i}\right)=-\lambda\left(\widetilde{v}_{i} \cdot \nabla \widetilde{v}_{i}+\alpha\left(\widetilde{\theta}_{i}\right) g\right) & \text { in } \Omega^{T}, \\
\operatorname{div} v_{i}=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \mathbb{D}\left(v_{i}\right) \cdot \bar{\tau}=0 & \text { on } S^{T}, \\
v_{i} \cdot \bar{n}=0 & \text { on } S_{1}^{T}, \tag{4.4}\\
v_{i} \cdot \bar{n}=d & \text { on } S_{2}^{T}, \\
\left.v_{i}\right|_{t=0}=v_{0} & \text { in } \Omega
\end{array}
$$

$$
\begin{array}{ll}
\theta_{i, t}-\chi \Delta \theta_{i}=-\lambda \widetilde{v}_{i} \cdot \nabla \widetilde{\theta}_{i} & \text { in } \Omega^{T}, \\
\bar{n} \cdot \nabla \theta_{i}=0 & \text { on } S_{1}^{T}, \\
\bar{n} \cdot \nabla \theta_{i}=\varphi & \text { on } S_{2}^{T}, \tag{4.5}\\
\left.\theta_{i}\right|_{t=0}=\theta_{0} & \text { in } \Omega .
\end{array}
$$

To show continuity we introduce the differences

$$
V=v_{1}-v_{2}, \quad P=p_{1}-p_{2}, \quad \mathcal{T}=\theta_{1}-\theta_{2}
$$

which are solutions to the problems

$$
\begin{array}{ll}
V_{, t}-\operatorname{div} \mathbb{T}(V, P)=-\lambda\left(\widetilde{V} \cdot \nabla \widetilde{v}_{1}+\widetilde{v}_{2} \cdot \nabla V+\left(\alpha\left(\widetilde{\theta}_{1}\right)-\alpha\left(\widetilde{\theta}_{2}\right)\right) g\right) & \text { in } \Omega^{T}, \\
\operatorname{div} V=0 & \text { in } \Omega^{T}, \\
\bar{n} \cdot \mathbb{D}(V) \cdot \bar{\tau}=0 & \text { on } S^{T}, \\
V \cdot \bar{n}=0 & \text { on } S^{T}, \\
\left.V\right|_{t=0}=0 & \text { in } \Omega
\end{array}
$$

and

$$
\begin{array}{ll}
\mathcal{T}_{, t}-\chi \Delta \mathcal{T}=-\lambda\left(\widetilde{V} \cdot \nabla \widetilde{\theta}_{1}+\widetilde{v}_{2} \cdot \nabla \widetilde{\mathcal{T}}\right) & \text { in } \Omega^{T} \\
\bar{n} \cdot \nabla \mathcal{T}=0 & \text { on } S^{T} \tag{4.7}\\
\left.\mathcal{T}\right|_{t=0}=0 & \text { in } \Omega
\end{array}
$$

where $\widetilde{V}=\widetilde{v}_{1}-\widetilde{v}_{2}, \widetilde{\mathcal{T}}=\widetilde{\theta}_{1}-\widetilde{\theta}_{2}$.
In view of Therorems 2.1, 2.2 we have

$$
\begin{aligned}
\|V\|_{W_{s}^{2,1}\left(\Omega^{T}\right)} & +\|\mathcal{T}\|_{W_{s}^{2,1}\left(\Omega^{T}\right)} \\
\leq & c\left(\|\widetilde{V}\|_{L_{\infty}\left(\Omega^{T}\right)}\left\|\nabla \widetilde{v}_{1}\right\|_{L_{s}\left(\Omega^{T}\right)}+\left\|\widetilde{v}_{2}\right\|_{L_{\infty}\left(\Omega^{T}\right)}\|\nabla \widetilde{V}\|_{L_{s}\left(\Omega^{T}\right)}\right. \\
& \left.+c\|\mathcal{T}\|_{L_{\infty}\left(\Omega^{T}\right)}\|g\|_{L_{\infty}\left(\Omega^{T}\right)}+\|\widetilde{V}\|_{L_{\infty}\left(\Omega^{T}\right)}\left\|\nabla \widetilde{\theta}_{1}\right\|_{L_{s}\left(\Omega^{T}\right)}\right) \\
\leq & c\left(\|\widetilde{V}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}+\|\widetilde{\mathcal{T}}\|_{L_{\infty}\left(0, T ; W_{\eta}^{1}(\Omega)\right)}\right)
\end{aligned}
$$

so continuity of ϕ follows.

References

[1] W. Alame, On existence of solutions for the nonstationary Stokes system with slip boundary conditions, Appl. Math., Warsaw 32 (2005), 195-223.
[2] O. V. Besov, V. P. Il'in and S. M. Nikol'skĭ̆, Integral Representations of Functions and Imbedding Therorems, "Nauka", Moscow, 1975. (Russian)
[3] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, "Nauka", Moscow, 1967. (Russian)
[4] I. PawŁow and W. M. Zajączkowski, Global existence to a three-dimensional nonlinear thermoelasticity system arising in shape memory materials, Math. Methods Appl. Sci. 28 (2005), 407-442.
[5] J. SocaŁa, W. M. Zajączkowski, Long time existence of solutions to 2D NavierStokes equations with heat convection, Appl. Math., Warsaw 36 (2009), 453-463.
[6] V. A. Solonnikov, A priori estimates for second order parabolic equations, Trudy Mat. Inst. Steklov. 70 (1964), 133-212. (Russian)
[7] W. M. Zajączkowski, Global existence of axially symmetric solutions to Navier-Stokes equations with large angular component of velocity, Colloq. Math. 100 (2004), 243-263.
[8] , Global special regular solutions to the Navier-Stokes equations in a cylindrical domain under boundary slip conditions, Gakuto Series in Math. 21 (2004), 188.

Piotr Kacprzyk
Institute of Mathematics and Cryptology
Cybernetics Faculty
Military University of Technology
Kaliskiego 2
00-908 Warsaw, POLAND
E-mail address: pk_wat@wp.pl
TMNA: Volume $37-2011$ - No 2

[^0]: 2010 Mathematics Subject Classification. Primary 35Q30; Secondary 35Q35, 76D03.

